WO2010125848A1 - 成形性、形状凍結性、表面外観に優れた冷延鋼板、およびその製造方法 - Google Patents
成形性、形状凍結性、表面外観に優れた冷延鋼板、およびその製造方法 Download PDFInfo
- Publication number
- WO2010125848A1 WO2010125848A1 PCT/JP2010/053017 JP2010053017W WO2010125848A1 WO 2010125848 A1 WO2010125848 A1 WO 2010125848A1 JP 2010053017 W JP2010053017 W JP 2010053017W WO 2010125848 A1 WO2010125848 A1 WO 2010125848A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling
- steel sheet
- cold
- elongation
- rolling direction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Definitions
- the present invention relates to a cold-rolled steel sheet excellent in formability, shape freezing property, and surface property, which is optimal as a member of a large flat plate-like component such as a backlight chassis of a large-sized liquid crystal television, and a manufacturing method thereof.
- the backlight chassis of LCD TVs has also increased in size.
- the backlight chassis has rigidity to support the light, and the light does not hit or break the liquid crystal part, so the flatness is good and it is difficult to bend, that is, there is no so-called “stickiness” Etc. are required.
- the backlight chassis becomes larger and thinner, demands for rigidity and flatness are becoming stricter.
- Patent Document 1 As a steel sheet having excellent shape freezing property, for example, as disclosed in Patent Document 1, the texture is controlled, and at least one of the r values in the rolling direction or the perpendicular direction of rolling is 0.7 or less.
- Patent Document 2 discloses a method for suppressing springback and wall warping during bending by controlling the anisotropy of local elongation and uniform elongation.
- Patent Document 3 discloses a method of suppressing spring back during bending by setting the ratio of the ⁇ 100 ⁇ plane to the ⁇ 111 ⁇ plane to be 1.0 or more.
- An object of the present invention is to solve such a problem of the prior art.
- both workability and shape freezing can be achieved, drawing, bending, and overhanging can be performed, the shape required for large parts can be secured, and the flatness is high
- An object of the present invention is to provide a cold-rolled steel sheet excellent in formability, shape freezing property, and surface appearance without causing appearance defects, and a method for producing the same.
- the features of the present invention for solving such problems are as follows. (1), by mass%, C: 0.030 to 0.060%, Si: 0.05% or less, Mn: 0.1 to 0.3%, P: 0.05% or less, S: 0.00. 02% or less, Al: 0.02 to 0.10%, N: 0.005% or less, with the balance being iron and inevitable impurities, and the average yield strength (YS) shown by the following formula (a) m ) is 230 MPa or less, the average elongation (El m ) represented by the following formula (b) is 40% or more, and the r value in the rolling direction and the direction perpendicular to the rolling is 0.7 to 1.4,
- the in-plane anisotropy ( ⁇ r) of the r value represented by the following formula (c) is ⁇ 0.2 ⁇ ⁇ r ⁇ 0.2, and is 170 ° C.
- hot rolling to finish finishing rolling is performed at (Al transformation point ⁇ 50 ° C.) to (Al transformation point + 100 ° C.), and after winding at 550 to 680 ° C., acid After washing, and then cold rolling at a reduction rate of 50 to 85%, heating to an annealing temperature of 700 ° C. or higher with an average heating rate of 600 ° C. or higher being 1 to 30 ° C./s, Average cooling rate up to 600 ° C is 3 ° C / Method for producing a cold-rolled steel sheet characterized by cooling as above.
- the present invention has been made as a result of intensive studies to solve the above-described problems.
- the long side of the rectangle is taken in parallel with the rolling direction of the steel plate or the direction perpendicular to the rolling direction.
- This is advantageous in terms of yield and operation.
- the present invention can achieve both workability and surface properties even in a large part when taking the material in such a manner. That is, by increasing the average elongation, drawing and overhanging can be performed, and the shape required for the part can be ensured. Further, by reducing the yield strength, it is possible to suppress the occurrence of springback after processing and to secure the shape freezing property.
- the shape freezing property can be ensured. Furthermore, the most important point is that the yield elongation after aging is 2% or less, so that the occurrence of stretcher strain during processing is suppressed, the surface appearance is excellent, the occurrence of springback is suppressed after processing, and the shape is frozen. It is possible to secure the sex.
