WO2010122722A1 - 無線通信システム、通信装置、通信方法、及び通信プログラム - Google Patents

無線通信システム、通信装置、通信方法、及び通信プログラム Download PDF

Info

Publication number
WO2010122722A1
WO2010122722A1 PCT/JP2010/002556 JP2010002556W WO2010122722A1 WO 2010122722 A1 WO2010122722 A1 WO 2010122722A1 JP 2010002556 W JP2010002556 W JP 2010002556W WO 2010122722 A1 WO2010122722 A1 WO 2010122722A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
control information
unit
shared channel
communication device
Prior art date
Application number
PCT/JP2010/002556
Other languages
English (en)
French (fr)
Inventor
鈴木翔一
相羽立志
山田昇平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CA2758216A priority Critical patent/CA2758216C/en
Priority to KR1020117024645A priority patent/KR101357350B1/ko
Priority to CN201080018129.5A priority patent/CN102405680B/zh
Priority to EP10766785A priority patent/EP2424319A4/en
Priority to JP2011510167A priority patent/JP4965740B2/ja
Priority to US13/264,876 priority patent/US8340043B2/en
Priority to AU2010240406A priority patent/AU2010240406B2/en
Publication of WO2010122722A1 publication Critical patent/WO2010122722A1/ja
Priority to US13/682,334 priority patent/US9055571B2/en
Priority to US14/704,763 priority patent/US9326243B2/en
Priority to US15/074,613 priority patent/US9883519B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, a communication device, a communication method, and a communication program.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • LTE-A Long Term Evolution-Advanced
  • A-EUTRA Advanced Advanced Universal Access
  • an Orthogonal Frequency Division Multiplexing (OFDM) scheme that is multicarrier transmission is used as a downlink.
  • a discrete carrier transform (DFT) -Spread OFDM single carrier communication scheme, which is single carrier transmission, is used as the uplink.
  • DFT discrete carrier transform
  • a broadcast channel Physical Broadcast Channel; PBCH
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PMCH Multicast Channel
  • Control Format Indicator Channel Physical Control Format Indicator Channel, HQ, PQCHH at Request Indicator Channel; PHICH
  • an uplink shared channel (PUSCH: Physical Up Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH) : Physical Random Access Channel).
  • PUSCH Physical Up Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH random access channel
  • LTE-A has compatibility with LTE, that is, the base station apparatus of LTE-A performs radio communication simultaneously with both mobile stations of LTE-A and LTE, and LTE-A A mobile station apparatus A is required to be able to perform radio communication with both LTE-A and LTE base station apparatuses, and the use of the same channel structure as LTE is being studied.
  • LTE-A uses a plurality of frequency bands having the same channel structure as LTE (hereinafter referred to as “carrier element (CC)” or “component carrier (CC)”).
  • carrier element CC
  • CC component carrier
  • a broadcast channel, a downlink control channel, a downlink shared channel, a multicast channel, a control format indicator channel, and a HARQ indicator channel are transmitted for each downlink carrier element.
  • An uplink shared channel, an uplink control channel, and a random access channel are assigned to each uplink carrier element.
  • frequency band aggregation is performed by using uplink control channels, uplink shared channels, downlink control channels, downlink shared channels, etc. in the uplink and downlink, using multiple data and multiple controls. This is a technique for simultaneously transmitting and receiving information (see Non-Patent Document 1 Chapter 5).
  • Non-Patent Document 2 when an uplink shared channel for a certain mobile station apparatus is allocated to any one of the uplink carrier elements, all the mobile station apparatuses are Is described in which uplink control information (Uplink Control Information; UCI) is placed in an uplink shared channel and transmitted.
  • UCI Uplink Control Information
  • the base station apparatus allocates an uplink shared channel to a plurality of uplink carrier elements, for example, for a mobile station apparatus with a large communication volume.
  • the base station apparatus when allocating uplink shared channels of a plurality of uplink carrier elements to the mobile station apparatus, if all uplink control information is allocated to all the plurality of uplink carrier elements one by one, radio resources to which data information is allocated There was a disadvantage that would decrease.
  • the base station apparatus cannot determine in which uplink shared channel the uplink control information is arranged, and the information of the information arranged in the uplink shared channel cannot be determined. There was a drawback that the type was wrong.
  • the present invention has been made in view of the above points, and provides a wireless communication system, a communication apparatus, a communication method, and a communication program capable of reliably communicating information.
  • the present invention has been made to solve the above-described problems.
  • the present invention provides a wireless communication system in which the first communication device and the second communication device perform wireless communication.
  • An apparatus allocates a plurality of radio resources for a plurality of transport blocks to the first communication apparatus, and the first communication apparatus allocates the allocated radio resources when uplink control information needs to be transmitted.
  • the uplink control information is arranged and transmitted in one radio resource among a plurality of radio resources, and the second communication device extracts the uplink control information arranged in the one radio resource.
  • a wireless communication system is characterized. According to the above configuration, the wireless communication system can reliably communicate information.
  • the second communication device selects one wireless resource in which the uplink control information is arranged, and notifies the first communication device It is a radio resource of a carrier.
  • one wireless resource in which the uplink control information is arranged is based on downlink control information for each wireless resource notified from the second communication device. And selected by the first communication device.
  • the present invention is characterized in that, in the above wireless communication system, the downlink control information includes information on a modulation scheme.
  • the present invention is characterized in that, in the above wireless communication system, the downlink control information includes information on a coding rate.
  • the present invention is characterized in that, in the above-described radio communication system, the downlink control information includes information on a radio resource amount.
  • the present invention is characterized in that, in the above wireless communication system, the downlink control information includes information on the amount of transport blocks.
  • one radio resource in which the uplink control information is arranged is selected by the first communication device based on a frequency height of the radio resource. It is characterized by being.
  • the uplink control information is arranged and transmitted in one radio resource.
  • a plurality of wireless resources are allocated to the first communication device, and the first communication device includes the allocation
  • the second communication apparatus is characterized by receiving and extracting uplink control information arranged and transmitted in one of the plurality of radio resources.
  • the present invention provides a method in which the first communication device needs to transmit uplink control information.
  • a communication method comprising a step of arranging and transmitting the uplink control information in one radio resource among a plurality of radio resources allocated to the second communication apparatus.
  • the second communication device allocates a plurality of wireless resources to the first communication device. And a process in which the second communication device receives and extracts uplink control information transmitted from the first communication device arranged in one of the allocated radio resources in one radio resource. And a communication method characterized by comprising:
  • the computer of the first communication device that performs wireless communication with the second communication device is assigned to the second communication device when it is necessary to transmit uplink control information.
  • a communication program that functions as means for arranging and transmitting the uplink control information in one radio resource among a plurality of radio resources.
  • the first communication device in the communication method in the second communication device that performs wireless communication with the first communication device, means for allocating a plurality of wireless resources to the first communication device, the first communication device Is a communication program that functions as means for receiving and extracting uplink control information that is arranged and transmitted in one of the plurality of allocated radio resources.
  • the wireless communication system can reliably communicate information.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to a first embodiment of the present invention. It is a figure which shows an example of the frequency band aggregation process which concerns on this embodiment. It is the schematic which shows an example of a structure of the uplink radio frame which concerns on this embodiment. It is the schematic which shows an example of arrangement
  • FIG. 1 is a conceptual diagram of a radio communication system according to the first embodiment of the present invention.
  • the radio communication system includes mobile station apparatuses A1 to A3 (first communication apparatus) and a base station apparatus B1 (second communication apparatus).
  • the mobile station devices A1 to A3 and the base station device B1 perform communication using frequency band aggregation described later.
  • FIG. 1 shows a downlink pilot channel (also referred to as a “downlink reference signal (DL RS)”) in radio communication (downlink) from the base station apparatus B1 to the mobile station apparatuses A1 to A3.
  • DL RS downlink reference signal
  • FIG. 1 is also referred to as an uplink pilot channel (or “Uplink Reference Signal (UL RS)” in radio communication (uplink) from the mobile station apparatuses A1 to A3 to the base station apparatus B1.
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Channel
  • PDSCH Physical Downlink Channel control
  • HARQ indicator channel Physical Hybrid ARQ Indicator Channel.
  • FIG. 1 is also referred to as an uplink pilot channel (or “Uplink Reference Signal (UL RS)” in radio communication (uplink) from the mobile station apparatuses A1 to A3 to the base station apparatus B1.
  • UL RS Uplink Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access
  • FIG. 2 is a diagram illustrating an example of the frequency band aggregation processing according to the present embodiment.
  • the horizontal axis represents the frequency domain
  • the vertical axis represents the time domain.
  • the downlink subframe D1 is configured by subframes of three carrier elements (DCC-0: Downlink Component Carrier-0, DCC-1, and DCC-2) having a bandwidth of 20 MHz. Has been.
  • DCC-0 Downlink Component Carrier-0, DCC-1, and DCC-2
  • a downlink control channel indicated by a hatched area and a downlink shared channel indicated by a non-hatched area are time-multiplexed. Assigned.
  • the uplink subframe U1 is configured by three carrier elements (UCC-0: Uplink Component Carrier-0, UCC-1, and UCC-2) having a bandwidth of 20 MHz.
  • UCC-0 Uplink Component Carrier-0, UCC-1, and UCC-2
  • an uplink control channel indicated by a hatched area with diagonal grid lines, and an uplink shared channel indicated by a hatched area on the left diagonal line Are frequency-multiplexed and assigned.
