WO2010124596A1 - 耐腐蚀合金材料、含该材料的涂层及含该涂层的部件 - Google Patents

耐腐蚀合金材料、含该材料的涂层及含该涂层的部件 Download PDF

Info

Publication number
WO2010124596A1
WO2010124596A1 PCT/CN2010/072147 CN2010072147W WO2010124596A1 WO 2010124596 A1 WO2010124596 A1 WO 2010124596A1 CN 2010072147 W CN2010072147 W CN 2010072147W WO 2010124596 A1 WO2010124596 A1 WO 2010124596A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
corrosion
alloy material
carbon steel
resistant
Prior art date
Application number
PCT/CN2010/072147
Other languages
English (en)
French (fr)
Inventor
黄金和
赵哲宁
翟树民
董立峰
曹柏文
陈明洪
孙其俊
李国成
陈义方
李仕军
单焕民
Original Assignee
邦迪管路系统有限公司
邦迪汽车系统(长春)有限公司
武汉邦迪管路系统有限公司
邦迪管路系统(上海)有限公司
邦迪管路系统(重庆)有限公司
邦迪汽车系统(上海)有限公司
邦迪汽车系统(海南)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009101359241A external-priority patent/CN101875255A/zh
Priority claimed from CN2009101359237A external-priority patent/CN101876015A/zh
Application filed by 邦迪管路系统有限公司, 邦迪汽车系统(长春)有限公司, 武汉邦迪管路系统有限公司, 邦迪管路系统(上海)有限公司, 邦迪管路系统(重庆)有限公司, 邦迪汽车系统(上海)有限公司, 邦迪汽车系统(海南)有限公司 filed Critical 邦迪管路系统有限公司
Publication of WO2010124596A1 publication Critical patent/WO2010124596A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/10Coatings characterised by the materials used by rubber or plastics