- the mechanism for improving elongation and reducing yield strength is considered as follows. That is, at the time of hot rolling, the finishing temperature is set to (Al transformation point ⁇ 50 ° C.) to (Al transformation point + 100 ° C.), and the rolling is finished with ferrite instead of austenite, thereby coarsening the crystal grain size of the ferrite structure. Make it. Thereby, the crystal grain size after cold rolling and recrystallization annealing can be coarsened and softened.
- the (110) orientation is formed on the hot rolled sheet surface layer.
- the low r value is maintained by the development of the (110) orientation even by cold rolling and recrystallization annealing. Thereby, it can be softened by coarsening of ferrite grains while maintaining a low r value. Furthermore, since the yield elongation disappears completely and the yield elongation after aging becomes small, the generation of stretcher strain after forming can be suppressed, and a steel sheet having excellent surface appearance can be obtained.
- the (110) orientation is said to be an orientation in which distortion is likely to accumulate, and when this orientation develops on the surface layer, strain due to cold rolling or temper rolling is easily introduced. As a result, so-called dislocations are likely to enter, and it is estimated that stretcher strain is unlikely to occur.
- the cold-rolled steel sheet of the present invention is a steel sheet having an excellent surface appearance that does not produce stretcher strain when it is a thin cold-rolled steel sheet having a thickness of 1.0 to 0.5 mm.
- the steel sheet includes a steel sheet obtained by subjecting a cold-rolled steel sheet to surface treatment such as electrogalvanizing or hot dip galvanizing. Further, it includes a steel plate having a film formed thereon by chemical conversion treatment or the like.
- the steel plate of the present invention is not only a backlight chassis for a large TV, but also a panel for refrigerators, an air conditioner outdoor unit, etc., which has a flat part and is generally used for household appliances to bend, overhang, and perform a mild drawing process. Can be widely used.
- a backlight chassis of about 850 mm ⁇ 650 mm (42V type) can be manufactured with a steel plate having a thickness of 0.8 mm.
- low yield elongation and excellent elongation, low yield strength, low yield elongation after aging can be obtained, both workability and shape freezing properties are achieved, and drawing, bending, and overhanging are performed.
- a cold-rolled steel sheet having excellent formability and shape freezing property and excellent surface appearance can be obtained.
- a flat plate shape required for a large component can be secured, and a member such as a backlight chassis of a large liquid crystal television can be manufactured.
- C 0.030 to 0.060%
- Cementite is formed during recrystallization annealing to reduce solid solution C. At this time, if the amount of C is less than 0.030%, the supersaturation degree for carbide precipitation is small, and the precipitation of carbide is not sufficient. The strength cannot be made 230 MPa or less. Therefore, the lower limit was made 0.030%. On the other hand, when it exceeds 0.060%, workability is remarkably deteriorated. Therefore, the upper limit was made 0.060%.
- Si 0.05% or less
- workability deteriorates due to hardening, and plating properties are hindered due to the formation of Si oxide during annealing.
- plating properties are hindered due to the formation of Si oxide during annealing.
- a scale enriched with Si is formed on the surface, which may impair the surface appearance. Therefore, the upper limit was made 0.05%.
- Mn 0.1 to 0.3% Since Mn detoxifies harmful S in steel as MnS, it is necessary to make it 0.1% or more. On the other hand, a large amount of Mn needs to be 0.3% or less because deterioration of workability due to hardening and recrystallization of ferrite during annealing are suppressed.
- P 0.05% or less P needs to be 0.05% or less because it segregates at grain boundaries and deteriorates ductility and toughness. Preferably it is 0.03% or less.
- S 0.02% or less S causes the hot cracking by remarkably reducing the hot ductility, and significantly deteriorates the surface properties. Furthermore, S hardly contributes to the strength, but also reduces the ductility by forming coarse MnS as an impurity element. These problems become significant when the S content exceeds 0.02%, and it is desirable to reduce them as much as possible. Therefore, the S amount needs to be 0.02% or less.
- Al 0.02 to 0.10% Al can suppress age hardening due to solute N by fixing N as a nitride. In order to obtain such an effect, the Al amount needs to be 0.02% or more. On the other hand, a large amount of Al deteriorates workability. Therefore, the Al amount needs to be 0.10% or less.
- N 0.005% or less If N is contained in a large amount, surface cracks may occur due to slab cracking during hot rolling. Moreover, when it exists as solid solution N after cold rolling and annealing, age hardening will be caused. Therefore, the N amount needs to be 0.005% or less.
- the other components are composed of iron and inevitable impurities.
- the inevitable impurities include 0.05% or less of Cu and Cr that are easily mixed from scrap, and 0.01% or less of Sn, Mo, W, V, Ti, Nb, Ni, B, and the like.