  • the base station apparatus b1 arranges a signal in a downlink shared channel of one or a plurality of downlink carrier elements among three downlink carrier elements in a certain subframe, and transmits the signal to the mobile station apparatus a1.
  • the mobile station apparatus a1 arranges a signal in an uplink shared channel of one or a plurality of uplink carrier elements among three uplink carrier elements in a certain subframe, and transmits the signal to the base station apparatus b1.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of an uplink radio frame according to the present embodiment.
  • FIG. 3 shows a configuration of a radio frame in a certain uplink carrier element.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • the radio frame of the uplink carrier element is composed of a plurality of physical resource block (PRB) pairs (for example, a region surrounded by a broken line with a symbol RB).
  • PRB physical resource block
  • One physical resource block pair is composed of two physical resource blocks (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • One physical resource block (unit surrounded by a thick line in FIG. 3) is composed of 12 subcarriers in the frequency domain, and is composed of 7 DFT-Spread OFDM symbols in the time domain.
  • a slot composed of 7 DFT-Spread OFDM symbols, a subframe composed of 2 slots, and a radio frame composed of 10 subframes.
  • a plurality of physical resource blocks (PRBs) are arranged according to the bandwidth of the uplink carrier element.
  • a unit composed of one subcarrier and one DFT-Spread OFDM symbol is referred to as a resource element (RE).
  • an uplink control channel for example, an uplink control channel, an uplink shared channel, and an uplink pilot channel used for channel estimation of the uplink control channel and the uplink shared channel are allocated.
  • the uplink control channel is allocated to physical resource block pairs (regions hatched with left diagonal lines) at both ends of the bandwidth of the uplink carrier element. Physical resource block pairs (areas not hatched) other than the uplink control channel are allocated to the uplink shared channel. Note that the mobile station device a1 does not place data in both the uplink control channel and the uplink shared channel in one subframe.
  • An uplink pilot channel (not shown) is time-multiplexed and allocated to the uplink shared channel and the uplink control channel.
  • uplink which is information used for communication control, such as channel quality information, scheduling request (SR: Scheduling Request), ACK (ACKnowledgement; Acknowledgment) / NACK (Negative-ACKnowledgement; Negative response)
  • SR Scheduling Request
  • ACK acknowledgement
  • Acknowledgment Acknowledgment
  • NACK Negative-ACKnowledgement
  • UCI Uplink Control Information
  • the channel quality information is information indicating the transmission quality of the downlink channel measured by the mobile station apparatus a1 using the downlink reference signal.
  • the scheduling request is information for requesting the mobile station apparatus a1 to allocate uplink radio resources to the base station apparatus b1.
  • ACK / NACK is information indicating success or failure of decoding of the downlink shared channel received by the mobile station apparatus.
  • the channel quality information includes CQI (Channel Quality Indicator), RI (Rank Indicator), and PMI (Precoding Matrix Indicator).
  • CQI is information indicating channel quality for changing radio transmission parameters such as an error correction scheme of a downlink channel, an error correction coding rate, and a data modulation multi-level number.
  • the RI is information required by the mobile station device a1 when performing spatial multiplexing transmission in the downlink using the MIMO (Multiple Input Multiple Output) method, and is a signal sequence unit (stream) for preprocessing a transmission signal sequence in advance.
  • Is information (Rank).
  • the PMI is information that the mobile station apparatus a1 requests when performing spatial multiplexing transmission using the MIMO scheme, and is precoding information for preprocessing a transmission signal sequence in advance.
  • a signal arranged in the uplink shared channel will be described.
  • a signal (referred to as a data signal) of data information (transport block) which is information other than uplink control information is arranged.
  • an uplink control information signal (referred to as an uplink control signal) is also arranged in the uplink shared channel.
  • an uplink control signal (referred to as an uplink control signal) is also arranged in the uplink shared channel.
  • FIG. 4 is a schematic diagram illustrating an example of the arrangement of uplink control signals in the uplink shared channel according to the present embodiment.
  • FIG. 4 (A) is a diagram showing mapping of uplink control signals
  • FIG. 4 (B) is a diagram showing arrangement of uplink control signals in the uplink shared channel.
  • FIG. 4B shows one of the uplink shared channels of the uplink carrier element allocated to the mobile station device a1 in a certain subframe, and two physical resource blocks as the uplink shared channel. Indicates when a pair is assigned.
  • the vertical axis indicates the time domain, and each column is a unit interval (DFT interval) for performing DFT.
  • the horizontal axis indicates the DFT section number, which is a number assigned in order of time.
  • the area is divided into the number of uplink shared channel DFT-Spread OFDM symbols that can be transmitted in a subframe after DFT (12 in the example of FIG. 4B).
  • the number of subcarriers allocated in the subframe is divided into 24 regions (24 in the example of FIG. 4B), and modulation symbols are arranged. Indicates.
  • a hatched area with diagonal grid lines indicates an area in which ACK / NACK modulation symbols are arranged.
  • the ACK / NACK modulation symbols are the third and fourth, ninth, and tenth areas in the direction from the smallest DFT section number to the largest DFT section number. It is arranged in six regions continuously in the direction.
  • the area hatched with a right oblique line is an area where RI modulation symbols are arranged.
  • the RI modulation symbols are the second and fifth, eighth and eleventh areas in the direction in which the DFT section number increases from the area having the smallest DFT section number, and the time decreases from the area having the largest time. It is arranged in 6 areas continuously.
  • a hatched area with a left oblique line indicates an area where CQI or PMI modulation symbols are arranged.
  • CQI or PMI modulation symbols are arranged in order from the region having the smallest DFT section number in the direction where the DFT section number increases in the region having the smallest time.
  • the CQI or PMI modulation symbol is the DFT section number in the area where the time is next to the time area (row) where the CQI or PMI modulation symbol is arranged.
  • the DFT section numbers are arranged in order from the smallest area in the increasing direction.
  • 4A repeats the same arrangement, and is the fourth area from the smallest time area in the direction of increasing time, and the fourth area from the smallest DFT section number to the direction of increasing DFT section number. It indicates that CQI or PMI modulation symbols are arranged up to the 10th region.
  • an unhatched area indicates an area where modulation symbols of data information are arranged.
  • Data information modulation symbols are arranged in the same manner as CQI and PMI modulation symbols after all CQI and PMI modulation symbols are arranged. However, after the data modulation symbols are arranged, some data modulation symbols are overwritten with ACK / NACK and RI modulation symbols.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • a hatched area with a right oblique line indicates a symbol arranged in the uplink shared channel
  • a hatched area with a dot indicates an uplink reference signal.
  • the symbol arranged in the uplink shared channel is a symbol obtained by performing discrete Fourier transform (DFT) on the modulation symbol arranged as shown in FIG.
  • DFT discrete Fourier transform
  • the modulation symbols in FIG. 4 (A) are discrete Fourier transformed in order from the time domain (column) with the smaller DFT interval number, and the discrete Fourier transformed frequency domain symbols are converted.
  • the time is arranged in ascending order.
  • FIG. 5 is a schematic block diagram showing the configuration of the mobile station apparatus according to this embodiment.
  • the mobile station device a1 includes an upper layer processing unit a11, a control unit a12, a reception processing unit a13, a plurality of reception antennas, a transmission processing unit a14, and a plurality of transmission antennas.
  • the upper layer processing unit a11 includes a radio resource control unit a111.
  • the receiving antenna and the transmitting antenna are configured differently, but the antenna may be shared by using a thyristor or the like that switches the input / output of a signal.
  • the upper layer processing unit a11 outputs data information for each uplink carrier element generated by a user operation or the like to the transmission processing unit a14.
  • the upper layer processing unit a11 performs processing of a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, and a radio resource control (RRC: Radio Resource Control) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the radio resource control unit a111 included in the upper layer processing unit a11 performs management of various setting information, communication status, buffer status, and the like of the own device. Also, the radio resource control unit a111 generates information to be arranged in each channel of each uplink carrier element, and outputs the information to the transmission processing unit a14 for each uplink carrier element. For example, the radio resource control unit a111 generates ACK / NACK for the downlink shared channel data according to the result of HARQ (Hybrid Automatic Repeat Request) processing, and outputs the generated ACK / NACK to the transmission processing unit a14.
  • HARQ Hybrid Automatic Repeat Request
  • HARQ is the success / failure of decoding (ACK / NACK) is transmitted to the base station apparatus b1, and when it cannot be decoded due to an error (NACK), the base station apparatus b1 retransmits the signal and has already received the signal received again.
  • the radio resource control unit a111 performs control to control the reception processing unit a13 and the transmission processing unit a14 based on the downlink control information (Downlink Control Information) notified from the base station apparatus b1 through the downlink control channel. Information is generated and output to the control unit a12. For example, the radio resource control unit a111 outputs shared channel allocation information indicating an uplink carrier element to which an uplink shared channel for the own device is allocated to the control unit a12. Further, for example, when the signal is arranged on the uplink shared channel, the radio resource control unit a111 reads out mapping information indicating that the mapping illustrated in FIG. 4 is performed from the storage unit (not illustrated), and transmits the mapping information to the control unit a12. Output. This mapping information may be stored in advance when the mobile station apparatus a1 is manufactured or software is updated, or may be stored in advance when notified from the base station apparatus b1.
