WO2010124472A1 - 一种数据的传输方法、相关设备和通信系统 - Google Patents

一种数据的传输方法、相关设备和通信系统 Download PDF

Info

Publication number
WO2010124472A1
WO2010124472A1 PCT/CN2009/071607 CN2009071607W WO2010124472A1 WO 2010124472 A1 WO2010124472 A1 WO 2010124472A1 CN 2009071607 W CN2009071607 W CN 2009071607W WO 2010124472 A1 WO2010124472 A1 WO 2010124472A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
receiving terminal
receiving
local routing
data packet
Prior art date
Application number
PCT/CN2009/071607
Other languages
English (en)
French (fr)
Inventor
时代
卢磊
梁文亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/071607 priority Critical patent/WO2010124472A1/zh
Priority to CN200980115079.XA priority patent/CN102282808B/zh
Publication of WO2010124472A1 publication Critical patent/WO2010124472A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, a related device, and a communication system.
  • Local routing technology is an important part of network communication technology. Local routing technology can reduce carrier costs, save network resources, and improve data transmission speed. And because of the data transmission in the wireless link environment, many bandwidth resources are used in the transmission process to repeatedly transmit non-payload data, such as IP header overhead in Internet Protocol (IP) packets, resulting in bandwidth. Being wasted, reducing the quality of service.
  • IP Internet Protocol
  • the header compression technology that has been implemented solves the problem of bandwidth waste caused by repeated transmission of non-payload data to some extent. Combining local routing technology and header compression technology to achieve fast, accurate and efficient data transmission has become the mainstream technology today.
  • the existing local routing technologies are mainly divided into: local routes based on preset flows and local routes based on dynamic flows.
  • the specific method of the local route based on the preset flow includes: a sending terminal and a receiving terminal that belong to the local routing range, and establish a preset flow with the network side when entering the network; the network side sends the terminal and the receiving terminal preset
  • the flow is bound; when the data sent by the sending terminal needs to be locally routed, the data to be sent by the sending terminal is sent to the network side through the preset stream established with the network side; the network side passes the above data to the pre-established with the receiving terminal.
  • the stream is sent to the receiving terminal.
  • Local routing based on dynamic flow includes: local routing based on point-to-multipoint (P2M, Peer to Multipeer) dynamic flow and local routing based on point-to-point (P2P, Peer to Peer) dynamic flow.
  • P2M point-to-multipoint
  • P2P point-to-point
  • the specific method of the local routing based on the P2M dynamic flow includes: after the sending terminal and the receiving terminal in the local routing range enter the network, the sending terminal sends data to the network side, and the network side knows the data by analyzing the destination address in the data.
  • the destination address (that is, the address of the receiving terminal) can be locally routed, and the network side uses local routing to send data to the receiving terminal.
  • the specific method of the local routing based on the P2P dynamic flow includes: when the sending terminal and the receiving terminal in the local routing range are connected to the network, the sending terminal is associated with the receiving terminal, specifically The associated method may be to establish a CID association between two terminals. After receiving the data sent by the sending terminal, the network side sends the data to the receiving terminal according to the association relationship between the two terminals.
  • the executing entity that performs local routing on the network side may be: a base station (BS, Base Station), an access service network gateway (ASN-GW, Access Service Network-Gateway), a relay station (RS, Relay Station), or other network device. . As shown in Fig.
  • the transmitting terminal MS 1 performs header compression on the IP data packet, and sends the compressed data packet to the network side.
  • the network side decompresses the received data, and performs header compression again according to the status of the receiving end, and sends the data packet to the receiving terminal.
  • MS2, MS2 then decompresses the received data and restores the IP data packet.
  • the inventors of the present invention have found that, in the prior art, after receiving the header-compressed local routing data packet, the network side needs to decompress the data packet and then according to the status of the receiving end. The header is compressed again. The network side must maintain the compression context information of the two terminals that use the local routing service, which increases the burden on the network side device. Moreover, the network side must perform header compression on the received header compressed data packet. Then re-compress the header, causing latency overhead.
  • the embodiments of the present invention provide a data transmission method, a related device, and a communication system, which can reduce the operation steps of the local routing service on the network side, and significantly reduce the transmission delay of data transmission on the network side.
  • the embodiment of the invention provides a data transmission method, including:
  • the header compressed data packet is locally routed to the receiving terminal according to mapping information of the receiving terminal and the transmitting terminal.
  • An embodiment of the present invention provides a local routing execution entity, including: a receiving unit, configured to receive a header compressed data packet sent by the sending terminal, and a sending unit, configured to locally route the header compressed data packet to the receiving terminal according to mapping information of the receiving terminal and the sending terminal.
  • An embodiment of the present invention provides a communication system, where the communication system includes:
  • a local routing execution entity configured to receive a header compressed data packet sent by the sending terminal, and configured to locally route the header compressed data packet to the receiving terminal according to mapping information of the receiving terminal and the sending terminal.
  • the network side when the data service satisfies the local routing condition, and the receiving terminal has the same decompression capability as the sending terminal, the network side only needs to establish a data bearer channel between the sending terminal and the receiving terminal, and does not need to be local.
  • the routing service data packet is decompressed, and the header compression is performed according to the compression condition of the receiving terminal, and the data packet that is re-compressed is sent to the receiving terminal, thereby reducing the operation on the network side and reducing the transmission delay of the data packet.
  • FIG. 2 is a schematic flow chart of a data transmission method according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic flow chart of a data transmission method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flow chart of a data transmission method according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flow chart of a data transmission method according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic flow chart of a data transmission method according to Embodiment 5 of the present invention.
  • FIG. 7 is a logical structural diagram of a local routing execution entity according to Embodiment 6 of the present invention
  • FIG. 8 is a logical structural diagram of a local routing control entity according to Embodiment 7 of the present invention
  • a logical structure diagram of a local routing execution entity is provided.
  • FIG. 10 is a logical structural diagram of a local routing control entity according to Embodiment 9 of the present invention
  • 11 is a logical structural diagram of a local routing control entity according to Embodiment 10 of the present invention.
  • FIG. 12 is a logical structural diagram of an exchange control entity according to Embodiment 11 of the present invention.
  • the related entities of the local route mainly include: a local routing control entity and a local routing executing entity.
  • the Anchor ASN GW is a local routing control entity.
  • the Serving GW is a local routing control event.
  • the base station, the relay station, and the ASN GW can all be local routing execution entities.
  • Step M1 receiving a header compressed data packet sent by the sending terminal.
  • Step M2 locally routing the header compressed data packet to the receiving terminal according to mapping information of the receiving terminal and the sending terminal.
  • the mapping information of the receiving terminal and the sending terminal may be saved in the local routing executing entity by using a plurality of different methods.
  • the specific description may be understood by combining the following embodiments.
  • the technical solution adopts the preset mapping information to directly route the received header compressed data packet to the receiving terminal, without performing network header multi-head compression data packet decompression, and then performing header compression, and then transmitting to the receiving terminal. , reducing the transmission delay of data on the network side.
  • Embodiment 1 Embodiment 1
  • This embodiment provides a data transmission method.
  • a base station (BS, Base Station) is used as a local routing execution entity, and the local route is based on a preset flow established when the terminal accesses the network.
  • the compression technology for data is unified into the Robust Header Compressor (ROHC) technology, but is not limited to the pressure.
  • the local routing method of data under other compression techniques can be easily obtained by referring to all the embodiments provided in this specification.
  • the data transmission method provided by this embodiment includes: Step 1: The network access operation of the sending terminal (MS1), so that the network side acquires the compression capability of the MS1, and the network side establishes a local routing service flow with the MS1;
  • Step 2 The receiving terminal (MS2) accesses the network, so that the network side obtains the compression capability of the MS2, and the network side establishes a local routing service flow with the MS2;
  • steps 1 and 2 are the same, and all the terminals interact with the network side when entering the network.
  • MS1 Take MS1 as an example to illustrate that the operation of MS1 to access the network specifically includes:
  • Step A1 The MS 1 sends an incoming network notification message to the network side to trigger the network access process.
  • the network access process in the step A1 includes: downlink synchronization and initial measurement performed by the network side to the terminal before the access authentication is performed. Distance, SBC basic ability negotiation and other operations.
  • the other network types are different from the specific procedures for the network access operations performed in the WiMAX network, but since they are prior art, they are not described in detail here.
  • Step A2 The network-side local routing control entity sends, to the authentication entity, authentication information including whether the local routing control entity supports the ROHC capability.
  • Step A3 The authentication information received in step A2 is sent to the authentication entity to send information about the support of the ROHC capability.
  • Step A4 The local routing control entity performs the ROHC capability negotiation with the MS1 according to the information received in the step A3, and the local routing control entity obtains whether the MS1 has the ROHC capability, that is, the network side obtains the compression capability of the MS1.
  • Step A5 The local routing control entity determines whether to negotiate the ROHC parameter when establishing the local route preset service flow according to the ROHC capability of the MS1, the ROHC capability of the authentication entity, and its ROHC capability.
  • Step A6 The local routing control entity triggers the establishment of a local routing service flow for the MS1, where the negotiation of the basic parameters of the ROHC is included in the establishment of the local routing service flow.
  • the above steps A1 to A6 implement the network access operation of the MS1, and the network access operation of the MS2 is the same as that of the MS1. It should be noted that the network access operation of the terminal is a prior art, and the process of accessing the network is different for different network systems. The foregoing description is to facilitate understanding of a technical solution provided by the embodiment. For example, it should not be construed as limiting the method.
  • Step 3 The MS1 initiates a data transmission service, and determines that the location of the receiving terminal MS2 belongs to the local network according to the preset information, and the MS1 sends an ROHC Initialization (IR, Initial and Refresh) data packet to the base station on the established local routing service flow;
  • ROHC Initialization IR, Initial and Refresh
  • MS1 sends a ROHC IR data packet, where the ROHC IR data packet includes static information and dynamic information required for compression, and static required for decompression.
  • the information may include: a source IP address, a destination IP address, and the like; the dynamic information may include: a sequence number (SN, Sequence Number), a timestamp (Timestamp), and the like.
  • SN Sequence Number
  • Timestamp timestamp
  • the information preset in step 3 may be information about the network where MS1 and MS2 are located.
  • the IP addresses of MS1 and MS2 belong to the same local area network.
  • Step 4 The base station receives the ROHC IR data packet sent by the MS1, and determines whether the MS 1 and the MS2 meet the local routing condition according to the destination IP address and the source IP address in the ROHC IR data packet. If not, go to Step 5. If yes, Go to step 6;
  • the specific judging method in step 4 may be: determining that the destination IP address and the source address in the data packet belong to the same base station, and if they belong to the same base station, the local routing condition is met, and if not, the local routing condition is not met.
  • Step 5 The base station sends the ROHC IR data packet to the network side, and the network side routes to the base station to which the destination address belongs;
  • step 5 is the same as the prior art.
  • Step 6 The base station determines whether the MS1 and the MS2 have the same ROHC capability according to the preset compression capability information of the MS1 and the MS2; if they are the same, perform step 7, if not, perform step 11;
  • the same ROHC capability in step 6 is mainly for the case where both the MS1 and the MS2 support the ROHC technology.
  • the compression capability information of the preset MSI and the MS2 may be a header compression and/or a decompression compression technology respectively supported by the MSI and the MS2, and the compression capability information of the MS1 and the MS2 is provided to the network side when the network is connected to the network. The side shares the compression capability information of the MS1 and the MS2 to the device on the network side.
  • Step 7 The base station obtains mapping relationship information between the MS1 and the MS2 according to the ROHC IR data packet, where the mapping information may be a mapping relationship table.
  • the mapping table between the obtained MS1 and the MS2 may be a source IP address (that is, an IP address of the MS1), a destination IP address (that is, an IP address of the MS2), and a compressed information identifier (Context) obtained from the ROHC IR packet. ID1), a mapping relationship between the compressed information identifier (Context ID2) obtained from the local routing service flow established by MS2 in step 2.
  • Step 8 The base station sends the received ROHC IR data packet to the MS2.
  • Step 9 MS1 sends a header compressed data packet to the base station
  • Step 10 The base station receives the header compressed data packet sent by the MS1, and sends the header compressed data packet to the MS2 according to the obtained mapping relationship table between the MS1 and the MS2.
  • the specific operation procedure in step 10 may be: the base station receives the header compressed data packet sent by the MS1, and finds the Context ID1, the MSI address, and the IP address of the MS2 in the header compressed data packet in the mapping relationship table.
  • the mapping relationship between the data packet is sent to the MS2 through the MS2 and the local routing service flow established by the network side.
  • the local route execution entity on the network side finds that the Context ID1 has been used on the local routing service flow established by the MS2 and the network side, and is not used as the data service sent by the MS1, the local route execution entity The mapping relationship will be modified to make the data bearer channel between MS1 and MS2 smooth.
  • Step 11 When MS1 and MS2 have different ROHC capabilities, the base station decompresses the received ROHC IR data packet; and decompresses the compressed data packet according to the header compression context information of the MS2 obtained from the network side. Head compression;
  • Step 12 Send the header compressed packet to MS2.
  • Steps 11 and 12 are similar to the prior art.
  • the network side needs to perform header decompression and re-head compression on the data sent by MS1.
  • the method can already implement the base station to directly forward the received compressed data packet to the destination address, without requiring the base station on the network side to decompress the compressed data packet, according to the purpose.
  • the compression of the terminal, the header compression is performed again, and the packet that is re-compressed is sent to the destination terminal.
  • the base station is not required to maintain the header compression context information of the receiving terminal and the transmitting terminal, and reduces the operation of the base station, thereby reducing the transmission delay of the data packet.
  • the method may further include the following steps:
  • Step 13 The base station determines whether the ROHC parameter negotiated between the MS2 and the local routing service flow that has been established on the network side is the same as the ROHC parameter negotiated between the MS1 and the local routing service flow that has been established on the network side; Step 7; if no, go to step 14;
  • Step 14 The base station modifies the ROHC parameter set in the local routing service flow that has been established between the MS2 and the network side, and the ROHC parameter set in the local routing service flow that has been established by the MS1 and the network side to the same parameter; Step 7 above.
  • the ROHC parameter in the MS 1 may be modified to be the same as the ROHC parameter in the MS2, and vice versa.
  • the compression parameters in the MS1 and the MS2 are the same. The same description is also given in the subsequent embodiments.
  • the MS2 can decompress the data packet more accurately when receiving the data packet sent by the MS1 directly forwarded by the network side.
