WO2010125701A1 - Movable stage, and conveying device and charged particle beam device both having same - Google Patents

Movable stage, and conveying device and charged particle beam device both having same Download PDF

Info

Publication number
WO2010125701A1
WO2010125701A1 PCT/JP2009/067063 JP2009067063W WO2010125701A1 WO 2010125701 A1 WO2010125701 A1 WO 2010125701A1 JP 2009067063 W JP2009067063 W JP 2009067063W WO 2010125701 A1 WO2010125701 A1 WO 2010125701A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
rotating shaft
moving
pulley
unit
Prior art date
Application number
PCT/JP2009/067063
Other languages
French (fr)
Japanese (ja)
Inventor
猛 宗石
幸治 明石
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2009801589612A priority Critical patent/CN102414811A/en
Priority to JP2011511260A priority patent/JP5274656B2/en
Publication of WO2010125701A1 publication Critical patent/WO2010125701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation

Definitions

  • the present invention relates to a moving stage used for transporting a sample in a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus, a transport apparatus having the same, and a charged particle beam apparatus, for example.
  • an X stage that moves in the X-axis direction is arranged on the base, and the Y stage that moves in the Y-axis direction on the X stage is used as the moving stage used to move the sample to the target position in these apparatuses.
  • a stage is placed.
  • a configuration is proposed in which a slider is provided so as to be parallel to the moving direction of the X stage with respect to the Y stage, and a roller hook portion including a fixed roller and a pressing roller is provided on the Y drive shaft as a power transmission portion. (For example, JP 2007-184193 A).
  • the Y drive shaft is fixed to the linear motor, and the slider can move in the X-axis direction between the fixed roller and the pressing roller.
  • Patent Document 1 slipping is likely to occur between the slide and the pressing roller and the fixed roller, resulting in a problem that the position accuracy of the Y stage is deteriorated.
  • the moving stage includes a first stage, a second stage, a generation unit, and a power transmission unit.
  • the first stage is movable in the first direction.
  • the second stage is at least partially located on the first stage and is movable in a second direction that intersects the first direction.
  • the generating unit generates a driving force for moving the second stage in the second direction.
  • the power transmission unit transmits the driving force from the generation unit to the second stage, and at least a part thereof operates as the first stage moves.
  • the conveyance device includes a moving stage and a controller that controls the operation of the generation unit.
  • a charged particle beam apparatus includes a transport device that can place a sample on a second stage, and a charged particle beam source that is provided above the second stage and that irradiates the sample with the charged particle beam. Have.
  • the moving stage and the transfer device According to the moving stage and the transfer device according to one aspect of the present invention, it is possible to suppress deterioration in the position accuracy of the stage.
  • the charged particle beam apparatus can irradiate a desired position of a symmetrical object with a charged particle beam with higher accuracy.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 3 is a cross-sectional view of a portion surrounded by a dotted line C in FIG. 1, and is a view when a cross section taken along a line DD in FIG. 2 is viewed from above. It is a top view of the movement stage by the 2nd Embodiment of this invention.
  • FIG. 7 is a view showing a part of a rotating shaft and a cross section of a gear portion taken along line FF in FIG. 6. It is a top view of the modification of the movement stage by the 2nd Embodiment of this invention.
  • FIG. 9 is a view of a part of a rotation shaft and a cross section of a gear portion taken along line HH in FIG. It is a top view of the movement stage by the 3rd Embodiment of this invention, and is the figure which showed the structure of the fine adjustment means in detail especially. It is sectional drawing in the JJ line of FIG.
  • FIG. 1 shows the X axis, the Y axis, and the Z axis in the orthogonal coordinate system.
  • FIG. 1 shows the X axis, the Y axis, and the Z axis in the orthogonal coordinate system.
  • FIG. 1 shows the X axis, the Y axis, and the Z axis in the orthogonal coordinate system.
  • FIG. 1 shows the X axis, the Y axis, and the Z axis in the orthogonal coordinate system.
  • FIG. 1 shows the X axis, the Y axis, and the Z axis in the orthogonal coordinate system.
  • the moving stage 1A As shown in FIGS. 1 to 3, the moving stage 1A according to the first embodiment includes a base 11, an X stage 12 that can move linearly on the base 11 along the X-axis direction, And a Y stage 13 movable linearly along the Y-axis direction on the stage 12. Further, the moving stage 1A has an X linear guide 14 provided on the upper surface of the base 11 so as to extend along the X-axis direction, and an upper surface of the X stage 12 so as to extend along the Y-axis direction. Y linear guide 15 provided. The X stage 12 is guided by an X linear guide 14, and the Y stage 13 is guided by a Y linear guide 15. The base 11, the X stage 12, and the Y stage 13 are disposed in a vacuum chamber 3 made of pure iron, low carbon steel, or permalloy that is a ferromagnetic material.
  • a sample such as a wafer arranged on the moving stage 1A can freely move on the XY plane. .
  • An X ball screw 16 is provided on the surface of the X stage 12 facing the base 11.
  • the screw shaft of the X ball screw 16 is rotated by a driving torque generated from the X electromagnetic motor MX.
  • the X stage 12 moves while being guided by the X linear guide 14 in accordance with the rotation of the screw shaft of the X ball screw 16.
  • the Y stage 13 is also driven by the Y electromagnetic motor MY.
  • the screw shaft of the Y ball screw 17 provided on the surface of the Y stage 13 facing the X stage 12 is rotated by the driving torque generated by the Y electromagnetic motor MY.
  • the Y ball screw 17 is attached to the center of the Y stage 13 in the X-axis direction.
  • the driving torque generated by the X electromagnetic motor MX and the Y electromagnetic motor MY is rotational torque.
  • the X electromagnetic motor MX and the Y electromagnetic motor MY are attached to the outer wall surface of the vacuum chamber 3 because they generate heat and may cause fluctuations in the surrounding magnetic field. Thereby, it can suppress that the internal space of the vacuum chamber 3 is influenced by these heat_generation
  • the movement of the X stage 12 in the X-axis direction can be controlled by changing the rotational speed and rotational speed of the X ball screw 16 by the X electromagnetic motor MX.
  • the Y ball screw 17 transmits the drive torque from the Y electromagnetic motor MY via the drive torque transmission unit 20.
  • the drive torque transmission unit 20 a detailed configuration of the drive torque transmission unit 20 will be described with reference to FIG.
  • the drive torque transmitting unit 20 is disposed so as to be rotatable by bearings or the like at the intermediate rotating shaft 21, two arms 22 and 23 that can freely rotate around the intermediate rotating shaft 21, and both ends of the first arm 22.
  • the drive torque transmission unit 20 includes an annular flat belt 28 spanned between the pulley 24 and the pulley 25, an annular flat belt 29 spanned between the pulley 26 and the pulley 27, and each flat belt 28. , 29 and tension wheels 30 and 31 for applying a constant tension.
  • the drive torque transmission unit 20 connects the Y electromagnetic motor MY and the Y stage 13. Below, the connection state of the drive torque transmission part 20, Y stage 13, and Y electromagnetic motor MY is demonstrated.
  • the pulley 24 is connected to the motor shaft 40 of the Y electromagnetic motor MY via a coupling 41 and a drive shaft 42.
  • the drive shaft 42 is firmly connected to the pulley 24 and transmits the rotational torque of the Y electromagnetic motor MY to the pulley 24.
  • the drive shaft 42 is held by a bearing 43 so as to be concentric with the sleeve 44.
  • the first arm 22 is fixed to the sleeve 44. Thereby, the drive shaft 42 can freely rotate with respect to the first arm 22.
  • the sleeve 44 is held by the fixed holder 46 via a pair of bearings 45. As a result, the pulley 24 and the first arm 22 can rotate around the motor shaft 40 so as to be concentric with the motor shaft 40 without interfering with each other.
  • first arm 22 is fixed to the intermediate rotation shaft 21.
  • the pulleys 25 and 26 are attached to the intermediate rotating shaft 21 via a pair of bearings 48. Therefore, the pulleys 25 and 26 can rotate without being interfered by the first arm 22.
  • the pulleys 25 and 26 are integrally formed.
  • the flat belt 28 is stretched between the pulley 24 and the pulley 25.
  • the flat belt 28 rotates around the drive shaft 42 and the intermediate rotation shaft 21 while maintaining a constant tension according to the rotation of the pulley 24, and the driving torque from the Y electromagnetic motor MY transmitted to the pulley 24 is supplied to the pulley 25. , 26.
  • the intermediate rotating shaft 21 is connected to the second arm 23 via a pair of bearings 49. Thereby, the intermediate rotation shaft 21 can rotate with respect to the second arm 23.
  • the second arm is fixed to the transmission shaft 51 via a pair of bearings 50. That is, the transmission shaft 51 can rotate with respect to the second arm 23.
  • a pulley 27 is fixed to the transmission shaft 51.
  • the flat belt 29 is stretched between the pulley 26 and the pulley 27.
  • the flat belt 29 rotates around the intermediate rotation shaft 21 and the transmission shaft 51 while maintaining a constant tension according to the rotation of the pulley 26, and the driving torque from the Y electromagnetic motor MY transmitted to the pulley 26 is transmitted to the pulley 27.
  • the drive torque transmitted from the Y electromagnetic motor MY to the pulleys 25 and 26 is transmitted to the transmission shaft 51 via the pulley 27.
  • the transmission shaft 51 is connected to the Y ball screw 17 by a coupling 52.
  • the Y ball screw 17 rotates in accordance with the rotation of the transmission shaft 51. By this rotation, the Y stage 13 moves along the Y-axis direction.
  • the first arm 22 and the second arm 23 can rotate around the intermediate rotation shaft 21.
  • the intermediate rotation shaft 21 moves in the Z-axis direction perpendicular to the X-axis and the Y-axis, and the angle formed by the first arm 22 and the second arm 23 changes.
  • the distance between the drive shaft 40 and the transmission shaft 51 decreases as the X stage 12 moves
  • the intermediate rotation shaft 21 moves along the X-axis direction and moves upward along the Z-axis direction.
  • the angle formed by the first arm 22 and the second arm 23 decreases. That is, the drive torque transmission unit 20 having the first arm 22 and the second arm 23 is contracted along the X-axis direction.
  • the intermediate rotation shaft 21 moves along the X-axis direction and the intermediate rotation shaft 21 along the Z-axis direction.
  • the drive shaft 40 (and the transmission shaft 51) move so that the distance between them decreases, and the angle formed by the first arm 22 and the second arm 23 increases. That is, the drive torque transmission unit 20 is extended along the X-axis direction.
  • the ball screw 17 is fixed to the Y stage 13, and as the X stage 12 moves, the drive torque transmission unit 20 having the first arm 22 and the second arm 23 moves in the X-axis direction. Stretch along.
  • the driving torque transmission unit that transmits the driving force from the Y electromagnetic motor MY to the Y stage 13 is deformed as the X stage 12 moves.
  • the drive torque transmission unit is deformed as the X stage 11 moves.
  • the drive torque transmission unit 20 includes a drive shaft 42 that is rotationally driven by a Y electromagnetic motor MY, an intermediate rotation shaft 21, a transmission shaft 51, flat belts 28 and 29, a first arm 22, a second arm 23, and the like. .
  • the drive torque transmission unit 20 is connected to a Y ball screw 17 that is rotatably attached to the Y stage 13.
  • the drive torque transmission unit 20 changes in length in the X-axis direction as the X stage 12 moves.
  • the configuration including the drive torque transmission unit 20 and the Y ball screw 17 is referred to as a power transmission unit.
  • transforms it can be said that the whole power transmission part is also deform
  • the power transmission unit operates as the X stage 11 moves. Therefore, even when the Y stage 13 moves in the X-axis direction, the power transmission unit can transmit the driving force while maintaining the positional accuracy of the Y stage 13. Further, in the moving stage 1A, since the power transmission unit operates as the X stage 11 moves, the power transmission unit is added to the power transmission unit as compared with the case where the power transmission unit is fixed at a fixed position in the X-axis direction. The load can be reduced. Thereby, since it can suppress that the Y stage 13 receives reaction force from a power transmission part, the deterioration of the attitude
  • the driving force from the Y electromagnetic motor MY is applied to the central portion in the X-axis direction of the Y stage 13 via the Y ball screw 17, so that it is unnecessary for the Y stage 13. It is possible to suppress the rotation in the pitching direction and the yawing direction from being applied to the Y stage 13 by applying a rotational moment. Thereby, the attitude
  • the outer peripheral surfaces which contact the flat belts 28 and 29 are the convex curved surfaces of the pulleys 24, 25, 26, and 27.
  • the outer peripheral surfaces of the pulleys 24, 25, 26, 27 are convex curved surfaces, the flat belts 28, 29 are difficult to come off.
  • the flat belts 28 and 29 are made of, for example, stainless steel (SUS).
  • the flat belts 28 and 29 have, for example, a thickness of 0.08 mm and a width of 5 mm.
  • the width of the portions of the pulleys 24, 25, 26, 27 that the flat belts 28, 29 contact that is, the length in the same direction as the width direction of the flat belts 28, 29 is, for example, 7 mm
  • the pulleys 24, 25, When the outer peripheral surfaces of 26 and 27 are convex curved surfaces, the curvature of the convex curved surfaces is, for example, a radius of 90 mm.
  • the flat belts 28 and 29 are used.
  • the rotating belt can be rotated while maintaining a constant tension and the rotational torque can be transmitted from the drive shaft 42 to the transmission shaft 51, for example, a chain Other tension lines such as may be used.