- the metal structure of the steel sheet of the present invention is generally composed of ferrite and cementite.
- the average ferrite particle size of the ferrite structure is 7 ⁇ m or more.
- Coarse ferrite grains are realized by a hot rolling process as shown below.
- the steel sheet of the present invention has an average yield strength obtained by the above equation (a) of 230 MPa or less. If the average yield strength exceeds 230 MPa, shape defects such as springback may occur. For this reason, the average yield strength is 230 MPa or less.
- the steel sheet of the present invention has an r value of 0.7 to 1.4 in the rolling direction and the direction perpendicular to the rolling direction.
- the “stickiness” seen as a phenomenon caused by the shape freezing property is known to be caused by ridge warpage during bending or overhanging, but this is caused by lowering the r value. Can be suppressed.
- the r value is low, drawing is difficult.
- the present inventors have found that 0.7 or more and 1.4 or less are necessary as an index of r value that suppresses ridge warping and enables drawing.
- the long side of the rectangle is taken in parallel with the rolling direction of the steel sheet, or the direction perpendicular to the rolling direction, and the yield of the material, It is advantageous from the point of operation.
- the material is taken as such to make a part.
- the rolling direction and the right angle of rolling are used.
- the lower limit of the r value is more than 0.7 and is preferably 0.75 or more.
- the steel sheet of the present invention has an average elongation of 40% or more determined by the equation (b).
- the average elongation is increased to 40% or more, drawing and overhanging can be performed, and the shape required for the parts can be ensured.
- the in-plane anisotropy ( ⁇ r) of the r value obtained by the above formula (c) is set to ⁇ 0.2 ⁇ ⁇ r ⁇ 0.2.
- “stickiness” may occur after molding. This is caused by non-uniformity of the flow of the plate in the drawing, and is caused by the non-uniformity of the thickness of the molded portion.
- the anisotropy ( ⁇ r) of the r value is “0”. It is desirable that the flow of the plate from each direction is uniform, and ⁇ r is defined in a range of ⁇ 0.2 or more and 0.2 or less.
- the steel sheet of the present invention has a yield elongation after aging after holding at 170 ° C. for 60 minutes in all directions of the rolling direction, the 45 ° direction of rolling, and the direction perpendicular to the rolling direction of 2% or less.
- the low carbon steel slab having the above composition is subjected to hot rolling, and the finishing rolling temperature is set to (Al transformation point-50 ° C.) to (Al transformation point + 100 ° C.), so that the ferrite grains during hot rolling can be obtained.
- the finishing rolling temperature is set to (Al transformation point-50 ° C.) to (Al transformation point + 100 ° C.), so that the ferrite grains during hot rolling can be obtained.
- Heating temperature When hot-rolling at 1200 ° C or higher, carbides such as AlN need to be once solid-dissolved during heating and finely precipitated after winding. Therefore, the heating temperature for hot rolling must be 1200 ° C or higher. There is.
- Finishing rolling finish temperature (Al transformation point -50 ° C) to (Al transformation point + 100 ° C) It is an important point of the present invention, and the finishing temperature at the time of hot rolling needs to be carried out from (Al transformation point ⁇ 50 ° C.) to (Al transformation point + 100 ° C.). This terminates the rolling of the steel structure with ferrite rather than austenite. By finishing the rolling with the ferrite structure, the transformation from austenite to ferrite is completed by finish rolling, and the ferrite grains are coarsened by imparting strain due to rolling at about 700 ° C. to 800 ° C. Thereby, the crystal grain size of a hot-rolled sheet becomes coarse.
- the Al transformation point is approximately 720 ° C.
- Winding temperature 550 ° C to 680 ° C At the time of winding the coil, the crystal grain size is increased and at the same time the carbides are aggregated to reduce the solid solution C.
- the coiling temperature needs to be 550 ° C. or higher, preferably 600 ° C. or higher.
- the coiling temperature is higher than 680 ° C., the temperature of the edge portion of the steel sheet coil (steel sheet wound into a coil shape) is relatively decreased, and it becomes difficult to control the temperature in the coil, and the yield is decreased. To do.
- seizure of the steel plate coil occurs, a large amount of scale is generated, scale peeling by pickling performed before cold rolling becomes insufficient, and defects may occur during cold rolling. Therefore, the winding temperature needs to be 680 ° C. or less.