  • the method may further include:
  • Step 15 The base station sends the obtained mapping relationship between MS1 and MS2 to the local routing control entity.
  • step 15 the local routing control entity can perform real-time control on the local route. It should also be noted that the above steps 13 to 15 are not shown in Fig. 2. Embodiment 2
  • Embodiment 1 is a local routing service flow established by the MS1 and the MS2 on the network side of the access network to implement local routing service, where the local routing service is implemented. Routing service flow is the network The network side is preset; and the method provided in this embodiment is based on a local route point-to-multipoint (P2M, Peer to Peer) service flow dynamically established by the terminal and the network side.
  • P2M local route point-to-multipoint
  • the exchange execution entity on the network side takes the ASN-GW as an example to describe the method.
  • the terminal Before the method is executed, the terminal has performed the network access operation, and the network access operation process is a prior art, and the descriptions of steps 1 and 2 in the first embodiment may also be referred to.
  • the method includes:
  • Step 301 The MS 1 sends a bearer setup request to the network side, and establishes an uplink service flow with the network side, where the operation of establishing the uplink service flow includes negotiating the ROHC parameter with the network side;
  • the execution time of the step 301 is to establish an uplink service flow between the MS1 and the local routing control entity on the network side when the service data needs to be sent by the MS1.
  • Step 302 The network side establishes a downlink service flow with the MS2 according to the destination IP address included in the establishment of the bearer request.
  • the establishing a downlink service flow operation also includes negotiating a ROHC parameter with the network side;
  • Step 303 The terminal sends the ROHC IR data packet to the network side on the established uplink service flow, and routes the route to the ASN-GW.
  • Step 304 The ASN-GW receives the ROHC IR data packet, and determines whether the data packet satisfies the local routing condition according to the destination IP address and the source IP address in the ROHC IR data packet. If no, go to step 305; if yes, execute Step 306;
  • step 304 For the specific determination method in step 304, reference may be made to the description of step 4 in the first embodiment.
  • Step 305 The ASN-GW sends the ROHC IR data packet to the network side, and routes to the base station to which the destination address belongs via the network side; the operation is prior art.
  • Step 306 The ASN-GW determines whether the MS1 and the MS2 have the same ROHC capability according to the preset compression capability information of the MS1 and the MS2; if they are the same, the step 307 is performed, if not, the step 311 is performed;
  • the description of the steps 307 to 312 is similar to the description of the step 7 to the step 12 in the first embodiment, except that the local routing execution entity in the first embodiment is different from the second embodiment.
  • the first embodiment is a base station, and the embodiment is an ASN-GW.
  • the data bearer between the MS1 and the ASN-GW is a dynamically established uplink service flow, and the data bearer between the ASN-GW and the MS2 Is the established downstream service flow.
  • the method can already implement the ASN-GW to directly forward the compressed data packet to the destination address, without requiring the ASN-GW on the network side to decompress the compressed data packet, ⁇
  • the compression of the destination terminal, the header compression is performed again, and the packet that is re-compressed is sent to the destination terminal.
  • the ASN-GW does not need to maintain the header compression context information of the receiving terminal and the transmitting terminal, and reduces the operation of the ASN-GW, thereby reducing the transmission delay of the data packet.
  • the method may further include step 313 to step 315, so that the ASN-GW control modifies the ROHC parameter in the MS2 to be the same as the ROHC parameter in the MS1, so as to facilitate accurate decompression of the data packet in the MS2, and the specific description may be Refer to steps 13 to 15 in the first embodiment, which are not repeated here.
  • the method may further include:
  • Step 316 If the Context ID in the service flow on the MS2 corresponding to the Context ID of the data packet transmitted by the MS1 on the uplink service flow has been used, the local route execution entity ASN-GW will all of the uplink service flows of the MS1.
  • the Context ID is modified to be the Context ID that does not conflict with the downlink service flow corresponding to MS2.
  • the method may further include:
  • Step 317 The ASN-GW sends the obtained mapping relationship between MS1 and MS2 to the local routing control entity.
  • the local routing control entity can perform real-time control on the local route. It should also be noted that the above steps 313 to 317 are not shown in FIG. Embodiment 3
  • This embodiment provides a data transmission method.
  • the method provided in this embodiment is similar to the method provided in Embodiments 1 and 2, and the main difference is as follows:
  • the service flow for local routing in this embodiment is a point-to-point (P2P) local routing service flow.
  • the local routing execution entity takes the relay station RS as an example.
  • the method includes:
  • Step 401 The MS1 sends a bearer setup request to the network side, and establishes an uplink service flow with the network side, where the operation of establishing the uplink service flow includes negotiating the ROHC parameter with the network side;
  • Step 402 The network side establishes a downlink service flow with the MS2 according to the destination IP address included in the setup bearer request.
  • the establishing a downlink service flow operation also includes negotiating a ROHC parameter with the network side;
  • steps 401 and 402 are the same as the steps 301 and 302 in the second embodiment, and are all technologies that have been implemented in the prior art.
  • Step 403 The local routing control entity on the network side determines, according to the saved local route mapping information of the preset RS, that the data packet transmitted between the MS1 and the MS2 satisfies the local routing condition on the RS, and establishes the uplink service flow of the MS1 and the MS2.
  • MS1 and MS2 are both on the same RS, and both support P2P local routing.
  • Step 404 The ASN-GW determines whether the MS1 and the MS2 have the same ROHC capability according to the preset compression capability information of the MS1 and the MS2; if they are the same, the step 405 is performed, if not, the step 407 is performed;
  • Step 405 The ASN-GW sends a P2P local route execution notification message of the MS1 and the MS2 to the RS, where the notification message includes: a mapping relationship between the established uplink service flow of the MS1 and the downlink service flow of the MS2;
  • the P2P local routing service flow refers to: a local routing service flow that has a mapping relationship between the uplink service flow of the MS1 and the downlink service flow of the MS2. Because the two have a mapping relationship, the data packet can be carried in the uplink service flow and The downlink service flow directly reaches the destination address MS2.
  • Step 406 After receiving the foregoing notification message, the RS receives the data packet sent by the MS1 that is carried on the uplink service flow, and directly sends the data packet according to the mapping relationship between the established uplink service flow of the MS1 and the downlink service flow of the MS2. Give MS2;
  • Step 407 When the ASN-GW determines that the MS1 and the MS2 have different ROHC capabilities,
  • the ASN-GW sends a message that includes at least the information about the compression capability of the MS1 and the MS2 to the RS.
  • Step 408 After receiving the message that the MS1 and the MS2 have different compression capability information, the RS receives the message on the uplink service flow. Packet sent by MS1, packet sent by MS1 Decompressing; performing header compression on the decompressed data packet according to the header compression context information of the MS2 obtained from the network side;
  • Step 409 Send the compressed packet to the MS2.
  • the method can realize that the RS forwards the compressed data packet directly to the destination address, without decompressing the compressed data packet by the RS on the network side, according to the compression of the destination terminal.
  • the header compression is performed again, and the packet retransmission of the header compression is reduced, and the operation of the RS is reduced, and the transmission delay of the packet is reduced.
  • the method may further include the step 410 to the step 412, so that the local routing control entity controls to modify the ROHC parameter in the MS2 to be the same as the ROHC parameter in the MS1, so as to facilitate accurate decompression of the data packet in the MS2, specifically Reference may be made to the steps 13 to 15 in the first embodiment, and the execution subject in the first embodiment is changed from the BS to the local routing control entity, which is not repeated here.
  • the local routing control entity in this embodiment may also be used as a local routing executing entity, that is, the local routing control entity locally routes the data packet to the receiving terminal.
  • the local routing execution entity is different in each embodiment, and the following are: BS, ASN-GW and RS. It should be noted that the local routing entity specifically described in the foregoing three embodiments should not be construed as limiting each embodiment. Each of the foregoing three embodiments is mainly for different service flows of the data packets carrying the data packets.
  • the local routing execution entities on the network side can perform local routing by referring to the foregoing three embodiments, and all of the advantages can be achieved by the technical solution.
  • This embodiment provides a data transmission method.
  • the method is based on the above three embodiments, when the receiving terminal MS2 switches the network, and the switched MS2 still belongs to the local network, the specific transmission process of the data.
  • the method may be based on the first, second, or third embodiment, respectively.
  • the data transmission method between the MS1 and the MS2, as shown in FIG. 5, includes: Step 501: The MS2 switches to the local network different from the MSI, and re-establishes the corresponding local routing service flow, where the re-established local routing service flow may be any one of the above-mentioned facts one, two, and three. Service flow
  • Step CI MS2 to BS1 Sending a terminal handover request (MOB_MSHO-REQ) message; wherein, by performing step C1, the MS2 initiates a handover operation.
  • the network side may also initiate a handover operation to the MS2.
  • Step C2 After receiving the MOB_MSHO-REQ message sent by the MS2, the BS1 sends a handover request (HO_REQ) message to the local routing control entity, where the entity may be an ASN-GW, and then the ASN-GW routes to the BS2;
  • HO_REQ handover request
  • Step C3 After receiving the HO_REQ message, BS2 sends a handover response (HO_RSP) to the BS1 through the ASN-GW;
  • HO_RSP handover response
  • the handover response (HO_RSP) is an acknowledgement message to the received handover request.
  • Step C4 After receiving the HO-RSP, the BS1 sends a base station handover response (MOB_BSHO-RSP) to the MS2;
  • MOB_BSHO-RSP base station handover response
  • Step C5 After receiving the MOB_BSHO-RSP, the MS2 sends a handover confirmation message (MOB HO-IND) to BS1.
  • MOB HO-IND handover confirmation message
  • the above description is a method for switching the network where the MS2 is located.
  • the MS2 after the handover is still in the local network, that is, the MS2 after the handover is still in the control range of the local routing control entity (here, the ASN-GW is a local routing control entity). .
  • Step 502 The local routing control entity, that is, the ASN-GW, modifies the preset mapping information according to the location where the MS2 is switched.
  • the MS2 of the local network still establishes a local routing service flow established in any one of Embodiments 1, 2, or 3 with the network side, and the ASN-GW is based on the handover.
  • the downstream service flow and IP address of MS2 modify the preset mapping information.
  • Step 503 The MS1 sends a data packet to the BS1, where the BS1 is a base station to which the MS1 belongs.
  • Step 504 After receiving the data packet sent by the MS1, the BS1 determines, according to the preset information, The destination address is not in the range of BS1;
  • the information preset in step 504 may be all terminal addresses or identifiers in the range of BS1, and may be an address list in the control range of BS1.
  • Step 505 The BS 1 sends the data packet sent by the MS 1 to the local routing control entity.
  • the internet The internet;
  • Step 507 The local routing control entity sends the foregoing data packet to the base station where the destination address is located.
  • Step 508 The BS2 sends the data packet to the MS2 through the local routing service flow that has been established with the MS2.
  • the forwarding information preset in step 506 may include: when the MS1 sends the data packet to the network side on the local routing service flow established when the network is connected, or the MS1 is the data on the established P2M local routing service flow.
  • the preset forwarding information may be locally routed to the mapping information obtained by the executing entity, and the local routing executing entity sends the mapping information to the local routing control entity as the preset information in the local routing control entity.
  • the preset forwarding information may be mapping information between the uplink service flow of the MS1 and the downlink service flow of the MS2.
  • the local routing control entity After the local routing control entity knows the destination address in the data packet, the local routing control entity sends the data packet to the BS2 according to the information saved during the MS2 handover, and the local routing control entity also needs the address of the MS2 for the compressed data packet. It also happens to BS2, which is then sent by BS2 to MS2. Since the destination address in the compressed data packet is compressed, BS2 cannot know the address of MS2, and the local routing control entity needs to send the address of MS2 to BS2.
  • the network side can directly forward the data to the receiving terminal, and the network side does not need to solve the received data.
  • the header is compressed, recompressed, and regenerated to the destination address. Therefore, the operation on the network side is reduced, and the transmission delay of the data packet is reduced.
  • This embodiment provides a data transmission method.
  • the method provided in the fourth embodiment is directed to The location of the receiving terminal after the handover of the terminal still belongs to the local routing network; and the method provided by this embodiment is not for the local network after the handover of the receiving terminal.
  • the transmitting terminal MS1 and the receiving terminal MS2 belong to the local network before the MS2 is switched, and both belong to the same control range of the base station BS1, and the local routing control entity in the local network.
  • the network where the switched MS2 is located includes: a target ASN-GW (Target ASN-GW) and a base station BS2 to which the MS2 is switched.
  • the method includes:
  • Step 601 The BS1 sends a MOB_BSHO-REQ/RSP message to the MS2, where the message includes: a local routing service of the MS2;
  • Step 602 The MS2 receives the MOB_BSHO-REQ/RSP message sent by the BS1, and the sending the MOB_HO_IND message includes: confirming the local routing service message sent by the BS1 and the header compression context information of the local routing service flow (for adopting In the ROHC technology, the header compression context information is the ROHC Context. For other compression technologies, the header compression context information may be different. To facilitate understanding of the fact, the following description takes the ROHC Context as an example;
  • Step 603 After receiving the MOB_HO_IND message, the BS 1 sends a HO-CNF message to the Serving ASN-GW, where the HO-CNF message includes at least: a ROHC Context;
  • Step 604 After receiving the HO_CNF message, the Serving ASN-GW stores the ROHC Context in the HO-CNF message, and sends the HO-CNF message containing the ROHC context to the Target ASN-GW.
  • Step 605 After receiving the HO_CNF message, the Target ASN-GW saves the ROHC Context, and sends the HO_CNF message to the BS2.
  • Step 606 After receiving the HO_CNF message, the BS2 sends a HO_ACK as a response to acknowledge the receipt of the HO_CNF message, and the HO_ACK passes the Target ASN-GW, and the Serving ASN-Gw arrives at the BS1;
  • the MS2 can be switched from the current network to the network where the BS2 is located, so that the data transmission between the MS1 and the MS2 does not satisfy the local routing condition.
  • the foregoing is a method for the MS2 to switch to the non-local network.
  • the method for the handover is the prior art, and is not limited to the foregoing method, and the description herein should not be construed as limiting the embodiment.
  • the local routing control entity in the original local network obtains the header compression context information in the MS2, which may be the ROHC Context;
  • the exchange control entity (which may be a TargetASN-GW) obtains the header compression context information of the MS2 to facilitate the execution of subsequent operational steps.
  • Step 607 The MS1 sends a data packet to the ServingASN-GW through the BS1.
  • Step 608 After receiving the data packet sent by the MSI, the Serving ASN-GW performs decompression on the data packet according to the ROHC Context stored in step 604.