Definitions

  • Corrosion-resistant alloy material coating containing the same, and component containing the same
  • the present invention relates to the field of corrosion resistant alloy materials, and more particularly to coatings and subsequent composite coatings of corrosion resistant alloy materials. Background of the invention
  • Corrosion-resistant tubing is most commonly prepared by applying a corrosion-resistant coating to the surface of the tubing to enhance its corrosion resistance, such as hot dip-plated aluminum alloy coatings.
  • the neutral salt spray test is a common method used to detect the corrosion resistance of coated pipes.
  • the commonly used hot dip coating aluminum alloy coatings generally show red rust within 200 hours.
  • a first object of the present invention is to provide a new alloy material excellent in corrosion resistance.
  • a second object of the present invention is to provide a plurality of corrosion resistant coatings comprising such alloy materials.
  • a third object of the present invention is to provide a member having the coating which is excellent in corrosion resistance, has a long service life, and is suitable for use in various harsh environments.
  • the present invention provides an alloy material in mass percent
  • the rate meter contains: 5 ⁇ 7% of A1; 2.5 ⁇ 3.5% of Mg; 0.03 ⁇ 0.5% of rare earth elements; trace impurities and the balance of Zn.
  • the coated tube of the alloy can withstand at least 500 ⁇ 1500 hours of salt spray test in the neutral salt spray test without red rust, and the coating adhesion is good.
  • the rare earth element is at least one of lanthanoid elements.
  • the rare earth element used in the present invention may be selected from at least one of La, Ce, and a combination thereof.
  • the rare earth elements used are La and Ce, and La and Ce may be mixed and added in any ratio.
  • the content of the rare earth element may be 0.03 to 0.3%
  • the content of Mg may be 2.75 to 3.25%
  • the content of A1 may be 5.5 to 6.5%.
  • the above trace impurities are impurities which are difficult to avoid in the preparation of alloys known in the art, and include: Fe ⁇ 0.02%, Cu ⁇ 0.02%, Pb ⁇ 0.01%, Cd ⁇ 0.001%, and other impurities ⁇ 0.2%.
  • the invention provides a corrosion resistant coating comprising a coating formed from any of the foregoing alloy materials.
  • the coating can withstand at least 500 ⁇ 1500 hours of salt spray test without red rust, and the coating adhesion is good.
  • the coating formed from the above alloy material has a thickness of 3 to 18 ⁇ m.
  • the corrosion-resistant coating further comprises a second coating formed on the coating of the alloy material, the second coating being selected from the group consisting of an aluminum-rich epoxy coating, PA ( Nylon) coating, PA (nylon) coating plus PP (polypropylene) resin coating, primer plus PVF (polyvinyl fluoride) or PVDF (polyvinylidene fluoride) coating.
  • the thickness of the aluminum-rich epoxy resin coating is more than 3 micrometers, generally 3 to 10 micrometers, and the thickness of the PA (nylon) coating is 170 micrometers or more.
  • the thickness of the PP (polypropylene) resin coating is 0.85 ⁇ 1.2mm
  • PVF (polyvinyl fluoride) or PVDF (polyvinylidene fluoride) coating thickness is 25 ⁇ 60 microns.
  • the second coating may preferably be coated with an aluminum-rich epoxy resin.
  • This preferred implementation of the invention The coating of the mode can reach 3,000 hours in the neutral salt spray test without red rust.
  • the present invention also provides a component having any of the above coatings, including a tubing for a fluid carrying conduit for use in an automobile, such as but not limited to a brake line, a fuel line, a transmission line, a power steering Pipes for piping, cooling lines, and engine piping.
  • the corrosion-resistant coating of the present invention is particularly suitable for coating on a low carbon steel material, for example, a low carbon steel pipe having the corrosion resistant coating.
  • a low carbon steel pipe having the corrosion resistant coating examples include, but are not limited to: single layer welded low carbon steel pipe, single layer seamless low carbon steel pipe, double welded low carbon steel pipe, uncoated low carbon steel pipe, low with copper plating coating Carbon steel pipe, low carbon steel pipe with nickel plating coating and low carbon steel pipe with nickel coating.
  • the corrosion-resistant alloy material coating has an increased neutral salt spray time of 500 to 1500 hours.
  • the corrosion-resistant alloy material is coated.
  • the layer is combined with an aluminum-rich epoxy coating to achieve 3,000 hours of red rust.
  • Parts that are coated with a corrosion-resistant alloy material in combination with other second coatings provide superior corrosion protection and that the parts with the above coatings have good workability.
  • Figure 1 is a cross-sectional view showing an anticorrosive coated pipe prepared in accordance with a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view of an anticorrosive coated pipe prepared in accordance with a second embodiment of the present invention.
  • Figure 3 is a schematic cross-sectional view of an anticorrosive coated pipe prepared in accordance with a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a multi-layer anticorrosive coated pipe prepared in accordance with a fourth embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view of a multilayer anticorrosive coated pipe prepared in accordance with a fifth embodiment of the present invention.
  • Mode for Carrying Out the Invention The present invention will be described in more detail below with reference to the specific embodiments, but it should be understood that these embodiments are only for the purpose of illustration, and the invention is not limited thereto.
  • the invention provides a corrosion-resistant alloy material, which comprises: 5 ⁇ 7% A1; 2.5 ⁇ 3.5% Mg; 0.03 ⁇ 0.5% rare earth element; trace impurities and balance Zn by mass percentage.
  • the above trace impurities are impurities which are difficult to avoid in the preparation of alloys known in the art, and include: Fe ⁇ 0.02%, Cu ⁇ 0.02%, Pb ⁇ 0.01%, Cd ⁇ 0.001%, and other impurities ⁇ 0.2%.
  • the alloy can be used as a primer layer for pipe coatings with thicknesses ranging from 3 to 18 microns.
  • the rare earth element may be at least one of lanthanoid elements.
  • Preferred rare earth elements are at least one of La, Ce and combinations thereof. It is particularly preferable that the rare earth elements are La and Ce, and La and Ce may be added in any ratio.
  • the content of the rare earth element is preferably from 0.03 to 0.3%.
  • the content of Mg is preferably 2.75 to 3.25%.