  • the X stage 12 and the Y stage 13 are preferably made of ceramics. Ceramics generally have a smaller specific gravity and higher rigidity than metals, and therefore, the X stage 12 and the Y stage 13 (hereinafter also referred to as “stages 12 and 13” when the X stage 12 and the Y stage 13 are not distinguished). Is made of ceramics, it is difficult to deform even if the thickness of the stages 12 and 13 is thin, and the driving force for driving the stages 12 and 13 can be small. This brings about an effect that the durability period of the belt becomes longer and the power consumption can be reduced. Further, when the stages 12 and 13 are made of ceramics, they are not easily deformed even when stress is applied to the stages 12 and 13 and can be moved immediately by applying a driving force. As a result, the position accuracy and posture accuracy of the stage can be further increased.
  • ceramic has a smaller coefficient of thermal expansion than metal, the dimensions are unlikely to change even if the temperature of the stages 12 and 13 changes, and the position of the stage can be determined with higher accuracy.
  • the X linear guide 14 and the Y linear guide 15 are preferably made of ceramics.
  • an LM guide Linear Motion Guide
  • the X linear guide 14 and the Y linear guide 15 are made of ceramic, wear resistance and specific rigidity are improved. Therefore, the linear guides 14 and 15 are less likely to be worn and maintenance management is facilitated, and the position accuracy and posture accuracy of the stage are further increased. It becomes possible to do.
  • the screw shafts of the X ball screw 16 and the Y ball screw 17 are made of nonmagnetic stainless steel, and the ball inside the nut is made of high strength ceramic such as silicon nitride.
  • the moving stage according to the second embodiment is different from the moving stage according to the first embodiment in the configuration of the power transmission unit.
  • the power transmission unit of the moving stage 1 ⁇ / b> B includes a rotating shaft 60 and a gear unit 61.
  • the rotating shaft 60 is connected to the Y electromagnetic motor MY, and is fixed at a fixed position in the X-axis direction.
  • the gear unit 61 is connected to the rotary shaft 60 and can move in the X-axis direction as the X stage 12 moves. Further, the gear unit 61 rotates with the rotation of the rotating shaft 60.
  • a screw shaft of the ball screw 17 is connected to the gear portion 61.
  • the rotating shaft 60 is rotated by the driving force applied by the Y electromagnetic motor MY, and the screw shaft of the ball screw 17 rotates according to the rotation of the gear portion 61.
  • a worm gear is used as the gear portion 61.
  • the gear unit 61 includes a screw gear 61a and a helical gear 61b (helical gear).
  • the bevel gear 61 b is connected to the rotation shaft 60.
  • the screw gear 61 a is connected to the screw shaft of the ball screw 17.
  • the inclined gear 61b also rotates, and the screw gear 61a meshed with the inclined gear 61b also rotates.
  • the bevel gear 61 b is connected to the rotary shaft 60 via a linear roller bearing 62.
  • the linear roller bearing 62 has a roller groove inside. Moreover, the rotating shaft 60 has a linear groove 63 parallel to the axial direction on the surface thereof.
  • the linear roller bearing 62 has a plurality of spherical rollers.
  • the roller groove and the groove 63 of the rotating shaft 60 act as a guide for these rollers.
  • the plurality of rollers can circulate while rotating themselves along the roller groove and the groove 63 of the rotating shaft 60. Thereby, the linear roller bearing 62 can move along the groove 63 of the rotating shaft 60.
  • the inclined gear 62b can move in the X-axis direction.
  • the bevel gear 61 b is held by the gear holding portion 65 via the bearing 64.
  • the bevel gear 61 b can rotate with respect to the gear holding portion 65 by the bearing 64.
  • the inclined gear 61b can rotate with the rotation of the rotating shaft 60.
  • the gear unit 61 can move in the X-axis direction as the X-stage 12 moves, and can rotate according to the rotation of the rotary shaft 60. Therefore, by rotating the rotating shaft 60 by the Y electromagnetic motor MY, the ball screw 17 can be rotated and the Y stage 13 can be moved. Further, by changing the rotational speed and rotational speed of the Y ball screw 17 by the Y electromagnetic motor MX, the movement of the Y stage 11 in the Y-axis direction can be controlled.
  • the gear portion 61 of the moving stage 1C shown in FIGS. 8 and 9 has two bevel gears 61a and 61b.
  • One bevel gear 61 b is connected to the rotating shaft 60, and the other bevel gear 61 a is connected to the screw shaft of the ball screw 17.
  • the bevel gear 61b also rotates, and the bevel gear 61a meshed with the bevel gear 61b also rotates.
  • the bevel gear 61 b is connected to the rotary shaft 60 via a linear roller bearing 62.
  • the linear roller bearing 62 has a roller groove inside. Moreover, the rotating shaft 60 has a linear groove 63 parallel to the axial direction on the surface thereof.
  • the linear roller bearing 62 has a plurality of spherical rollers.
  • the roller groove and the groove 63 of the rotating shaft 60 act as a guide for these rollers.
  • the plurality of rollers can circulate while rotating themselves along the roller groove and the groove 63 of the rotating shaft 60. Thereby, the linear roller bearing 62 can move along the groove 63 of the rotating shaft 60.
  • the bevel gear 61b can move in the X-axis direction.
  • the bevel gear 61 b is held by the gear holding portion 65 via the bearing 64.
  • the bevel gear 61 b can rotate with respect to the gear holding portion 65 by the bearing 64. Thereby, the bevel gear 61b can rotate with the rotation of the rotating shaft 60.
  • the bevel gear 61 b can move in the X-axis direction with the movement of the X stage 12, and can rotate according to the rotation of the rotating shaft 60. Therefore, by rotating the rotating shaft 60 by the Y electromagnetic motor MY, the ball screw 17 can be rotated and the Y stage 13 can be moved. Further, by changing the rotational speed and rotational speed of the Y ball screw 17 by the Y electromagnetic motor MX, the movement of the Y stage 11 in the Y-axis direction can be controlled.
  • the power transmission unit includes a rotating shaft 60 fixed at a fixed position in the X-axis direction and a gear unit 61 connected to the rotating shaft 60 so as to be movable in the X-axis direction.
  • the gear part 61 of the power transmission unit operates in accordance with the movement of the X stage 11, the power transmission unit can operate the Y stage 13 even when the Y stage 13 moves in the X-axis direction.
  • the driving force can be transmitted while maintaining the positional accuracy.
  • the power transmission unit since the power transmission unit operates as the X stage 11 moves, the power transmission unit is compared with the case where the power transmission unit is fixed at a fixed position in the X-axis direction.
  • the applied load can be reduced.
  • position precision and position accuracy of the Y stage 13 can be suppressed.
  • the position shift of the sample can be further reduced.
  • the moving stage according to the third embodiment is different from the moving stage according to the first embodiment in that it has fine adjustment means for finely adjusting the position of the Y stage 13 in the Y-axis direction.
  • the fine adjustment means is provided on the Y stage 13. By this fine adjustment means, the position of the Y stage 13 in the Y-axis direction can be finely adjusted.
  • the fine adjustment means includes an adjustment member 70 attached to the Y stage 13 and a plurality of piezoelectric elements 71 as shown in FIGS.
  • the adjustment member 70 is attached to the back surface of the Y stage 13, that is, the surface facing the X stage 11 with a screw 72 via a roller 73.
  • the Y stage 13 moves relative to the adjustment member 70 by bending the screw 72.
  • the adjustment member 70 is fixed to a nut 75 attached to the screw shaft of the ball screw 17. Thereby, the Y stage 13 can move relative to the adjustment member 70 fixed to the nut 75. As a result, the position of the Y stage 13 in the Y-axis direction can be finely adjusted.
  • the Y stage 13 has a plurality of through holes 73 arranged along the Y-axis direction.
  • the Y stage 13 has two through holes 73.
  • a part of the Y stage 13 positioned between the two through holes 73 is also referred to as a “stage part”.
  • the adjusting member 70 has a base portion 70a located on the back surface of the Y stage 13 and a plurality of fastening portions 70b located on both sides of the stage portion along the Y-axis direction. These fastening portions 70b are positioned so as to sandwich the stage portion of the Y stage 13, and are spaced apart from the side surfaces of the stage portion of the Y stage 13 that face each other.
  • the fastening portion 70b is connected to the base portion 70a by, for example, a screw.
  • the fastening portions 70b are preferably provided in the same number on both sides of the stage portion along the Y-axis direction so that the Y stage 13 can move by the same pressing force in either direction in the Y-axis direction. 10 and 11, a pair of fastening portions 70b are provided on both sides of the stage portion.
  • the plurality of piezoelectric elements 71 correspond to the plurality of fastening portions 70b.
  • Each piezoelectric element 71 is disposed between the corresponding fastening portion 70 b and the Y stage 13.
  • Each fastening portion 70 b is positioned on both sides of the Y stage 13 in the Y-axis direction so as to press the piezoelectric element 71 before voltage application against the Y stage 13.
  • These piezoelectric elements 71 are initially arranged between the fastening portion 70b and the Y stage 13 without applying a voltage. At this time, the piezoelectric element 71 is arranged such that there is as little gap as possible between the piezoelectric element 71 and the Y stage 13 and between the piezoelectric element 71 and the fastening portion 70b. Next, a voltage is applied to the piezoelectric element 71 to extend the piezoelectric element 71 in the Y direction to about half of the maximum extension amount. As a result, the gaps between the piezoelectric element 71 and the Y stage 13 and between the piezoelectric element 71 and the fastening portion 70b are completely eliminated or can be ignored.
  • the piezoelectric element 71 a located on one side with respect to the stage part is expanded, and the other The piezoelectric element 71b positioned on the side is contracted by the same amount as the expansion amount of the piezoelectric element 71a.
  • the Y stage 13 moves relative to the adjustment member 70, and as a result, the Y stage 13 moves in the Y-axis direction.
  • the piezoelectric elements 71 are expanded and contracted by applying a voltage to these piezoelectric elements 71.
  • the moving stage since the fine adjustment means is provided, the X stage 11 and the Y stage 13 are moved to predetermined positions by the X electromagnetic motor MX and the Y electromagnetic motor MY, and then the Y stage 13 is moved. Can be finely adjusted in the Y-axis direction.
  • the fine adjustment means may be realized with other configurations.
  • the fine adjustment means shown in FIGS. 12 to 14 are different from the fine adjustment means shown in FIGS. 10 and 11 in that the length of the base portion 70a in the Y-axis direction is longer than the length of the Y stage 13 in the Y-axis direction.
  • the fastening portion 70 b is also provided outside the outer peripheral portion of the Y stage 13, and the piezoelectric element 71 is disposed so as to be in contact with the outer peripheral portion of the Y stage 13.
  • the position of the Y stage 13 in the Y-axis direction can be finely adjusted by expanding and contracting the piezoelectric element 71.
  • the fine adjustment means applies a pressing force to the Y stage 13 along the Y-axis direction in which the Y stage 13 can move, so that the Y of the Y stage 13 Adjust the position in the axial direction.
  • the fine adjustment means has the configuration shown in FIGS. 10 and 11
  • deterioration of the posture accuracy of the Y stage 13 can be suppressed as compared with the configuration shown in FIGS. This is because if the Z-direction component force is applied to the Y stage 13 due to the expansion and contraction of the piezoelectric element 71, the Z-direction component force is more likely to be disposed outside the outer periphery of the Y stage 13. It is because the influence which is received by is small.
  • fine adjustment means can be provided on the X stage 11.
  • the types of fine adjustment means provided on the Y stage 13 and fine adjustment means provided on the X stage 11 may be the same or different.
  • some systems such as a power source for applying a voltage to the piezoelectric element are connected to the X stage 11 and the Y stage. It can be used in common for the stage 13. Therefore, the entire configuration of the moving stage can be simplified.
  • the operations of the X electromagnetic motor MX and the Y electromagnetic motor MY are sufficiently controlled by the controller 80.
  • the controller 80 can also be used for the moving stage according to the second and third embodiments.
  • FIG. 16 is a side view showing a configuration example of a charged particle beam apparatus using the moving stage 1A according to the present embodiment.
  • the charged particle beam apparatus 90 includes a moving stage 1 ⁇ / b> A and a charged particle beam source 91.
  • the sample can be placed on the upper surface of the Y stage 13.
  • the charged particle beam source 91 generates a charged particle beam such as an electron beam or an ion beam and irradiates the sample.
  • the charged particle beam apparatus 90 is an electron beam drawing apparatus, for example, an electron beam is irradiated to a sample such as a silicon wafer.
  • the exit of the moving stage 1 ⁇ / b> A and the charged particle beam source 91 from which the charged particle beam is emitted is arranged inside the vacuum chamber 3.
  • the moving stage 1A according to the present embodiment is used for the charged particle beam apparatus 91, it is possible to reduce the deviation between the target position of the sample to be moved and the position of the sample after the sample is actually moved. Therefore, it is possible to reduce a deviation between a position where the charged particle beam is irradiated on the sample and an actual charged particle beam irradiation position on the sample. Thereby, it is possible to realize finer drawing or more precise inspection on the sample.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Electron Beam Exposure (AREA)