  • Step 609 The ServingASN-GW sends the decompressed data packet to the TargetASN-GW.
  • Step 611 The Target ASN-GW sends the header compressed data packet to the BS2.
  • Step 612 After receiving the header compressed data packet, the BS2 sends the header compressed data packet to the MS2 according to the IP address of the MS2 obtained from the Target ASN-GW.
  • the network before the MS2 handover sends the header compression context information in the MS2 to the network after the MS2 handover, so that the switched MS2 can accurately decompress the received data packets, and the decompression error rate that needs to be fed back in MS2 is very high. It needs to resend the compressed initialization data packets (such as ROHC IR data packets), which improves the efficiency of data transmission.
  • the compressed initialization data packets such as ROHC IR data packets
  • Embodiments 1 to 5 are the methods provided by the embodiments of the present invention. It should be noted that the entity that performs local routing on the network side is not limited to the description in the foregoing embodiment, and the description about the compression is described by taking the ROHC technology as an example. In fact, the compression technology is not limited to the above description, and there may be others. For the local routing service, the network side only plays the role of forwarding data. The related equipment provided by this technical solution will be described below. Embodiment 6
  • the local routing control entity may be the base station BS1 as in the first embodiment, or may be the ASN-GW in the second embodiment.
  • the local routing execution entity includes: a receiving unit 20 and a sending unit 60.
  • the local routing executing entity may further include: establishing a local service flow unit 10, determining a local service unit 30, and determining a compression capability.
  • Unit 40 and acquisition mapping information unit 50 are examples of the local routing control entity.
  • the receiving unit 20 is configured to receive a header compressed data packet sent by the sending terminal, where the sending unit 60 is configured to send the header compressed data packet to the receiving according to preset mapping information of the receiving terminal and the sending terminal. terminal.
  • the local service flow unit 10 is configured to establish a local routing service flow with the sending terminal MS1 and the receiving terminal MS2.
  • the local routing service flow may be established when the MS1 and the MS2 are connected to the network.
  • the local routing service flow established with the network side may also be, when the data in the MS 1 is to be sent, the dynamic P2M local routing service flow initiated by the MS 1 is established.
  • the receiving unit 20 is further configured to receive, by the MS1, the compressed initialization data packet (which may be a ROHC IR data packet) sent by the established local routing service flow.
  • the MS1 the compressed initialization data packet (which may be a ROHC IR data packet) sent by the established local routing service flow.
  • the determining compression capability unit 40 is configured to determine whether the MS1 and the MS2 have the same ROHC capability according to the preset compression capability information of the MS1 and the MS2 when the MS1 and the MS2 satisfy the local routing condition, and if yes, notify the acquisition mapping information unit 50. ;
  • the obtaining mapping information unit 50 is configured to obtain a mapping relationship table between the MS1 and the MS2 according to the received compressed initialization data packet; the terminal MS1 does not satisfy the local routing condition, and sends the compressed initializing data packet to the compressed data packet. Send to the network side.
  • the entity may forward the received compressed data packet to the destination address directly, without the network side decompressing the compressed data packet.
  • the compression of the destination terminal re-comments the header and sends the packet that is re-compressed to the destination terminal.
  • the header compression context information of the receiving terminal and the sending terminal is not maintained in the local routing entity, and the operation of the local routing entity is reduced, and the transmission delay of the data packet is reduced.
  • the local route execution entity may further include: a decompression unit 70 and a compression unit 80.
  • the decompressing unit 70 is configured to: when determining that the MSI and the MS2 have different ROHC capabilities in the compression capability unit 40, decompress the received compressed initialization data packet according to the preset MS1 header compression context information. ;
  • the compressing unit 80 is configured to perform header compression on the decompressed data packet according to the preset MS2 header compression context information
  • the sending unit 60 is further configured to send the header compressed data generated in the compression unit 80 to the MS2.
  • the local route execution entity may further include: a judgment compression parameter unit 90 and a modification parameter unit 110.
  • the determining the compression parameter unit 90 is configured to determine whether the ROHC parameter set in the local routing service flow that has been established between the MS2 and the network side is determined when the compression capability unit 40 determines that the MS1 and the MS2 have the same ROHC capability.
  • the MS1 is the same as the ROHC parameter set in the local routing service flow that has been established on the network side. If they are the same, the notification mapping information unit 50 is notified. If not, the modification parameter unit 110 is notified;
  • the modification parameter unit 110 is configured to modify the ROHC parameter set in the local routing service flow established in the MS2 and the network side to be the same as the ROHC parameter set in the local routing service flow established by the MS1 and the network side, and modify The notification notification acquisition information unit 50 is ended.
  • the sending unit 60 is further configured to send the obtained mapping relationship table of the MS1 and the MS2 to the local routing control entity. Enables the local routing control entity to control the local route in real time.
  • the local routing control entity includes: establishing a dynamic service flow unit 201, first determining a local service unit 202, establishing an association unit 203, and first determining a compression capability.
  • the dynamic service flow unit 201 is configured to establish a dynamic local routing service flow with the sending terminal MS1 and the receiving terminal MS2, respectively.
  • the first determining local service unit 202 is configured to determine, according to the local routing mapping information stored in the preset local routing execution entity (specifically, the relay station RS), that the data packet transmitted between the MS1 and the MS2 satisfies the local routing on the RS. condition;
  • the establishing association unit 203 is configured to establish, according to the first determining, that the data packet transmitted between the MS1 and the MS2 in the local service unit 202 satisfies the local routing condition on the RS, and establish a dynamic local routing service flow and the MS2 established by the MS1.
  • the first determining compression capability unit 204 is configured to determine whether the MS1 and the MS2 have the same ROHC capability according to the preset compression capability information of the MS1 and the MS2, and notify the first sending unit 205 of the determination result;
  • the first sending unit 205 is configured to: when the MS1 and the MS2 have the same ROHC capability, send a P2P local route execution notification message of the MS1 and the MS2 to the local route execution entity; where the dynamic local route established by the MS1 of the specific mapping relationship The service flow and the dynamic local routing service flow established by the MS2 form a P2P local routing service flow.
  • the message that the MS1 and the MS2 have different compression capability information is sent to the local device. Route execution entity.
  • the local routing control entity may further include: a first determining compression parameter unit 206 and a first modifying parameter unit 207, which are the same as the determining the compression parameter unit 90 and the modifying parameter unit 110 in the sixth embodiment, and the specific description may be It is easily obtained with reference to the sixth embodiment.
  • the local routing control entity provided by the embodiment includes: the dynamic service flow unit 201, the first determining local service unit 202, the establishing association unit 203, and the first determining compression capability unit 204 may also be included in the foregoing implementation.
  • the role is unchanged.
  • the P2P local service flow is established and the MS1 and the MS2 are determined to have the same compression capability, and the local routing execution entity is notified to the local routing execution entity.
  • the purpose at the same time, can reduce the transmission delay of data on the network side.
  • the local route execution entity provided in this embodiment may be a relay station RS.
  • the local routing execution entity includes: a second receiving unit 901, a storage unit 902, and a second sending unit 903.
  • the second receiving unit 901 is configured to receive a P2P local route execution notification message sent by the local routing control entity to the MSI and the MS2, or receive the data packet sent by the MS1 by receiving the information that the MS1 and the MS2 have different compression capability information. ;
  • the storage unit 902 is configured to store a mapping relationship between the dynamic local routing service flow established by the MS1 and the dynamic local routing service flow established by the MS2 in the notification message.
  • the second sending unit 903 is configured to forward the data packet sent by the MS 1 to the MS2 according to the stored mapping relationship.
  • the local routing execution entity may further include: a second decompression unit 904 and a second compression unit 905.
  • the second decompressing unit 904 is configured to, after receiving the message that the at least the MS1 and the MS2 have different compression capability information, perform the compressed initialization data packet according to the preset MS1 header compression context information. Head compression
  • a second compression unit 905 configured to: preset MS2 header compression context information, and perform header compression on the decompressed data packet;
  • the second sending unit 903 is further configured to send the data packet that is header-compressed in the second compression unit 905 to the MS2.
  • the network side when the data meets the local routing condition, the network side can directly send the received data packet to the destination address, which reduces the transmission delay of the data packet on the network side.
  • Example IX
  • the present embodiment provides a local routing control entity, and the local routing control provided by the seventh embodiment controls the actual carrying of the local routing service.
  • the local routing control entity provided in this embodiment is for the receiving terminal MS2 that has performed the local routing service. After the handover, the switched MS2 still belongs to the local network, that is, within the control range of the local routing control entity.
  • the local routing control entity includes: a switching unit 301, a modification mapping unit 302, a third receiving unit 303, and a third transmitting unit 304.
  • the switching unit 301 is configured to switch the MS2 to the destination network, where the switched MS2 is within the coverage of the base station BS2, and is still a local network. It should be noted that, in particular, the switching unit 301 may specifically include a third receiving unit 303 and a third sending unit 304, that is, by performing communication with other devices on the network side, the MS2 is switched, and the specific switching process is There are technologies. The same description is given for the logic unit for switching in the subsequent embodiments.
  • the modification mapping unit 304 is configured to modify the preset mapping information according to the location where the MS2 is switched.
  • the preset mapping information may be the mapping information in the first embodiment and the second embodiment, and may be the third embodiment. The relationship between MS1 and MS2.
  • a third receiving unit 303 configured to receive a data packet sent by the MS1;
  • the third sending unit 304 is configured to send the received data packet to the BS2 where the MS2 is located according to the modified mapping information.
  • the third receiving unit 303 and the third transmitting unit 304 may be included in the accepting unit 20 and the transmitting unit 60 of the local routing executing entity provided in the sixth embodiment, respectively.
  • the entity may directly send the data packet to the switched MS2 according to the modified mapping information, and does not need the network side to perform data decompression and header compression operations. , reduced packet transmission delay.
  • This embodiment provides a local routing control entity, where the location of the MS2 is not in the local network, and the local routing control entity includes a second switching unit 401 and a second storage unit 402.
  • the second switching unit 401, the second storage unit 402, the fourth receiving unit 403, the third decompressing unit 404, and the fourth sending unit 405 may also be included in a local routing executing entity.
  • the second switching unit 402 is configured to switch the MS2 to the destination network, where the switched MS2 is within the coverage of the base station BS2, and the switched MS2 is a non-local network.
  • the second switching unit may be the switching unit included in the ninth embodiment.
  • the switching unit 301 can perform the switching between the two.
  • One switching is that the switched MS2 still belongs to the local network, and the other switching is that the switched MS2 does not belong to the local network.
  • the second storage unit 402 is configured to store header compression context information of the MS2 acquired during the handover operation. (specifically it can be ROHC Context);
  • a fourth receiving unit 403, configured to receive, by the MS1, a data packet
  • the fourth receiving unit 403 can be the same as the third receiving unit in the ninth embodiment.
  • the third decompressing unit 404 is configured to perform header decoding on the data packet according to the stored header compression context information of the MS2.
  • the fourth sending unit 405 is configured to send the data packet obtained after the header decoding to the switching control entity where the MS2 is located.
  • the local routing control entity provided in this embodiment may be a logical unit that is based on the seventh or the ninth embodiment and specifically described above, and ensures that the MS2 after the handover can correctly perform header decoding.
  • the network where the MS2 is located is not in the range of the local routing control entity in the embodiment, and the local routing control entity stores the header compression context information of the MS2 when the MS2 switches. And the switching compression context information is sent to the switching control entity of the destination network by the switching operation, so that the MS2 after the handover can still decompress the data correctly, and the data transmission efficiency is improved compared with the prior art.
  • This embodiment provides an exchange control entity.
  • the switching entity in the destination network is the object to be described in this embodiment.
  • the exchange control entity includes: a third switching unit 501, a third storage unit 502, a fifth receiving unit 503, a third compressing unit 504, and a fifth transmitting unit 505.
  • the third switching unit 501 is configured to switch the MS2 to the destination network.
  • a third storage unit 502 configured to store header compression context information (specifically, ROHC Context) of the MS2 obtained during the handover operation;
  • the fifth receiving unit 503 is configured to receive the unpacked compressed data packet sent by the network before the MS2 handover;
  • the third compressing unit 504 is configured to perform header compression on the unpacked compressed data packet according to the stored header compression context information of the MS2.
  • the fifth sending unit 505 is configured to send the data packet obtained after the header compression to the base station BS2 where the MS2 after the handover is located.
  • the network where the MS2 is switched is not in the range of the original local routing control entity, and the switching control entity stores the header compression context information of the MS2 when the MS2 switches, ensuring that the MS2 after the handover remains The data can be decompressed correctly, and the data transmission efficiency is improved compared with the prior art.
  • the present embodiment provides a communication system, which includes the above-mentioned facts in the sixth to eleventh embodiments: a local route execution entity, optionally including: a local route control entity and an exchange control entity.
  • the local routing execution entity is configured to receive a header compressed data packet sent by the sending terminal, and configured to send the header compressed data packet to the receiving terminal according to mapping information of the receiving terminal and the sending terminal.
  • the communication system further includes: a local routing control entity, configured to establish a local routing service service flow with the sending terminal and the receiving terminal respectively; and determining, by the preset local routing mapping information, the sending terminal and the receiving terminal The local routing condition is met; the mapping relationship between the local routing service service flow established by the sending terminal and the local routing service service flow established by the receiving terminal is established; and the compression capability information of the sending terminal and the receiving terminal is determined according to the preset Whether the transmitting terminal and the receiving terminal have the same compression capability; when it is determined that the transmitting terminal and the receiving terminal have the same compression capability, the point-to-point local route execution notification message between the transmitting and receiving terminal and the transmitting terminal is sent to the local routing executing entity
  • the notification message includes: mapping information between the local routing service service flow established by the sending terminal and the local routing service service flow
  • the local routing control entity is further configured to: after determining that the sending terminal and the receiving terminal have the same compression capability, determine whether the compression parameter obtained after the negotiation is established in the local routing service service flow with the sending terminal and the receiving terminal respectively If the same, the notification message is sent; if not, the receiving terminal establishes the compression parameter obtained after the negotiation in the local routing service service flow, and the compression parameter modification obtained after the negotiation is established in the local routing service service flow by the sending terminal. The notification message is sent again for the same compression parameter.