  • the content of A1 is preferably 5.5 to 6.5%.
  • the corrosion-resistant alloy of the present invention can be used as a corrosion-resistant coating. Accordingly, the present invention also provides a plurality of corrosion resistant coatings comprising a coating formed from the alloy material.
  • the corrosion resistant coating further comprises a second coating formed on the coating of the alloy material, the second coating being selected from the group consisting of an aluminum-rich epoxy coating, a PA nylon coating, a PA nylon coating, and PP polypropylene resin coating, primer and PVF polyvinyl fluoride or PVDF polyvinylidene fluoride coating in the group.
  • the coating of the invention is preferably suitable for use in pipes, in particular for automotive brakes and fuel lines. In addition, it can be extended to various fluid carrying lines used in automobiles, including transmission lines, power steering lines, cooling lines, engine lines, and the like.
  • the base pipe that can be used for this coating product is, for example: single-layer welded low-carbon steel pipe, single-layer seamless low-carbon steel pipe, double-layer welded low-carbon steel pipe, uncoated low-carbon steel pipe, low with copper plating Carbon steel pipe, with plating Nickel-coated low carbon steel pipes, low carbon steel pipes with nickel coating, etc., but are not limited thereto.
  • a pipe made of a corrosion-resistant alloy of the present invention as a corrosion-resistant coating can be prepared as follows: a base pipe (for example, a double-layer welded pipe or a single-layer welded pipe) is subjected to unwinding-plating treatment-induction heating - Hot dip coating alloy coating - cooling - drying - crimping to obtain a coated tube, the cross section of which is shown in Figure 1.
  • Reference numeral 101 denotes a base pipe, and 102 denotes a coating layer formed of the alloy material of the present invention.
  • the thickness of the coating preferably ranges from 3 to 18 microns.
  • the coating can withstand at least 500 ⁇ 1500 hours of salt spray test without red rust, and the coating has good adhesion and good processability.
  • the corrosion-resistant alloy of the present invention is applied to the base pipe 201.
  • the aluminum-rich epoxy resin coating 203 is further coated, and the thickness of the aluminum-rich epoxy resin coating may range from 3 to 10 microns.
  • the performance is as follows: (1) The multi-layer coated pipe can reach 3000 hours of salt spray test in the neutral salt spray test without red rust;
  • the base pipe diameter 10mm tube may burst pressure 14MPa by 7;
  • the multilayer coated pipe has no coating softening and coating defects after being immersed in the brake fluid for 24 hours; (5) the multilayer coated pipe coating has good adhesion, and is tested by the wet heat adhesion test, at least 99% attachment.
  • the corrosion-resistant alloy coating 302 is coated on the base pipe 301
  • the PA11 or PA12 nylon coating 303 is further coated, and the thickness of the nylon coating 303 is 170. Above micron. It is preferably from 180 to 190 microns.
  • the multilayer The corrosion resistance of the coated pipe is superior to that of the corrosion-resistant alloy coating + the aluminum-rich epoxy resin coated coated pipe of the second embodiment described above.
  • the PA11 or PA12 nylon coating 403 and the PP (polypropylene resin) coating 404 are continuously coated.
  • the PA nylon coating has a thickness in the range of 170 ⁇ m or more, preferably 180 to 190 ⁇ m
  • the PP polypropylene resin coating has a thickness ranging from 0.85 to 1.2 mm.
  • the multi-layer coated pipe is also superior in corrosion resistance and the like to the corrosion-resistant alloy coating + the aluminum-rich epoxy resin coated coated pipe of the second embodiment described above.
  • the primer 503 is used as a binder, and the PVF or PVDF coating 504 is further coated.
  • the thickness is 15 microns or more, and preferably the PVF or PVDF coating has an average thickness of 25 to 60 microns to form a multilayer corrosion resistant coating.
  • the multilayer coated tube is also superior in corrosion resistance to the corrosion-resistant alloy coating + aluminum-rich epoxy resin coated coated tube of the second embodiment described above.
  • the alloy material according to the above preferred embodiment is selected, that is, A1 with a mass ratio of 6.5%, Mg of 3.25%, 0.05% of Ce, trace impurities ⁇ 0.25%, and 89%, based on the total weight of the alloy material.
  • the Zn was tested by hot dip coating using a 4.76*0.70mm double-layer tube with a minimum coating thickness of 3 microns and an average coating weight of 50-60 g/m 2 . Repeated 7 sets of tests, each set of 4 test pieces were tested in series, and the verification report from TI Automotive (China) Laboratory is shown in Table 1 below: 4.76*0.70mm double-layer welded pipe alloy coated pipe salt spray test
  • a two-layer coating test was tested using a 4.76 DW double tube: After applying the same corrosion resistant alloy coating as in Example 1, an aluminum-rich epoxy coating was applied. Corrosion-resistant alloy coating thickness is minimum 3 microns, coating average weight is 50 ⁇ 60g/m 2 , subsequent aluminum-rich epoxy coating thickness is minimum 3 microns, average weight ⁇ 1 ( ⁇ /111 2 . 4 sets of test pieces are selected for each group. After the coating is completed, a series of test tests are carried out. The verification report given by TI Automotive (China) Laboratory is shown in Table 3 below:
  • Table 4 The two-week test shown in Table 4 below is a cycle of 10 cycles (20 weeks).
  • the wet heat adhesion test ** method is the same as in Example 3.
  • the coating tubes of the above Examples 1 to 4 were respectively subjected to bending forming and flaring tests, and the results satisfied the A0005-115 degree flare test, Z 183-90 degree double flare. Test requirements.
  • the invention has been specifically described above by way of preferred embodiments, however, it will be understood by those skilled in the art that the coatings of the present invention are also applicable to other aspects of metal corrosion protection, such as some steel wire and steel strands used in harsh environments.
  • Metal parts, such as pipes, sheets, and strips, which are required to withstand harsh environments, are not limited to the above-mentioned metal parts disclosed in the embodiments of the present invention, that is, are not limited to other application fields of automobile piping systems.
  • the scope of the present invention is defined by the scope of the invention, and various modifications and equivalents of the specific embodiments disclosed herein will be apparent to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Description