  • This mapping information may be stored in advance when the mobile station apparatus a1 is manufactured or software is updated, or may be stored in advance
  • the control unit a12 generates a control signal for controlling the reception processing unit a13 and the transmission processing unit a14 based on the control information from the upper layer processing unit a11.
  • a control signal generated based on the shared channel assignment information is referred to as a shared channel assignment information signal.
  • the control unit a12 outputs the generated control signal to the reception processing unit a13 and the transmission processing unit a14 to control the reception processing unit a13 and the transmission processing unit a14.
  • the reception processing unit a13 demodulates and decodes the reception signal received from the base station apparatus b1 via the reception antenna according to the control signal input from the control unit a12.
  • the reception processing unit a13 outputs the decoded information to the upper layer processing unit a11.
  • the reception processing unit a13 generates channel quality information (CQI / PMI / RI) based on the detected reception quality of the downlink pilot signal and outputs the channel quality information to the transmission processing unit a14.
  • CQI / PMI / RI channel quality information
  • the transmission processing unit a14 generates an uplink reference signal according to the control signal from the control unit a12. Also, the transmission processing unit a14 encodes and modulates the data information input from the higher layer processing unit a11, ACK / NACK, and channel quality information input from the reception processing unit a13, and generates a modulation symbol. The transmission processing unit a14 arranges the generated modulation symbols in the uplink shared channel and the uplink control channel, multiplexes with the generated uplink reference signal, and transmits the multiplexed symbol to the base station apparatus b1 via the transmission antenna.
  • the transmission processing unit a14 arranges the uplink control information in the uplink shared channel as shown in FIG.
  • the transmission processing unit a14 selects an uplink carrier element according to a predetermined arrangement rule, and the selected uplink carrier element Uplink control information is arranged in the uplink shared channel. Details of the transmission processing unit a14 will be described below.
  • FIG. 6 is a schematic block diagram showing the configuration of the transmission processing unit a14 of the mobile station apparatus according to this embodiment.
  • the transmission processing unit a14 includes an encoding unit a141, a modulation unit a142, a discrete Fourier transform unit a143, an uplink reference signal generation unit a144, a multiplexing unit a145, and a transmission unit a146.
  • the encoding unit a141 includes a turbo encoding unit a1411, a CQI / PMI encoding unit a1412, an ACK / NACK encoding unit a1413, an RI encoding unit a1414, a multiplexing switching unit a1415 (carrier element selection unit), and a data / Control information multiplexers a1416 to a1418 are included.
  • FIG. 6 is a diagram illustrating a case where communication is performed with the base station apparatus b1 using three uplink carrier elements as illustrated in FIG. Each unit of the transmission processing unit a14 performs processing according to a control signal input from the control unit a12.
  • the turbo encoding unit a1411 performs turbo error correction encoding on the data information for each uplink carrier element input from the higher layer processing unit a11 at the encoding rate notified from the base station apparatus b1, and generates encoded bits (data Code bits).
  • the turbo encoding unit a1411 outputs the generated data encoded bits for each uplink carrier element to the data / control information multiplexing units a1416 to a1418 corresponding to the uplink carrier element. Note that, when CQI / PMI is multiplexed on the uplink shared channel, the turbo encoding unit a1411 performs turbo error correction encoding so that the encoded bits of data are reduced by the encoded bits of CQI / PMI.
  • the CQI / PMI encoding unit a1412 performs error correction encoding on the CQI / PMI input from the reception processing unit a14 based on the shared channel assignment information signal input from the control unit a12, and converts the CQI / PMI encoded bits. Generate.
  • the CQI / PMI encoding unit a1412 outputs the generated encoded bits (referred to as CQI / PMI encoded bits) to the multiplex switching unit a1415.
  • the ACK / NACK encoding unit a1413 performs error correction encoding on the ACK / NACK input from the higher layer processing unit a1413 based on the shared channel assignment information signal input from the control unit a12, and generates the generated encoded bits (ACK / NACK coded bit) is output to the multiplex switching unit a1415.
  • the RI encoding unit a1414 performs error correction encoding on the RI input from the reception processing unit a14 based on the shared channel assignment information signal input from the control unit a12, and generates the generated encoded bits (referred to as RI encoded bits). Is output to the multiple switching unit a1415.
  • CQI / PMI encoding unit a1412, ACK / NACK encoding unit a1413, and RI encoding unit a1414 have a shared channel allocation information signal of “9”, that is, no uplink shared channel is allocated to the own device.
  • error correction coding switching processing is performed when it is determined that a plurality of uplink shared channels are allocated.
  • the CQI / PMI encoding unit a1412, the ACK / NACK encoding unit a1413, and the RI encoding unit a1414 differ depending on whether the encoded bits are transmitted on the uplink control channel or the uplink shared channel. To do.
  • Multiplex switching section a1415 based on the shared channel assignment information signal input from control section a12, coding bits input from CQI / PMI encoding section a1412, ACK / NACK encoding section a1413, RI encoding section a1414 Control information arrangement switching processing is performed to switch the output destination.
  • the multiplex switching unit a1415 sets the output destination of the encoded bit to the multiplex unit. a145 is determined.
  • the output encoded bits are modulated by a modulation unit (not shown), and are allocated to the uplink control channel by the multiplexing unit a145.
  • the multiplex switching unit a1415 selects the uplink carrier element number n having the largest value among the uplink carrier element numbers n of the shared channel assignment information signal.
  • Multiplex switching section a1415 determines the output destination of the coded bit in one of data / control information multiplexing sections a1416 to a1418 corresponding to the selected uplink carrier element of uplink carrier element number n. That is, the multiplex switching unit a1415 selects a carrier element according to a predetermined rule from a plurality of carrier elements to which radio resources are allocated.
  • the multiplex switching unit a1415 outputs the encoded bits to the output destination determined by the above control information arrangement switching process.
  • Data / control information multiplexing sections a1416 to a1418 correspond to the uplink carrier elements of uplink carrier element numbers 0 to 2, respectively, and rearrange the encoded bits of the signals arranged in the corresponding uplink carrier elements. Since the functions of the data / control information multiplexing units a1416 to a1418 are the same, one of them (data / control information multiplexing unit a1418) will be described as a representative.
  • the data / control information multiplexing unit a1418 rearranges the data encoded bits input from the turbo encoding unit a1411 and the encoded bits input from the multiplexing switching unit a1415 as follows.
  • the data / control information multiplexing unit a1418 combines the data coded bit behind the CQI / PMI coded bit.
  • the data coded bits are ACK / NACK coded bits and RI coded bits so that the modulation symbols of the ACK / NACK coded bits and the RI coded bits are arranged as shown in FIG. Overwrite.
  • the data / control information multiplexing unit a1418 outputs the encoded bits with the rearranged order to the modulation unit a142.
  • the data / control information multiplexing unit a1418 does not insert CQI / PMI encoded bits, ACK / NACK encoded bits, and RI encoded bits, and the data Only the encoded bits are output to the modulation unit a142. That is, the data / control information multiplexing unit a1418 arranges the uplink control information in the radio resource of the uplink carrier element selected by the multiplexing switching unit a1415.
  • Modulation section a142 performs quadrature phase shift keying (QPSK), 16-value quadrature amplitude modulation on each of the encoded bits of each uplink carrier element input from data / control information multiplexing sections a1416 to a1418. (16 Quadrature Amplitude Modulation; 16QAM), 64-quadrature Amplitude Modulation (64QAM), etc., and the mobile station apparatus a1 modulates in advance with the modulation system notified from the base station apparatus b1, A modulation symbol signal is generated.
  • the modulation unit a142 outputs the generated signal of each uplink carrier element to the discrete Fourier transform unit a143.
  • Discrete Fourier transform unit a143 rearranges each of the uplink carrier element signals input from modulation unit a142 in parallel as shown in FIG.
  • the discrete Fourier transform unit a143 performs a discrete Fourier transform on the signals rearranged in parallel to generate a frequency domain signal.
  • the discrete Fourier transform unit a143 outputs the generated signal of each uplink carrier element to the multiplexing unit a145.
  • the uplink reference signal generation unit a144 generates a signal sequence of each uplink carrier element and a known sequence signal (uplink reference signal) in the mobile station device a1 and the base station device b1.
  • the uplink reference signal is generated based on the mobile station ID that identifies the mobile station device a1 and the base station ID that identifies the base station device b1.
  • the uplink reference signal generation unit a144 outputs the generated uplink reference signal to the multiplexing unit a145.
  • the multiplexing unit a145 receives the uplink carrier element signal input from the discrete Fourier transform unit a143 and the uplink reference signal input from the uplink reference signal generation unit a145 from the base station apparatus b1. It is arranged in the resource element of the link shared channel (see FIG. 4B). The multiplexing unit a145 outputs the signal of each arranged uplink carrier element to the transmission unit a146. Note that, when a signal obtained by modulating coded bits is input from the multiplexing switching unit a1415, the multiplexing unit a145 places this signal in the uplink control channel.
  • the transmission unit a146 performs an inverse fast Fourier transform (IFFT) on the frequency domain signal input from the multiplexing unit a145 to generate a DFT-Spread OFDM symbol.