  • the local routing control entity is further configured to switch the receiving terminal to the destination network, where the switched receiving terminal and the sending terminal satisfy a local routing condition; and receive a mapping between the receiving terminal and the sending terminal sent by the local routing executing entity Receiving, by the receiving terminal, the data packet sent by the sending terminal; modifying the destination address in the mapping information of the receiving terminal and the transmitting terminal to the address of the location where the receiving terminal is switched; and routing the data packet according to the mapping information obtained by the modification Locally routed to the receiving terminal.
  • the local routing control entity is further configured to: when the receiving terminal after the switching unit switches does not satisfy the local routing condition, store, according to the switching operation, the receiving terminal header compression context information acquired from the switching operation; Obtaining the header compression context information, performing decompression on the data packet sent by the sending terminal, and sending the data packet obtained by the decompression header to the switching control entity to which the switched receiving terminal belongs;
  • the switching control entity is configured to switch the receiving terminal to the destination network, and the receiving terminal and the transmitting terminal after the switching do not satisfy the local routing condition, and the receiving the terminal to switch to the destination network, at least: receiving the switching request sent by the receiving terminal And storing the header compression context information of the receiving terminal from the handover request; receiving the decompressed compressed data packet sent by the sending terminal, and performing the decoding according to the obtained receiving terminal header compression context information
  • the compressed data packet is subjected to header compression; the data packet obtained after the header compression is routed and sent to the receiving terminal.
  • the local route execution entity in the communication system directly forwards the received compressed data packet to the destination address without decompressing the compressed data packet, according to the destination terminal.
  • the header compression is performed again, and the data of the header compression is compressed to compress the context information, and the operation of the base station is reduced, and the transmission delay of the data packet is reduced.
  • the storage medium may include: a ROM, a RAM, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种数据的传输方法、 相关设备和通信系统
技术领域
本发明涉及通信技术领域,具体涉及一种数据的传输方法、相关设备和通 信系统。
背景技术
使数据在网络侧快速、 准确、 高效的传输时是网络通信技术发展的方向。 本地路由技术是网络通信技术的一个重要组成部分,采用本地路由技术能够降 低运营商成本, 节约网络资源, 提高数据传输速度。 又由于对于无线链路环境 下的数据传输, 在传输过程中很多的带宽资源被用于重复传输非净荷的数据, 如网际协议 ( IP, Internet Protocol )数据包中的 IP头开销, 导致带宽被浪费, 降低了服务质量。已经实现的头压缩技术在一定程度上解决重复传输非净荷的 数据导致的带宽浪费问题。将本地路由技术和头压缩技术结合在一起, 实现数 据快速、 准确、 高效的传输, 已经成为当今的主流技术。
现有的本地路由技术主要分为:基于预置流的本地路由和基于动态流的本 地路由。
其中,基于预置的流的本地路由的具体方法包括: 属于本地路由范围内的 发送终端和接收终端,在入网时都与网络侧建立预置流; 网络侧将发送终端的 和接收终端预置流进行了绑定; 当发送终端发送的数据需要进行本地路由时 , 发送终端将要发送的数据通过与网络侧建立的预置流发送给网络侧;网络侧将 上述数据通过与接收终端建立的预置流发送给接收终端。
基于动态流的本地路由包括: 基于点到多点( P2M, Peer to Multipeer )动 态流的本地路由和基于点到点 (P2P, Peer to Peer )动态流的本地路由。
第一、 基于 P2M动态流的本地路由具体方法包括: 属于本地路由范围内 的发送终端和接收终端入网后,发送终端发送数据给网络侧, 网络侧通过解析 数据中的目的地址, 获知该数据的目的地址(即接收终端的地址)可以进行本 地路由, 则网络侧采用本地路由, 将数据发送给接收终端。
第二、基于 P2P动态流的本地路由具体方法包括:属于本地路由范围内的 发送终端和接收终端在入网时, 就已经建立了发送终端与接收终端关联,具体 关联的方法可以是建立两个终端的 CID关联, 当网络侧接收到发送终端发送 的数据后, 根据两个终端之间的关联关系, 将数据发送给接收终端。
上述基于预置流的本地路由和基于动态流的本地路由中,网络侧在进行本 地路由时,都需要将接收到的发送终端发送的数据进行解头压缩,根据接收端 的状况, 再重新进行头压缩, 发送给接收终端, 接收终端再对接收到的数据进 行解头压缩。 其中, 网络侧进行本地路由的执行实体可以是: 基站(BS, Base Station )、 接入服务网络网关( ASN-GW, Access Service Network-Gateway )、 中继站(RS, Relay Station )或者是其它网络设备。 如图 1所示, 对于采用鲁 棒性头压缩(ROHC, Robust Header Compressor )技术时, 在发送终端、 网络 侧和接收终端中传输的数据的形式。 发送终端 MS 1将 IP数据包进行头压缩, 将压缩后的数据包发送给网络侧, 网络侧将接收到的数据进行解头压缩,根据 接收端的状况, 再重新进行头压缩, 发送给接收终端 MS2, MS2再对接收到 的数据进行解头压缩, 还原出 IP数据包。
在对现有技术的研究和实践过程中, 本发明的发明人发现, 现有技术中, 网络侧收到头压缩后的本地路由数据包后, 需要对数据包解头压缩,再根据接 收端的状况, 重新进行头压缩; 网络侧必须维护使用本地路由业务的两个终端 的压缩上下文信息, 增加了网络侧设备的负担; 而且, 网络侧必须对收到的头 压缩后的数据包, 解头压缩再重新进行头压缩, 造成时延开销。 发明内容
本发明实施例提供一种数据的传输方法、相关设备和通信系统,可以减少 网络侧对本地路由业务的操作步骤 , 明显减少数据在网络侧传输时的传输时 延。
本发明实施例提供一种数据的传输方法, 包括:
接收发送终端发送的头压缩数据包;
根据接收终端和发送终端的映射信息,将所述头压缩数据包本地路由到所 述接收终端。 本发明实施例提供还一种本地路由执行实体, 包括: 接收单元, 用于接收发送终端发送的头压缩数据包; 发送单元, 用于根据接收终端和发送终端的的映射信息, 将所述头压缩数 据包本地路由到所述接收终端。 本发明实施例提供还一种通信系统, 所述通信系统包括:
本地路由执行实体, 用于接收发送终端发送的头压缩数据包; 用于根据接 收终端和发送终端的的映射信息 ,将所述头压缩数据包本地路由到所述接收终 端。 本发明实施例采用当数据业务满足本地路由条件时,且接收终端与发送终 端具有相同的解压缩能力时,网络侧只需要建立发送终端和接受终端之间的数 据承载通道, 而不需要对本地路由业务数据包进行解压缩,根据接收终端的压 缩情况, 重新进行头压缩, 将重新进行头压缩的数据包发送给接收终端, 从而 减少了网络侧的操作, 减少了数据包的传输时延。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案 ,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 2是本发明实施例一提供的一种数据的传输方法流程简图;
图 3是本发明实施例二提供的一种数据的传输方法流程简图;
图 4是本发明实施例三提供的一种数据的传输方法流程简图;
图 5是本发明实施例四提供的一种数据的传输方法流程简图;
图 6是本发明实施例五提供的一种数据的传输方法流程简图;
图 7是本发明实施例六提供的一种本地路由执行实体的逻辑结构图; 图 8是本发明实施例七提供的一种本地路由控制实体的逻辑结构图; 图 9是本发明实施例八提供的一种本地路由执行实体的逻辑结构图; 图 10是本发明实施例九提供的一种本地路由控制实体的逻辑结构图; 图 11是本发明实施例十提供的一种本地路由控制实体的逻辑结构图; 图 12是本发明实施例十一提供的一种交换控制实体的逻辑结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在对本发明实施例提供的技术方案作说明之前, 首先需要说明的是,本地 路由的相关实体主要包括: 本地路由控制实体和本地路由执行实体。 通常, 在 WiMAX系统中 Anchor ASN GW是本地路由控制实体, 在 LTE系统中 Serving GW是本地路由控制事态; 在 WiMAX系统和 LTE系统中, 基站、 中继站、 ASN GW都可以是本地路由执行实体。 下面结合具体实施例说明本技术方案。
本技术方案提供的一种数据的传输方法, 包括:
步骤 Ml : 接收发送终端发送的头压缩数据包; 步骤 M2: 根据接收终端和发送终端的的映射信息, 将所述头压缩数据包 本地路由到所述接收终端。 其中, 步骤 M2中接收终端和发送终端的的映射信息, 可以有多种不同的 方法最终实现在该本地路由执行实体中保存该映射信息,具体说明可以结合下 面的实施例来理解。 该技术方案采用根据预置的映射信息,将接收到的头压缩数据包直接进行 本地路由到接收终端, 而不需要网络侧多头压缩数据包解头压缩,再进行头压 缩, 然后发送给接收终端, 减少了数据在网络侧的传输时延。 实施例一、
本实施例提供一种数据的传输方法。 本实施例中是以基站 (BS, Base Station )作为本地路由执行实体, 且本地路由是基于终端入网时建立的预置流 的情况做说明。 为了更清楚的理解该技术方案,这里对于数据的压缩技术统一 为鲁棒性头压缩(ROHC, Robust Header Compressor )技术, 但是不限于该压 缩技术,其它压缩技术下数据的本地路由方法可以参照本说明书中提供的所有 实施例而容易获得。 如图 2所示, 本实施例提供的一种数据的传输方法包括: 步骤 1 : 发送终端(MS1 )的入网操作, 使得网络侧获取 MS1的压缩能力, 网络侧与 MS1建立本地路由服务流;
步骤 2: 接收终端(MS2 )的入网操作, 使得网络侧获取 MS2的压缩能力, 且网络侧与 MS2建立本地路由服务流;
其中, 步骤 1和步骤 2中具体的操作步骤是相同的,都是终端在入网时与网 络侧的一些交互操作。 以 MS1为例说明, MS1入网的操作具体包括:
步骤 A1: MS 1向网络侧发送入网通知消息 , 触发执行入网流程; 其中, 对于 WiMAX网络, 步骤 A1中入网流程包括: 在进行接入认证之前 所进行的网络侧对终端的下行同步、 初始测距、 SBC基本能力协商等操作。 对 于其它网络类型是与 WiMAX网络中执行的入网操作具体流程是不相同的, 但 由于是现有技术, 此处不详述。
步骤 A2: 网络侧本地路由控制实体向认证实体发送包含有本地路由控制 实体是否支持 ROHC能力的认证信息;
步骤 A3:认证实 据步骤 A2接收到的认证信息,发送认证实体对 ROHC 能力的支持情况的信息;
步骤 A4:本地路由控制实体根据步骤 A3接收到的信息,与 MS1进行 ROHC 能力的协商, 本地路由控制实体获取到 MS1是否具有 ROHC能力, 即网络侧获 取 MS1的压缩能力;
步骤 A5: 本地路由控制实体根据 MS1的 ROHC能力、 认证实体的 ROHC能 力和自身的 ROHC能力, 决定在建立本地路由预置服务流的时, 是否要协商 ROHC参数;