耐腐蚀合金材料、 含该材料的涂层及含该涂层的部件 技术领域
本发明涉及耐腐蚀合金材料领域, 特别涉及耐腐蚀合金材料的涂层 及后续复合涂层。 发明背景
由于使用环境的原因, 某些情况下会导致金属部件易受腐蚀而影响 其使用寿命, 例如一些在恶劣环境中使用的钢丝、 钢绞线、 管材、 板材 和带材等, 特别是汽车管路系统中所使用的管材, 所有这些部件需要具 备耐腐蚀的性质来保证其使用寿命。 耐腐蚀的管材最常用的制备方法是 在管材的表面涂覆耐腐蚀的涂层来增强其耐腐蚀性, 例如热浸镀辞铝合 金涂层。
耐中性盐雾实验是用来检测涂层管材的耐腐蚀性的常用方法。 在耐 中性盐雾实验中, 目前常用的热浸镀辞铝合金涂层一般在 200小时以内 出现红锈。
尽管多层耐腐蚀性涂层种类很多, 但由于涂层材料的限制, 仍然难 以满足汽车工业中日益提高的耐腐蚀性要求。 发明内容
本发明的第一个目的在于提供一种耐腐蚀性能优异的新的合金材 料。 本发明的第二个目的是要提供包括这种合金材料的多种耐腐蚀涂 层。 本发明的第三个目的是提供具有所述涂层的部件, 该部件耐腐蚀性 能优异, 具有更长的使用寿命, 适于各种恶劣环境下的使用。
为了上述目的, 一方面, 本发明提供了一种合金材料, 以质量百分 率计含有: 5 ~ 7%的 A1; 2.5 ~ 3.5%的 Mg; 0.03 ~ 0.5%的稀土元素; 微 量的杂质以及余量的 Zn。 该合金的涂层管材, 在耐中性盐雾实验中, 可 以承受至少 500 ~ 1500小时盐雾试验不出红锈,而且,涂层附着力良好。
在本发明的一个优选实施方式中, 上述稀土元素为镧系元素中的至 少一种。 在另一个优选实施方式中, 本发明所用稀土元素可选自 La、 Ce及其组合中的至少一种。在本发明又一个优选的实施方式中,所使用 的稀土元素为 La和 Ce, 其中 La和 Ce可以以任意比例混合加入。
在本发明的优选实施方式中,稀土元素的含量可为 0.03 ~ 0.3%, Mg 的含量可为 2.75 ~ 3.25%, A1的含量可为 5.5 ~ 6.5%。上述微量的杂质为 本领域所公知的合金制备中难以避免的杂质, 包括: Fe≤0.02%、 Cu≤0.02%、 Pb≤0.01%、 Cd≤0.001%和其他杂质≤0.2%。
另一方面, 本发明提供了一种耐腐蚀涂层, 其中包括由任一上述合 金材料形成的涂层。 该涂层在耐中性盐雾实验中, 可以承受至少 500 ~ 1500小时盐雾试验不出红锈, 而且, 涂层附着力良好。
在本发明的一个优选实施方式中, 由上述合金材料形成的涂层的厚 度为 3~18微米。
在另一个优选的实施方式中, 所述耐腐蚀涂层进一步包括形成在所 述合金材料涂层上的第二涂层, 所述第二涂层选自由富铝环氧树脂涂 层、 PA (尼龙)涂层、 PA (尼龙)涂层加 PP (聚丙烯)树脂涂层、 底 漆加 PVF (聚氟乙烯)或 PVDF (聚偏氟乙烯)涂层构成的组中。 其中, 富铝环氧树脂涂层的厚度范围为 3微米以上,一般为 3~10微米, PA (尼 龙)涂层的厚度范围为 170微米以上, PP (聚丙烯)树脂涂层的厚度范 围为 0.85~1.2毫米, PVF (聚氟乙烯)或 PVDF (聚偏氟乙烯)涂层的 厚度为 25~60微米。
所述第二涂层可优选使用富铝环氧树脂涂层。 本发明的该优选实施 方式的涂层在耐中性盐雾实验中可以达到 3000小时盐雾试验不出红锈。 本发明还提供一种具有上述任意一种涂层的部件, 包括用于汽车上 使用的流体承载管路的管材, 例如但不限于制动管路、 燃料管路、 变速 箱管路、 动力转向管路、 冷却管路和发动机管路的管材。
本发明的耐腐蚀涂层特别适于涂覆在低碳钢材上, 制成例如具有所 述耐腐蚀涂层的低碳钢管。 所述低碳钢管的例子包括但不限于: 单层焊 接低碳钢管、 单层无缝低碳钢管、 双层焊接低碳钢管、 未涂层的低碳钢 管、 带有镀铜涂层的低碳钢管、 带有镀镍涂层的低碳钢管和带有辞镍涂 层的低碳钢管。
这些部件与现有技术相比, 具有大大改善的抗腐蚀效果, 例如, 耐 腐蚀合金材料涂层耐中性盐雾时间增加为 500 ~ 1500小时, 在优选的实 施方式中,耐腐蚀合金材料涂层与富铝环氧树脂涂层结合可以达到 3000 小时不出红锈。 使用耐腐蚀合金材料涂层与其他第二涂层结合的部件会 提供更加优良的防腐性能, 并且, 带有上述涂层的部件具有良好的可加 工性。 附图简要说明
图 1为根据本发明第一实施方式制备的防腐蚀涂层管材的横切面示 意图。
图 2为根据本发明第二实施方式制备的防腐蚀涂层管材的横切面示 意图。