- Rolling ratio during cold rolling 50% to 85%
- the cold pressure ratio may be in the range that is usually performed, but if the cold pressure ratio is low, the thickness of the hot-rolled sheet to obtain a steel plate with a desired thickness becomes too thin, and the load during hot rolling increases. Therefore, the lower limit of the cold pressure rate is 50%. On the other hand, the upper limit may be 85%, which is the same as that performed by a normal cold rolling mill.
- Average heating rate above 600 °C: 1-30 °C / s In the annealing of cold-rolled plates, if the heating rate from 600 ° C. to the annealing temperature is small, the carbides generated in the hot-rolled plate are dissolved and the solid solution C increases, so the average heating rate from 600 ° C. to the annealing temperature is It is necessary to set it to 1 ° C./s or more. On the other hand, when the heating rate is high, the concentration of C in the precipitated carbide becomes insufficient, so that a large amount of solute C remains and the yield elongation cannot be reduced. For this reason, an average heating rate shall be 30 degrees C / s or less.
- Annealing temperature 700 ° C. or higher
- the annealing temperature may be a recrystallization temperature.
- the annealing temperature is set to 700 ° C. or higher because recrystallization is usually performed at 700 ° C.
- the time (soaking time) held at the annealing temperature also referred to as the soaking temperature
- the soaking time is preferably 200 s or less.
- the steel sheet is cooled, but when the average cooling rate from the annealing temperature to 600 ° C. is slower than 3 ° C./s, it precipitates as carbide. C re-dissolves and increases the yield strength. For this reason, the average cooling rate from the annealing temperature to 600 ° C. needs to be 3 ° C./s or more.
- the cooling rate exceeds 30 ° C./s or more the ferrite grain growth tends to be insufficient, the yield strength is high, and the ferrite tends to be hard. For this reason, it is preferable that an average cooling rate shall be 30 degrees C / s or less.
- a melting method can be appropriately applied, such as a normal converter method or an electric furnace method.
- the molten steel is cast into a slab and then heated as it is or after cooling and hot rolling.
- hot rolling after finishing under the above-mentioned finishing conditions, winding is performed at the above-described winding temperature.
- the cooling rate from finish rolling to winding is not particularly specified, but a cooling rate higher than air cooling is sufficient. Moreover, you may perform rapid cooling of 100 degrees C / s or more as needed.
- the above-mentioned cold rolling is performed. About the annealing process after cold rolling, the above-mentioned condition heating and cooling are performed. The cooling rate in the region lower than 600 ° C.
- plating with hot dip zinc may be performed near 480 ° C. as necessary. Further, after plating, the plating may be alloyed by reheating to 500 ° C. or higher. Alternatively, a heat history such as holding during cooling may be taken. Furthermore, if necessary, temper rolling may be performed at an elongation of about 0.5 to 2%. In addition, when plating is not performed during annealing, electrogalvanization or the like may be performed in order to improve corrosion resistance. Further, a film may be formed on the cold-rolled steel plate or the plated steel plate by chemical conversion treatment or the like.
- Table 1 shows the chemical composition, production conditions, and characteristic values of the specimen.
- the slab After melting the slab having the chemical composition shown in Table 1, the slab is heated for 1 hour at the heating temperature (RT) in the table, and after rough rolling, the finishing temperature (FT) and the winding temperature (CT) shown in the table are shown. ).
- the Al transformation point of the steel of the present invention was approximately 720 ° C.
- the thickness of the hot-rolled sheet was 2.0 to 3.5 mm.
- the hot-rolled sheet was pickled, then cold-rolled under the conditions shown in Table 1, and then annealed.
- the plate thickness after cold rolling was 0.6 to 1.0 mm.
- the heating rate is an average heating rate from 600 ° C. to the soaking temperature
- the cooling rate is an average cooling rate from the soaking temperature to 600 ° C.
- the average ferrite particle diameter was determined based on JIS G 0551 (2005).
- the steel sheet having the composition of the present invention and produced by the production method of the present invention has an average ferrite grain size of 7 ⁇ m or more, and an average yield in the rolling direction, the 45 ° direction of rolling, and the direction perpendicular to the rolling direction.
- the strength (YSm) is 230 MPa or less
- the average elongation (Elm) is 40% or more
- the r values (r L , r C ) in the rolling direction and the direction perpendicular to the rolling are 0.7 to 1.4
- the in-plane anisotropy ( ⁇ r) of the r value was ⁇ 0.2 ⁇ ⁇ r ⁇ 0.2
- the yield elongation after aging was 0%.