步骤 A6: 本地路由控制实体触发为 MS1建立本地路由服务流, 其中, 在 建立本地路由服务流中包括 ROHC的相关基本参数的协商。
上述步骤 A1至步骤 A6实现了 MS1的入网操作, MS2的入网操作与 MS1是 相同的。需要说明的是:终端的入网操作是现有技术,且对于不同的网络系统, 入网的过程是不同的 ,上述说明是便于理解本实施例提供的技术方案的一个具 体举例, 不应该理解为对该方法的限制。
其中, 需要说明的是,上述步骤 1和步骤 2是所有终端入网时都需要执行的 操作, 而本实施例中提供的方法, 不必每次执行时都重新执行上述步骤 1和步 骤 2, 网络侧是利用到终端入网时存储的信息和建立的本地路由服务流。
步骤 3: MS1发起数据传输业务, 根据预置信息, 判断出接收终端 MS2的 位置属于本地网络, MS1在已经建立的本地路由服务流上发送 ROHC初始化 ( IR, Initial and Refresh )数据包给基站;
其中, 步骤 3中如果 MS1包含的压缩端处于初始状态, 则 MS1发送的是 ROHC IR数据包,其中, ROHC IR数据包中包括了解压缩所需的静态信息和动 态信息, 解压缩所需的静态信息可以包括: 源 IP地址、 目的 IP地址等; 动态信 息可以包括: 序列号(SN, Sequence Number )、 时间戳( Timestamp )等, 关 于头压缩上下文信息具体说明可以参考现有 ROHC技术。
其中, 步骤 3中预置的信息可以是 MS1和 MS2所在的网络的信息, 如 MS1 和 MS2的 IP地址属于同一个局域网范围内。
步骤 4: 基站接收到 MS1发送的 ROHC IR数据包, 根据 ROHC IR数据包中 的目的 IP地址和源 IP地址, 判断 MS 1和 MS2是否满足本地路由条件; 如果否, 执行步骤 5, 如果是, 执行步骤 6;
其中, 步骤 4中具体的判断方法可以是: 判断数据包中目的 IP地址与源地 址都同属于该基站, 如果属于同一基站, 则满足本地路由条件, 如果不是, 则 不满足本地路由条件。
步骤 5: 基站将 ROHC IR数据包发送给网络侧 , 经网络侧路由至目的地址 所属基站;
其中, 该步骤 5是与现有技术相同。
步骤 6: 基站根据预置的 MS1和 MS2的压缩能力信息, 判断 MS1与 MS2是 否具有相同的 ROHC能力; 如果相同, 则执行步骤 7, 如果不相同, 则执行步 骤 11 ,
其中, 步骤 6中相同的 ROHC能力, 主要是针对 MS1和 MS2都支持 ROHC技 术的情况, 对于其它头压缩和 /或解头压缩技术, 则可以统称为: 支持相同的 压缩能力。 其中, 上述预置的 MSI和 MS2的压缩能力信息可以是 MSI、 MS2分 别支持的头压缩和 /或解头压缩技术, 且将 MS1和 MS2的压缩能力信息在入网 时提供给网络侧的, 网络侧将该 MS1和 MS2的压缩能力信息共享给网络侧的设 备。
步骤 7: 基站根据 ROHC IR数据包, 获取 MS1和 MS2的映射关系信息; 该 映射信息具体可以是映射关系表;
其中, 获取的 MS1和 MS2的映射关系表, 具体可以是从 ROHC IR数据包中 获取的源 IP地址(即 MS1的 IP地址)、 目的 IP地址(即 MS2的 IP地址)、 压缩信 息标识(Context ID1 ), 和从步骤 2中 MS2建立的本地路由服务流中获取的压缩 信息标识( Context ID2 )之间的映射关系。
步骤 8: 基站将接收到的 ROHC IR数据包发送给 MS2;
步骤 9: MS1发送头压缩的数据包给基站;
步骤 10: 基站接收到 MS1发送的头压缩后的数据包, 根据获取的 MS1和 MS2的映射关系表, 将头压缩的数据包发送给 MS2。
其中, 步骤 10中具体的操作流程可以是: 基站接收到 MS1发送的头压缩后 的数据包, 在映射关系表中查找到头压缩后的数据包中的 Context ID1、 MSI 的地址和 MS2的 IP地址之间的映射关系 , 将该数据包通过 MS2与网络侧建立的 本地路由服务流发送给 MS2。
其中,还需要说明的是, 当网络侧的本地路由执行实体发现该 Context ID1 已经在 MS2与网络侧建立的本地路由服务流上使用,且不是作为接收 MS1发送 的数据业务时, 本地路由执行实体将修改该映射关系, 使得 MS1和 MS2之间的 数据承载通道顺畅。
步骤 11 : 当 MS1与 MS2具有不相同的 ROHC能力时, 则基站将接收到的 ROHC IR数据包解头压缩; 在根据从网络侧获取的 MS2的头压缩上下文信息, 对解头压缩的数据包进行头压缩;
步骤 12: 将头压缩后的数据包发送给 MS2。
其中, 步骤 11和 12与现有技术相似, 即 MS 1和 MS2不支持相同的头压缩上 下文时, 网络侧需要对 MS1发送的数据进行解头压缩和重新头压缩。 通过上述对步骤 1至步骤 10的说明, 该方法已经可以实现基站将接收到的 压缩后的数据包直接转发到目的地址,而不需网络侧的基站将压缩后的数据包 解压缩, 根据目的终端的压缩情况, 重新进行头压缩, 将重新进行头压缩的数 据包发送给目的终端。使得基站不用维护接收终端和发送终端的头压缩上下文 信息, 且减少了基站的操作, 减少了数据包的传输时延。
可选的, 当步骤 6中判断出 MS1与 MS2具有相同的 ROHC能力时, 还可以 包括如下步骤:
步骤 13:基站判断 MS2与网络侧已经建立的本地路由服务流中协商得到的 ROHC参数 , 是否与 MS 1与网络侧已经建立的本地路由服务流中协商得到的 ROHC参数相同; 如果是, 执行上述步骤 7; 如果否, 执行步骤 14;
步骤 14: 基站将 MS2与网络侧已经建立的本地路由服务流中设定的 ROHC 参数, 与 MS1与网络侧已经建立的本地路由服务流中设定的 ROHC参数修改为 相同的参数; 然后, 执行上述步骤 7。
其中, 可以是将 MS 1中的 ROHC参数修改为与 MS2中的 ROHC参数相同, 反之也可以, 保证 MS1中和 MS2中的压缩参数是相同的。 后续实施例中也有相 同的说明。
通过增加上述步骤 13和步骤 14使得 MS2在接受到网络侧直接转发的 MS1 发送的数据包时, 可以更加准确的对数据包解压缩。
可选的, 为了到达网络侧的本地路由控制实体对交换的实时控制,在步骤 7之后, 该方法还可以包括:
步骤 15: 基站将获取的 MS1和 MS2的映射关系表, 发送给本地路由控制实 体。
通过增加上述步骤 15使得本地路由控制实体可以对本地路由进行实时控 制。 还需要说明的是, 上述步骤 13至 15未在图 2中表示。 实施例二、
本实施例提供一种数据的传输方法。本实施例提供的方法与实施例一提供 的方法相似, 不同之处主要在于: 实施例一 于 MS1、 MS2在入网时域网络 侧建立的本地路由服务流,从而实现本地路由业务的,该本地路由服务流是网 络侧预置的;而本实施例提供的方法中是基于终端与网络侧动态建立的本地路 由点对多点(P2M, Peer to Peer )服务流。 同时, 为了突出本实施例提供的方 法中网络侧的交换执行实体可以有多个,在本实施例中网络侧的交换执行实体 以 ASN-GW为例, 来说明该方法。 在执行该方法之前, 该终端已经执行完成入 网操作, 有关入网操作过程为现有技术, 也可以参照实施例一中步骤 1、 2的说 明。
如图 3所示, 该方法包括:
步骤 301 : MS 1发送建立承载请求给网络侧, 与网络侧建立上行服务流, 其中, 建立上行服务流操作中包括与网络侧进行 ROHC参数的协商;
其中, 步骤 301的执行时机是在 MS1有业务数据需要发送时, MS1与网络 侧的本地路由控制实体之间建立上行服务流。
步骤 302: 网络侧根据建立承载请求中包括的目的 IP地址, 与 MS2建立下 行服务流。 其中, 建立下行服务流操作中也包括与网络侧进行 ROHC参数的协 商;
上述步骤 301与 302的操作为现有技术, 此处不详述。
步骤 303:终端在已经建立的上行服务流上发送 ROHC IR数据包给网络侧, 路由至 ASN-GW;
步骤 304: ASN-GW接收到该 ROHC IR数据包, 根据 ROHC IR数据包中的 目的 IP地址和源 IP地址, 判断该数据包是否满足本地路由条件; 如果否, 执行 步骤 305; 如果是, 执行步骤 306;
其中 , 步骤 304中具体的判断方法可以参考实施例一中步骤 4的说明。
步骤 305: ASN-GW将 ROHC IR数据包发送给网络侧, 经网络侧路由至目 的地址所属基站; 该操作是先有技术。
步骤 306: ASN-GW根据预置的 MS1和 MS2的压缩能力信息, 判断 MS1与 MS2是否具有相同的 ROHC能力; 如果相同, 则执行步骤 307, 如果不相同, 则执行步骤 311;
步骤 307至步骤 312的说明 ,与实施例一中步骤 7至步骤 12的说明对应相似, 不同之处在于: 第一、 实施例一中本地路由执行实体与实施例二中的不同, 实 施例一为基站, 而本实施例是 ASN-GW; 第二、 本实施例中 MS1、 ASN-GW之 间的数据承载是动态建立的上行服务流, ASN-GW、 MS2之间的数据承载是建 立的下行服务流。
通过上述对步骤 301至步骤 310的说明,该方法已经可以实现 ASN-GW将压 缩后的数据包直接转发到目的地址,而不需网络侧的 ASN-GW将压缩后的数据 包解压缩, ^居目的终端的压缩情况, 重新进行头压缩, 将重新进行头压缩的 数据包发送给目的终端。使得 ASN-GW不用维护接收终端和发送终端的头压缩 上下文信息, 且减少了 ASN-GW的操作, 减少了数据包的传输时延。
可选的, 该方法也可以包括步骤 313至步骤 315, 使得 ASN-GW控制将 MS2 中的 ROHC参数修改为与 MS1中的 ROHC参数相同, 便于 MS2中准确的解头压 缩数据包, 具体说明可以参考实施例一中的步骤 13至 15, 此处不重述。
可选的, 当步骤 307中 ASN-GW中获取的 MS1和 MS2的映射关系表后, 该 方法还可以包括:
步骤 316: 如果 MS1在上行服务流上传输的数据包的 Context ID所对应的 MS2上服务流中的 Context ID,已经被使用 ,本地路由执行实体 ASN-GW将 MS 1 的上行服务流中所有的 Context ID修改为与 MS2对应的下行服务流不冲突的 Context ID。
通过增加步骤 316使得 MSI发送的数据包可以准确的传输到目的地址。 与实施例一相似,可选的, 为了到达网络侧的本地路由控制实体对交换的 实时控制, 在步骤 307之后, 该方法还可以包括:
步骤 317: ASN-GW将获取的 MS1和 MS2的映射关系表, 发送给本地路由 控制实体。
通过增加上述步骤 317使得本地路由控制实体可以对本地路由进行实时控 制。 还需要说明的是, 上述步骤 313至 317未在图 3中表示。 实施例三、
本实施例提供一种数据的传输方法。本实施例提供的方法与实施例一、二 提供的方法相似, 不同主要在于: 本实施例中进行本地路由的服务流是点对点 ( P2P )本地路由服务流。 且在本实施例中本地路由执行实体以中继站 RS为例 做说明, 如图 4所示, 该方法包括:
步骤 401 : MS1发送建立承载请求给网络侧, 与网络侧建立上行服务流、 其中 , 建立上行服务流操作中包括与网络侧进行 ROHC参数的协商;
步骤 402: 网络侧根据建立承载请求中包括的目的 IP地址, 与 MS2建立下 行服务流。 其中, 建立下行服务流操作中也包括与网络侧进行 ROHC参数的协 商;
上述步骤 401、 402与实施例二中步骤 301、 302相同, 且都是现有技术中已 经实现的技术。
步骤 403: 网络侧的本地路由控制实体根据预置的 RS的保存的本地路由映 射信息,判断 MS1与 MS2之间传输的数据包满足在 RS上执行本地路由条件;建 立 MS1的上行服务流与 MS2的下行服务流之间的映射关系;
其中, MS1与 MS2均在相同的 RS下, 且均支持 P2P的本地路由。
步骤 404: ASN-GW根据预置的 MS1和 MS2的压缩能力信息, 判断 MS1与 MS2是否具有相同的 ROHC能力; 如果相同, 则执行步骤 405, 如果不相同, 则执行步骤 407;
步骤 405: ASN-GW发送 MS1与 MS2的 P2P本地路由执行通知消息给 RS, 该通知消息中包括:上述建立的 MS1的上行服务流与 MS2的下行服务流之间的 映射关系;
其中, 上述 P2P本地路由服务流是指: MS1的上行服务流与 MS2的下行服 务流组成的具有映射关系的本地路由服务流, 由于两者具有映射关系,数据包 可以承载在上述上行服务流和下行服务流直接到达目的地址 MS2。
步骤 406: RS接收到上述通知消息后, 接收承载在上行服务流上的 MS1发 送的数据包,根据建立的 MS1的上行服务流与 MS2的下行服务流之间的映射关 系, 将数据包直接发送给 MS2;
步骤 407: 当 ASN-GW判断出 MS1与 MS2具有不相同的 ROHC能力时,
ASN-GW发送至少包括 MS1与 MS2具有不相同压缩能力信息的消息给 RS; 步骤 408: RS接收到上述至少包括 MS1与 MS2具有不相同压缩能力信息的 消息后, 接收承载在上行服务流上的 MS1发送的数据包, 对 MS1发送的数据包 进行解压缩; 再根据从网络侧获取的 MS2的头压缩上下文信息, 对解头压缩的 数据包进行头压缩;
步骤 409: 将头压缩后的数据包发送给 MS2。
通过上述对步骤 401至步骤 406的说明, 该方法已经可以实现 RS将压缩后 的数据包直接转发到目的地址, 而不需网络侧的 RS将压缩后的数据包解压缩, 根据目的终端的压缩情况, 重新进行头压缩,将重新进行头压缩的数据包发送 减少了 RS的操作, 减少了数据包的传输时延。
可选的,该方法也可以包括步骤 410至步骤 412,使得本地路由控制实体控 制将 MS2中的 ROHC参数修改为与 MS1中的 ROHC参数相同, 便于 MS2中准确 的解头压缩数据包,具体说明可以参考实施例一中的步骤 13至 15, 而将实施例 一中执行主体由 BS更改为本地路由控制实体, 此处不重述。
其中,还需要说明的是本实施例中的本地路由控制实体也可以作为本地路 由执行实体, 即在本地路由控制实体中将数据包本地路由至接收终端。
通过上述实施例一、 二、 三的说明, 在每个实施例中本地路由执行实体是 不同的, 且按顺序的分别是: BS、 ASN-GW和 RS。 需要说明的是, 上述三个 实施例中具体说明的本地路由实体不应该理解为对每个实施例的限制,每个实 上述三个实施例主要是针对承载数据包的服务流的不同而具体说明的 ,网 络侧不同的本地路由执行实体可以分别参照上述三个实施例执行本地路由,且 都可以达到本技术方案所带来的有益效果。 实施例四、
本实施例提供一种数据的传输方法。该方法是基于上述三个实施例, 当接 收终端 MS2切换网络, 切换后的 MS2仍然属于本地网络的情况下, 数据的具体 传输过程。
该方法可以分别基于实施例一、 二、 或者三, 当接收终端 MS2切换到与 MS1不同基站的本地网络中时, 则 MS1和 MS2之间数据的传输方法, 如图 5所 示, 包括: 步骤 501 : MS2切换到与 MSI不同基站的本地网络中, 重新建立对应的本 地路由服务流, 其中, 重新建立的本地路由服务流可以是上述事实例一、 二、 三中的任意一种本地路由服务流;
其中, 步骤 501中 MS2与网络侧的通信进行切换的过程是现有技术, 即将 MS2由基站 BS1切换到 BS2中,且 BS1和 BS2同属于本地网络,具体的说明包括: 步骤 CI : MS2向 BS1发送终端切换请求( MOB— MSHO-REQ ) 消息; 其中, 通过执行步骤 Cl, 使得 MS2发起切换操作, 当然, 网络侧也可以主 动发起对 MS2的切换操作。