Abstract

A movable stage has a first stage (12) movable in a first direction, a second stage (13) having at least a portion thereof located on the first stage (12) and movable in a second direction crossing the first direction, a generating section (MY) for generating drive power for moving the second stage (13) in the second direction, and power transmitting section (17, 20) for transmitting the drive power from the generating section (MY) to the second stage (13) and having at least a portion thereof adapted to operate as the first stage (12) moves.

Description

移動ステージ、移動ステージを有する搬送装置および荷電粒子線装置Moving stage, transfer device having moving stage, and charged particle beam device
 本発明は、例えば半導体製造装置または液晶製造装置において試料の搬送に用いられる移動ステージおよびそれを有する搬送装置、並びに荷電粒子線装置に関する。 The present invention relates to a moving stage used for transporting a sample in a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus, a transport apparatus having the same, and a charged particle beam apparatus, for example.
 半導体デバイスを製造する際に用いられる装置として、電子線またはイオン線を用いたパターン描画装置および検査装置がある。これらの装置で試料を目標の位置に移動させるために用いられる移動ステージは、例えば、ベースの上にX軸方向に移動するXステージが配置され、Xステージの上にY軸方向に移動するYステージが配置されている。そして、Yステージに対してXステージの移動方向と平行になるようにスライダを設け、動力伝達部であるY駆動軸に対して固定ローラと押圧ローラとからなるローラフック部を設けた構成が提案されている(例えば、特開2007-184193号公報)。この構成では、Y駆動軸がリニアモータに固定され、固定ローラと押圧ローラとの間をスライダがX軸方向に移動可能となっている。 As an apparatus used when manufacturing a semiconductor device, there are a pattern drawing apparatus and an inspection apparatus using an electron beam or an ion beam. For example, an X stage that moves in the X-axis direction is arranged on the base, and the Y stage that moves in the Y-axis direction on the X stage is used as the moving stage used to move the sample to the target position in these apparatuses. A stage is placed. A configuration is proposed in which a slider is provided so as to be parallel to the moving direction of the X stage with respect to the Y stage, and a roller hook portion including a fixed roller and a pressing roller is provided on the Y drive shaft as a power transmission portion. (For example, JP 2007-184193 A). In this configuration, the Y drive shaft is fixed to the linear motor, and the slider can move in the X-axis direction between the fixed roller and the pressing roller.
 しかし、特許文献1の構成では、スライドと押圧ローラおよび固定ローラとの間に滑りが生じ易く、Yステージの位置精度が悪くなるといった問題が生じる。 However, in the configuration of Patent Document 1, slipping is likely to occur between the slide and the pressing roller and the fixed roller, resulting in a problem that the position accuracy of the Y stage is deteriorated.
 よって、ステージの位置精度の悪化を抑制することが求められている。 Therefore, it is required to suppress deterioration of the position accuracy of the stage.
 本発明の一態様による移動ステージは、第1ステージと、第2ステージと、生成部と、動力伝達部とを有する。第1ステージは、第1方向に移動可能である。第2ステージは、少なくとも一部が第1ステージ上に位置し、第1方向と交差する第2方向に移動可能である。生成部は、第2ステージを第2方向に移動させるための駆動力を生成する。動力伝達部は、生成部から第2ステージに駆動力を伝達するとともに、少なくとも一部が第1ステージの移動に伴い動作する。 The moving stage according to an aspect of the present invention includes a first stage, a second stage, a generation unit, and a power transmission unit. The first stage is movable in the first direction. The second stage is at least partially located on the first stage and is movable in a second direction that intersects the first direction. The generating unit generates a driving force for moving the second stage in the second direction. The power transmission unit transmits the driving force from the generation unit to the second stage, and at least a part thereof operates as the first stage moves.
 本発明の一態様による搬送装置は、移動ステージと、生成部の動作を制御するコントローラとを有する。 The conveyance device according to an aspect of the present invention includes a moving stage and a controller that controls the operation of the generation unit.
 本発明の一態様による荷電粒子線装置は、第2ステージ上に試料を載置可能な搬送装置と、第2ステージの上方に設けられ、試料に荷電粒子線を照射する荷電粒子線源とを有する。 A charged particle beam apparatus according to an aspect of the present invention includes a transport device that can place a sample on a second stage, and a charged particle beam source that is provided above the second stage and that irradiates the sample with the charged particle beam. Have.
 本発明の一態様による移動ステージおよび搬送装置によれば、ステージの位置精度の悪化を抑制することができる。 According to the moving stage and the transfer device according to one aspect of the present invention, it is possible to suppress deterioration in the position accuracy of the stage.
 本発明の一態様による荷電粒子線装置によれば、対称物の所望の位置に、より精度良く荷電粒子線を照射できる。 The charged particle beam apparatus according to one aspect of the present invention can irradiate a desired position of a symmetrical object with a charged particle beam with higher accuracy.
本発明の第1の実施の形態による移動ステージの平面図である。It is a top view of the movement stage by the 1st Embodiment of this invention. 本発明の第1の実施の形態による移動ステージの側面図であり、図1の矢印Aの方向からみた側面図である。It is a side view of the movement stage by the 1st Embodiment of this invention, and is the side view seen from the direction of arrow A of FIG. 図1のB-B線における断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 図1の点線Cで囲んだ部分の断面図であり、図2のD-D線における断面を上面視したときの図である。FIG. 3 is a cross-sectional view of a portion surrounded by a dotted line C in FIG. 1, and is a view when a cross section taken along a line DD in FIG. 2 is viewed from above. 本発明の第2の実施の形態による移動ステージの平面図である。It is a top view of the movement stage by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による移動ステージの側面図であり、図5の矢印Eの方向からみた側面図である。It is a side view of the movement stage by the 2nd Embodiment of this invention, and is the side view seen from the direction of arrow E of FIG. 図6のF-F線における回転軸の一部およびギア部の断面を示した図である。FIG. 7 is a view showing a part of a rotating shaft and a cross section of a gear portion taken along line FF in FIG. 6. 本発明の第2の実施の形態による移動ステージの一変形例の平面図である。It is a top view of the modification of the movement stage by the 2nd Embodiment of this invention. 図8のH-H線における回転軸の一部およびギア部の断面を矢印Gの方向からみた場合の図である。FIG. 9 is a view of a part of a rotation shaft and a cross section of a gear portion taken along line HH in FIG. 本発明の第3の実施の形態による移動ステージの平面図であり、特に微調整手段の構成を詳細に示した図である。It is a top view of the movement stage by the 3rd Embodiment of this invention, and is the figure which showed the structure of the fine adjustment means in detail especially. 図10のJ-J線における断面図である。It is sectional drawing in the JJ line of FIG. 本発明の第3の実施の形態による移動ステージの一変形例の平面図である。It is a top view of the modification of the movement stage by the 3rd Embodiment of this invention. 図12の移動ステージの微調整手段の構成を詳細に示した図である。It is the figure which showed the structure of the fine adjustment means of the movement stage of FIG. 12 in detail. 図13のK-K線における断面図である。It is sectional drawing in the KK line | wire of FIG. 本発明の搬送装置の構成例を示す平面図である。It is a top view which shows the structural example of the conveying apparatus of this invention. 本発明の実施の形態よる移動ステージを用いた荷電粒子線装置の構成例を示す側面図である。It is a side view which shows the structural example of the charged particle beam apparatus using the movement stage by embodiment of this invention.
 以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、図4以外の全ての図面には、直交座標系におけるX軸、Y軸、およびZ軸を記載している。また、図1、図5、図8、図10,図12,図13,図15には、説明のために、移動ステージ1を平面視したときには見えないYボールネジ17を記載している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. All drawings other than FIG. 4 show the X axis, the Y axis, and the Z axis in the orthogonal coordinate system. For the sake of explanation, FIG. 1, FIG. 5, FIG. 8, FIG. 10, FIG. 12, FIG.
 (第1の実施の形態)
 図1-図3に示すように、第1の実施の形態による移動ステージ1Aは、基台11と、基台11上でX軸方向に沿って直線状に移動可能なXステージ12と、Xステージ12上でY軸方向に沿って直線状に移動可能なYステージ13とを有する。また、移動ステージ1Aは、基台11の上面にX軸方向に沿って延在するように設けられたXリニアガイド14と、Xステージ12の上面にY軸方向に沿って延在するように設けられたYリニアガイド15とを有する。Xステージ12は、Xリニアガイド14によって案内され、Yステージ13は、Yリニアガイド15によって案内される。基台11、Xステージ12、およびYステージ13は、強磁性体である純鉄、低炭素鋼、またはパーマロイ等で製作された真空チャンバ3内に配置されている。
(First embodiment)
As shown in FIGS. 1 to 3, the moving stage 1A according to the first embodiment includes a base 11, an X stage 12 that can move linearly on the base 11 along the X-axis direction, And a Y stage 13 movable linearly along the Y-axis direction on the stage 12. Further, the moving stage 1A has an X linear guide 14 provided on the upper surface of the base 11 so as to extend along the X-axis direction, and an upper surface of the X stage 12 so as to extend along the Y-axis direction. Y linear guide 15 provided. The X stage 12 is guided by an X linear guide 14, and the Y stage 13 is guided by a Y linear guide 15. The base 11, the X stage 12, and the Y stage 13 are disposed in a vacuum chamber 3 made of pure iron, low carbon steel, or permalloy that is a ferromagnetic material.
 なお、Xリニアガイド14とYリニアガイド15は、平面視したときに、直交するように設置されているので、移動ステージ1A上に配置されるウェハ等の試料は、XY平面を自在に移動できる。 Since the X linear guide 14 and the Y linear guide 15 are installed so as to be orthogonal when viewed in plan, a sample such as a wafer arranged on the moving stage 1A can freely move on the XY plane. .
 Xステージ12の基台11に対向する表面には、Xボールネジ16が設けられている。Xボールネジ16のネジ軸は、X電磁モータMXより発生する駆動トルクによって回転する。Xステージ12は、このXボールネジ16のネジ軸の回転に応じて、Xリニアガイド14によって案内されて移動する。 An X ball screw 16 is provided on the surface of the X stage 12 facing the base 11. The screw shaft of the X ball screw 16 is rotated by a driving torque generated from the X electromagnetic motor MX. The X stage 12 moves while being guided by the X linear guide 14 in accordance with the rotation of the screw shaft of the X ball screw 16.
 同様に、Yステージ13もY電磁モータMYにより駆動される。具体的には、Yステージ13のXステージ12に対向する表面に設けられたYボールネジ17のネジ軸が、Y電磁モータMYにより発生する駆動トルクによって回転する。ここで、Yボールネジ17は、Yステージ13のX軸方向における中央部に取り付けられている。Yボールネジ17のネジ軸が回転すると、Yステージ13は、Xステージ12上で、Yリニアガイド15によって案内されて移動する。Yステージ13は、少なくとも一部がXステージ12の上に位置する。なお、本実施の形態による移動ステージ1Aにおいて、X電磁モータMXおよびY電磁モータMYが生成する駆動トルクとは、回転トルクのことである。 Similarly, the Y stage 13 is also driven by the Y electromagnetic motor MY. Specifically, the screw shaft of the Y ball screw 17 provided on the surface of the Y stage 13 facing the X stage 12 is rotated by the driving torque generated by the Y electromagnetic motor MY. Here, the Y ball screw 17 is attached to the center of the Y stage 13 in the X-axis direction. When the screw shaft of the Y ball screw 17 rotates, the Y stage 13 is guided and moved by the Y linear guide 15 on the X stage 12. The Y stage 13 is at least partially positioned on the X stage 12. In the moving stage 1A according to the present embodiment, the driving torque generated by the X electromagnetic motor MX and the Y electromagnetic motor MY is rotational torque.
 なお、X電磁モータMXおよびY電磁モータMYは、発熱し、かつ周囲の磁場変動を生じさせる可能性があるため、真空チャンバ3の外壁面にそれぞれ取り付けられる。これにより、真空チャンバ3の内部空間が、これらの発熱および磁場変動によって影響を受けることを抑制できる。例えば、真空チャンバ3の内部において、半導体ウェハに描画を行う場合、荷電粒子線が磁場によって曲げられるといったことを抑制できる。 Note that the X electromagnetic motor MX and the Y electromagnetic motor MY are attached to the outer wall surface of the vacuum chamber 3 because they generate heat and may cause fluctuations in the surrounding magnetic field. Thereby, it can suppress that the internal space of the vacuum chamber 3 is influenced by these heat_generation | fever and a magnetic field fluctuation | variation. For example, when drawing on a semiconductor wafer inside the vacuum chamber 3, it is possible to prevent the charged particle beam from being bent by a magnetic field.
 また、X電磁モータMXによって、Xボールネジ16の回転数および回転速度等を変化させることにより、Xステージ12のX軸方向の移動を制御することが可能である。同様に、Y電磁モータMYによって、Yボールネジ17の回転数および回転速度等を変化させることにより、Yステージ13のY軸方向の移動を制御することが可能である。 In addition, the movement of the X stage 12 in the X-axis direction can be controlled by changing the rotational speed and rotational speed of the X ball screw 16 by the X electromagnetic motor MX. Similarly, it is possible to control the movement of the Y stage 13 in the Y-axis direction by changing the rotational speed and rotational speed of the Y ball screw 17 by the Y electromagnetic motor MY.
 ここで、Yボールネジ17は、Y電磁モータMYから、駆動トルク伝達部20を介して駆動トルクを伝達する。以下、図4を参照して、駆動トルク伝達部20の詳細な構成を説明する。 Here, the Y ball screw 17 transmits the drive torque from the Y electromagnetic motor MY via the drive torque transmission unit 20. Hereinafter, a detailed configuration of the drive torque transmission unit 20 will be described with reference to FIG.