图 3为根据本发明的第三实施方式制备的防腐蚀涂层管材的横切面 示意图。
图 4为根据本发明的第四实施方式制备的多层防腐蚀涂层管材的横 切面示意图。 图 5为根据本发明的第五实施方式制备的多层防腐蚀涂层管材的横 切面示意图。 实施本发明的方式 下面结合具体实施方式进一步详细地说明本发明, 但应理解的是, 这些实施方式仅仅为示例的目的, 本发明并不限于这些实施方式。
本发明提供了一种耐腐蚀合金材料, 以质量百分率计含有: 5~7%的 A1; 2.5~3.5%的 Mg; 0.03~0.5%的稀土元素;微量的杂质以及余量的 Zn。 上述微量的杂质为本领域所公知的合金制备中难以避免的杂质, 包括: Fe≤0.02%、 Cu≤0.02%、 Pb≤0.01%、 Cd≤0.001%和其他杂质≤0.2%。 该合 金可用作管材涂层的底层, 涂层的厚度范围为 3~18微米。
稀土元素可为镧系元素中的至少一种。 优选的稀土元素为 La、 Ce 及其组合中的至少一种。 特别优选所述稀土元素为 La和 Ce, 其中 La 和 Ce可以以任意比混合加入。 稀土元素的含量优选为 0.03~0.3%。 Mg 的含量优选为 2.75~3.25%。 A1的含量优选为 5.5~6.5%。
本发明的耐腐蚀合金可用作耐腐蚀涂层。 因此, 本发明还提供了多 种耐腐蚀涂层, 其中包括由所述合金材料形成的涂层。 优选地, 所述耐 腐蚀涂层进一步包括形成在合金材料涂层上的第二涂层, 所述第二涂层 选自由富铝环氧树脂涂层、 PA尼龙涂层、 PA尼龙涂层和 PP聚丙烯树 脂涂层、 底漆和 PVF聚氟乙烯或 PVDF聚偏氟乙烯涂层构成的组中。
本发明的涂层优选适用于管材, 特别是可以应用于汽车制动与燃料 管路。 此外, 还可以扩展到汽车上使用的各种流体承载管路, 包括变速 箱管路、 动力转向管路、 冷却管路、 发动机管路等等。 这种涂层产品可 以使用的基体管材例如: 单层焊接低碳钢管、 单层无缝低碳钢管、 双层 焊接低碳钢管、 未涂层的低碳钢管、 带有镀铜涂层的低碳钢管、 带有镀 镍涂层的低碳钢管、 带有辞镍涂层的低碳钢管等等, 但不仅限于此。 根据本发明的第一实施方式, 由本发明的耐腐蚀合金构成耐腐蚀涂 层的管材可按如下方法制备: 基础管材(例如, 双层焊管或单层焊管) 经过开卷 -镀前处理-感应加热-热浸镀合金涂层 -冷却 -干燥 -卷曲, 得到涂 层管材, 其横切面如图 1所示。 其中标号 101表示基础管材, 102表示 由本发明的合金材料形成的涂层。 涂层的厚度范围优选为 3~18微米。 该涂层能够承受至少 500~1500 小时盐雾试验不出红锈, 而且, 涂层附 着力良好, 可加工性良好。
根据本发明的第二实施方式, 如图 2所示 (其中与第一实施方式相 同的部分在此以及以下各实施方式中不再重复), 在基础管材 201 上涂 覆本发明的耐腐蚀合金涂层 202之后,继续涂覆富铝环氧树脂涂层 203 , 富铝环氧树脂涂层的厚度范围可为 3~10微米。 经检测, 性能如下: ( 1 )该多层涂层管材在耐中性盐雾实验中可以达到 3000小时盐雾试验 不出红锈;
( 2 )该多层涂层管材经过刀刻 +1000 小时盐雾实验后, 蠕变量不超过 1.5mm, 并且经压缩空气吹后不出现附着层脱落;
( 3 )该多层涂层管材在循环腐蚀试验之后, 仍然可以承受较大爆破压 力, 例如基础管材外径 10mm以下管材可以7 受 14MPa爆破压力;
( 4 )该多层涂层管材在刹车液中浸泡 24小时后无涂层软化和涂层缺陷; ( 5 )该多层涂层管材涂层附着性良好, 经湿热附着力试验检测, 有至 少 99%的附着。
根据本发明的第三实施方式, 如图 3所示, 在基础管材 301上涂覆 耐腐蚀合金涂层 302之后, 继续涂覆 PA11或 PA12尼龙涂层 303 , 尼龙 涂层 303的厚度范围为 170微米以上。 优选为 180 ~ 190微米。 该多层 涂层管材的耐腐蚀等性能优于上述第二实施方式中的耐腐蚀合金涂层 + 富铝环氧树脂涂层的涂层管材。
根据本发明的第四实施方式, 如图 4所示, 在基础管材 401上涂覆 耐腐蚀合金涂层 402之后, 继续涂覆 PA11或 PA12尼龙涂层 403和 PP (聚丙烯树脂)涂层 404。 其中, PA尼龙涂层的厚度范围为 170微米以 上, 优选为 180 ~ 190微米, PP聚丙烯树脂涂层的厚度范围为 0.85~1.2 毫米。 该多层涂层管材的耐腐蚀等性能也优于上述第二实施方式中的耐 腐蚀合金涂层 +富铝环氧树脂涂层的涂层管材。