步骤 C2: BS1接收到 MS2发送的 MOB— MSHO-REQ消息后, 发送切换请求 ( HO_REQ ) 消息给本地路由控制实体, 该实体可以是 ASN-GW , 再由 ASN-GW路由至 BS2;
步骤 C3 : BS2接收到 HO— REQ消息后, 发送切换响应 ( HO— RSP ) 经过 ASN-GW, 路由至 BSl;
其中, 该切换响应 (HO— RSP )是对收到的切换请求的确认消息。
步骤 C4: BS1收到 HO— RSP后, 发送基站切换响应 ( MOB— BSHO-RSP ) 给 MS2;
步骤 C5: MS2接收到 MOB— BSHO-RSP后, 发送切换确认信息 ( MOB HO-IND )给 BS1。
上述说明是一种切换 MS2所在网络的方法, 切换后的 MS2仍在本地网络, 即切换后的 MS2仍然在本地路由控制实体(此处以 ASN-GW为本地路由控制实 体为例说明)控制范围内。
步骤 502: 本地路由控制实体, 即 ASN-GW根据 MS2切换后所在的位置, 对预置的映射信息进行修改;
其中, 需要说明的是, 切换后仍在本地网络的 MS2还会与网络侧建立如实 施例一、二或者三中任意一实施例中建立的本地路由服务流, 则 ASN-GW会根 据切换后的 MS2的下行服务流和 IP地址 , 修改预置的映射信息。
步骤 503: MS1发送数据包给 BS1 , 该 BS1为 MS1所属的基站;
步骤 504: BS1接收到 MS1发送的数据包后, 根据预置的信息, 判断出该 目的地址不是在 BS1范围内;
其中 , 步骤 504中预置的信息可以是 BS 1范围内所有的终端地址或者标识 , 具体可以是 BS1控制范围内的地址列表。
步骤 505: BS 1将接收到 MS 1发送的数据包发送给本地路由控制实体; 步骤 506: 本地路由控制实体接收上述数据包, 根据预置的转发信息, 判 断出目的地址所在的基站 BS2属于本地网络;
步骤 507: 本地路由控制实体将上述数据包发送给目的地址所在的基站
BS2;
步骤 508: BS2通过与 MS2已经建立的本地路由服务流, 将数据包发送给 MS2。
其中, 步骤 506中预置的转发信息, 可以包括: 当 MS1是在入网时建立的 本地路由服务流上将数据包发送给网络侧时,或者 MS1是在建立的 P2M本地路 由服务流上将数据包发送给网络侧时,该预置的转发信息可以本地路由执行实 体中获取的映射信息,由于本地路由执行实体将该映射信息发送给本地路由控 制实体, 作为本地路由控制实体中预置的信息; 当 MS1是在建立的 P2P本地路 由服务流上将数据包发送给网络侧时 ,该预置的转发信息可以是 MS1的上行服 务流与 MS2的下行服务流之间的映射信息。
其中,步骤 507中本地路由控制实体在知道数据包中目的地址后,根据 MS2 切换时保存的信息, 将数据包发送给 BS2, 且对于压缩后的数据包, 本地路由 控制实体还将 MS2的地址也发生给 BS2, 再由 BS2发送给 MS2。 由于压缩后的 数据包中目的地址被压缩, 则 BS2无法知道 MS2的地址, 则需要本地路由控制 实体将将 MS2的地址发送给 BS2。
通过上述对本实施例提供的方法的说明 ,使得接收终端在切换到与发送终 端非同一基站的本地网络后, 网络侧可以将数据直接转发到接收终端, 而网络 侧不需要对接收到的数据解头压缩、 重新头压缩、 再发生到目的地址。 因此, 减少了网络侧的操作, 减少了数据包的传输时延。 实施例五、
本实施例提供一种数据的传输方法。其中, 实施例四中提供的方法是针对 接收终端切换后所在的位置仍然属于本地路由网络;而本实施例提供的方法针 对接收终端切换后的位置不为本地网络。 首先需要说明的是,本实施例中发送 终端 MS1和接收终端 MS2, 在 MS2没有切换前都是属于本地网络, 且都是在同 属于基站 BS1控制范围内, 在该本地网络中本地路由控制实体为服务 ASN-GW ( Serving ASN-GW ),切换后的 MS2所在的网络中包括: 目标 ASN-GW ( Target ASN-GW )和 MS2切换后所属的基站 BS2。 如图 6所示, 该方法包括:
步骤 601 : BS1发送 MOB— BSHO-REQ/RSP消息给 MS2 , 该消息中包括: MS2的本地路由业务;
步骤 602: MS2接收到 BS 1发送的 MOB— BSHO-REQ/RSP消息, 发送 MOB— HO— IND消息中包括: 确认 BS1发送的本地路由业务消息和本地路由业 务流的头压缩上下文信息(对于采用 ROHC技术时, 则该头压缩上下文信息为 ROHC Context, 对于其它压缩技术, 该头压缩上下文信息会有不同, 为了便 于理解该事实例, 下面的说明以 ROHC Context为例做说明);
步骤 603: BS 1接收到 MOB— HO— IND消息后 , 发送 HO— CNF消息给 Serving ASN-GW, 其中, 在 HO— CNF消息中至少包括: ROHC Context;
步骤 604: Serving ASN-GW接收到 HO— CNF消息后, 存储 HO— CNF消息中 的 ROHC Context , 将包含有 ROHC context的 HO-CNF消息发送给 Target ASN-GW;
步骤 605: Target ASN-GW接收到 HO— CNF消息后, 保存 ROHC Context, 将 HO— CNF消息发送给 BS2;
步骤 606 : BS2接收到 HO— CNF消息后, 发送 HO— ACK作为确认收到 HO_CNF消息的响应 , 该 HO— ACK经过 Target ASN-GW, Serving ASN-Gw到达 BS1;
通过上述步骤 601至步骤 606的说明, 使得 MS2可以从当前的网络切换到 BS2所在的网络, 使得 MS1和 MS2之间的数据传输不满足本地路由条件。
需要说明的是, 上述是一种 MS2切换到非本地网络的方法, 对于切换的方 法是现有技术,且不限于上述方法,此处的说明也不应该理解为对本实施例的 限制。 还需要理解的是, 在 MS2切换的过程中, 使得原本地网络(即 BS1所在网 络) 中的本地路由控制实体获取到 MS2中的头压缩上下文信息, 可以是 ROHC Context; 也是对目的网络中的交换控制实体(可以是 TargetASN-GW )获取到 MS2的头压缩上下文信息, 以便于后续操作步骤的执行。
步骤 607: MS1发送数据包经过 BS1路由到 ServingASN-GW;
步骤 608: Serving ASN-GW接收到 MSI发送的数据包后, 根据步骤 604中 存储的 ROHC Context, 对数据包进行解头压缩;
步骤 609: ServingASN-GW将解头压缩后的数据包发送给 TargetASN-GW; 步骤 610: Target ASN-GW接收到解头压缩后的数据包后, 根据存储的 ROHC Context, 对接收的解头压缩后的数据包进行头压缩;
步骤 611: Target ASN-GW将头压缩后的数据包发送给 BS2;
步骤 612: BS2接收到头压缩后的数据包后,根据从 Target ASN-GW中获取 的 MS2的 IP地址, 将头压缩后的数据包发送给 MS2。
通过上述对本实施例提供的方法的说明, 当 MS2切换到与 MS1不为本地路 由的网络时, MS2切换前所在网络将 MS2中的头压缩上下文信息发送给 MS2切 换后的网络,使得切换后的 MS2可以准确的解压缩接收到的数据包, 而需要等 到 MS2中反馈的解压缩错误率很高, 需要重新发送压缩初始化数据包 (如 ROHC IR数据包), 提高了数据传输的效率。
上述实施例一至五是本发明实施例提供的方法, 需要说明的是,上述网络 侧执行本地路由的实体不限于上述实施例中的说明,上述有关压缩的说明是以 ROHC技术为例做说明的, 事实上, 压缩技术也不限于上述说明, 还可以有其 它, 对于本地路由业务, 网络侧只是起了转发数据的作用。 下面对本技术方案 提供的相关设备作说明。 实施例六、
本实施例提供了一种本地路由执行实体。该本地路由控制实体可以是如实 施例一中的基站 BS1 , 也可以是如实施例二中的 ASN-GW。 如图 7所示, 该本 地路由执行实体包括: 接收单元 20和发送单元 60; 可选的, 该本地路由执行实 体还可以包括: 建立本地服务流单元 10、 判断本地业务单元 30、 判断压缩能力 单元 40和获取映射信息单元 50。
其中, 接收单元 20, 用于接收发送终端发送的头压缩数据包; 发送单元 60, 用于根据预置的接收终端和发送终端的的映射信息,将所述 头压缩数据包发送给所述接收终端。
其中, 建立本地服务流单元 10, 用于分别与发送终端 MS1和接收终端 MS2 建立本地路由服务流; 其中, 与发送终端 MS1和接收终端 MS2建立本地路由服 务流可以是在 MS 1、 MS2入网时,与网络侧建立的本地路由服务流,也可以是, 当 MS 1中有数据要发送时, 由 MS 1发起的建立动态 P2M本地路由服务流。
则接收单元 20,还用于接收 MS1在上述建立的本地路由服务流上发送的压 缩初始化数据包(其中, 具体可以是 ROHC IR数据包);
判断本地业务单元 30,用于根据接收到的压缩初始化数据包中的目的 IP地 址和源 IP地址, 判断接收终端 MS2和发送终端 MS1是否满足本地路由条件, 如 果是, 通知判断压缩能力单元 40, 如果否, 则通知发送单元 60;
判断压缩能力单元 40, 用于当 MS1和 MS2满足本地路由条件时, 根据预置 的 MS1和 MS2的压缩能力信息, 判断 MS1与 MS2是否具有相同的 ROHC能力, 如果是, 通知获取映射信息单元 50;
获取映射信息单元 50, 用于根据接收到的压缩初始化数据包, 获取 MS1 和 MS2的映射关系表; 终端 MS 1不满足本地路由条件 ,将接收到的压缩初始化数据包发送和压缩后的 数据包发送给网络侧。
通过上述对本发明实施例提供的一种本地路由执行实体的说明,该实体可 以将接收到的压缩后的数据包直接转发到目的地址,而不需网络侧将压缩后的 数据包解压缩, 根据目的终端的压缩情况, 重新进行头压缩, 将重新进行头压 缩的数据包发送给目的终端。在该本地路由实体中不用维护接收终端和发送终 端的头压缩上下文信息,且减少了本地路由实体的操作, 减少了数据包的传输 时延。
可选的,则该本地路由执行实体还可以包括:解压缩单元 70和压缩单元 80。 其中, 解压缩单元 70, 用于当判断压缩能力单元 40中判断出 MSI与 MS2 具有不相同的 ROHC能力时, 根据预置的 MS1头压缩上下文信息, 将接收到的 压缩初始化数据包解头压缩;
压缩单元 80, 用于根据预置的 MS2头压缩上下文信息, 对解头压缩的数据 包进行头压缩;
则上述发送单元 60, 还用于压缩单元 80中产生的头压缩后的数据发送给 MS2。
可选的,该本地路由执行实体还可以包括: 判断压缩参数单元 90和修改参 数单元 110。
其中, 判断压缩参数单元 90, 用于当判断压缩能力单元 40中判断出 MS1 与 MS2具有相同的 ROHC能力时, 判断 MS2与网络侧已经建立的本地路由服务 流中设定的 ROHC参数, 是否与 MS1与网络侧已经建立的本地路由服务流中设 定的 ROHC参数相同, 如果相同, 则通知获取映射信息单元 50, 如果不相同, 则通知修改参数单元 110;
修改参数单元 110, 用于将 MS2中存储的与网络侧建立的本地路由服务流 中设定的 ROHC参数修改为与 MS1与网络侧已经建立的本地路由服务流中设 定的 ROHC参数相同, 修改结束通知获取映射信息单元 50。
可选的, 发送单元 60还用于将获取的 MS1和 MS2的映射关系表, 发送给本 地路由控制实体。 使得本地路由控制实体可以对本地路由进行实时控制。 实施例七、
本实施例提供了一种本地路由控制实体, 如图 8所示, 该本地路由控制实 体包括: 建立动态服务流单元 201、 第一判断本地业务单元 202、 建立关联单元 203、 第一判断压缩能力单元 204和第一发送单元 205。
其中,建立动态服务流单元 201,用于分别与发送终端 MS1和接收终端 MS2 建立动态本地路由服务流;
第一判断本地业务单元 202, 用于根据预置的本地路由执行实体(具体可 以是中继站 RS )中保存的本地路由映射信息,判断 MS1与 MS2之间传输的数据 包满足在 RS上执行本地路由条件; 建立关联单元 203 , 用于根据第一判断本地业务单元 202中判断出 MS 1与 MS2之间传输的数据包满足在 RS上执行本地路由条件时,建立 MS 1建立的动态 本地路由服务流和 MS2建立的动态本地路由服务流之间的映射关系;
第一判断压缩能力单元 204,用于才 据预置的 MS1和 MS2的压缩能力信息, 判断 MS1与 MS2是否具有相同的 ROHC能力, 将判断结果通知第一发送单元 205;
第一发送单元 205, 用于当判断 MS1与 MS2具有相同的 ROHC能力时, 发 送 MS1与 MS2的 P2P本地路由执行通知消息给本地路由执行实体; 其中, 具体 映射关系的 MS 1建立的动态本地路由服务流和 MS2建立的动态本地路由服务 流, 形成了 P2P本地路由服务流; 当判断 MS1与 MS2具有不相同的 ROHC能力 时,发送至少包括 MS1与 MS2具有不相同压缩能力信息的消息给上述本地路由 执行实体。
可选的, 该本地路由控制实体还可以包括: 第一判断压缩参数单元 206和 第一修改参数单元 207, 与实施例六中中判断压缩参数单元 90和修改参数单元 110作用相同, 具体说明可以参考实施例六而容易获得。
其中,本实施例提供的一种本地路由控制实体所包含的: 建立动态服务流 单元 201、 第一判断本地业务单元 202、 建立关联单元 203和第一判断压缩能力 单元 204也可以包括在上述实施例六所说明的本地路由执行实体中, 且作用是 不变的。
通过上述对本实施例提供的一种本地路由控制实体的说明, 通过建立 P2P 本地业务流和判断 MS1和 MS2是否具有相同的压缩能力,将该信息通知本地路 由执行实体, 达到减少本地路由执行实体操作的目的, 同时, 可以减少数据在 网络侧传输时延。 实施例八、
本实施例提供另一种本地路由执行实体,该实施例与实施例六中提供的本 地路由执行实体不同, 本实施例提供的本地路由执行实体具体可以是中继站 RS。 如图 9所示, 该本地路由执行实体包括: 第二接收单元 901、 存储单元 902 和第二发送单元 903。 其中, 第二接收单元 901, 用于接收本地路由控制实体发送 MSI与 MS2的 P2P本地路由执行通知消息, 或者、 接收至少包括 MS 1与 MS2具有不相同压缩 能力信息的, 接收 MS1发送的数据包;
存储单元 902, 用于存储上述通知消息中 MS1建立的动态本地路由服务流 和 MS2建立的动态本地路由服务流之间的映射关系;
第二发送单元 903 , 用于根据存储的映射关系, 将接收到 MS 1发送的数据 包转发给 MS2。
可选的, 该本地路由执行实体还可以包括: 第二解压缩单元 904和第二压 缩单元 905。
其中, 第二解压缩单元 904, 用于当接收到上述至少包括 MS 1与 MS2具有 不相同压缩能力信息的消息后,根据预置的 MS1头压缩上下文信息, 将接收到 的压缩初始化数据包解头压缩;