- a steel sheet whose composition is outside the scope of the present invention or whose manufacturing method is outside the scope of the present invention even if the composition is within the scope of the present invention is YSm, Elm, r L , r C , ⁇ r.
- One of the yield elongations was inferior.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
(1)、質量%で、C:0.030~0.060%、Si:0.05%以下、Mn:0.1~0.3%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.005%以下で、残部が鉄および不可避不純物である組成を有するとともに、下記(a)式で示す平均の降伏強度(YSm)が230MPa以下であり、かつ下記(b)式で示す平均の伸び(Elm)が40%以上であり、圧延方向および圧延直角方向のr値が0.7~1.4であり、下記(c)式で示すr値の面内異方性(Δr)が−0.2≦Δr≦0.2であり、圧延方向、圧延45°方向、圧延直角方向のすべての方向において170℃で60分保持後の降伏伸びが2%以下であることを特徴とする冷延鋼板。
平均の降伏強度 YSm=(YSL+2YSD+YSC)/4 ・・・(a)
平均の伸び Elm=(ElL+2ElD+ElC)/4 ・・・(b)
r値の面内異方性 Δr=(rL−2rD+rC)/2 ・・・(c)
ここで、YSL:圧延方向の降伏強度
YSD:圧延45°方向の降伏強度
YSC:圧延直角方向の降伏強度
ElL:圧延方向の伸び
ElD:圧延45°方向の伸び
ElC:圧延直角方向の伸び
rL:圧延方向のr値
rD:圧延45°方向のr値
rC:圧延直角方向のr値
(2)、(1)に記載の組成からなる鋼のスラブを、1200℃℃以上の加熱温度で加熱したのち、(Al変態点−50℃)~(Al変態点+100℃)で仕上げ圧延を終了する熱間圧延を行い、550~680℃で巻取った後、酸洗を施し、その後、50~85%の圧下率で冷間圧延をおこなった後、600℃以上での平均加熱速度を1~30℃/sとして700℃以上の焼鈍温度に加熱し、その後、600℃までの平均冷却速度を3℃/s以上として冷却することを特徴とする冷延鋼板の製造方法。
さらに、最も重要な点は時効後の降伏伸びを2%以下とすることにより、加工時のストレッチャーストレインの発生を抑制し、表面外観に優れ、加工後にスプリングバックの発生を抑制し、形状凍結性を確保できることである。
再結晶焼鈍時にセメンタイトを形成させて、固溶Cを低減するが、この際、C量が0.030%未満では、炭化物析出のための過飽和度が小さく、炭化物の析出が充分でないため、降伏強度を230MPa以下とすることができない。よって、下限を0.030%とした。一方、0.060%を超えて添加した場合、加工性が著しく悪くなる。よって上限を0.060%とした。
Siは、多量に含有すると、硬質化により加工性が劣化したり、焼鈍時のSi酸化物の生成によりめっき性が阻害されたりしてしまう。また、熱間圧延時には、表面にSiが濃化したスケールが形成され、表面外観を損なう恐れがある。したがって、上限を0.05%とした。
Mnは有害な鋼中SをMnSとして無害化するため、0.1%以上とする必要がある。一方、多量のMnは、硬質化による加工性の劣化や、焼鈍時のフェライトの再結晶を抑制してしまうことから、0.3%以下とする必要がある。
Pは粒界に偏析して、延性や靭性を劣化させることから、0.05%以下とする必要がある。好ましくは0.03%以下である。
Sは、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは、強度にほとんど寄与しないばかりか、不純物元素として粗大なMnSを形成することにより、延性を低下させる。これらの問題はS量が0.02%を超えると顕著となり、極力低減することが望ましい。したがって、S量は0.02%以下とする必要がある。
Alは、Nを窒化物として固定することで、固溶Nによる時効硬化を抑制することができる。このような効果を得るためにはAl量は0.02%以上とする必要がある。一方、多量のAlは、加工性を劣化させる。したがって、Al量は0.10%以下とする必要がある。
Nは多量に含有すると、熱間圧延中にスラブ割れを伴い、表面疵が発生する恐れがある。また、冷延、焼鈍後に固溶Nとして存在する場合には、時効硬化を引き起こしてしまう。したがって、N量は0.005%以下とする必要がある。
熱間圧延するに際し、加熱中にAlN等の炭化物を一旦固溶させ、巻取り後に微細析出させる必要があることから、熱間圧延の加熱温度は1200℃以上とする必要がある。
本発明の重要なポイントであり、熱間圧延時の仕上温度は(Al変態点−50℃)から(Al変態点+100℃)で実施する必要がある。これにより鋼組織をオーステナイトではなく、フェライトで圧延を終了させる。フェライト組織で圧延を終了させることにより、仕上圧延でオーステナイトからフェライトへの変態が完了し、おおよそ700℃から800℃で圧延による歪が付与されることにより、フェライト粒が粗大化する。これにより、熱延板の結晶粒径は粗大化する。ここでAl変態点は概ね720℃である。
コイル巻取り時に、結晶粒径を粗大化させると同時に炭化物を凝集させ、固溶Cを低減させる。
冷圧率は通常行われている範囲でよいが、冷圧率が低いと所望の厚さの鋼板を得るための熱延板の厚さが薄くなりすぎ、熱間圧延時の負荷が大きくなるため、冷圧率の下限は50%とする。一方、上限は通常の冷間圧延機で行われる程度の85%で良い。