 駆動トルク伝達部20は、中間回転軸21と、中間回転軸21の回りに自由に回転移動可能な2個のアーム22,23と、第1アーム22の両端部にベアリング等で回転可能に配置された2個の平ベルト車(以下、「プーリ」ともいう。)24,25と、第2アーム23の両端部にベアリング等で回転可能に配置された2個の平ベルト車(プーリ)26,27とを有する。さらに駆動トルク伝達部20は、プーリ24とプーリ25の間に架け渡された環状の平ベルト28と、プーリ26とプーリ27の間に架け渡された環状の平ベルト29と、各平ベルト28,29に一定の張力を与えるための張力車30,31とを有する。 The drive torque transmitting unit 20 is disposed so as to be rotatable by bearings or the like at the intermediate rotating shaft 21, two arms 22 and 23 that can freely rotate around the intermediate rotating shaft 21, and both ends of the first arm 22. Two flat belt wheels (hereinafter also referred to as “pulleys”) 24 and 25, and two flat belt wheels (pulleys) 26 that are rotatably disposed at both ends of the second arm 23 by bearings or the like. , 27. Further, the drive torque transmission unit 20 includes an annular flat belt 28 spanned between the pulley 24 and the pulley 25, an annular flat belt 29 spanned between the pulley 26 and the pulley 27, and each flat belt 28. , 29 and tension wheels 30 and 31 for applying a constant tension.
 駆動トルク伝達部20は、Y電磁モータMYとYステージ13とを連結する。以下に、駆動トルク伝達部20とYステージ13およびY電磁モータMYとの接続状態について説明する。プーリ24は、Y電磁モータMYのモータシャフト40にカップリング41および駆動シャフト42を介して接続されている。この駆動シャフト42は、プーリ24に強固に接続され、Y電磁モータMYの回転トルクをプーリ24に伝達する。 The drive torque transmission unit 20 connects the Y electromagnetic motor MY and the Y stage 13. Below, the connection state of the drive torque transmission part 20, Y stage 13, and Y electromagnetic motor MY is demonstrated. The pulley 24 is connected to the motor shaft 40 of the Y electromagnetic motor MY via a coupling 41 and a drive shaft 42. The drive shaft 42 is firmly connected to the pulley 24 and transmits the rotational torque of the Y electromagnetic motor MY to the pulley 24.
 駆動シャフト42は、ベアリング43によって、スリーブ44と同心となるように保持されている。そして、第1アーム22は、スリーブ44に固定されている。これにより、駆動シャフト42は、第1アーム22に対して自由に回転可能である。また、スリーブ44は、一対のベアリング45を介して固定ホルダ46に保持されている。その結果、プーリ24と第1アーム22は、互いに干渉せずに、モータシャフト40と同心となるように、モータシャフト40の回りを回転運動できる。 The drive shaft 42 is held by a bearing 43 so as to be concentric with the sleeve 44. The first arm 22 is fixed to the sleeve 44. Thereby, the drive shaft 42 can freely rotate with respect to the first arm 22. The sleeve 44 is held by the fixed holder 46 via a pair of bearings 45. As a result, the pulley 24 and the first arm 22 can rotate around the motor shaft 40 so as to be concentric with the motor shaft 40 without interfering with each other.
 また、第1アーム22は、中間回転軸21に固定されている。プーリ25,26は、中間回転軸21に一対のベアリング48を介して取り付けられている。よって、プーリ25,26は、第1アーム22に干渉を受けることなく回転可能である。なお、ここで、プーリ25,26は、一体的に構成されている。 Further, the first arm 22 is fixed to the intermediate rotation shaft 21. The pulleys 25 and 26 are attached to the intermediate rotating shaft 21 via a pair of bearings 48. Therefore, the pulleys 25 and 26 can rotate without being interfered by the first arm 22. Here, the pulleys 25 and 26 are integrally formed.
 平ベルト28は、プーリ24とプーリ25の間に架け渡されている。平ベルト28は、プーリ24の回転に応じて一定の張力を保ちつつ、駆動シャフト42および中間回転軸21の周囲を回転し、プーリ24に伝達されたY電磁モータMYからの駆動トルクをプーリ25,26に伝達する。 The flat belt 28 is stretched between the pulley 24 and the pulley 25. The flat belt 28 rotates around the drive shaft 42 and the intermediate rotation shaft 21 while maintaining a constant tension according to the rotation of the pulley 24, and the driving torque from the Y electromagnetic motor MY transmitted to the pulley 24 is supplied to the pulley 25. , 26.
 次に、中間回転軸21は、一対のベアリング49を介して、第2アーム23に接続されている。これにより、中間回転軸21は、第2アーム23に対して回転可能である。 Next, the intermediate rotating shaft 21 is connected to the second arm 23 via a pair of bearings 49. Thereby, the intermediate rotation shaft 21 can rotate with respect to the second arm 23.
 第2アームは、一対のベアリング50を介して伝達シャフト51に固定されている。すなわち、伝達シャフト51は、第2アーム23に対して回転可能である。伝達シャフト51には、プーリ27が固定されている。 The second arm is fixed to the transmission shaft 51 via a pair of bearings 50. That is, the transmission shaft 51 can rotate with respect to the second arm 23. A pulley 27 is fixed to the transmission shaft 51.
 平ベルト29は、プーリ26とプーリ27の間に架け渡されている。平ベルト29は、プーリ26の回転に応じて一定の張力を保ちつつ、中間回転軸21および伝達シャフト51の周囲を回転し、プーリ26に伝達されたY電磁モータMYからの駆動トルクをプーリ27に伝達する。これにより、Y電磁モータMYからプーリ25,26に伝達された駆動トルクは、プーリ27を介して、伝達シャフト51に伝達される。 The flat belt 29 is stretched between the pulley 26 and the pulley 27. The flat belt 29 rotates around the intermediate rotation shaft 21 and the transmission shaft 51 while maintaining a constant tension according to the rotation of the pulley 26, and the driving torque from the Y electromagnetic motor MY transmitted to the pulley 26 is transmitted to the pulley 27. To communicate. As a result, the drive torque transmitted from the Y electromagnetic motor MY to the pulleys 25 and 26 is transmitted to the transmission shaft 51 via the pulley 27.
 そして、伝達シャフト51は、カップリング52によってYボールネジ17と連結されている。Yボールネジ17は、そのネジ軸が伝達シャフト51の回転に応じて回転する。この回転により、Yステージ13が、Y軸方向に沿って移動する。 The transmission shaft 51 is connected to the Y ball screw 17 by a coupling 52. The Y ball screw 17 rotates in accordance with the rotation of the transmission shaft 51. By this rotation, the Y stage 13 moves along the Y-axis direction.
 第1アーム22および第2アーム23は、中間回転軸21を中心に回転可能である。Xステージ12が移動する際には、中間回転軸21が、X軸およびY軸に垂直なZ軸方向に移動するとともに、第1アーム22および第2アーム23がなす角度が変化する。具体的に、Xステージ12の移動に伴い駆動シャフト40と伝達シャフト51との間の距離が小さくなると、中間回転軸21が、X軸方向に沿って移動するとともにZ軸方向に沿って上に移動し、第1アーム22と第2アーム23のなす角度が小さくなる。すなわち、第1アーム22と第2アーム23とを有する駆動トルク伝達部20がX軸方向に沿って縮んだ状態になる。 The first arm 22 and the second arm 23 can rotate around the intermediate rotation shaft 21. When the X stage 12 moves, the intermediate rotation shaft 21 moves in the Z-axis direction perpendicular to the X-axis and the Y-axis, and the angle formed by the first arm 22 and the second arm 23 changes. Specifically, when the distance between the drive shaft 40 and the transmission shaft 51 decreases as the X stage 12 moves, the intermediate rotation shaft 21 moves along the X-axis direction and moves upward along the Z-axis direction. The angle formed by the first arm 22 and the second arm 23 decreases. That is, the drive torque transmission unit 20 having the first arm 22 and the second arm 23 is contracted along the X-axis direction.
 一方、Xステージ12の移動に伴い駆動シャフト40と伝達シャフト51との間の距離が大きくなると、中間回転軸21が、X軸方向に沿って移動するとともにZ軸方向に沿って中間回転軸21と駆動シャフト40(および伝達シャフト51)との間の距離が小さくなるように移動し、第1アーム22と第2アーム23のなす角度が大きくなる。すなわち、駆動トルク伝達部20がX軸方向に沿って伸びた状態になる。 On the other hand, when the distance between the drive shaft 40 and the transmission shaft 51 increases with the movement of the X stage 12, the intermediate rotation shaft 21 moves along the X-axis direction and the intermediate rotation shaft 21 along the Z-axis direction. And the drive shaft 40 (and the transmission shaft 51) move so that the distance between them decreases, and the angle formed by the first arm 22 and the second arm 23 increases. That is, the drive torque transmission unit 20 is extended along the X-axis direction.
 このように、移動ステージ1Aでは、Yステージ13にボールネジ17が固定され、Xステージ12の移動に伴って、第1アーム22および第2アーム23とを有する駆動トルク伝達部20がX軸方向に沿って伸縮する。 As described above, in the moving stage 1A, the ball screw 17 is fixed to the Y stage 13, and as the X stage 12 moves, the drive torque transmission unit 20 having the first arm 22 and the second arm 23 moves in the X-axis direction. Stretch along.
 以上のように、本実施の形態による移動ステージ1Aでは、Xステージ12の移動に伴い、Y電磁モータMYからYステージ13に駆動力を伝達する駆動トルク伝達部が変形する。駆動トルク伝達部は、Xステージ11の移動に伴って変形する。ここで、駆動トルク伝達部20は、Y電磁モータMYによって回転駆動される駆動シャフト42、中間回転軸21、伝達シャフト51、平ベルト28,29、第1アーム22および第2アーム23等を有する。 As described above, in the moving stage 1A according to the present embodiment, the driving torque transmission unit that transmits the driving force from the Y electromagnetic motor MY to the Y stage 13 is deformed as the X stage 12 moves. The drive torque transmission unit is deformed as the X stage 11 moves. Here, the drive torque transmission unit 20 includes a drive shaft 42 that is rotationally driven by a Y electromagnetic motor MY, an intermediate rotation shaft 21, a transmission shaft 51, flat belts 28 and 29, a first arm 22, a second arm 23, and the like. .
 この駆動トルク伝達部20は、Yステージ13に回転可能に取り付けられたYボールネジ17に接続される。そして、駆動トルク伝達部20は、Xステージ12の移動に伴い、X軸方向の長さが変化する。なお、移動ステージ1Aにおいて、駆動トルク伝達部20およびYボールネジ17を含んだ構成を、動力伝達部という。また、駆動トルク伝達部20が変形するとき、動力伝達部全体も変形しているといえる。 The drive torque transmission unit 20 is connected to a Y ball screw 17 that is rotatably attached to the Y stage 13. The drive torque transmission unit 20 changes in length in the X-axis direction as the X stage 12 moves. In the moving stage 1A, the configuration including the drive torque transmission unit 20 and the Y ball screw 17 is referred to as a power transmission unit. Moreover, when the drive torque transmission part 20 deform | transforms, it can be said that the whole power transmission part is also deform | transforming.
 以上のように、本実施の形態による移動ステージ1Aでは、動力伝達部がXステージ11の移動に伴って動作する。よって、動力伝達部は、Yステージ13がX軸方向に移動する場合でも、そのYステージ13の位置精度を保持しつつ、駆動力を伝達することができる。また、移動ステージ1Aでは、動力伝達部がXステージ11の移動に伴って動作するため、動力伝達部がX軸方向において定位置に固定されている場合と比較して、動力伝達部に加えられる負荷を低減することができる。これにより、Yステージ13が動力伝達部から反力を受けることを抑制できるため、Yステージ13の姿勢精度および位置精度の悪化を抑制することができる。これにより、移動ステージ1Aで移動させようとした試料の目標の位置と移動させた試料の実際の位置とのずれ(以下、単に「試料の位置ずれ」ともいう。)をより低減することができる。 As described above, in the moving stage 1A according to the present embodiment, the power transmission unit operates as the X stage 11 moves. Therefore, even when the Y stage 13 moves in the X-axis direction, the power transmission unit can transmit the driving force while maintaining the positional accuracy of the Y stage 13. Further, in the moving stage 1A, since the power transmission unit operates as the X stage 11 moves, the power transmission unit is added to the power transmission unit as compared with the case where the power transmission unit is fixed at a fixed position in the X-axis direction. The load can be reduced. Thereby, since it can suppress that the Y stage 13 receives reaction force from a power transmission part, the deterioration of the attitude | position precision and position accuracy of the Y stage 13 can be suppressed. Thereby, the deviation between the target position of the sample to be moved by the moving stage 1A and the actual position of the moved sample (hereinafter also simply referred to as “sample position deviation”) can be further reduced. .
 また、本実施の形態による移動ステージ1Aでは、Y電磁モータMYからの駆動力が、Yボールネジ17を介して、Yステージ13のX軸方向における中央部に加えられるため、Yステージ13に余計な回転モーメントが加えられて、Yステージ13にピッチング方向およびヨーイング方向における回転が生じることを抑制できる。これにより、Yステージ13の姿勢精度をより良好に保ち、試料がX、Y方向およびXY平面に対して傾斜することを抑制できる。これにより、試料の位置ずれをより低減することができる。 Further, in the moving stage 1A according to the present embodiment, the driving force from the Y electromagnetic motor MY is applied to the central portion in the X-axis direction of the Y stage 13 via the Y ball screw 17, so that it is unnecessary for the Y stage 13. It is possible to suppress the rotation in the pitching direction and the yawing direction from being applied to the Y stage 13 by applying a rotational moment. Thereby, the attitude | position precision of the Y stage 13 can be kept more favorable, and it can suppress that a sample inclines with respect to a X, Y direction, and XY plane. Thereby, the position shift of the sample can be further reduced.
 なお、プーリ24,25,26,27は、平ベルト28,29に接する外周面が、凸曲面であることが好ましい。このようにプーリ24,25,26,27の外周面が凸曲面であると、平ベルト28,29が外れにくくなる。 In addition, it is preferable that the outer peripheral surfaces which contact the flat belts 28 and 29 are the convex curved surfaces of the pulleys 24, 25, 26, and 27. Thus, if the outer peripheral surfaces of the pulleys 24, 25, 26, 27 are convex curved surfaces, the flat belts 28, 29 are difficult to come off.
 本実施の形態による移動ステージ1Aにおいて、平ベルト28,29は、例えばステンレス鋼(SUS)からなる。また、平ベルト28,29の寸法は、例えば、その厚みが0.08mmであり、幅は5mmである。 In the moving stage 1A according to the present embodiment, the flat belts 28 and 29 are made of, for example, stainless steel (SUS). The flat belts 28 and 29 have, for example, a thickness of 0.08 mm and a width of 5 mm.