根据本发明的第五实施方式, 如图 5所示, 在基础管材 501上涂覆 耐腐蚀合金涂层 502之后, 以底漆 503作为粘结剂,再继续涂覆 PVF或 PVDF涂层 504,厚度为 15微米以上,优选 PVF或 PVDF涂层的平均厚 度为 25 ~ 60微米, 以构成多层耐腐蚀涂层。 同样, 该多层涂层管材的 耐腐蚀性能也优于上述第二实施方式中的耐腐蚀合金涂层 +富铝环氧树 脂涂层的涂层管材。
下面以汽车管路管材为例, 具体说明本发明各种实施方式涂层的耐 腐蚀效果。
实施例 1
选取上述优选实施方式所述的合金材料, 即以所述合金材料的总重 量计, 含有质量比为 6.5%的 A1, 3.25%的 Mg, 0.05%的 Ce, 微量杂质 <0.25%, 以及 89%的 Zn, 采用 4.76*0.70mm双层管做了热浸镀涂层试 验, 涂层厚度最小 3微米, 涂层平均重量 50~60g/m2。 重复进行 7组试 验, 每组任选 4个试件进行了系列试验验证, TI汽车(中国)实验室给出 验证报告如下表 1所示: 4.76*0.70mm双层焊管合金涂层管材盐雾试验
Figure imgf000009_0001
中性盐雾实验根据 GB/T 10125 方法进行。 实施例 2
为了进一步验证涂层性能, 使用 4.76DW/6.35DW/6.35SW/7.94SW 四种管材在线扩大试验, 每种管材按照实施例 1中相同的热浸镀方法, 选择与管材相应的工艺参数, 制备了样件, 每规格选 5个试件, 然后进 行系列试验验证, TI汽车(中国)实验室给出验证报告, 如下表 2所示: 双层 (DW) /单层 (SW)焊管合金涂层管材盐雾试验
Figure imgf000009_0002
中性盐雾实验根据 GB/T 10125 方法进行。 重复扩大试验的结果表明, 由本发明的耐腐蚀合金形成的涂层具有 优良的防腐性能。 实施例 3
采用 4.76DW双层管试验了双层涂层试验: 涂覆与实施例 1相同的 耐腐蚀合金涂层之后, 再涂覆富铝环氧树脂涂层。 耐腐蚀合金涂层厚度 最小 3微米, 涂层平均重量 50~60g/m2, 后续的富铝环氧树脂涂层厚度 最小 3微米, 平均重量≥1(^/1112。 共重复做 3组, 每组任选 4个试件, 涂 覆完毕后进行系列试验验证, TI汽车(中国)实验室给出验证报告如下表 3所示:
4.76*0.70mm双层管 +合金涂层 +富铝环氧树脂涂层
Figure imgf000010_0001
循环腐蚀试验 *方法
以下表 4所示两周试验为一个循环, 进行 10个循环 (20周)。 表 4
Figure imgf000011_0001
湿热附着力试验 ** 方法
试样各 4件,长度 100mm, 于湿热试验箱中( 38 ± 1 °C、湿度 100%、 沉降量 l-2ml/h-80cm2、 直径 10cm )进行湿热试验, 承受 96h潮湿试验, 紧随其后管子应擦干按进行附着力试验,用专用刀具将管材做间距 1mm 平行刀刻, 刀刻 5 ~ 6刀, 然后再垂直刀刻方向做平行刀刻 5 ~ 6刀, 注 意刀刻深度至涂层底层即可, 然后做粘胶带试验(胶带 180度拉脱时拉 脱力 430N/m ), 附着层应不少于 99%。 实施例 4
为了进一步验证涂层性能, 安排 4.76DW/6.35DW/6.35SW/7.94SW 四种管材在线扩大试验, 每种管材按照实施例 3中相同的方法, 选择与 管材相应的工艺参数, 制备了样件。 试验完毕后又进行了系列验证, TI 汽车(中国)实验室给出验证报告如表 5所示:
双层 (DW)/单层 (SW)焊管 +合金涂层 +富铝环氧树脂涂层
Figure imgf000012_0001
湿热附着力试验 **方法同实施例 3。
重复扩大试验的结果表明, 这种多层耐腐蚀涂层管材具有更为优良 的防腐性能。 实施例 5
为了进一步验证涂层管材的可加工性,分别对上述实施例 1 ~ 4的涂 层管材安排了弯曲成型及扩口试验, 结果满足 A0005-115度扩口试验, Z 183-90度双重扩口试验要求。 以上通过优选的实施例具体说明了本发明, 然而本领域技术人员应 了解的是, 本发明所述涂层也适用于金属防腐的其他方面, 例如一些在 恶劣环境中使用的钢丝、 钢绞线、 管材、 板材和带材等需对抗恶劣环境 的金属部件, 而并不限于本发明实施方式所公开的上述金属部件, 即不 局限在汽车管路系统的其他应用领域。 本发明的范围由权利要求书所限 定, 本领域技术人员通过实践可知的对此处所公开的具体实施方式的各 种修改和等同替换均落入本发明要求保护的范围内。