冷延板の焼鈍において、600℃から焼鈍温度までの加熱速度が小さいと、熱延板で生成した炭化物が溶解し、固溶Cが増加するため、600℃から焼鈍温度までの平均加熱速度は1℃/s以上とする必要がある。一方、加熱速度が大きいと、析出している炭化物へのCの濃化が不十分となり、固溶Cが多く残存し、降伏伸びを低減できない。このため、平均加熱速度は30℃/s以下とする。
焼鈍温度は再結晶する温度であれば良く、低炭素鋼の場合、通常700℃以上であれば、再結晶することから、焼鈍温度を700℃以上とする。なお、焼鈍温度がAc3変態点温度を超えると鋼板が硬質となるため、Ac3変態点温度以下とすることが好ましく、800℃以下とすることがより好ましい。
上記焼鈍温度に加熱した後、鋼板を冷却するが、焼鈍温度から600℃までの平均冷却速度が3℃/sより遅い場合、炭化物として析出したCが再固溶し、降伏強度を上昇させる。このため、焼鈍温度から600℃までの平均の冷却速度は3℃/s以上とする必要がある。一方、該冷却速度は30℃/s以上を超えて冷却すると、フェライト粒の粒成長が不十分となりやすく、降伏強度が高く、硬質となりやすい。このため、平均冷却速度は30℃/s以下とすることが好ましい。
ここで、
Elm=(ElL+2ElD+ElC)/4
であり、L、D、Cの添え字は、それぞれの方向のElを示す。
Claims (2)
- 質量%で、C:0.030~0.060%、Si:0.05%以下、Mn:0.1~0.3%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.005%以下で、残部が鉄および不可避不純物である組成を有するとともに、下記(a)式で示す平均の降伏強度(YSm)が230MPa以下であり、かつ下記(b)式で示す平均の伸び(Elm)が40%以上であり、圧延方向および圧延直角方向のr値が0.7~1.4であり、下記(c)式で示すr値の面内異方性(Δr)が−0.2≦Δr≦0.2であり、圧延方向、圧延45°方向、圧延直角方向のすべての方向において170℃で60分保持後の降伏伸びが2%以下であることを特徴とする冷延鋼板。
平均の降伏強度 YSm=(YSL+2YSD+YSC)/4 ・・・(a)
平均の伸び Elm=(ElL+2ElD+ElC)/4 ・・・(b)
r値の面内異方性 Δr=(rL−2rD+rC)/2 ・・・(c)
ここで、YSL:圧延方向の降伏強度
YSD:圧延45°方向の降伏強度
YSC:圧延直角方向の降伏強度
ElL:圧延方向の伸び
ElD:圧延45°方向の伸び
ElC:圧延直角方向の伸び
rL:圧延方向のr値
rD:圧延45°方向のr値
rC:圧延直角方向のr値 - 請求項1に記載の組成からなる鋼のスラブを、1200℃以上の加熱温度で加熱したのち、(Al変態点−50℃)~(Al変態点+100℃)で仕上げ圧延を終了する熱間圧延を行い、550~680℃で巻取った後、酸洗を施し、その後、50~85%の圧下率で冷間圧延をおこなった後、600℃以上での平均加熱速度を1~30℃/sとして700℃以上の焼鈍温度に加熱し、その後、600℃までの平均冷却速度を3℃/s以上として冷却することを特徴とする冷延鋼板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10769548T PL2431490T3 (pl) | 2009-04-28 | 2010-02-19 | Walcowany na zimno arkusz stalowy z doskonałą odkształcalnością, zdolnością utrzymywania kształtu i wyglądem powierzchni oraz sposób jego wytwarzania |
MX2011010580A MX2011010580A (es) | 2009-04-28 | 2010-02-19 | Hoja de acero laminado en frio con capacidad de formacion, retentividad de forma y apariencia de superficies excelentes y proceso para su produccion. |
KR1020117025095A KR101263612B1 (ko) | 2009-04-28 | 2010-02-19 | 성형성, 형상 동결성, 표면 외관이 우수한 냉연 강판, 및 그 제조 방법 |
EP10769548.8A EP2431490B1 (en) | 2009-04-28 | 2010-02-19 | Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same |
CN2010800181238A CN102414334B (zh) | 2009-04-28 | 2010-02-19 | 成形性、形状冻结性、表面外观优良的冷轧钢板及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009108820A JP4962527B2 (ja) | 2009-04-28 | 2009-04-28 | 成形性、形状凍結性、表面外観に優れた冷延鋼板、およびその製造方法 |
JP2009-108820 | 2009-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010125848A1 true WO2010125848A1 (ja) | 2010-11-04 |
Family
ID=43032002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053017 WO2010125848A1 (ja) | 2009-04-28 | 2010-02-19 | 成形性、形状凍結性、表面外観に優れた冷延鋼板、およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2431490B1 (ja) |