  • IFFT inverse fast Fourier transform
  • the DFT-Spread OFDM symbol is obtained by performing a Fourier transform on a time domain signal (performed by the discrete Fourier transform unit a143 in this embodiment) and placing a frequency domain signal on another frequency (in this embodiment, And an OFDM symbol generated by performing an inverse Fourier transform (performed in the present embodiment by the transmitting unit a146).
  • the transmission unit a 146 adds a guard interval (GI) to the generated DFT-Spread OFDM symbol, and generates a baseband digital signal.
  • GI guard interval
  • the transmitter a146 converts the generated digital signal into an analog signal, generates an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removes an extra frequency component with respect to the intermediate frequency band, and converts the intermediate frequency signal to a high frequency
  • the signal is converted (up-converted) into the above signal, excess frequency components are removed, power is amplified, and output to each transmission antenna for transmission.
  • FIG. 7 is a schematic block diagram showing the configuration of the base station apparatus b1 according to this embodiment.
  • the base station device b1 includes an upper layer processing unit b11, a control unit b12, a reception processing unit b13, a plurality of reception antennas, a transmission processing unit b14, and a plurality of transmission antennas.
  • the upper layer processing unit b11 includes a radio resource control unit b111.
  • the receiving antenna and the transmitting antenna are configured differently, but the antenna may be shared by using a thyristor or the like that has an effect of switching signal input / output.
  • the upper layer processing unit b11 outputs data information for each uplink carrier element to the transmission processing unit b14.
  • the upper layer processing unit b11 performs processing of the packet data integration protocol layer, the radio link control layer, and the radio resource control layer.
  • the upper layer radio resource control unit manages various setting information, communication status, buffer status, and the like of each mobile station device.
  • the radio resource control unit b111 included in the higher layer processing unit b11 selects a plurality of uplink carrier elements, and radio resources in each selected uplink carrier element are arranged with uplink control information or data information.
  • the radio resource control unit b111 transmits uplink shared channel allocation information indicating the allocation as downlink control information to the mobile station apparatus a1 via the transmission processing unit b14.
  • the radio resource control unit b111 manages various setting information, communication status, buffer status, and the like of each mobile station apparatus a1. Further, the radio resource control unit b111 generates information acquired in each channel of each downlink carrier element or acquires it from the network, and outputs the information to the transmission processing unit b14 for each downlink carrier element. For example, the radio resource control unit b111 generates ACK / NACK for the uplink shared channel data according to the result of the HARQ process, and outputs the generated ACK / NACK to the transmission processing unit b14. For example, the radio resource control unit b111 generates downlink control information and outputs the downlink control information to the transmission processing unit b14.
  • the radio resource control unit b111 transmits uplink control information (ACK / NACK, channel quality information, scheduling request, and mobile station apparatus a1) notified from the mobile station apparatus a1 through the uplink control channel or the uplink shared channel.
  • Control information is generated to control the reception processing unit b13 and the transmission processing unit b14, and is output to the control unit b12.
  • the radio resource control unit a111 outputs, to the control unit a12, shared channel allocation information indicating an uplink carrier element to which an uplink shared channel is allocated for each mobile station apparatus a1.
  • the radio resource control unit b111 when the radio resource control unit b111 extracts an uplink shared channel signal, the radio resource control unit b111 receives demapping information indicating that demapping is performed in reverse of the mapping illustrated in FIG. 4 from a storage unit (not illustrated). Read and output to the controller b12.
  • This demapping information may be stored in advance when the base station device b1 is manufactured, when software is updated, or when updated by an operator's operation, or when it is notified from the mobile station device a1. May be.
  • the control unit b12 generates a control signal for controlling the reception processing unit b13 and the transmission processing unit b14 based on the control information from the higher layer processing unit b11.
  • the reception processing unit b13 demodulates and decodes the reception signal received from the mobile station apparatus a1 via the reception antenna according to the control signal input from the control unit b12.
  • the reception processing unit b13 outputs the decoded information to the upper layer processing unit b11.
  • the reception processing unit b13 extracts uplink control information from a received signal received from the mobile station apparatus a1 to which a plurality of uplink shared channels are allocated, according to a predetermined arrangement rule, and performs demodulation and decoding. Do. Details of the reception processing unit b13 will be described later.
  • the transmission processing unit b14 generates a downlink reference signal according to the control signal from the control unit b12. Also, the transmission processing unit b14 indicates data information input from the higher layer processing unit b11, downlink control information (for example, uplink shared channel allocation information, radio resource allocation of the downlink shared channel in each downlink carrier element) Downlink shared channel allocation information) is encoded and modulated to generate modulation symbols.
  • the transmission processing unit b14 arranges the generated modulation symbol in the downlink shared channel and the downlink control channel, multiplexes with the generated downlink reference signal, and transmits the multiplexed symbol to the mobile station apparatus a1 via the transmission antenna.
  • FIG. 8 is a schematic block diagram illustrating a configuration of the reception processing unit b13 of the base station device b1 according to the present embodiment.
  • the reception processing unit b13 includes a reception unit b131, a demultiplexing unit b132, a propagation channel estimation unit b133, a propagation channel compensation unit b134, an inverse discrete Fourier transform unit b135, a demodulation unit b136, and a decoding unit b137. Consists of.
  • the decoding unit b137 includes data / control information demultiplexing units b1371 to b1373, a turbo decoding unit b1374, a CQI / PMI decoding unit b1375, an ACK / NACK decoding unit b1376, and an RI decoding unit b1377. Composed.
  • FIG. 8 is a diagram illustrating a case where communication is performed with the mobile station apparatus a1 using three uplink carrier elements as illustrated in FIG. Each unit of the reception processing unit b13 performs processing according to a control signal input from the control unit b12.
  • the receiving unit b131 converts the signal of each uplink carrier element received via each receiving antenna into an intermediate frequency (down-conversion), removes unnecessary frequency components, and amplifies the signal level to be maintained appropriately.
  • the level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal demodulated by quadrature demodulation is converted into a digital signal.
  • the receiving unit b131 removes a portion corresponding to the guard interval from the converted digital signal.
  • the receiving unit b131 performs fast Fourier transform on the signal from which the guard interval is removed, and extracts a frequency domain signal.
  • the receiving unit b131 outputs the extracted signal for each uplink carrier element to the demultiplexing unit b132.
  • the demultiplexing unit b132 demultiplexes the signal input from the receiving unit b131 into signals arranged in the uplink control channel, the uplink shared channel, and the uplink pilot channel for each uplink carrier element. This separation is performed based on radio resource allocation information that is determined in advance by the base station apparatus b1 and notified to each mobile station apparatus a1.
  • the demultiplexing unit b132 outputs the separated uplink control channel and uplink shared channel signals to the propagation path compensation unit b134. Also, the demultiplexing unit b132 outputs a signal (uplink reference signal) arranged in the separated uplink pilot channel to the propagation path estimation unit b133.
  • the propagation path estimation unit b133 calculates the estimated value of the propagation path of the uplink shared channel from the uplink reference signal sequence of each uplink carrier element input from the demultiplexing unit b132, and uses the propagation path estimation value as the propagation path. It outputs to the compensation part b134.
  • the propagation path compensation unit b134 uses the propagation path estimation value input from the propagation path estimation unit b133 to convert the uplink control channel and the uplink shared channel signal of each uplink carrier element input from the demultiplexing unit b132.
  • the propagation path is compensated for.
  • the propagation path compensation unit b134 outputs the signal subjected to propagation path compensation to the inverse discrete Fourier transform unit b135.
  • the inverse discrete Fourier transform unit b135 has a predetermined frequency for the signal of each carrier element input from the propagation path compensation unit b134, and the frequency at which the discrete Fourier transform unit a143 of the mobile station device a1 performs the discrete Fourier transform. To place.
  • the inverse discrete Fourier transform unit b135 performs inverse discrete Fourier transform on the signal whose arrangement has been changed, and outputs an uplink shared channel signal to the demodulation unit b136.
  • the demodulator b136 uses any modulation scheme such as QPSK, 16QAM, 64QAM, etc., for each uplink carrier element signal input from the inverse discrete Fourier transform unit b135, and is determined in advance by the base station apparatus b1. Demodulate using the modulation scheme notified to each mobile station apparatus a1. The demodulator b136 rearranges the demodulated encoded bits of each uplink carrier element in series and outputs them to the data / control information demultiplexers b1371 to b1373 corresponding to the uplink carrier element.
  • modulation scheme such as QPSK, 16QAM, 64QAM, etc.
  • Data / control information demultiplexing units b 1371 to b 1373 respectively correspond to the uplink carrier elements of uplink carrier element numbers 0 to 2, and control information separation processing for separating the encoded bits of the signals arranged in the corresponding uplink carrier elements I do. Since the functions of the data / control information demultiplexing units b 1371 to b 1373 are the same, one of them (data / control information demultiplexing unit b 1373) will be described as a representative.
  • the control information separation process performed by the data / control information demultiplexing unit b 1373 will be described.
  • the shared channel assignment information signal is “9”, that is, the data / control information demultiplexing unit b 1373 indicates that the uplink shared channel is not assigned to the mobile station device a1 that has transmitted the input information.
  • the encoded bits of the uplink control information (CQI / PMI encoded bit, ACK / NACK encoded bit, RI encoded bit) are extracted from the encoded bits of the uplink control channel. In this case, the data / control information demultiplexing unit b 1373 does not extract the encoded bits of the uplink shared channel.
  • the data / control information demultiplexing unit b 1373 converts the uplink shared channel encoded bits according to the allocation in FIG. To separate.