Claims

权利要求书
1、 一种合金材料, 以质量百分率计包括: 5~7%的 A1; 2.5~3.5%的 Mg; 0.03~0.5%的稀土元素; 微量的杂质以及余量的 Zn。
2、如权利要求 1所述的合金材料,其中所述稀土元素为镧系元素中 的至少一种。
3、 如权利要求 2所述的合金材料, 其中所述稀土元素为 La、 Ce及 其组合中的一种。
4、 如权利要求 3所述的合金材料, 其中所述稀土元素为 La和 Ce。
5、 如权利要求 1 所述的合金材料, 其中稀土元素的含量为 0.03-0.3%
6、 如权利要求 1所述的合金材料, 其中 Mg的含量为 2.75~3.25%。
7、 如权利要求 1所述的合金材料, 其中 A1的含量为 5.5~6.5%。
8、如权利要求 1所述的合金材料,其中所述微量的杂质含量范围为 0~0·251%。
9、 如权利要求 8 所述的合金材料, 其中所述微量的杂质包括: Fe<0.02%; Cu<0.02%; Pb<0.01%; Cd<0.001%; 和其他杂质≤0.2%。
10、 一种耐腐蚀涂层, 包括由权利要求 1~9中任一项所述的合金材 料形成的涂层。
11、如权利要求 10所述的耐腐蚀涂层,其中所述合金材料形成的涂 层的厚度为 3~18微米。
12、 如权利要求 10或 11所述的耐腐蚀涂层, 其中在所述合金材料 形成的涂层上进一步包括第二涂层, 所述第二涂层选自由富铝环氧树脂 涂层、 尼龙涂层、 尼龙涂层和聚丙烯树脂涂层、 底漆和聚氟乙烯或聚偏 氟乙烯涂层构成的组中。
13、如权利要求 12所述的耐腐蚀涂层,其中富铝环氧树脂涂层的厚 度范围为 3微米以上, 尼龙涂层的厚度范围为 120微米以上, 聚丙烯树 脂涂层的厚度范围为 0.85~1.2毫米, 聚氟乙烯或聚偏氟乙烯涂层的厚度 为 15微米以上。
14、如权利要求 12所述的耐腐蚀涂层,其中所述第二涂层为富铝环 氧树脂涂层。
15、 一种耐腐蚀部件, 具有如权利要求 10~14中任一项所述耐腐蚀 涂层。
16、如权利要求 15所述的耐腐蚀部件,为用于汽车上使用的流体承 载管路的管材。
17、如权利要求 16所述的耐腐蚀部件,其中所述汽车上使用的流体 承载管路选自: 制动管路、 燃料管路、 变速箱管路、 动力转向管路、 冷 却管路和发动机管路。
18、 如权利要求 15所述的耐腐蚀部件, 为低碳钢管。
19、如权利要求 18所述的部件, 其中所述低碳钢管选自: 单层焊接 低碳钢管、单层无缝低碳钢管、双层焊接低碳钢管、 未涂层的低碳钢管、 带有镀铜涂层的低碳钢管、 带有镀镍涂层的低碳钢管和带有辞镍涂层的 低碳钢管。
PCT/CN2010/072147 2009-04-30 2010-04-23 耐腐蚀合金材料、含该材料的涂层及含该涂层的部件 WO2010124596A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2009101359241A CN101875255A (zh) 2009-04-30 2009-04-30 多层耐腐蚀涂层及包含该涂层的部件
CN200910135924.1 2009-04-30
CN2009101359237A CN101876015A (zh) 2009-04-30 2009-04-30 耐腐蚀合金材料、该材料构成的涂层及包含该涂层的部件
CN200910135923.7 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010124596A1 true WO2010124596A1 (zh) 2010-11-04

Family

ID=43031722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072147 WO2010124596A1 (zh) 2009-04-30 2010-04-23 耐腐蚀合金材料、含该材料的涂层及含该涂层的部件

Country Status (1)