JP (1) | JP4962527B2 (ja) |
KR (1) | KR101263612B1 (ja) |
CN (1) | CN102414334B (ja) |
MX (1) | MX2011010580A (ja) |
MY (1) | MY150597A (ja) |
PL (1) | PL2431490T3 (ja) |
WO (1) | WO2010125848A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104264038A (zh) * | 2014-09-23 | 2015-01-07 | 攀钢集团西昌钢钒有限公司 | 一种440MPa级连退冷轧结构钢板及其生产工艺 |
JP7355994B2 (ja) * | 2019-03-29 | 2023-10-04 | 日本製鉄株式会社 | 高炭素鋼板およびその製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50121118A (ja) * | 1974-03-12 | 1975-09-22 | ||
JPS55110734A (en) * | 1979-02-20 | 1980-08-26 | Kobe Steel Ltd | Producing method of al killed cold rolled high tensile steel plate |
JPS5896821A (ja) * | 1981-12-02 | 1983-06-09 | Nippon Steel Corp | 歪時効硬化性を有する塗装鋼板の製造方法 |
JPS6386819A (ja) * | 1986-09-30 | 1988-04-18 | Kawasaki Steel Corp | 深絞り用冷延鋼板の製造方法 |
JPH04276023A (ja) | 1991-03-05 | 1992-10-01 | Nippon Steel Corp | 連続焼鈍による表面性状の優れた加工用冷延鋼板の製造方法 |
JPH10237548A (ja) * | 1997-02-20 | 1998-09-08 | Nippon Steel Corp | 成形性に優れた冷延鋼板の製造方法 |
WO2000006791A1 (fr) | 1998-07-27 | 2000-02-10 | Nippon Steel Corporation | Tole d'acier mince a base de ferrite presentant une excellente caracteristique de prise de forme, et son procede de fabrication |
JP3532138B2 (ja) | 2000-04-25 | 2004-05-31 | 新日本製鐵株式会社 | 形状凍結性に優れたフェライト系薄鋼板及びその製造方法 |
JP2004183057A (ja) | 2002-12-04 | 2004-07-02 | Nippon Steel Corp | 形状凍結性に優れた鋼板及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100949694B1 (ko) * | 2002-03-29 | 2010-03-29 | 제이에프이 스틸 가부시키가이샤 | 초미세입자 조직을 갖는 냉연강판 및 그 제조방법 |
-
2009
- 2009-04-28 JP JP2009108820A patent/JP4962527B2/ja active Active
-
2010
- 2010-02-19 MX MX2011010580A patent/MX2011010580A/es active IP Right Grant
- 2010-02-19 KR KR1020117025095A patent/KR101263612B1/ko active IP Right Grant
- 2010-02-19 PL PL10769548T patent/PL2431490T3/pl unknown
- 2010-02-19 EP EP10769548.8A patent/EP2431490B1/en active Active
- 2010-02-19 MY MYPI2011004399 patent/MY150597A/en unknown
- 2010-02-19 WO PCT/JP2010/053017 patent/WO2010125848A1/ja active Application Filing
- 2010-02-19 CN CN2010800181238A patent/CN102414334B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50121118A (ja) * | 1974-03-12 | 1975-09-22 | ||
JPS55110734A (en) * | 1979-02-20 | 1980-08-26 | Kobe Steel Ltd | Producing method of al killed cold rolled high tensile steel plate |
JPS5896821A (ja) * | 1981-12-02 | 1983-06-09 | Nippon Steel Corp | 歪時効硬化性を有する塗装鋼板の製造方法 |
JPS6386819A (ja) * | 1986-09-30 | 1988-04-18 | Kawasaki Steel Corp | 深絞り用冷延鋼板の製造方法 |