第二压缩单元 905, 用于 预置的 MS2头压缩上下文信息, 对解头压缩 的数据包进行头压缩;
则第二发送单元 903,还用于将第二压缩单元 905中进行头压缩后的数据包 发送给 MS2。
通过上述对本实施例提供的一种本地路由执行实体的说明,当数据满足本 地路由条件时, 网络侧可以直接将接收到的数据包发送给目的地址, 减少了数 据包在网络侧的传输时延。 实施例九、
本实施例提供一种本地路由控制实体,与实施例七提供的本地路由控制实 承载本地路由业务的情况;而本实施例提供的本地路由控制实体是针对已经进 行本地路由业务的接收终端 MS2, 进行了切换, 切换后的 MS2仍然属于本地网 络, 即在本地路由控制实体的控制范围内。 如图 10所示, 该本地路由控制实体 包括:切换单元 301、修改映射单元 302、第三接收单元 303和第三发送单元 304。
其中, 切换单元 301, 用于将 MS2切换到目的网络, 切换后的 MS2在基站 BS2的覆盖范围内, 且仍然是本地网络; 其中, 需要说明的是, 事实上, 切换单元 301的具体可以包括第三接收单 元 303和第三发送单元 304, 即通过与网络侧的其它设备进行通信, 对 MS2进行 切换,具体切换过程为现有技术。对于后续实施例中的用于切换的逻辑单元都 有相同的说明。
修改映射单元 304, 用于根据 MS2切换后所在的位置, 对预置的映射信息 进行修改; 其中, 预置的映射信息可以是如实施例一、 二中的映射信息, 可以 是如实施例三中的 MS1和 MS2之间的关联关系。
第三接收单元 303, 用于接收 MS 1发送的数据包;
第三发送单元 304 , 用于根据修改后的映射信息将接收到的数据包发送给 MS2所在的 BS2。
其中,上述第三接收单元 303和第三发送单元 304可以分别包括在实施例六 中提供的本地路由执行实体的接受单元 20和发送单元 60中。
通过上述对本实施例提供的一种本地路由控制实体的说明,该实体可以根 据修改后的映射信息, 将数据包直接发送给切换后的 MS2, 不需要网络侧对数 据解头压缩和头压缩操作, 减少了数据包传输时延。 实施例十、
本实施例提供一种本地路由控制实体,该实体是针对 MS2切换后的位置不 在本地网络内的情况,如图 11所示,本地路由控制实体包括:第二切换单元 401、 第二存储单元 402、第四接收单元 403、第三解压缩单元 404和第四发送单元 405。
需要说明的是, 第二切换单元 401、 第二存储单元 402、 第四接收单元 403、 第三解压缩单元 404和第四发送单元 405,也可以包括在一种本地路由执行实体 中。
其中, 第二切换单元 402, 用于将 MS2切换到目的网络, 切换后的 MS2在 基站 BS2的覆盖范围内, 且切换后的 MS2为非本地网络;
其中, 需要说明的是, 第二切换单元可以是包括在实施例九中的切换单元
301 , 即切换单元 301即可以执行两者切换, 一种切换是切换后的 MS2仍属于本 地网络, 另一种切换是切换后的 MS2不属于本地网络。
第二存储单元 402, 用于存储切换操作时获取的 MS2的头压缩上下文信息 (具体可以是 ROHC Context );
第四接收单元 403 , 用于接收 MS 1发送数据包;
其中, 第四接收单元 403可以与实施例九中的第三接收单元是相同的。 第三解压缩单元 404, 用于才 据存储的 MS2的头压缩上下文信息, 对数据 包进行解头压缩;
第四发送单元 405, 用于将解头压缩后获取的数据包发送给 MS2所在的交 换控制实体。
本实施例提供的本地路由控制实体可以是在具有实施例七或者九的基础 上, 又具体上述说明的逻辑单元, 保证了切换后的 MS2可以正确解头压缩。
通过上述对该本地路由控制事态的说明,切换后的 MS2所在网络不在本实 施例所述的本地路由控制实体范围内, 该本地路由控制实体在 MS2切换时, 保 存的 MS2的头压缩上下文信息,且通过切换操作将该头压缩上下文信息发送给 目的网络的交换控制实体, 保证切换后的 MS2仍然可以正确的解压缩数据, 与 现有技术相比, 提高了数据的传输效率。 实施例十一、
本实施例提供了一种交换控制实体。当上述说明中的 MS2切换到非本地网 络中的目的网络时, 目的网络中的交换实体就是本实施例所要说明的对象。如 图 12所示, 该交换控制实体包括: 第三切换单元 501、 第三存储单元 502、 第五 接收单元 503、 第三压缩单元 504和第五发送单元 505。
其中, 第三切换单元 501, 用于将 MS2切换到目的网络;
第三存储单元 502, 用于存储切换操作时获取的 MS2的头压缩上下文信息 (具体可以是 ROHC Context );
第五接收单元 503, 用于接收 MS2切换前所在网络发送的解头压缩后的数 据包;
第三压缩单元 504, 用于才 据存储的 MS2的头压缩上下文信息, 对解头压 缩后的数据包进行头压缩;
第五发送单元 505, 用于将头压缩后获取的数据包发送给切换后 MS2所在 的基站 BS2。 通过上述对该本地路由控制事态的说明,切换后的 MS2所在网络不在原本 地路由控制实体范围内, 该交换控制实体在 MS2切换时, 保存的 MS2的头压缩 上下文信息,保证切换后的 MS2仍然可以正确的解压缩数据,与现有技术相比, 提高了数据的传输效率。
实施例十二
本实施例提供一种通信系统,该通信系统包括上述事实例六至十一中说明 的: 本地路由执行实体, 可选的还包括: 本地路由控制实体和交换控制实体。
其中, 本地路由执行实体, 用于接收发送终端发送的头压缩数据包; 用于 根据接收终端和发送终端的的映射信息 ,将所述头压缩数据包发送给所述接收 终端。 可选的, 所述通信系统还包括: 本地路由控制实体,用于分别与发送终端和接收终端建立本地路由业务服 务流;根据预置的本地路由映射信息, 判断出所述发送终端和接收终端满足本 地路由条件;建立发送终端建立的本地路由业务服务流与接收终端建立的本地 路由业务服务流之间的映射关系;根据预置的所述发送终端和接收终端的压缩 能力信息, 判断所述发送终端和接收终端是否具有相同的压缩能力; 当判断所 述发送终端和接收终端具有相同的压缩能力时,发送接收终端与发送终端之间 的点到点本地路由执行通知消息给本地路由执行实体, 所述通知消息中包括: 所述发送终端建立的本地路由业务服务流与接收终端建立的本地路由业务服 务流之间的映射信息,和接收终端与发送终端具有相同压缩能力的信息; 当判 断所述发送终端和接收终端具有不相同的压缩能力时,发送至少包括接收终端 与发送终端具有不相同压缩能力信息的消息给本地路由执行实体
该本地路由控制实体,还用于当判断所述发送终端和接收终端具有相同的 压缩能力之后,判断所述与发送终端和接收终端分别建立本地路由业务服务流 中, 协商后获得的压缩参数是否相同, 如果相同, 则发送所述通知消息; 如果 否, 则将接收终端建立本地路由业务服务流中协商后获得的压缩参数, 与发送 终端建立本地路由业务服务流中协商后获得的压缩参数修改为相同的压缩参 数, 再发送所述通知消息。 该本地路由控制实体, 还用于将所述接收终端切换到目的网络, 所述切换 后的接收终端与所述发送终端满足本地路由条件;接收本地路由执行实体发送 的接收终端和发送终端的映射信息,接收发送终端路由发送的数据包; 将接收 终端和发送终端的映射信息中的目的地址,修改为切换后的接收终端所在位置 的地址;根据修改获得的映射信息,将所述数据包路由本地路由到所述接收终 端。
该本地路由控制实体,还用于当所述切换单元切换后的接受终端不满足本 地路由条件时,根据所述切换操作,存储从所述切换操作中获取的接收终端头 压缩上下文信息;根据所述获取的头压缩上下文信息,对所述发送终端路由发 送的数据包进行解头压缩;将解头压缩获取的数据包发送给切换后的接收终端 所归属的交换控制实体;
则本实施例提供的通信系统还包括:
交换控制实体, 用于将所述接收终端切换到目的网络, 切换后的接受终端 与发送终端不满足本地路由条件,所述将接收终端切换到目的网络,至少包括: 接收接收终端发送的切换请求;存储从所述切换请求中获取所述接收终端的头 压缩上下文信息;接收发送终端路由发送的解头压缩后的数据包;根据所述获 取的接收终端头压缩上下文信息,将所述解头压缩后的数据包进行头压缩; 将 头压缩后获取的数据包路由发送给所述接收终端。
为例便于理解上述对本实施例提供的一种通信系统,可以参考实施例六至 十一中的说明。 通过对本实施例提供的通信系统的说明,该通信系统中本地路由执行实体 将接收到的压缩后的数据包直接转发到目的地址,而不需将压缩后的数据包解 压缩, 根据目的终端的压缩情况, 重新进行头压缩, 将重新进行头压缩的数据 压缩上下文信息, 且减少了基站的操作, 减少了数据包的传输时延。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。 以上对本发明实施例所提供的一种数据的传输方法、相关设备和通信系统进行 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于 本领域的一般技术人员 ,依据本发明的思想,在具体实施方式及应用范围上均 会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种数据的传输方法, 其特征在于, 包括: 接收发送终端发送的头压缩数据包; 根据接收终端和发送终端的映射信息 ,将所述头压缩数据包本地路由到所 述接收终端。
2、 根据权利要求 1所述的传输方法, 其特征在于, 所述接收发送终端发 送的头压缩数据包之前, 所述方法还包括: 分别与发送终端和接收终端建立本地路由业务服务流; 接收发送终端发送的压缩初始化数据包 ,所述压缩初始化数据包承载在所 述建立的本地路由业务服务流上; 根据预置的信息、 和所述压缩初始化数据包中的目的地址、 源地址, 判断 出接收终端和发送终端满足本地路由条件; 根据预置的所述发送终端和接收终端的压缩能力信息,判断所述发送终端 和接收终端是否具有相同的压缩能力, 如果是, 建立所述源地址、 目的地址和 所述压缩初始化数据包中的头压缩上下文标识三者之间的映射关系,从而获取 到所述映射信息; 将所述压缩初始化数据包承载在与接收终端建立的本地路由业务服务流 上本地路由到所述接收终端。
3、 根据权利要求 2所述的方法, 其特征在于, 所述分别与发送终端和接 收终端建立本地路由业务服务流, 具体包括: 分别在发送终端和接收终端入网时,与发送终端和接收终端建立本地路由 业务服务流; 或者,根据发送终端发起的数据业务, 与发送终端和接收终端分别动态的 建立本地路由业务服务流。
4、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 将所述获取的接收终端和发送终端的映射信息发送给本地路由控制实体。
5、 根据权利要求 2所述的方法, 其特征在于, 当判断所述发送终端和接 收终端具有不相同的压缩能力时, 所述方法还包括: 根据预置的发送终端的头压缩上下文信息,对所述压缩初始化数据包解头 压缩; 根据预置的接收终端的头压缩上下文信息,对所述解头压缩获取的数据包 进行头压缩; 将所述头压缩获取的数据包本地路由到所述接收终端。
6、 根据权利要求 2所述的方法, 其特征在于, 当判断所述发送终端和接 收终端具有相同的压缩能力之后,所述获取接收终端和发送终端的映射信息之 前, 所述方法还包括: 判断所述与发送终端和接收终端分别建立本地路由业务服务流中 ,协商后 获得的压缩参数是否相同,如果相同, 则执行所述获取接收终端和发送终端的 映射信息;
如果不相同,则将接收终端建立本地路由业务服务流中协商后获得的压缩 参数,与发送终端建立本地路由业务服务流中协商后获得的压缩参数修改为相 同的压缩参数, 再执行所述获取接收终端和发送终端的映射信息。
7、 根据权利要求 1所述的传输方法, 其特征在于, 所述接收发送终端发 送的头压缩数据包之前, 所述方法还包括: 分别与发送终端和接收终端建立本地路由业务服务流; 根据预置的本地路由映射信息,判断出所述发送终端和接收终端满足本地 路由条件; 建立发送终端建立的本地路由业务服务流与接收终端建立的本地路由业 务服务流之间的映射关系; 根据预置的所述发送终端和接收终端的压缩能力信息,判断所述发送终端 和接收终端是否具有相同的压缩能力; 当判断所述发送终端和接收终端具有相同的压缩能力时,执行 据建立的 映射关系, 将所述头压缩数据包本地路由到所述接收终端; 或者, 当判断所述发送终端和接收终端具有相同的压缩能力时,发送接收 终端与发送终端之间的点到点本地路由执行通知消息给中继站,所述通知消息 中至少包括: 所述映射关系。
8、 根据权利要求 7所述的传输方法, 其特征在于, 当判断所述发送终端 和接收终端具有不相同的压缩能力时,根据预置的发送终端的头压缩上下文信 息,对所述头压缩数据包解头压缩;根据预置的接收终端的头压缩上下文信息, 对所述解头压缩获取的数据包进行头压缩;将所述头压缩获取的数据包本地路 由到所述接收终端; 或者, 当判断所述发送终端和接收终端具有不相同的压缩能力时,发送至 少包括发送终端和接收终端具有不相同的压缩能力信息的消息给中继站。
9、 根据权利要求 7所述的方法, 其特征在于, 当判断所述发送终端和接 收终端具有相同的压缩能力之后, 获取接收终端和发送终端的的映射信息之 前, 所述方法还包括: 判断所述与发送终端和接收终端分别建立本地路由业务服务流中,协商后 获得的压缩参数是否相同, 如果相同, 则执行根据建立的映射关系, 将所述头 压缩数据包本地路由到所述接收终端;
如果不相同,则将接收终端建立本地路由业务服务流中协商后获得的压缩 参数,与发送终端建立本地路由业务服务流中协商后获得的压缩参数修改为相 同的压缩参数,再执行才 据建立的映射关系,将所述头压缩数据包本地路由到 所述接收终端。
10、 根据权利要求 1所述的传输方法, 其特征在于, 所述接收发送终端发 送的头压缩数据包之前, 所述方法还包括:
接收本地路由控制实体发送的接收终端与发送终端之间的点到点本地路 由执行通知消息,所述通知消息中至少包括:接收终端和发送终端的映射信息。
11、 根据权利要求 1所述的方法, 其特征在于, 所述接收发送终端发送的 头压缩数据包之前, 所述方法还包括: 将所述接收终端切换到目的网络,所述切换后的接收终端与所述发送终端 满足本地路由条件; 将预置的接收终端和发送终端的映射信息中的目的地址,修改为切换后的 接收终端所在位置的地址; 则所述根据预置的接收终端和发送终端的映射信息,将所述头压缩数据包 本地路由到所述接收终端, 具体包括: 根据修改后的映射信息, 将所述头压缩 数据包本地路由到所述接收终端。
12、根据权利要求 1所述的方法, 其特征在于, 所述接收发送终端发送的 头压缩数据包之前, 所述方法还包括: 将所述接收终端切换到目的网络,所述切换后的接收终端与所述发送终端 不满足本地路由条件, 所述将接收终端切换到目的网络, 至少包括: 接收接收 终端发送的切换请求;
从所述切换请求中获取所述接收终端的头压缩上下文信息; 接收发送终端发送的头压缩数据包;
根据所述获取的头压缩上下文信息, 对所述头压缩数据包进行解头压缩; 将解头压缩获取的数据包发送给切换后的接收终端所在的网络,从而使得 切换后的接收终端所在的网络对所述解头压缩获取的数据包进行重新头压缩 , 将重新头压缩获得的数据包发送给所述接收终端。
13、 一种本地路由执行实体, 其特征在于, 包括: 接收单元, 用于接收发送终端发送的头压缩数据包; 发送单元, 用于根据接收终端和发送终端的的映射信息, 将所述头压缩数 据包本地路由到所述接收终端。