 また、プーリ24,25,26,27の平ベルト28,29が接触する部分の幅、すなわち平ベルト28,29の幅方向と同じ方向における長さは、例えば7mmであり、プーリ24,25,26,27の外周面が凸曲面である場合、その凸曲面の曲率は、例えば半径90mmである。 Also, the width of the portions of the pulleys 24, 25, 26, 27 that the flat belts 28, 29 contact, that is, the length in the same direction as the width direction of the flat belts 28, 29 is, for example, 7 mm, and the pulleys 24, 25, When the outer peripheral surfaces of 26 and 27 are convex curved surfaces, the curvature of the convex curved surfaces is, for example, a radius of 90 mm.
 また、本実施の形態による移動ステージ1Aでは、平ベルト28,29を用いたが、一定の張力を保ちつつ回転し、駆動シャフト42から伝達シャフト51に回転トルクを伝達することができれば、例えばチェーン等の他の張力線を用いてもよい。 Further, in the moving stage 1A according to the present embodiment, the flat belts 28 and 29 are used. However, if the rotating belt can be rotated while maintaining a constant tension and the rotational torque can be transmitted from the drive shaft 42 to the transmission shaft 51, for example, a chain Other tension lines such as may be used.
 また、Xステージ12およびYステージ13は、セラミックスからなることが好ましい。セラミックスは、一般に、金属よりも比重が小さく剛性率が高いため、Xステージ12およびYステージ13(以下、Xステージ12およびYステージ13を区別しないときは、「ステージ12,13」ともいう。)をセラミックスにより形成すると、ステージ12,13の厚みが薄くても変形しにくく、ステージ12,13を駆動させる駆動力が小さくてすむ。これは、ベルトの耐久期間が長くなる、および消費電力を小さくできるなどの効果をもたらす。また、ステージ12,13がセラミックスからなる場合には、ステージ12, 13に応力がかがっても変形しにくく、駆動力を加えてすぐに移動させることができる。結果として、ステージの位置精度および姿勢精度をより高くすることが可能になる。 The X stage 12 and the Y stage 13 are preferably made of ceramics. Ceramics generally have a smaller specific gravity and higher rigidity than metals, and therefore, the X stage 12 and the Y stage 13 (hereinafter also referred to as “stages 12 and 13” when the X stage 12 and the Y stage 13 are not distinguished). Is made of ceramics, it is difficult to deform even if the thickness of the stages 12 and 13 is thin, and the driving force for driving the stages 12 and 13 can be small. This brings about an effect that the durability period of the belt becomes longer and the power consumption can be reduced. Further, when the stages 12 and 13 are made of ceramics, they are not easily deformed even when stress is applied to the stages 12 and 13 and can be moved immediately by applying a driving force. As a result, the position accuracy and posture accuracy of the stage can be further increased.
 また、セラミックスは金属よりも熱膨張率が小さいため、ステージ12,13の温度が変化しても寸法が変化しにくく、より高い精度でステージの位置を決めることが可能になる。 Also, since ceramic has a smaller coefficient of thermal expansion than metal, the dimensions are unlikely to change even if the temperature of the stages 12 and 13 changes, and the position of the stage can be determined with higher accuracy.
 さらに、Xリニアガイド14およびYリニアガイド15は、セラミックスからなることが好ましい。なお、本実施の形態による移動ステージ1Aでは、LMガイド(LinearMotion Guide)を用いているが、クロスローラガイドであってもよい。Xリニアガイド14およびYリニアガイド15をセラミックスにすると、耐摩耗性および比剛性が向上するため、リニアガイド14,15が摩耗しにくく保守管理が容易となり、ステージの位置精度および姿勢精度をより高くすることが可能になる。 Furthermore, the X linear guide 14 and the Y linear guide 15 are preferably made of ceramics. In the moving stage 1A according to the present embodiment, an LM guide (Linear Motion Guide) is used. When the X linear guide 14 and the Y linear guide 15 are made of ceramic, wear resistance and specific rigidity are improved. Therefore, the linear guides 14 and 15 are less likely to be worn and maintenance management is facilitated, and the position accuracy and posture accuracy of the stage are further increased. It becomes possible to do.
 また、磁場変動をより小さくするために、Xボールネジ16およびYボールネジ17のネジ軸を非磁性ステンレスで形成し、ナット内部のボールを窒化珪素等の高強度セラミックスで形成することが好ましい。 In order to further reduce the magnetic field fluctuation, it is preferable that the screw shafts of the X ball screw 16 and the Y ball screw 17 are made of nonmagnetic stainless steel, and the ball inside the nut is made of high strength ceramic such as silicon nitride.
 (第2の実施の形態)
 次に、本発明の第2の実施の形態について説明する。第2の実施の形態による移動ステージが、第1の実施の形態による移動ステージと異なる点は動力伝達部の構成である。図5から図7に示すように、移動ステージ1Bの動力伝達部は、回転軸60とギア部61とを有する。回転軸60は、Y電磁モータMYに接続され、X軸方向において定位置に固定されている。ギア部61は、回転軸60に接続され、Xステージ12の移動に伴いX軸方向に移動可能である。また、ギア部61は、回転軸60の回転に伴って回転する。ボールネジ17のネジ軸は、ギア部61に接続されている。回転軸60は、Y電磁モータMYにより与えられた駆動力により回転し、ボールネジ17のネジ軸は、ギア部61の回転に応じて回転する。なお、図5から図7では、ギア部61としてウォームギアを用いている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The moving stage according to the second embodiment is different from the moving stage according to the first embodiment in the configuration of the power transmission unit. As shown in FIGS. 5 to 7, the power transmission unit of the moving stage 1 </ b> B includes a rotating shaft 60 and a gear unit 61. The rotating shaft 60 is connected to the Y electromagnetic motor MY, and is fixed at a fixed position in the X-axis direction. The gear unit 61 is connected to the rotary shaft 60 and can move in the X-axis direction as the X stage 12 moves. Further, the gear unit 61 rotates with the rotation of the rotating shaft 60. A screw shaft of the ball screw 17 is connected to the gear portion 61. The rotating shaft 60 is rotated by the driving force applied by the Y electromagnetic motor MY, and the screw shaft of the ball screw 17 rotates according to the rotation of the gear portion 61. In FIG. 5 to FIG. 7, a worm gear is used as the gear portion 61.
 ギア部61は、ねじ歯車(Screw gear)61aと斜歯歯車61b(helicalgear)とを有する。斜歯歯車61bは、回転軸60に接続されている。ねじ歯車61aは、ボールネジ17のネジ軸に接続されている。これにより、回転軸60が回転すると斜歯歯車61bも回転し、斜歯歯車61bと噛み合わされたねじ歯車61aも回転する。その結果、ねじ歯車61aに接続されたボールネジ17のネジ軸も回転する。斜歯歯車61bは、回転軸60にリニアローラベアリング62を介して接続されている。 The gear unit 61 includes a screw gear 61a and a helical gear 61b (helical gear). The bevel gear 61 b is connected to the rotation shaft 60. The screw gear 61 a is connected to the screw shaft of the ball screw 17. Thereby, when the rotating shaft 60 rotates, the inclined gear 61b also rotates, and the screw gear 61a meshed with the inclined gear 61b also rotates. As a result, the screw shaft of the ball screw 17 connected to the screw gear 61a also rotates. The bevel gear 61 b is connected to the rotary shaft 60 via a linear roller bearing 62.
 リニアローラベアリング62は、その内部にローラ溝を有している。また、回転軸60は、その表面に軸方向に平行な直線状の溝63を有している。リニアローラベアリング62は、複数の球状のローラを有している。上記ローラ溝と回転軸60の溝63は、これらのローラの案内として作用する。また、複数のローラは、上記ローラ溝および回転軸60の溝63に沿って、自身が回転しながら循環可能である。これにより、リニアローラベアリング62は、回転軸60の溝63に沿って移動することができる。その結果、斜歯歯車62bは、X軸方向に移動することができる。 The linear roller bearing 62 has a roller groove inside. Moreover, the rotating shaft 60 has a linear groove 63 parallel to the axial direction on the surface thereof. The linear roller bearing 62 has a plurality of spherical rollers. The roller groove and the groove 63 of the rotating shaft 60 act as a guide for these rollers. The plurality of rollers can circulate while rotating themselves along the roller groove and the groove 63 of the rotating shaft 60. Thereby, the linear roller bearing 62 can move along the groove 63 of the rotating shaft 60. As a result, the inclined gear 62b can move in the X-axis direction.
 また、斜歯歯車61bは、ベアリング64を介してギア保持部65によって保持されている。このベアリング64により、斜歯歯車61bは、ギア保持部65に対して回転可能である。これにより、斜歯歯車61bは、回転軸60の回転に伴って回転することができる。 The bevel gear 61 b is held by the gear holding portion 65 via the bearing 64. The bevel gear 61 b can rotate with respect to the gear holding portion 65 by the bearing 64. Thereby, the inclined gear 61b can rotate with the rotation of the rotating shaft 60.
 以上の構成により、ギア部61は、Xステージ12の移動に伴ってX軸方向に移動することができ、かつ回転軸60の回転に応じて回転することができる。よって、Y電磁モータMYによって回転軸60を回転させることにより、ボールネジ17を回転させて、Yステージ13を移動させることができる。また、Y電磁モータMXによって、Yボールネジ17の回転数および回転速度等を変化させることにより、Yステージ11のY軸方向の移動を制御することが可能である。 With the above configuration, the gear unit 61 can move in the X-axis direction as the X-stage 12 moves, and can rotate according to the rotation of the rotary shaft 60. Therefore, by rotating the rotating shaft 60 by the Y electromagnetic motor MY, the ball screw 17 can be rotated and the Y stage 13 can be moved. Further, by changing the rotational speed and rotational speed of the Y ball screw 17 by the Y electromagnetic motor MX, the movement of the Y stage 11 in the Y-axis direction can be controlled.
 また、図8および図9に示すように、ギア部61として、他の種類のギアを用いてもよい。図8および図9に示した移動ステージ1Cのギア部61は、2つのかさ歯車(bevel gear)61a,61bを有する。一方のかさ歯車61bは、回転軸60に接続され、他方のかさ歯車61aは、ボールネジ17のネジ軸に接続されている。これにより、回転軸60が回転するとかさ歯車61bも回転し、かさ歯車61bと噛み合わされたかさ歯車61aも回転する。結果として、かさ歯車61aに接続されたボールネジ17のネジ軸も回転する。かさ歯車61bは、回転軸60にリニアローラベアリング62を介して接続されている。 Further, as shown in FIGS. 8 and 9, another type of gear may be used as the gear unit 61. The gear portion 61 of the moving stage 1C shown in FIGS. 8 and 9 has two bevel gears 61a and 61b. One bevel gear 61 b is connected to the rotating shaft 60, and the other bevel gear 61 a is connected to the screw shaft of the ball screw 17. Thereby, when the rotating shaft 60 rotates, the bevel gear 61b also rotates, and the bevel gear 61a meshed with the bevel gear 61b also rotates. As a result, the screw shaft of the ball screw 17 connected to the bevel gear 61a also rotates. The bevel gear 61 b is connected to the rotary shaft 60 via a linear roller bearing 62.
 リニアローラベアリング62は、その内部にローラ溝を有している。また、回転軸60は、その表面に軸方向に平行な直線状の溝63を有している。リニアローラベアリング62は、複数の球状のローラを有している。上記ローラ溝と回転軸60の溝63は、これらのローラの案内として作用する。また、複数のローラは、上記ローラ溝および回転軸60の溝63に沿って、自身が回転しながら循環可能である。これにより、リニアローラベアリング62は、回転軸60の溝63に沿って移動することができる。その結果、かさ歯車61bは、X軸方向に移動することができる。 The linear roller bearing 62 has a roller groove inside. Moreover, the rotating shaft 60 has a linear groove 63 parallel to the axial direction on the surface thereof. The linear roller bearing 62 has a plurality of spherical rollers. The roller groove and the groove 63 of the rotating shaft 60 act as a guide for these rollers. The plurality of rollers can circulate while rotating themselves along the roller groove and the groove 63 of the rotating shaft 60. Thereby, the linear roller bearing 62 can move along the groove 63 of the rotating shaft 60. As a result, the bevel gear 61b can move in the X-axis direction.
 また、かさ歯車61bは、ベアリング64を介してギア保持部65によって保持されている。このベアリング64により、斜歯歯車61bは、ギア保持部65に対して回転可能である。これにより、かさ歯車61bは、回転軸60の回転に伴って回転することができる。 Further, the bevel gear 61 b is held by the gear holding portion 65 via the bearing 64. The bevel gear 61 b can rotate with respect to the gear holding portion 65 by the bearing 64. Thereby, the bevel gear 61b can rotate with the rotation of the rotating shaft 60.
 以上の構成により、かさ歯車61bは、Xステージ12の移動に伴ってX軸方向に移動することができ、かつ回転軸60の回転に応じて回転することができる。よって、Y電磁モータMYによって回転軸60を回転させることにより、ボールネジ17を回転させて、Yステージ13を移動させることができる。また、Y電磁モータMXによって、Yボールネジ17の回転数および回転速度等を変化させることにより、Yステージ11のY軸方向の移動を制御することが可能である。 With the above configuration, the bevel gear 61 b can move in the X-axis direction with the movement of the X stage 12, and can rotate according to the rotation of the rotating shaft 60. Therefore, by rotating the rotating shaft 60 by the Y electromagnetic motor MY, the ball screw 17 can be rotated and the Y stage 13 can be moved. Further, by changing the rotational speed and rotational speed of the Y ball screw 17 by the Y electromagnetic motor MX, the movement of the Y stage 11 in the Y-axis direction can be controlled.
 上述の移動ステージ1B,1Cでは、動力伝達部が、X軸方向において定位置に固定されている回転軸60と、X軸方向に移動可能に回転軸60に接続されているギア部61とを有する。この構成によれば、動力伝達部のギア部61がXステージ11の移動に伴って動作することから、動力伝達部は、Yステージ13がX軸方向に移動する場合でも、そのYステージ13の位置精度を保持しつつ、駆動力を伝達することができる。また、移動ステージ1B,1Cでは、動力伝達部がXステージ11の移動に伴って動作するため、動力伝達部がX軸方向において定位置に固定されている場合と比較して、動力伝達部に加えられる負荷を低減することができる。これにより、Yステージ13が動力伝達部から反力を受けることを抑制できるため、Yステージ13の姿勢精度および位置精度の悪化を抑制することができる。これにより、試料の位置ずれをより低減することができる。 In the above-described moving stages 1B and 1C, the power transmission unit includes a rotating shaft 60 fixed at a fixed position in the X-axis direction and a gear unit 61 connected to the rotating shaft 60 so as to be movable in the X-axis direction. Have. According to this configuration, since the gear part 61 of the power transmission unit operates in accordance with the movement of the X stage 11, the power transmission unit can operate the Y stage 13 even when the Y stage 13 moves in the X-axis direction. The driving force can be transmitted while maintaining the positional accuracy. In the moving stages 1B and 1C, since the power transmission unit operates as the X stage 11 moves, the power transmission unit is compared with the case where the power transmission unit is fixed at a fixed position in the X-axis direction. The applied load can be reduced. Thereby, since it can suppress that the Y stage 13 receives reaction force from a power transmission part, the deterioration of the attitude | position precision and position accuracy of the Y stage 13 can be suppressed. Thereby, the position shift of the sample can be further reduced.