  • the uplink shared channel of the uplink carrier element with the uplink carrier element number “2” is transmitted to the mobile station apparatus a1 from which the base station apparatus b1 has transmitted the information input to the data / control information demultiplexing unit b1373.
  • the data / control information demultiplexing units b 1371 and b 1372 perform the above coded bit demultiplexing process when the shared channel allocation information signal has one uplink carrier element number “0” or “1”, respectively. Do.
  • the uplink of the uplink carrier element having a plurality of uplink carrier element numbers is transmitted from the base station apparatus b1 to the mobile station apparatus a1 that has transmitted the information input to the data / control information demultiplexing unit b1373. This is when a shared channel is allocated.
  • the data / control information demultiplexing unit b 1373 selects the uplink carrier element number n having the largest value among the uplink carrier element numbers n of the shared channel assignment information signal.
  • the data / control information demultiplexing unit b 1373 determines whether or not the selected uplink carrier element number n is “2”. When it is determined as “2”, the encoded bits of the uplink shared channel are separated according to the assignment in FIG. That is, the data / control information demultiplexing unit b 1373 selects an uplink carrier element from a plurality of uplink carrier elements to which a radio resource is allocated according to a predetermined rule, and the uplink is arranged in the radio resource in the selected uplink carrier element. Extract link control information.
  • the data / control information demultiplexing unit b 1372 separates the encoded bits of the uplink shared channel according to the assignment in FIG. 4A when the selected uplink carrier element number n is “1”.
  • the data / control information demultiplexing unit b 1373 performs turbo decoding on the data coded bits, the CQI / PMI coded bits, the ACK / NACK coded bits, and the RI coded bits separated by the control information separating process described above.
  • the turbo decoding unit b 1374 performs error correction decoding by turbo decoding on the data encoded bits of each uplink carrier element input from the data / control information demultiplexing units b 1371 to b 1373, and the decoded data is subjected to higher layer processing. To the part b11. Note that the turbo decoding unit b1374 corrects the error in the mobile station apparatus a1 on the assumption that the data coded bits replaced with the coded bits of ACK / NACK and RI have the same probability that the bit value is 0 or 1. Decrypt.
  • the CQI / PMI decoding unit b1375 performs error correction decoding on the CQI / PMI encoded bits input from the data / control information demultiplexing units b1371 to b1373, and outputs the result to the upper layer processing unit b11.
  • the ACK / NACK decoding unit b 1376 performs error correction decoding on the ACK / NACK encoded bits input from the data / control information demultiplexing units b 1371 to b 1373 and outputs the result to the higher layer processing unit b 11.
  • the RI decoding unit b 1377 performs error correction decoding on the RI encoded bits input from the data / control information demultiplexing units b 1371 to b 1373 and outputs the result to the upper layer processing unit b 11.
  • the CQI / PMI decoding unit a1374, the ACK / NACK decoding unit a1376, and the RI decoding unit a1377 perform different error correction decoding depending on whether the encoded bits are transmitted on the uplink control channel or the uplink shared channel. Do.
  • FIG. 9 is a flowchart showing an example of the operation of the wireless communication system according to the present embodiment.
  • Step S100 The base station apparatus b1 transmits a downlink reference signal that is known to the mobile station apparatus a1 while being distributed over all frequency bands of all downlink carrier elements used by the base station apparatus b1.
  • step S101 The base station apparatus b1 transmits data information to the mobile station apparatus a1 using the downlink shared channel.
  • step S102 The base station apparatus b1 allocates the uplink shared channel of the uplink carrier element to the mobile station apparatus a1, and generates uplink shared channel allocation information indicating the allocation.
  • the base station apparatus b1 transmits the generated uplink shared channel allocation information using the downlink control channel.
  • step S103 The process proceeds to step S103.
  • Step S103 The mobile station device a1 receives the downlink reference signal transmitted in step S100, and generates channel quality information based on the received downlink reference signal. Next, the process proceeds to step S104.
  • Step S104 The mobile station apparatus a1 receives the downlink shared channel data transmitted by the base station apparatus b1 in step S101, and generates ACK / NACK for the received data information. Next, the process proceeds to step S105.
  • Step S105 The mobile station apparatus a1 receives the uplink shared channel allocation information transmitted in step S102, and transmits an ACK / NACK and channel quality information based on the received uplink shared channel allocation information. Select the uplink shared channel. In the present embodiment, the mobile station apparatus a1 selects the uplink shared channel of the uplink carrier element having the highest frequency among the allocated uplink shared channels as described above. Next, the process proceeds to step S106.
  • Step S106 The mobile station apparatus a1 encodes and modulates data information, ACK / NACK, and channel quality information, and multiplexes them on radio resources of uplink carrier elements allocated to the base station apparatus.
  • step S107 When the uplink shared channel is allocated, the mobile station apparatus a1 transmits data information, ACK / NACK, and channel quality information through the uplink shared channel.
  • step S108 The base station apparatus b1 receives the signal arranged in the uplink shared channel of the uplink carrier element allocated to the mobile station apparatus a1 in step S102.
  • step S109 The base station apparatus b1 demodulates the uplink shared channel received in step S108. Next, it progresses to S110.
  • Step S110 The base station apparatus b1 selects an uplink shared channel of an uplink carrier element in which ACK / NACK and channel quality information are arranged based on the uplink shared channel allocation information generated in step S102. In this embodiment, the base station apparatus b1 selects the uplink shared channel of the uplink carrier element having the highest frequency among the assigned uplink shared channels as described above. Next, the process proceeds to step S111.
  • Step S111 The base station apparatus b1 separates data information, ACK / NACK, and channel quality information from the uplink shared channel of the uplink carrier element selected in Step S110. Next, the process proceeds to step S112. (Step S112) The base station apparatus b1 demodulates and decodes the data information, ACK / NACK, and channel quality information separated in step S111. After step S112, the base station apparatus b1 and the mobile station apparatus a1 end the processing related to transmission of the uplink shared channel.
  • FIG. 10 is a diagram illustrating an example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 10 shows the configuration of the uplink shared channel in one subframe.
  • FIG. 10 shows that when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b1 assigns an uplink shared channel to UCC-0 and UCC-2 to a certain mobile station apparatus a1.
  • FIG. 10 shows that when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b1 assigns an uplink shared channel to UCC-0 and UCC-2 to a certain mobile station apparatus a1.
  • UCC-0 and UCC-2 are arranged with uplink shared channel symbol U101 denoted by reference symbol U101 and uplink shared channel symbol U121 denoted by reference symbol U121, respectively.
  • U101 and U121 areas hatched with right diagonal lines indicate symbols arranged in the uplink shared channel, and areas hatched with dots indicate uplink reference signals.
  • the symbols U101 and U121 are the symbols in FIG.
  • Symbol U102 with symbol U102 and symbol U122 with symbol U122 indicate symbols of the uplink shared channel obtained by removing the uplink reference signal from symbols U101 and U121, respectively.
  • Symbol U103 with reference symbol U103 and symbol U123 with reference symbol U123 indicate symbols generated by performing inverse discrete Fourier transform on symbols U102 and U122, respectively.
  • an unhatched area indicates a modulation symbol of data information.
  • a hatched area with diagonal grid lines indicates an ACK / NACK modulation symbol
  • a hatched area with a left diagonal line indicates an RI modulation symbol.
  • a hatched area with a left diagonal line indicates a modulation symbol of CQI or PMI
  • an unhatched area indicates a modulation symbol of data information.
  • FIG. 10 shows that when uplink shared channels are allocated to UCC-0 and UCC-2, uplink control information (CQI / PMI, RI) is transmitted to the uplink shared channel of UCC-2 which is the uplink carrier element having the highest frequency.
  • ACK / NACK is arranged.
  • the radio communication system allocates radio resources in a plurality of uplink carrier elements by the base station apparatus b1, and the uplink communication element in the uplink carrier element selected by the mobile station apparatus a1 according to a predetermined rule
  • the uplink control information is arranged and transmitted in the radio resource, and the uplink control information arranged in the radio resource in the uplink carrier element selected by the base station apparatus b1 according to a predetermined rule is extracted.
  • wireless communications system can allocate the radio
  • the radio communication system since the mobile communication device a1 and the base station device b1 select one uplink carrier element according to a predetermined rule, the radio communication system transmits signals only with the selected one uplink carrier element. Data information can be extracted without multiplexing and demultiplexing signals in other uplink carrier elements, and uplink control information is arranged in uplink shared channels of multiple uplink carrier elements The processing load can be reduced as compared with. Moreover, in the said embodiment, since the base station apparatus b1 arrange
  • the mobile station apparatus according to this embodiment is referred to as a mobile station apparatus a2, and the base station apparatus is referred to as a base station apparatus b2.
  • FIG. 11 is a schematic block diagram showing the configuration of the transmission processing unit a24 of the mobile station device a2 according to the second embodiment of the present invention.
  • the transmission processing unit a24 (FIG. 11) according to the present embodiment is compared with the transmission processing unit a14 (FIG. 6) according to the first embodiment, the multiplex switching unit a2415 is different.
  • the multiplex switching unit a2415 determines the output destination of the encoded bits to the multiplex unit a145.
  • the multiplex switching unit a2415 assigns the output destination of the encoded bit to the uplink shared channel.