Country Link
WO (1) WO2010124596A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282533A (zh) * 2010-12-28 2013-09-04 Posco公司 高耐腐蚀性的热浸镀Zn合金钢板及其制造方法
EP2840292A4 (en) * 2012-04-17 2016-05-18 Xinxing Ductile Iron Pipes Co ANTICORROSION COATING FOR BLACK BIT METAL MOLDED PIPING AND METHOD FOR APPLICATION THEREOF BY SPRAYING
WO2024011182A1 (en) * 2022-07-06 2024-01-11 Indiana Tube Corporation Corrosion resistant tube and method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356758A (ja) * 2001-03-30 2002-12-13 Nisshin Steel Co Ltd 耐食性に優れた構造物用資材および構造物用部材
JP2003055750A (ja) * 2001-08-13 2003-02-26 Nisshin Steel Co Ltd 耐食性に優れた溶融Zn基めっき鋼管
CN1523129A (zh) * 1996-12-13 2004-08-25 �����Ƹ���ʽ���� 耐腐蚀性和表面外观良好的熔融Zn-Al-Mg电镀钢板和其制备方法
CN2932004Y (zh) * 2006-06-20 2007-08-08 门洪玉 带有尼龙涂层的汽车制动油管和输油管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523129A (zh) * 1996-12-13 2004-08-25 �����Ƹ���ʽ���� 耐腐蚀性和表面外观良好的熔融Zn-Al-Mg电镀钢板和其制备方法
JP2002356758A (ja) * 2001-03-30 2002-12-13 Nisshin Steel Co Ltd 耐食性に優れた構造物用資材および構造物用部材
JP2003055750A (ja) * 2001-08-13 2003-02-26 Nisshin Steel Co Ltd 耐食性に優れた溶融Zn基めっき鋼管
CN2932004Y (zh) * 2006-06-20 2007-08-08 门洪玉 带有尼龙涂层的汽车制动油管和输油管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CONG SHANHAI ET AL.: "Influence of Ce on the structure and corrosion resistance of Zn-Al-Mg alloy", June 2008 (2008-06-01), pages 323 - 327 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282533A (zh) * 2010-12-28 2013-09-04 Posco公司 高耐腐蚀性的热浸镀Zn合金钢板及其制造方法
US9302449B2 (en) 2010-12-28 2016-04-05 Posco High corrosion resistant hot dip Zn alloy plated steel sheet
EP2840292A4 (en) * 2012-04-17 2016-05-18 Xinxing Ductile Iron Pipes Co ANTICORROSION COATING FOR BLACK BIT METAL MOLDED PIPING AND METHOD FOR APPLICATION THEREOF BY SPRAYING
EP3800392A3 (en) * 2012-04-17 2021-06-23 Xinxing Ductile Iron Pipes Co., Ltd Anticorrosive coating for buried black metal-based pipeline and method for spraying same
WO2024011182A1 (en) * 2022-07-06 2024-01-11 Indiana Tube Corporation Corrosion resistant tube and method of manufacture

Similar Documents

Publication Publication Date Title
KR920009633B1 (ko) 다층피막을 가진 내열성 및 내식성 강관
JP2012012613A5 (zh)
US8999517B2 (en) Steel pipe for vehicle piping
CN101876015A (zh) 耐腐蚀合金材料、该材料构成的涂层及包含该涂层的部件
CA3082313C (en) Tubing for brake and fuel systems incorporating graphene impregnated polyamides
WO2010124596A1 (zh) 耐腐蚀合金材料、含该材料的涂层及含该涂层的部件
JP5607946B2 (ja) 熱交換器用アルミニウムフィン材
US7291401B2 (en) Non-hexavalent-chromium type corrosion resistant coating film structure having a resin layer and a metal layer that is superior in terms of adhesion to the resin layer
CN105465491A (zh) 一种高精度防腐耐磨油管及其制作方法
JPH02120034A (ja) 耐熱・耐食性重層めつき鋼材
CN101875255A (zh) 多层耐腐蚀涂层及包含该涂层的部件
RU2636423C2 (ru) Трубопровод, имеющий термостойкий и коррозионно-устойчивый плакирующий слой, который имеет превосходную обрабатываемость
CN202442062U (zh) 涂层管
JP2009167246A5 (zh)
KR930008343B1 (ko) 내열성 및 내식성 도금층을 갖는 강제품
CN202786389U (zh) 排气装置
CN101214611B (zh) 涂层防腐换热器的制作方法
CN202442063U (zh) 涂层管
CN202418948U (zh) 耐磨耐腐陶瓷塑料复合管道
JPH10121267A (ja) 耐熱・耐食性重層めっき鋼材
CN216009839U (zh) Anf纳米抗菌psp钢塑复合压力管
WO2013127353A1 (en) Coated tube
CN202402805U (zh) 一种汽车刹车系统用管件
JP2006283101A (ja) 有機樹脂被覆鋼板用の表面処理鋼板
CN201416703Y (zh) 一种复合钢管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769285

Country of ref document: EP

Kind code of ref document: A1