 (第3の実施の形態)
 次に、本発明の第3の実施の形態について説明する。第3の実施の形態による移動ステージが、第1の実施の形態による移動ステージと異なる点は、Y軸方向におけるYステージ13の位置を微調整する微調整手段を有する点である。微調整手段は、Yステージ13に設けられている。この微調整手段によって、Y軸方向におけるYステージ13の位置を微調整することができる。
(Third embodiment)
Next, a third embodiment of the present invention will be described. The moving stage according to the third embodiment is different from the moving stage according to the first embodiment in that it has fine adjustment means for finely adjusting the position of the Y stage 13 in the Y-axis direction. The fine adjustment means is provided on the Y stage 13. By this fine adjustment means, the position of the Y stage 13 in the Y-axis direction can be finely adjusted.
 本実施の形態による移動ステージにおいて、微調整手段は、図10および図11に示すように、Yステージ13に取り付けられた調整部材70と複数の圧電素子71とを有する。調整部材70は、ネジ72によって、Yステージ13の裏面、すなわちXステージ11に対向する面にローラ73を介して取り付けられている。後述するが、Yステージ13の位置を微調整する場合、ネジ72が屈曲することによってYステージ13が調整部材70に対して相対的に移動する。また、調整部材70は、ボールネジ17のネジ軸に取り付けられたナット75に固定されている。これにより、Yステージ13は、ナット75に固定された調整部材70に対して相対的に移動することができる。結果として、Yステージ13のY軸方向における位置を微調整することができる。 In the moving stage according to the present embodiment, the fine adjustment means includes an adjustment member 70 attached to the Y stage 13 and a plurality of piezoelectric elements 71 as shown in FIGS. The adjustment member 70 is attached to the back surface of the Y stage 13, that is, the surface facing the X stage 11 with a screw 72 via a roller 73. As will be described later, when finely adjusting the position of the Y stage 13, the Y stage 13 moves relative to the adjustment member 70 by bending the screw 72. The adjustment member 70 is fixed to a nut 75 attached to the screw shaft of the ball screw 17. Thereby, the Y stage 13 can move relative to the adjustment member 70 fixed to the nut 75. As a result, the position of the Y stage 13 in the Y-axis direction can be finely adjusted.
 Yステージ13は、Y軸方向に沿って配列された複数の貫通孔73を有する。ここで、一例として、Yステージ13は2つの貫通孔73を有している。なお、以下では、2つの貫通孔73の間に位置するYステージ13の一部を「ステージ部分」ともいう。 The Y stage 13 has a plurality of through holes 73 arranged along the Y-axis direction. Here, as an example, the Y stage 13 has two through holes 73. Hereinafter, a part of the Y stage 13 positioned between the two through holes 73 is also referred to as a “stage part”.
 調整部材70は、Yステージ13の裏面に位置しているベース部分70aと、Y軸方向に沿ってステージ部分の両側に位置された複数の留め部70bとを有する。これらの留め部70bは、Yステージ13のステージ部分を挟み込むように位置し、各々が対向するYステージ13のステージ部分の側面から離間している。留め部70bは、ベース部分70aに例えばネジによって接続されている。 The adjusting member 70 has a base portion 70a located on the back surface of the Y stage 13 and a plurality of fastening portions 70b located on both sides of the stage portion along the Y-axis direction. These fastening portions 70b are positioned so as to sandwich the stage portion of the Y stage 13, and are spaced apart from the side surfaces of the stage portion of the Y stage 13 that face each other. The fastening portion 70b is connected to the base portion 70a by, for example, a screw.
 留め部70bは、Yステージ13がY軸方向におけるどちらの向きにも同じ押圧力で同じ距離だけ移動可能なように、Y軸方向に沿ってステージ部分の両側に同数ずつ設けられることが好ましい。なお、図10および図11においては、上記ステージ部分の両側に一対の留め部70bが設けられている。 The fastening portions 70b are preferably provided in the same number on both sides of the stage portion along the Y-axis direction so that the Y stage 13 can move by the same pressing force in either direction in the Y-axis direction. 10 and 11, a pair of fastening portions 70b are provided on both sides of the stage portion.
 複数の圧電素子71は、複数の留め部70bに対応している。各圧電素子71は、対応する留め部70bとYステージ13との間に配置される。各留め部70bは、電圧印加前の圧電素子71をYステージ13に押し当てるようにY軸方向におけるYステージ13の両側に位置される。 The plurality of piezoelectric elements 71 correspond to the plurality of fastening portions 70b. Each piezoelectric element 71 is disposed between the corresponding fastening portion 70 b and the Y stage 13. Each fastening portion 70 b is positioned on both sides of the Y stage 13 in the Y-axis direction so as to press the piezoelectric element 71 before voltage application against the Y stage 13.
 これらの圧電素子71は、最初、電圧を印加しない状態で留め部70bとYステージ13との間に配置される。このとき、圧電素子71は、圧電素子71とYステージ13との間および圧電素子71と留め部70bとの間にできるだけ隙間がないように配置される。次に、圧電素子71に電圧を印加して圧電素子71をY方向に最大伸張量の半分程度まで伸張させる。これにより、圧電素子71とYステージ13との間および圧電素子71と留め部70bとの間の隙間は完全になくなる又は無視できるほど小さくなる。 These piezoelectric elements 71 are initially arranged between the fastening portion 70b and the Y stage 13 without applying a voltage. At this time, the piezoelectric element 71 is arranged such that there is as little gap as possible between the piezoelectric element 71 and the Y stage 13 and between the piezoelectric element 71 and the fastening portion 70b. Next, a voltage is applied to the piezoelectric element 71 to extend the piezoelectric element 71 in the Y direction to about half of the maximum extension amount. As a result, the gaps between the piezoelectric element 71 and the Y stage 13 and between the piezoelectric element 71 and the fastening portion 70b are completely eliminated or can be ignored.
 その後、Yステージ13の位置を調整する場合には、Yステージ13のステージ部分の両側に位置する複数の圧電素子71のうち、そのステージ部分に関して一方側に位置する圧電素子71aを伸張させ、他方側に位置する圧電素子71bを、圧電素子71aの伸張量と同じ量だけ収縮させる。これにより、Yステージ13は、調整部材70に対して相対的に移動し、結果として、Yステージ13がY軸方向に移動する。 Thereafter, when adjusting the position of the Y stage 13, among the plurality of piezoelectric elements 71 located on both sides of the stage part of the Y stage 13, the piezoelectric element 71 a located on one side with respect to the stage part is expanded, and the other The piezoelectric element 71b positioned on the side is contracted by the same amount as the expansion amount of the piezoelectric element 71a. Thereby, the Y stage 13 moves relative to the adjustment member 70, and as a result, the Y stage 13 moves in the Y-axis direction.
 なお、図示していないが、圧電素子71の伸縮は、これらの圧電素子71に電圧を印加することにより行う。 Although not shown, the piezoelectric elements 71 are expanded and contracted by applying a voltage to these piezoelectric elements 71.
 本実施の形態による移動ステージによれば、微調整手段を設けているため、X電磁モータMXおよびY電磁モータMYによってXステージ11およびYステージ13を所定の位置に移動させた後、Yステージ13のY軸方向における位置を微調整することができる。 According to the moving stage according to the present embodiment, since the fine adjustment means is provided, the X stage 11 and the Y stage 13 are moved to predetermined positions by the X electromagnetic motor MX and the Y electromagnetic motor MY, and then the Y stage 13 is moved. Can be finely adjusted in the Y-axis direction.
 また、微調整手段を他の構成で実現してもよい。図12から図14で示した微調整手段が、図10および図11で示した微調整手段と異なる点は、ベース部分70aのY軸方向における長さがYステージ13のY軸方向における長さよりも長く、留め部70bもYステージ13の外周部の外側に設けられている点、および圧電素子71が、Yステージ13の外周部に接するように配置されている点である。 Further, the fine adjustment means may be realized with other configurations. The fine adjustment means shown in FIGS. 12 to 14 are different from the fine adjustment means shown in FIGS. 10 and 11 in that the length of the base portion 70a in the Y-axis direction is longer than the length of the Y stage 13 in the Y-axis direction. The fastening portion 70 b is also provided outside the outer peripheral portion of the Y stage 13, and the piezoelectric element 71 is disposed so as to be in contact with the outer peripheral portion of the Y stage 13.
 そして、ベース部分70aが長いため、調整部材70をYステージ13に取り付けるネジ72の本数が多い。 Since the base portion 70a is long, the number of screws 72 for attaching the adjusting member 70 to the Y stage 13 is large.
 この構成においても、圧電素子71を伸縮させることにより、Yステージ13のY軸方向における位置を微調整することができる。 Also in this configuration, the position of the Y stage 13 in the Y-axis direction can be finely adjusted by expanding and contracting the piezoelectric element 71.
 なお、微調整手段が図10および図11に示すどちらの構成であっても、Yステージ13が移動可能なY軸方向に沿ってYステージ13に押圧力を加えることにより、Yステージ13のY軸方向における位置を調整する。 10 and 11, the fine adjustment means applies a pressing force to the Y stage 13 along the Y-axis direction in which the Y stage 13 can move, so that the Y of the Y stage 13 Adjust the position in the axial direction.
 また、微調整手段が図10,図11に示す構成のとき、図12-図14に示す構成のときよりも、Yステージ13の姿勢精度の悪化を抑制することができる。これは、もし圧電素子71の伸縮によってYステージ13にZ方向成分の力が働いた場合、Yステージ13の外周部の外側に圧電素子71を配置している方が、そのZ方向成分の力によって受ける影響が小さいためである。 Further, when the fine adjustment means has the configuration shown in FIGS. 10 and 11, deterioration of the posture accuracy of the Y stage 13 can be suppressed as compared with the configuration shown in FIGS. This is because if the Z-direction component force is applied to the Y stage 13 due to the expansion and contraction of the piezoelectric element 71, the Z-direction component force is more likely to be disposed outside the outer periphery of the Y stage 13. It is because the influence which is received by is small.
 また、図12および図13に示すように、微調整手段をXステージ11に設けることもできる。Yステージ13に設ける微調整手段とXステージ11に設ける微調整手段の種類は、同じであっても異なっていてもよい。ただし、Yステージ13に設ける微調整手段とXステージ11に設ける微調整手段とが同じである場合には、例えば圧電素子に電圧を印加する電源等の一部のシステムを、Xステージ11およびYステージ13に対して共通に使用することができる。よって、移動ステージの構成全体を簡略化することができる。 Also, as shown in FIGS. 12 and 13, fine adjustment means can be provided on the X stage 11. The types of fine adjustment means provided on the Y stage 13 and fine adjustment means provided on the X stage 11 may be the same or different. However, when the fine adjustment means provided on the Y stage 13 and the fine adjustment means provided on the X stage 11 are the same, for example, some systems such as a power source for applying a voltage to the piezoelectric element are connected to the X stage 11 and the Y stage. It can be used in common for the stage 13. Therefore, the entire configuration of the moving stage can be simplified.
 また、図15に示すように、X電磁モータMXおよびY電磁モータMYは、コントローラ80によってその動作が十分制御されている。なお、このコントローラ80は、第2および第3の実施の形態による移動ステージにも利用可能である。 Further, as shown in FIG. 15, the operations of the X electromagnetic motor MX and the Y electromagnetic motor MY are sufficiently controlled by the controller 80. The controller 80 can also be used for the moving stage according to the second and third embodiments.
 図16は、本実施の形態による移動ステージ1Aを用いた荷電粒子線装置の構成例を示す側面図である。図16に示すように、荷電粒子線装置90は、移動ステージ1Aと、荷電粒子線源91とを有する。試料は、Yステージ13の上面に載置可能である。荷電粒子線源91は、電子線またはイオン線等の荷電粒子線を発生させて試料に照射する。荷電粒子線装置90が、例えば電子線描画装置である場合、電子線がシリコンウェハ等の試料に照射される。なお、移動ステージ1Aおよび荷電粒子線が出射される荷電粒子線源91の出射口は、真空チャンバ3の内部に配置されている。 FIG. 16 is a side view showing a configuration example of a charged particle beam apparatus using the moving stage 1A according to the present embodiment. As shown in FIG. 16, the charged particle beam apparatus 90 includes a moving stage 1 </ b> A and a charged particle beam source 91. The sample can be placed on the upper surface of the Y stage 13. The charged particle beam source 91 generates a charged particle beam such as an electron beam or an ion beam and irradiates the sample. When the charged particle beam apparatus 90 is an electron beam drawing apparatus, for example, an electron beam is irradiated to a sample such as a silicon wafer. The exit of the moving stage 1 </ b> A and the charged particle beam source 91 from which the charged particle beam is emitted is arranged inside the vacuum chamber 3.
 本実施の形態による移動ステージ1Aを荷電粒子線装置91に用いると、移動させようとした試料の目標の位置と実際に試料を移動させた後の試料の位置とのずれを低減できる。よって、その試料において荷電粒子線を照射しようとしていた位置と、その試料における実際の荷電粒子線の照射位置とのずれを低減できる。これにより、試料に対するより微細な描画またはより精密な検査を実現することができる。 When the moving stage 1A according to the present embodiment is used for the charged particle beam apparatus 91, it is possible to reduce the deviation between the target position of the sample to be moved and the position of the sample after the sample is actually moved. Therefore, it is possible to reduce a deviation between a position where the charged particle beam is irradiated on the sample and an actual charged particle beam irradiation position on the sample. Thereby, it is possible to realize finer drawing or more precise inspection on the sample.
 12 第1ステージ
 13 第2ステージ
 17 駆動シャフト
 MY,MY モータ
12 First stage 13 Second stage 17 Drive shaft MY, MY Motor