  • the data / control information multiplexing units a1416 to a1418 corresponding to the received uplink carrier element are determined.
  • the multiplex switching unit a2415 is predetermined in order from the largest carrier value n of the uplink carrier element number n of the shared channel assignment information signal in order from the smallest value.
  • the number (M) of uplink carrier element numbers n is selected.
  • Multiplex switching section a2415 determines the output destination of the coded bits to data / control information multiplexing sections a1416 to a1418 corresponding to the selected M uplink carrier element number n uplink carrier elements. That is, the multiplex switching unit a2415 sends the encoded bit output destinations to the data / control information multiplexing units a1416 to a1418 corresponding to the M uplink carrier elements in order from the highest uplink carrier element to the lowest frequency. decide. That is, the multiplex switching unit a2415 selects a plurality of uplink carrier elements. The multiplex switching unit a2415 outputs the encoded bits to the output destination determined by the above control information arrangement switching process.
  • FIG. 12 is a schematic block diagram illustrating a configuration of the reception processing unit b23 of the base station device b2 according to the present embodiment.
  • the reception processing unit b23 (FIG. 12) according to the present embodiment is compared with the reception processing unit b13 (FIG. 8) according to the first embodiment, the data / control information demultiplexing units b2371 to b2373 are different.
  • receiving unit b131, demultiplexing unit b132, propagation path estimation unit b133, propagation path compensation unit b134, inverse discrete Fourier transform unit b135, demodulation unit b136, turbo decoding unit b1374, CQI / PMI decoding Unit b1375, ACK / NACK decoding unit b1376, and RI decoding unit b1377) have the same functions as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
  • Data / control information demultiplexing units b2371 to b2373 correspond to the uplink carrier elements of uplink carrier element numbers 0 to 2, respectively, and control information separation processing for separating the encoded bits of the signals arranged in the corresponding uplink carrier elements I do. Since the functions of the data / control information demultiplexing units b2371 to b2373 are the same, one (data / control information demultiplexing unit b2373) will be described as a representative.
  • the data / control information demultiplexing unit b2373 extracts the encoded bits of the uplink control information from the encoded bits of the uplink control channel.
  • the shared channel assignment information signal is one uplink carrier element number “2”
  • the data / control information demultiplexing unit b2373 converts the uplink shared channel encoded bits according to the assignment in FIG. To separate.
  • the encoded bits of the uplink shared channel are separated according to the assignment in FIG. That is, the data / control information demultiplexing unit b2373 selects a plurality of carrier elements. For the data / control information demultiplexing units b2381, b2372, when the selected uplink carrier element number n is “0”, “1”, respectively, the uplink shared channel Separate encoded bits.
  • the data / control information demultiplexing unit b2373 performs turbo decoding on the data coded bits, the CQI / PMI coded bits, the ACK / NACK coded bits, and the RI coded bits separated by the control information separating process described above. Output to unit b 1374, CQI / PMI decoding unit b 1375, ACK / NACK decoding unit b 1376, and RI decoding unit b 1377.
  • FIG. 13 is a diagram illustrating an example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 13 shows the configuration of the uplink shared channel in one subframe.
  • FIG. 13 shows that when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b2 assigns uplink shared channels to UCC-0 and UCC-2 to a certain mobile station apparatus a2.
  • the multiplex switching unit a2415 of the mobile station device a2 and the data / control information demultiplexing units b2371 to b2373 of the base station device b2 select the uplink carrier element numbers “0” and “2” of the shared channel allocation information signal. To do.
  • UCC-0 and UCC-2 are arranged with uplink shared channel symbol U201 and U221, respectively.
  • a hatched area with a right diagonal line indicates a symbol arranged in the uplink shared channel
  • a hatched area with a dot indicates an uplink reference signal.
  • the symbols U201 and U221 are the symbols in FIG.
  • Symbol U202 with symbol U202 and symbol U222 with symbol U222 indicate symbols of the uplink shared channel obtained by removing the uplink reference signal from symbols U201 and U221, respectively.
  • Symbol U203 with reference symbol U203 and symbol U223 with reference symbol U223 indicate symbols generated by performing inverse discrete Fourier transform on symbols U202 and U222, respectively.
  • hatched areas with diagonal lattice lines indicate ACK / NACK modulation symbols.
  • a hatched area with a left oblique line indicates a modulation symbol of CQI or PMI, and an unhatched area indicates a modulation symbol of data information.
  • the ACK / NACK modulation symbol of U203 is an ACK / NACK modulation symbol for the downlink shared channels of DCC-0 and DCC-1.
  • the ACK / NACK modulation symbol of U223 is the ACK / NACK modulation symbol for the downlink shared channel of DCC-2.
  • the type of ACK / NACK of the downlink carrier element arranged in each uplink carrier element of this uplink shared channel may be determined in advance. Further, ACK / NACK may be distributed and arranged on the uplink carrier elements of a plurality of uplink shared channels.
  • FIG. 14 is a diagram illustrating another example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 14 shows a configuration of an uplink shared channel in one subframe.
  • the multiplex switching unit a2415 of the mobile station device a2 and the data / control information demultiplexing units b2371 to b2373 of the base station device b2 use the uplink carrier element numbers “0”, “1”, “2” of the shared channel allocation information signal. ", The uplink carrier element numbers" 2 "and” 1 "are selected in descending order (in descending order of frequency).
  • UCC-0, UCC-1, and UCC-2 are respectively assigned uplink shared channel symbol U301, symbol U311 and uplink shared channel symbol U311, symbol U321 and U321.
  • the uplink shared channel symbol U321 is arranged.
  • regions hatched with right diagonal lines indicate symbols arranged in the uplink shared channel, and regions hatched with dots indicate uplink reference signals.
  • These symbols U301, U311 and U321 are the symbols in FIG.
  • Symbol U302 with reference symbol U302, symbol U312 with reference symbol U312 and symbol U322 with reference symbol U322 indicate symbols of the uplink shared channel obtained by removing the uplink reference signal from symbols U301, U311 and U321, respectively. .
  • symbol U303 with reference symbol U303 symbol U313 with reference symbol U313, and symbol U323 with reference symbol U323 indicate symbols generated by performing inverse discrete Fourier transform on symbols U302, U312 and U322, respectively.
  • an unhatched area indicates a modulation symbol of data information.
  • hatched areas with diagonal lattice lines indicate ACK / NACK modulation symbols.
  • a hatched area with a left oblique line indicates a CQI or PMI modulation symbol
  • an unhatched area indicates a modulation symbol of data information.
  • the ACK / NACK modulation symbol of U313 is an ACK / NACK modulation symbol for the downlink shared channels of DCC-0 and DCC-1.
  • the U323 ACK / NACK modulation symbol is an ACK / NACK modulation symbol for the DCC-2 downlink shared channel.
  • the radio communication system arranges and transmits the uplink control information on the uplink shared channels of the plurality of uplink carrier elements selected by the mobile station device a2, and thus one uplink
  • the radio communication system arranges and transmits the uplink control information on the uplink shared channels of the plurality of uplink carrier elements selected by the mobile station device a2, and thus one uplink
  • the radio communication system selects the uplink carrier element having the highest frequency among the uplink carrier elements to which the uplink shared channel is allocated.
  • This embodiment demonstrates the case where a radio
  • the mobile station apparatus according to the present embodiment is referred to as a mobile station apparatus a3, and the base station apparatus is referred to as a base station apparatus b3.
  • FIG. 15 is a schematic block diagram showing the configuration of the transmission processing unit a34 of the mobile station device a3 according to the third embodiment of the present invention.
  • the transmission processing unit a34 (FIG. 15) according to the present embodiment is compared with the transmission processing unit a14 (FIG. 6) according to the first embodiment, the multiplex switching unit a3415 is different.
  • the multiplex switching unit a3415 determines the output destination of the encoded bits to the multiplex unit a145.
  • the multiplex switching unit a3415 assigns the output destination of the encoded bit to the uplink shared channel.
  • the data / control information multiplexing units a1416 to a1418 corresponding to the received uplink carrier element are determined.
  • the multiplex switching unit a3415 determines the uplink carrier element number of the uplink carrier element having the largest amount of radio resources of the allocated uplink shared channel among the uplink carrier element numbers n of the shared channel assignment information signal. Select n. Specifically, the multiplex switching unit a3415 calculates the number of physical resource block pairs of the uplink shared channel of each allocated uplink carrier element, and selects the uplink carrier element number n of the uplink carrier element with the largest calculated number To do. That is, the multiplex switching unit a3415 selects an uplink carrier element having the largest amount of radio resources of the uplink shared channel allocated in the uplink carrier element from among the plurality of uplink carrier elements to which the radio resource is allocated.
  • Multiplex switching section a3415 determines the output destination of the coded bits to data / control information multiplexing sections a1416 to a1418 corresponding to the selected uplink carrier element of uplink carrier element number n.
  • the multiplex switching unit a3415 outputs the encoded bits to the output destination determined by the above control information arrangement switching process.
  • FIG. 16 is a schematic block diagram illustrating the configuration of the reception processing unit b33 of the base station apparatus b3 according to the present embodiment.
  • the reception processing unit b33 (FIG. 16) according to the present embodiment is compared with the reception processing unit b13 (FIG. 8) according to the first embodiment, the data / control information demultiplexing units b3371 to b3373 are different.