JPH04276023A (ja) | 1991-03-05 | 1992-10-01 | Nippon Steel Corp | 連続焼鈍による表面性状の優れた加工用冷延鋼板の製造方法 |
JPH10237548A (ja) * | 1997-02-20 | 1998-09-08 | Nippon Steel Corp | 成形性に優れた冷延鋼板の製造方法 |
WO2000006791A1 (fr) | 1998-07-27 | 2000-02-10 | Nippon Steel Corporation | Tole d'acier mince a base de ferrite presentant une excellente caracteristique de prise de forme, et son procede de fabrication |
JP3532138B2 (ja) | 2000-04-25 | 2004-05-31 | 新日本製鐵株式会社 | 形状凍結性に優れたフェライト系薄鋼板及びその製造方法 |
JP2004183057A (ja) | 2002-12-04 | 2004-07-02 | Nippon Steel Corp | 形状凍結性に優れた鋼板及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2431490A4 * |
Also Published As
Publication number | Publication date |
---|---|
MY150597A (en) | 2014-01-30 |
CN102414334A (zh) | 2012-04-11 |
EP2431490A4 (en) | 2012-10-31 |
PL2431490T3 (pl) | 2014-05-30 |
EP2431490A1 (en) | 2012-03-21 |
KR101263612B1 (ko) | 2013-05-10 |
CN102414334B (zh) | 2013-11-06 |
KR20110137816A (ko) | 2011-12-23 |
MX2011010580A (es) | 2011-10-19 |
JP2010255069A (ja) | 2010-11-11 |
EP2431490B1 (en) | 2014-01-15 |
JP4962527B2 (ja) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5162924B2 (ja) | 缶用鋼板およびその製造方法 | |
JP2008514820A (ja) | 形状凍結性に優れた高強度冷延鋼板及びその製造方法 | |
JP4858126B2 (ja) | 高強度高延性缶用鋼板およびその製造方法 | |
WO2011087108A1 (ja) | 成形性と形状凍結性に優れた冷延鋼板およびその製造方法 | |
JP5407591B2 (ja) | 冷延鋼板及びその製造方法並びにバックライトシャーシ | |
EP3231886B1 (en) | Complex-phase steel sheet with excellent formability and manufacturing method therefor | |
JPH03277741A (ja) | 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法 | |
JP4962527B2 (ja) | 成形性、形状凍結性、表面外観に優れた冷延鋼板、およびその製造方法 | |
JP5056863B2 (ja) | 冷延鋼板およびその製造方法 | |
JP5018900B2 (ja) | 時効後の成形性及び形状凍結性に優れた冷延鋼板およびその製造方法 | |
JP5481920B2 (ja) | 成形性と形状凍結性に優れた冷延鋼板、およびその製造方法 | |
WO2013084458A1 (ja) | 冷間圧延の素材用の熱延鋼板およびその製造方法 | |
KR101528014B1 (ko) | 냉연 강판 및 그 제조 방법 | |
JPH1046289A (ja) | パネル加工後のパネル外観と耐デント性に優れた鋼板 | |
JP2013032596A (ja) | 缶用鋼板の母材に用いる熱延鋼板およびその製造方法 | |
JP5862254B2 (ja) | 冷間圧延の素材用の熱延鋼板およびその製造方法 | |
JP2000303145A (ja) | 表面性状とプレス成形性に優れた高強度冷延鋼板およびその製造方法 | |
JPH10130780A (ja) | 面内異方性が小さく成形性に優れた冷延鋼板およびその製造方法 | |
CN114427067A (zh) | 抗拉强度300MPa级冷轧热镀锌钢板及其制造方法 | |
JP2004218023A (ja) | 深絞り性に優れた冷延鋼板及びめっき鋼板の製造方法 | |
JPH0230713A (ja) | 面内異方性の小さい熱延薄鋼板の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080018123.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10769548 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3809/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/010580 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20117025095 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010769548 Country of ref document: EP |