Claims (17)

  1.  第1方向に移動可能な第1ステージと、
     少なくとも一部が前記第1ステージ上に位置し、前記第1方向と交差する第2方向に移動可能な第2ステージと、
     前記第2ステージを前記第2方向に移動させるための駆動力を生成する生成部と、
     前記生成部から前記第2ステージに前記駆動力を伝達するとともに、少なくとも一部が前記第1ステージの移動に伴い動作する動力伝達部と
    を有する移動ステージ。
    A first stage movable in a first direction;
    A second stage at least partially located on the first stage and movable in a second direction intersecting the first direction;
    A generating unit that generates a driving force for moving the second stage in the second direction;
    A moving stage that transmits the driving force from the generating unit to the second stage and has a power transmitting unit that operates at least partially in accordance with the movement of the first stage.
  2.  前記動力伝達部は、前記第1ステージの移動に伴い変形する請求項1に記載の移動ステージ。 The moving stage according to claim 1, wherein the power transmission unit is deformed as the first stage moves.
  3.  前記動力伝達部は、
     回転可能に前記第2ステージに取り付けられた第1駆動軸と、
     前記生成部と前記第1駆動軸との間で前記第1ステージの移動に伴い変形する変形部と
    を有する請求項2に記載の移動ステージ。
    The power transmission unit is
    A first drive shaft rotatably attached to the second stage;
    The moving stage according to claim 2, further comprising: a deforming unit that deforms with the movement of the first stage between the generating unit and the first drive shaft.
  4.  前記第1駆動軸は、前記第2ステージの前記第1方向における中央部に取り付けられている請求項3に記載の移動ステージ。 The moving stage according to claim 3, wherein the first drive shaft is attached to a central portion of the second stage in the first direction.
  5.  前記変形部は、前記第1ステージの移動に伴い前記第1方向の長さが変化する請求項3又は請求項4に記載の移動ステージ。 The moving stage according to claim 3 or 4, wherein the deforming portion changes in length in the first direction as the first stage moves.
  6.  前記変形部は、
     前記生成部によって回転駆動される第2回転軸と、
     前記第2回転軸と前記第1回転軸との間に設けられた第3回転軸と、
     前記第2回転軸および前記第3回転軸を一定の張力を保ちつつ取り囲む環状の第1張力線であって、前記第2回転軸の回転を前記第3回転軸に伝達する第1張力線と、
     前記第3回転軸および前記第1回転軸を一定の張力を保ちつつ取り囲む環状の第2張力線であって、前記第3回転軸の回転を前記第1回転軸に伝達する第2張力線と
    を備え、
     前記第3回転軸は、前記第1ステージの移動に応じて、前記第1方向に垂直な方向に変位する請求項4又は請求項5に記載の移動ステージ。
    The deformation part is
    A second rotating shaft that is rotationally driven by the generator;
    A third rotating shaft provided between the second rotating shaft and the first rotating shaft;
    An annular first tension line surrounding the second rotating shaft and the third rotating shaft while maintaining a constant tension, the first tension line transmitting the rotation of the second rotating shaft to the third rotating shaft; ,
    An annular second tension line surrounding the third rotating shaft and the first rotating shaft while maintaining a constant tension, and a second tension line transmitting the rotation of the third rotating shaft to the first rotating shaft; With
    6. The moving stage according to claim 4, wherein the third rotating shaft is displaced in a direction perpendicular to the first direction in accordance with the movement of the first stage.
  7.  前記変形部は、前記第1回転軸に接続された第1プーリと、前記第2回転軸に接続された第2プーリと、前記第3回転軸に接続された第3プーリおよび第4プーリとを有し、
     前記第1張力線は、第2プーリと第3プーリとの間に架け渡されたベルトであり、前記第2張力線は、第4プーリと第1プーリとの間に架け渡されたベルトである請求項6に記載の移動ステージ。
    The deforming portion includes a first pulley connected to the first rotating shaft, a second pulley connected to the second rotating shaft, a third pulley and a fourth pulley connected to the third rotating shaft, Have
    The first tension line is a belt spanned between the second pulley and the third pulley, and the second tension line is a belt spanned between the fourth pulley and the first pulley. The moving stage according to claim 6.
  8.  前記第1プーリ、前記第2プーリ、および前記第3プーリの前記ベルトに接する外周面は、凸曲面である請求項7に記載の移動ステージ。 8. The moving stage according to claim 7, wherein outer peripheral surfaces of the first pulley, the second pulley, and the third pulley that are in contact with the belt are convex curved surfaces.
  9.  前記第2方向に沿って前記第2ステージに押圧力を加えることにより、前記第2方向における前記第2ステージの位置を微調整する微調整手段を有する請求項1から請求項8のいずれかに記載の移動ステージ。 9. The method according to claim 1, further comprising fine adjustment means for finely adjusting a position of the second stage in the second direction by applying a pressing force to the second stage along the second direction. The moving stage described.
  10.  前記微調整手段は、
     前記第2ステージに取り付けられた部材であって、前記第2方向において前記第2ステージの両側に、かつ該第2ステージから離れて位置するように設けられた複数の留め部を有する部材と、
     前記第2ステージと前記複数の留め部との間に設けられた複数の圧電素子と
    を有する請求項9に記載の移動ステージ。
    The fine adjustment means includes
    A member attached to the second stage, the member having a plurality of fastening portions provided on both sides of the second stage in the second direction so as to be positioned away from the second stage;
    The moving stage according to claim 9, comprising a plurality of piezoelectric elements provided between the second stage and the plurality of fastening portions.
  11.  前記第2ステージは、前記第2方向に沿って配列された複数の貫通孔を有し、
     前記微調整手段は、
     前記第2ステージに取り付けられた部材であって、前記複数の貫通孔のうち隣り合う前記貫通孔の間に位置する前記第2ステージの一部の前記第2方向における両側に、かつ該第2ステージの一部から離れて位置するように設けられた複数の留め部を有する部材と、
     前記第2ステージと前記複数の留め部との間に設けられた複数の圧電素子と
    を有する請求項9に記載の移動ステージ。
    The second stage has a plurality of through holes arranged along the second direction,
    The fine adjustment means includes
    A member attached to the second stage, on both sides in the second direction of a part of the second stage located between the adjacent through holes among the plurality of through holes, and the second stage A member having a plurality of fastening portions provided so as to be located away from a part of the stage;
    The moving stage according to claim 9, comprising a plurality of piezoelectric elements provided between the second stage and the plurality of fastening portions.
  12.  前記動力伝達部は、
     回転可能に前記第2ステージに取り付けられた第1駆動軸と、
     前記生成部に接続され、前記第1方向において定位置に固定された固定部と、
     前記固定部および前記第1駆動軸に接続され、前記第1ステージの移動に伴い前記第1方向に移動する移動部と、
    を有する請求項1から請求項3のいずれかに記載の移動ステージ。
    The power transmission unit is
    A first drive shaft rotatably attached to the second stage;
    A fixed portion connected to the generator and fixed at a fixed position in the first direction;
    A moving unit connected to the fixed unit and the first drive shaft and moving in the first direction as the first stage moves;
    The moving stage according to any one of claims 1 to 3, further comprising:
  13.  前記固定部は、前記生成部によって回転駆動される第2駆動軸を有し、
     前記移動部は、前記第2駆動軸の回転に応じて回転するギア部を有する請求項12に記載の移動ステージ。
    The fixed portion has a second drive shaft that is rotationally driven by the generator.
    The moving stage according to claim 12, wherein the moving unit includes a gear unit that rotates according to the rotation of the second drive shaft.
  14.  前記第1駆動軸は、前記第2ステージの前記第1方向における中央部に取り付けられている請求項13に記載の移動ステージ。 The moving stage according to claim 13, wherein the first drive shaft is attached to a central portion in the first direction of the second stage.
  15.  前記第1ステージおよび前記第2ステージは、真空容器の内部に配置され、前記生成部は、該真空容器の外部に配置されている請求項1から請求項14のいずれかに記載の移動ステージ。 The moving stage according to any one of claims 1 to 14, wherein the first stage and the second stage are arranged inside a vacuum vessel, and the generation unit is arranged outside the vacuum vessel.
  16.  請求項1乃至請求項15のいずれかに記載の移動ステージと、
     前記生成部の動作を制御するコントローラと
    を有する搬送装置。
    A moving stage according to any one of claims 1 to 15,
    And a controller that controls the operation of the generating unit.
  17.  請求項16に記載の搬送装置であって、前記第2ステージ上に試料を載置可能な搬送装置と、
     前記第2ステージの上方に設けられ、前記試料に荷電粒子線を照射する荷電粒子線源と
    を有する荷電粒子線装置。
    The transport apparatus according to claim 16, wherein a transport apparatus capable of placing a sample on the second stage;
    A charged particle beam apparatus including a charged particle beam source provided above the second stage and irradiating the sample with a charged particle beam.
PCT/JP2009/067063 2009-04-27 2009-09-30 Movable stage, and conveying device and charged particle beam device both having same WO2010125701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801589612A CN102414811A (en) 2009-04-27 2009-09-30 Movable stage, and conveying device and charged particle beam device both having same
JP2011511260A JP5274656B2 (en) 2009-04-27 2009-09-30 Moving stage, transfer device having moving stage, and charged particle beam device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-108091 2009-04-27
JP2009108091 2009-04-27