  • receiving unit b131, demultiplexing unit b132, propagation path estimation unit b133, propagation path compensation unit b134, inverse discrete Fourier transform unit b135, demodulation unit b136, turbo decoding unit b1374, CQI / PMI decoding Unit b1375, ACK / NACK decoding unit b1376, and RI decoding unit b1377) have the same functions as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
  • the data / control information demultiplexing units b3371 to b3373 correspond to the uplink carrier elements of the uplink carrier element numbers 0 to 2, respectively, and control information separation processing for separating the encoded bits of the signals arranged in the corresponding uplink carrier elements I do. Since the functions of the data / control information demultiplexing units b3371 to b3373 are the same, one (data / control information demultiplexing unit b3373) will be described as a representative.
  • the data / control information demultiplexing unit b3373 extracts the encoded bits of the uplink control information from the encoded bits of the uplink control channel.
  • the shared channel assignment information signal is one uplink carrier element number “2”
  • the data / control information demultiplexing unit b3373 converts the uplink shared channel encoded bits according to the assignment in FIG. To separate.
  • the encoded bits of the uplink shared channel are separated according to the assignment in FIG. That is, the data / control information demultiplexing unit b3373 selects an uplink carrier element having the largest amount of radio resources of the uplink shared channel allocated in the uplink carrier element among the plurality of uplink carrier elements to which the radio resource is allocated. select.
  • the data / control information demultiplexing units b3381 and b3372 when the selected uplink carrier element number n is “0” and “1”, respectively, the uplink shared channel Separate encoded bits.
  • the data / control information demultiplexing unit b3373 performs turbo decoding on the data coded bits, the CQI / PMI coded bits, the ACK / NACK coded bits, and the RI coded bits separated by the control information separating process.
  • FIG. 17 is a diagram illustrating an example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 17 shows the configuration of the uplink shared channel in one subframe.
  • FIG. 17 shows that when performing communication using the frequency band aggregation shown in FIG. 2, the base station apparatus b3 assigns uplink shared channels to UCC-0 and UCC-2 to a certain mobile station apparatus a3.
  • FIG. 17 shows that when performing communication using the frequency band aggregation shown in FIG. 2, the base station apparatus b3 assigns uplink shared channels to UCC-0 and UCC-2 to a certain mobile station apparatus a3.
  • FIG. 17 shows that the number of physical resource pairs (for example, 50) allocated to the UCC-0 uplink shared channel is the number of physical resource pairs (for example, 50) allocated to the UCC-2 uplink shared channel. , 30).
  • the multiplex switching unit a3415 of the mobile station device a3 and the data / control information demultiplexing units b3371 to b3373 of the base station device b3 select the uplink carrier element number “0” of the shared channel assignment information signal.
  • UCC-0 and UCC-2 are arranged with an uplink shared channel symbol U401 and a symbol U421, respectively.
  • a hatched area with a right diagonal line indicates a symbol arranged in the uplink shared channel
  • a hatched area with a dot indicates an uplink reference signal.
  • the symbols U401 and U421 are the symbols in FIG.
  • Symbol U402 with symbol U402 and symbol U422 with symbol U422 indicate uplink shared channel symbols obtained by removing uplink reference signals from symbols U401 and U421, respectively.
  • Symbol U403 with symbol U403 and symbol U423 with symbol U423 indicate symbols generated by performing inverse discrete Fourier transform on symbols U402 and U422, respectively.
  • a hatched area with diagonal lattice lines indicates an ACK / NACK modulation symbol.
  • a hatched area with a left oblique line indicates a modulation symbol of CQI or PMI
  • an unhatched area indicates a modulation symbol of data information.
  • an unhatched area indicates a modulation symbol of data information.
  • the radio communication system selects the uplink carrier element with the largest amount of radio resources allocated to the uplink carrier element by the mobile station apparatus a3 and the base station apparatus b3.
  • the reception characteristic of the uplink control information can be improved as compared with the case where the uplink carrier element with a small amount of resources is selected.
  • the mobile station apparatus according to the present embodiment is referred to as a mobile station apparatus a4, and the base station apparatus is referred to as a base station apparatus b4.
  • FIG. 18 is a schematic block diagram showing the configuration of the transmission processing unit a44 of the mobile station device a4 according to the fourth embodiment of the present invention.
  • the transmission processing unit a44 (FIG. 18) according to the present embodiment is compared with the transmission processing unit a14 (FIG. 6) according to the first embodiment, the multiplex switching unit a4415 is different.
  • the multiplexing switching unit a4415 determines the output destination of the coded bits to the multiplexing unit a145.
  • the multiplex switching unit a4415 assigns the output destination of the encoded bit to the uplink shared channel.
  • the data / control information multiplexing units a1416 to a1418 corresponding to the received uplink carrier element are determined.
  • the output destination of the encoded bits is determined as follows according to a predetermined arrangement rule.
  • the multiplex switching unit a4415 determines the uplink shared channel based on the modulation scheme and coding rate of the allocated uplink shared channel among the uplink carrier element numbers n of the shared channel allocation information signal.
  • the uplink carrier element number n of the uplink carrier element having the smallest modulation multi-level number and the lowest coding rate is selected.
  • the modulation scheme and coding rate are determined in advance by the base station apparatus b1 as described above and notified to each mobile station apparatus a1.
  • the multiplex switching unit a4415 calculates the coding rate of the uplink shared channel of each assigned uplink carrier element, and the uplink coding channel has the smallest modulation multilevel number and the calculated coding rate is the lowest.
  • the uplink carrier element number n of the carrier element is selected. Further, the multiplex switching unit a4415 sets the uplink carrier element number n of the uplink carrier element based on the modulation scheme and the information for calculating the coding rate included in the uplink shared channel allocation information transmitted by the base station apparatus b4. You may choose. That is, the multiplex switching unit a4415 has the smallest number of modulation multilevels of the uplink shared channel allocated in the uplink carrier element among the plurality of uplink carrier elements to which the radio resources are allocated, and the lowest coding rate. Select a carrier element.
  • Multiplex switching section a4415 determines the output destination of the coded bits to data / control information multiplexing sections a1416 to a1418 corresponding to the selected uplink carrier element of uplink carrier element number n.
  • the multiplex switching unit a4415 outputs the encoded bits to the output destination determined by the above control information arrangement switching process.
  • FIG. 19 is a schematic block diagram illustrating a configuration of the reception processing unit b43 of the base station device b4 according to the present embodiment.
  • the reception processing unit b43 (FIG. 19) according to the present embodiment is compared with the reception processing unit b13 (FIG. 8) according to the first embodiment, the data / control information demultiplexing units b4371 to b4373 are different.
  • receiving unit b131, demultiplexing unit b132, propagation path estimation unit b133, propagation path compensation unit b134, inverse discrete Fourier transform unit b135, demodulation unit b136, turbo decoding unit b1374, CQI / PMI decoding Unit b1375, ACK / NACK decoding unit b1376, and RI decoding unit b1377) have the same functions as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
  • the data / control information demultiplexing units b4371 to b4373 correspond to the uplink carrier elements of the uplink carrier element numbers 0 to 2, respectively, and control information separation processing for separating the encoded bits of the signals arranged in the corresponding uplink carrier elements I do. Since the functions of the data / control information demultiplexing units b4371 to b4373 are the same, one (data / control information demultiplexing unit b4373) will be described as a representative.
  • the data / control information demultiplexing unit b4373 extracts the encoded bits of the uplink control information from the encoded bits of the uplink control channel.
  • the shared channel allocation information signal is one uplink carrier element number “2”
  • the data / control information demultiplexing unit b4373 sets the encoded bits of the uplink shared channel according to the allocation in FIG. To separate.
  • the encoded bits of the uplink shared channel are separated according to the assignment in FIG. That is, the data / control information demultiplexing unit b4373 has the lowest coding rate of the allocated uplink shared channel and the smallest number of modulation multilevels among the plurality of uplink carrier elements to which the radio resource is allocated. Select. For the data / control information demultiplexing units b4381, b4372, if the selected uplink carrier element number n is “0”, “1”, respectively, the uplink shared channel Separate encoded bits.
  • the data / control information demultiplexing unit b4373 turbo-decodes the data coded bits, CQI / PMI coded bits, ACK / NACK coded bits, and RI coded bits separated by the control information separating process described above. Output to unit b 1374, CQI / PMI decoding unit b 1375, ACK / NACK decoding unit b 1376, and RI decoding unit b 1377.
  • FIG. 20 is a diagram illustrating an example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 20 shows the configuration of the uplink shared channel in one subframe.
  • FIG. 20 shows that when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b4 assigns an uplink shared channel to UCC-0 and UCC-2 to a certain mobile station apparatus a4.
  • FIG. 20 shows that when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b4 assigns an uplink shared channel to UCC-0 and UCC-2 to a certain mobile station apparatus a4.
  • FIG. 20 shows a case where the coding rate (for example, 1/3) of the uplink shared channel of UCC-0 is larger than the coding rate (for example, 2/5) of the uplink shared channel of UCC-2. Show.
  • the multiplex switching unit a4415 of the mobile station device a3 and the data / control information demultiplexing units b4371 to b4373 of the base station device b4 select the uplink carrier element number “0” of the shared channel assignment information signal.
  • UCC-0 and UCC-2 are arranged with uplink shared channel symbol U 501 and reference symbol U 521, respectively.