14、 根据权利要求 13所述的本地路由执行实体, 其特征在于, 所述本地 路由执行实体还包括: 建立本地服务流单元,用于分别与发送终端和接收终端建立本地路由业务 服务流; 则所述接收单元, 还用于接收发送终端发送的压缩初始化数据包, 所述压 缩初始化数据包承载在所述建立的本地路由业务服务流上; 判断本地业务单元,用于根据预置的信息和所述压缩初始化数据包中的目 的地址、 源地址, 判断接收终端和发送终端满足本地路由条件, 如果是, 通知 判断解压缩能力单元;
判断压缩能力单元,用于当判断出接收终端和发送终端满足本地路由条件 时,根据预置的所述发送终端和接收终端的压缩能力信息, 判断所述发送终端 和接收终端是否具有相同的压缩能力, 如果是, 通知获取映射信息单元; 获取映射信息单元,用于当判断出发送终端和接收终端具有相同的压缩能 力时, 建立所述源地址、 目的地址和所述压缩初始化数据包中的头压缩上下文 标识三者之间的映射关系 , 从而获取到所述映射信息; 则所述发送单元,还用于将所述压缩初始化数据包承载在与接收终端建立 的本地路由业务服务流上的本地路由到所述接收终端。
15、 根据权利要求 14所述的本地路由执行实体, 其特征在于, 所述实体 还包括: 判断压缩参数单元,用于当判断所述发送终端和接收终端具有相同的压缩 能力之后, 判断所述与发送终端和接收终端分别建立本地路由业务服务流中 , 协商后获得的压缩参数是否相同, 如果相同, 则通知所述获取映射信息单元; 如果不相同, 则通知修改参数单元; 修改参数单元,用于当判断所述与发送终端和接收终端分别建立本地路由 业务服务流中,协商后获得的压缩参数不相同时,将接收终端建立本地路由业 务服务流中协商后获得的压缩参数,与发送终端建立本地路由业务服务流中协 商后获得的压缩参数修改为相同的压缩参数, 再通知所述获取映射信息单元。
16、 根据权利要求 14所述的本地执行实体, 其特征在于, 所述实体还包 括:
解压缩单元, 用于判断所述发送终端和接收终端具有不相同的压缩能力 时,根据预置的发送终端的头压缩上下文信息,对所述压缩初始化数据包和头 压缩数据包解头压缩; 压缩单元, 用于根据预置的接收终端的头压缩上下文信息, 对所述解头压 缩获取的数据包进行头压缩;
则所述发送单元,用于所述压缩单元中获取头压缩数据包本地路由到接收 终端。
17、 根据权利要求 14所述的本地执行实体, 其特征在于, 所述发送单元 还用于将所述获取的接收终端和发送终端的映射信息发送给本地路由控制实 体。
18、 根据权利要求 13所述的本地路由执行实体, 其特征在于, 所述本地 路由执行实体还包括:
第二接收单元,用于接收本地路由控制实体发送的接收终端与发送终端之 间的点到点本地路由执行通知消息, 所述通知消息中至少包括:发送终端接收 终端的映射信息, 和接收终端与发送终端具有相同压缩能力的信息; 存储单元,用于存储所述通知消息中包括的发送终端与接收终端的映射信 息; 则所述发送单元, 用于根据存储的所述映射信息, 将所述数据包本地路由 到所述接收终端。
19、 根据权利要求 18所述的本地路由执行实体, 其特征在于, 所述第二 接收单元还用于接收本地路由控制实体发送的至少包括接收终端与发送终端 具有不相同压缩能力信息的消息, 则所述本地路由执行实体还包括:
第二解压缩单元, 用于根据预置的发送终端的头压缩上下文信息, 对所述 头压缩数据包解头压缩; 第二压缩单元, 用于根据预置的接收终端的头压缩上下文信息, 对所述解 头压缩获取的数据包进行头压缩; 则所述发送单元,还用于将所述第二压缩单元中进行头压缩后的数据包发 送给所述接收终端。
20、 根据权利要求 13所述的本地路由执行实体, 其特征在于, 所述本地 路由执行实体还包括: 切换单元, 用于将所述接收终端切换到目的网络, 所述切换后的接收终端 与所述发送终端满足本地路由条件; 修改映射单元,用于将预置的接收终端和发送终端的映射信息中的目的地 址, 修改为切换后的接收终端所在位置的地址; 则所述发送单元, 用于根据修改获得的映射信息, 将所述头压缩数据包路 由本地路由到所述接收终端。
21、 根据权利要求 20所述的本地路由执行实体, 其特征在于, 当所述切 换单元切换后的接受终端不满足本地路由条件;则所述本地路由控制实体还包 括:
第二存储单元, 用于根据所述切换操作,存储从所述切换操作中获取的接 收终端头压缩上下文信息; 第三解压缩单元, 用于根据所述获取的头压缩上下文信息, 对所述发送终 端路由发送的头压缩数据包进行解头压缩; 则所述发送单元,还用于将解头压缩获取的数据包发送给切换后的接收终 端所在的网络。
22、 一种通信系统, 其特征在于, 所述通信系统包括: 本地路由执行实体, 用于接收发送终端发送的头压缩数据包; 用于根据接 收终端和发送终端的的映射信息 ,将所述头压缩数据包本地路由到所述接收终 端。
23、 根据权利要求 22所述的通信系统, 其特征在于, 所述通信系统还包 括:
本地路由控制实体,用于分别与发送终端和接收终端建立本地路由业务服 务流;根据预置的本地路由映射信息, 判断出所述发送终端和接收终端满足本 地路由条件;建立发送终端建立的本地路由业务服务流与接收终端建立的本地 路由业务服务流之间的映射关系;根据预置的所述发送终端和接收终端的压缩 能力信息, 判断所述发送终端和接收终端是否具有相同的压缩能力; 当判断所 述发送终端和接收终端具有相同的压缩能力时,发送接收终端与发送终端之间 的点到点本地路由执行通知消息给本地路由执行实体, 所述通知消息中包括: 所述发送终端建立的本地路由业务服务流与接收终端建立的本地路由业务服 务流之间的映射信息,和接收终端与发送终端具有相同压缩能力的信息; 当判 断所述发送终端和接收终端具有不相同的压缩能力时,发送至少包括接收终端 与发送终端具有不相同压缩能力信息的消息给本地路由执行实体。
24、 根据权利要求 23所述的通信系统, 其特征在于, 所述本地路由控制 实体,还用于当判断所述发送终端和接收终端具有相同的压缩能力之后, 判断 所述与发送终端和接收终端分别建立本地路由业务服务流中 ,协商后获得的压 缩参数是否相同, 如果相同, 则发送所述通知消息; 如果否, 则将接收终端建 立本地路由业务服务流中协商后获得的压缩参数,与发送终端建立本地路由业 务服务流中协商后获得的压缩参数修改为相同的压缩参数,再发送所述通知消 息。
25、 根据权利要求 23所述的通信系统, 其特征在于, 所述本地路由控制 实体,还用于将所述接收终端切换到目的网络, 所述切换后的接收终端与所述 发送终端满足本地路由条件;接收本地路由执行实体发送的接收终端和发送终 端的映射信息,接收发送终端路由发送的数据包; 将接收终端和发送终端的映 射信息中的目的地址,修改为切换后的接收终端所在位置的地址;根据修改获 得的映射信息 , 将所述数据包路由本地路由到所述接收终端。
26、 根据权利要求 23所述的通信系统, 其特征在于, 所述本地路由控制 实体,还用于当所述切换单元切换后的接受终端不满足本地路由条件时,根据 所述切换操作,存储从所述切换操作中获取的接收终端头压缩上下文信息;根 据所述获取的头压缩上下文信息,对所述发送终端路由发送的数据包进行解头 压缩;将解头压缩获取的数据包发送给切换后的接收终端所归属的交换控制实 体;
则所述通信系统还包括: 交换控制实体, 用于将所述接收终端切换到目的网络, 切换后的接受终端 与发送终端不满足本地路由条件,所述将接收终端切换到目的网络,至少包括: 接收接收终端发送的切换请求;存储从所述切换请求中获取所述接收终端的头 压缩上下文信息;接收发送终端路由发送的解头压缩后的数据包;根据所述获 取的接收终端头压缩上下文信息,将所述解头压缩后的数据包进行头压缩; 将 头压缩后获取的数据包路由发送给所述接收终端。
PCT/CN2009/071607 2009-04-30 2009-04-30 一种数据的传输方法、相关设备和通信系统 WO2010124472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2009/071607 WO2010124472A1 (zh) 2009-04-30 2009-04-30 一种数据的传输方法、相关设备和通信系统
CN200980115079.XA CN102282808B (zh) 2009-04-30 2009-04-30 一种数据的传输方法、相关设备和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071607 WO2010124472A1 (zh) 2009-04-30 2009-04-30 一种数据的传输方法、相关设备和通信系统

Publications (1)

Publication Number Publication Date
WO2010124472A1 true WO2010124472A1 (zh) 2010-11-04

Family

ID=43031694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071607 WO2010124472A1 (zh) 2009-04-30 2009-04-30 一种数据的传输方法、相关设备和通信系统

Country Status (2)

Country Link
CN (1) CN102282808B (zh)
WO (1) WO2010124472A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941454A (zh) * 2016-01-04 2017-07-11 中国移动通信集团公司 一种数据压缩传输方法、终端及服务器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137237A2 (en) * 2000-03-03 2001-09-26 NTT DoCoMo, Inc. Method and apparatus for packet transmission with header compression
CN1503527A (zh) * 2002-11-22 2004-06-09 ض� 压缩安全协议保护的网际协议分组的方法、设备和系统
CN1735070A (zh) * 2004-08-11 2006-02-15 华为技术有限公司 一种实现ip头压缩的系统及方法
CN101163095A (zh) * 2006-10-13 2008-04-16 中兴通讯股份有限公司 一种应用于端到端链路传输中ip报头压缩的方法
WO2009017979A2 (en) * 2007-07-30 2009-02-05 Motorola, Inc. Method and apparatus for routing packets via header-compression channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137237A2 (en) * 2000-03-03 2001-09-26 NTT DoCoMo, Inc. Method and apparatus for packet transmission with header compression
CN1503527A (zh) * 2002-11-22 2004-06-09 ض� 压缩安全协议保护的网际协议分组的方法、设备和系统
CN1735070A (zh) * 2004-08-11 2006-02-15 华为技术有限公司 一种实现ip头压缩的系统及方法
CN101163095A (zh) * 2006-10-13 2008-04-16 中兴通讯股份有限公司 一种应用于端到端链路传输中ip报头压缩的方法
WO2009017979A2 (en) * 2007-07-30 2009-02-05 Motorola, Inc. Method and apparatus for routing packets via header-compression channels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941454A (zh) * 2016-01-04 2017-07-11 中国移动通信集团公司 一种数据压缩传输方法、终端及服务器

Also Published As

Publication number Publication date
CN102282808A (zh) 2011-12-14
CN102282808B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
JP6405454B2 (ja) ユーザー装置の基地局ハンドオーバ方法及び基地局、ユーザー装置
JP5062601B2 (ja) Hrpd信号リンクの確立方法
KR101213545B1 (ko) 액세스 시스템들 사이의 핸드오프를 위한 방법 및 장치
US20200214067A1 (en) Service transmission method, apparatus, and device
CN101646205B (zh) 移动网络高速接入公网的节点、方法及系统
JP5791739B2 (ja) 疎結合アーキテクチャにおける技術間ハンドオフを実行する方法
WO2016138798A1 (zh) 一种在切换程序中传输数据的方法、装置和系统
WO2018028295A1 (zh) 切换场景下的QoS参数处理的方法及设备
WO2020001562A1 (zh) 一种通信方法及装置
WO2015161482A1 (zh) Mptcp连接的移动性管理方法和装置
WO2014127515A1 (zh) 业务提供系统、方法、移动边缘应用服务器及支持节点
JP2012135000A (ja) ソースアクセスシステムおよびターゲットアクセスシステム間のハンドオフのための方法および装置
WO2011140927A1 (zh) 一种增强移动性的分流方法及装置
WO2007006227A1 (fr) Procédé et système de négociation destinés à l’établissement de chemins de données d’interface
WO2020173137A1 (zh) 一种数据传输方法、相关设备、程序产品以及存储介质
WO2012083844A1 (zh) 传输组播数据的方法、组播树的更新方法以及系统和装置
WO2018023544A1 (zh) 通信方法、用户设备、基站、控制面网元和通信系统
WO2014177093A1 (zh) 实现ip移动的方法及系统、接入点设备、无线接入控制器
WO2016023157A1 (zh) 一种通讯方法、用户设备、接入网设备及应用服务器
WO2014012408A1 (zh) 一种网络切换的方法、装置、网元及系统
WO2013086949A1 (zh) 一种通信方法及设备
JP6504608B2 (ja) 通信装置及びその制御方法並びにプログラム、並びに通信システム
WO2014173103A1 (zh) 一种网络控制分流的方法和系统及其网络设备
WO2015180141A1 (zh) 一种业务路径变更方法及装置
WO2020103871A1 (zh) 一种数据通信方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115079.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843884

Country of ref document: EP

Kind code of ref document: A1