Publications (1)

Publication Number Publication Date
WO2010125701A1 true WO2010125701A1 (en) 2010-11-04

Family

ID=43031861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067063 WO2010125701A1 (en) 2009-04-27 2009-09-30 Movable stage, and conveying device and charged particle beam device both having same

Country Status (4)

Country Link
JP (1) JP5274656B2 (en)
KR (1) KR20120022818A (en)
CN (1) CN102414811A (en)
WO (1) WO2010125701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874155A (en) * 2019-03-25 2021-12-31 株式会社尼康 Machining system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490310B1 (en) * 2014-08-14 2015-02-04 (주)메티스 foup loading apparatus
CN107267950A (en) * 2017-04-25 2017-10-20 苏州同冠微电子有限公司 A kind of evaporator beam spot remote-control box and its control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140160A (en) * 1986-12-03 1988-06-11 Matsushita Electric Ind Co Ltd Fine positioning device
JPS642845A (en) * 1987-06-25 1989-01-06 Koyo Seiko Co Ltd Accurate positioning device
JPH04210348A (en) * 1990-12-12 1992-07-31 Toshiba Corp X-y table
JP2001229867A (en) * 2000-02-15 2001-08-24 Hitachi Ltd Stage apparatus
JP2005161467A (en) * 2003-12-02 2005-06-23 Sankyo Seiki Mfg Co Ltd Driving connecting mechanism and vacuum robot having this driving connecting mechanism
JP2007184193A (en) * 2006-01-10 2007-07-19 Hitachi High-Technologies Corp Charged particle beam device
JP2007220910A (en) * 2006-02-16 2007-08-30 Nsk Ltd Positioning apparatus for vacuum
JP2008141095A (en) * 2006-12-05 2008-06-19 Tatsumo Kk Semiconductor manufacturing carrying device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686762B2 (en) * 2005-06-07 2011-05-25 独立行政法人産業技術総合研究所 Three-dimensional shape alignment method and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140160A (en) * 1986-12-03 1988-06-11 Matsushita Electric Ind Co Ltd Fine positioning device
JPS642845A (en) * 1987-06-25 1989-01-06 Koyo Seiko Co Ltd Accurate positioning device
JPH04210348A (en) * 1990-12-12 1992-07-31 Toshiba Corp X-y table
JP2001229867A (en) * 2000-02-15 2001-08-24 Hitachi Ltd Stage apparatus
JP2005161467A (en) * 2003-12-02 2005-06-23 Sankyo Seiki Mfg Co Ltd Driving connecting mechanism and vacuum robot having this driving connecting mechanism
JP2007184193A (en) * 2006-01-10 2007-07-19 Hitachi High-Technologies Corp Charged particle beam device
JP2007220910A (en) * 2006-02-16 2007-08-30 Nsk Ltd Positioning apparatus for vacuum
JP2008141095A (en) * 2006-12-05 2008-06-19 Tatsumo Kk Semiconductor manufacturing carrying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874155A (en) * 2019-03-25 2021-12-31 株式会社尼康 Machining system

Also Published As

Publication number Publication date
KR20120022818A (en) 2012-03-12
JPWO2010125701A1 (en) 2012-10-25
JP5274656B2 (en) 2013-08-28
CN102414811A (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US7857121B2 (en) System and method for enhancing conveying performance of conveyors
JP5525399B2 (en) Transport device, substrate processing system, and attitude control mechanism
JP5274656B2 (en) Moving stage, transfer device having moving stage, and charged particle beam device
JP5594404B1 (en) Table device, transfer device, semiconductor manufacturing device, and flat panel display manufacturing device
KR101789152B1 (en) Table device and carrier device
JP2014097548A (en) Rigidity variable mechanism, rigidity variable driving device and joint driving device
US9334935B2 (en) Moving mechanism, electronic component transport device, electronic component inspection device
WO2015152246A1 (en) Table device, conveyance device, semiconductor-manufacturing device, and inspection device
WO2013114922A1 (en) Oscillatory wave drive device, two-dimensional drive device, and image blur correction device
KR20170089729A (en) Robot arm with gravity compensation mechanism
US20050005722A1 (en) Positioning device
US10047837B2 (en) Belt driving apparatus
US20130047758A1 (en) Z-axis stage driving apparatus, stage driving apparatus, and method for manipulating stage driving apparatus
JP2705785B2 (en) Stage equipment
JP2886610B2 (en) Friction drive with non-contact support
JP3022549B1 (en) Fine movement positioning mechanism, fine movement positioning stage device and work arm device
US7459820B2 (en) Magnetic belt and roller system
US9421689B2 (en) Manipulator apparatus
Kosaka et al. Wear reduction method for frictionally fast feeding piezoactuator
US20240011149A1 (en) Transport device and method
JP2899250B2 (en) Semiconductor manufacturing equipment
JP2022113678A (en) Manual feed mechanism
WO2019162999A1 (en) Stop device, transport device, and work system
TW202202423A (en) Non-oriented conveying device
WO2018056066A1 (en) Work piece conveyance jig and conveyance device provided with same, and induction heating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158961.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511260

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117025206

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844044

Country of ref document: EP

Kind code of ref document: A1