  • symbols U501 and U521 regions hatched with right diagonal lines indicate symbols arranged in the uplink shared channel, and regions hatched with dots indicate uplink reference signals.
  • the symbols U501 and U521 are the symbols in FIG.
  • Symbol U502 with symbol U502 and symbol U522 with symbol U522 indicate uplink shared channel symbols obtained by removing uplink reference signals from symbols U501 and U521, respectively.
  • Symbol U503 with reference symbol U503 and symbol U523 with reference symbol U523 indicate symbols generated by performing inverse discrete Fourier transform on symbols U502 and U522, respectively.
  • a hatched area with diagonal lattice lines indicates an ACK / NACK modulation symbol.
  • a hatched area with a left oblique line indicates a modulation symbol of CQI or PMI
  • an unhatched area indicates a modulation symbol of data information.
  • an unhatched area indicates a modulation symbol of data information.
  • the radio communication system selects the uplink carrier element with the lowest coding rate of the radio resources allocated to the uplink carrier element by the mobile station apparatus a4 and the base station apparatus b4. Therefore, it is possible to improve the reception characteristics of the uplink control information compared to the case of selecting an uplink carrier element with a high coding rate of radio resources.
  • the radio communication system selects the uplink carrier element having the highest frequency among the uplink carrier elements to which the uplink shared channel is allocated.
  • the radio communication system preferentially selects the uplink carrier element selected by the base station apparatus and notified to the mobile station apparatus from among the uplink carrier elements to which the uplink shared channel is allocated.
  • the base station apparatus measures the quality of the propagation path of each uplink carrier element based on signals such as the uplink shared channel and uplink reference signal received by each uplink carrier element, and selects the uplink carrier element with the good quality.
  • the mobile station apparatus is notified of the uplink carrier element number of the selected uplink carrier element.
  • the transmission processing unit and the base station apparatus of the mobile station apparatus are different.
  • the configuration and functions of other components are the same as those in the first embodiment, and thus descriptions of the same functions as those in the first embodiment are omitted.
  • the mobile station apparatus according to this embodiment is referred to as a mobile station apparatus a5
  • the base station apparatus is referred to as a base station apparatus b5.
  • FIG. 21 is a schematic block diagram showing the configuration of the transmission processing unit a54 of the mobile station device a5 according to the fifth embodiment of the present invention.
  • the transmission processing unit a54 (FIG. 21) according to the present embodiment is compared with the transmission processing unit a14 (FIG. 6) according to the first embodiment, the multiplex switching unit a5415 is different.
  • the multiplex switching unit a5415 determines the output destination of the coded bits to the multiplex unit a145.
  • the multiplex switching unit a5415 selects the uplink carrier element number n of the uplink carrier element notified in advance from the base station apparatus b5. That is, the multiplex switching unit a5415 preferentially selects an uplink carrier element notified in advance from the base station apparatus b5 among a plurality of uplink carrier elements to which radio resources are allocated.
  • Multiplex switching section a5415 determines the output destination of the coded bits to data / control information multiplexing sections a1416 to a1418 corresponding to the uplink carrier element notified from base station apparatus b5.
  • the multiplex switching unit a5415 outputs the encoded bits to the output destination determined by the above control information arrangement switching process.
  • FIG. 22 is a schematic block diagram showing the configuration of the base station device b5 according to this embodiment.
  • the carrier element notification unit b512 carrier element selection unit
  • the reception processing unit b53 is different.
  • the functions of other components are the same as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
  • the carrier element notification unit b512 determines the quality of the propagation path based on the quality information of the propagation path of the uplink carrier element measured based on the uplink shared channel received by each uplink carrier element and the signal such as the uplink reference signal. Choose a good upstream carrier factor.
  • the carrier element notification unit b512 notifies the mobile station device a5 of the selected uplink carrier element number n of the uplink carrier element via the transmission processing unit b14. Further, the carrier element notification unit b512 outputs the uplink carrier element number n of the selected uplink carrier element to the reception process b53 via the control unit b12.
  • FIG. 23 is a schematic block diagram illustrating a configuration of the reception processing unit b53 of the base station apparatus b5 according to the present embodiment.
  • the reception processing unit b53 (FIG. 19) according to the present embodiment is compared with the reception processing unit b13 (FIG. 8) according to the first embodiment, the data / control information demultiplexing units b5371 to b5373 are different.
  • receiving unit b131, demultiplexing unit b132, propagation path estimation unit b133, propagation path compensation unit b134, inverse discrete Fourier transform unit b135, demodulation unit b136, turbo decoding unit b1374, CQI / PMI decoding Unit b1375, ACK / NACK decoding unit b1376, and RI decoding unit b1377) have the same functions as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
  • the data / control information demultiplexing units b 5371 to b 5373 respectively correspond to the uplink carrier elements of the uplink carrier element numbers 0 to 2 and control information separation processing for separating the encoded bits of the signals arranged in the corresponding uplink carrier elements I do. Since the functions of the data / control information demultiplexing units b5371 to b5373 are the same, one of them (the data / control information demultiplexing unit b4373) will be described as a representative.
  • the data / control information demultiplexing unit b5373 extracts the encoded bits of the uplink control information from the encoded bits of the uplink control channel.
  • the shared channel allocation information signal is not “9”
  • the data / control information demultiplexing unit b5373 determines whether the uplink carrier element number n input from the carrier element notification unit b512 is “2”. . When it is determined as “2”, the encoded bits of the uplink shared channel are separated according to the assignment in FIG.
  • the data / control information demultiplexing unit b5373 preferentially selects an uplink carrier element notified by the mobile station device a5 in advance from among a plurality of uplink carrier elements to which radio resources are allocated.
  • the data / control information demultiplexing units b5381 and b5372 if the selected uplink carrier element numbers n are “0” and “1”, respectively, the uplink shared channel is determined according to the assignment in FIG. Separate encoded bits.
  • the data / control information demultiplexing unit b5373 performs turbo decoding on the data coded bits, CQI / PMI coded bits, ACK / NACK coded bits, and RI coded bits separated by the control information separating process described above. Output to unit b 1374, CQI / PMI decoding unit b 1375, ACK / NACK decoding unit b 1376, and RI decoding unit b 1377.
  • FIG. 24 is a diagram illustrating an example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 24 shows the configuration of the uplink shared channel in one subframe. 24, when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b5 assigns uplink shared channels to UCC-0 and UCC-2 to a certain mobile station apparatus a5.
  • FIG. 24 is a diagram illustrating an example of the configuration of the uplink shared channel according to the present embodiment.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • FIG. 24 shows the configuration of the uplink shared channel in one subframe. 24, when performing communication using frequency band aggregation shown in FIG. 2, the base station apparatus b5 assigns uplink shared channels to UCC-0 and UCC-2 to a certain mobile station apparatus a5.
  • the base station apparatus b5 selects UCC-0 as the uplink carrier element for preferentially arranging the uplink control information, and “0” as the uplink carrier element number of the preferentially arranged uplink carrier element. Is shown to the mobile station device a5. In this case, the multiplex switching unit a5415 of the mobile station device a5 and the data / control information demultiplexing units b5371 to b5373 of the base station device b5 select the uplink carrier element number “0” of the shared channel assignment information signal.
  • UCC-0 and UCC-2 are arranged with an uplink shared channel symbol U601 denoted by reference symbol U601 and an uplink shared channel symbol U621 denoted by reference symbol U621, respectively.
  • U601 and U621 areas hatched with right diagonal lines indicate symbols arranged in the uplink shared channel, and areas hatched with dots indicate uplink reference signals.
  • the symbols U601 and U621 are the symbols in FIG.
  • Symbol U602 with symbol U602 and symbol U622 with symbol U622 indicate uplink shared channel symbols obtained by removing the uplink reference signal from symbols U601 and U621, respectively.
  • Symbol U603 denoted by reference symbol U603 and symbol U623 denoted by reference symbol U623 indicate symbols generated by performing inverse discrete Fourier transform on symbols U602 and U622, respectively.
  • a hatched area with diagonal lattice lines indicates an ACK / NACK modulation symbol.
  • a hatched area with a left diagonal line indicates a modulation symbol of CQI or PMI
  • an unhatched area indicates a modulation symbol of data information.
  • an unhatched area indicates a modulation symbol of data information.
  • the mobile station device a5 and the base station device b5 select an uplink carrier element having a good propagation path quality. As compared with the case of selecting, it is possible to improve the reception characteristics of the uplink control information.
  • the mobile station device a1 and the base station device b1 assign the uplink carrier element having the highest frequency among the allocated uplink shared channels to the uplink carrier element in which the uplink control information signal is arranged. Selected as.
  • the present invention is not limited to this, and the uplink carrier element having the lowest frequency or the uplink carrier element having the center frequency may be selected as the uplink carrier element in which the signal of the uplink control information is arranged.
  • the uplink carrier element in which the uplink control information signal is arranged is set in the uplink control information.
  • the mobile station device a2 and the base station device b2 assign M uplink carrier elements in order from the highest uplink carrier element having the highest frequency to the lowest frequency in the uplink control information. It was selected as the upstream carrier element to place the signal.
  • the present invention is not limited to this.
  • the mobile station apparatus a2 and the base station apparatus b2 perform uplink control on M uplink carrier elements in order from the smallest uplink carrier element to the highest frequency. You may select as a carrier element which arrange
  • the mobile station device a2 and the base station device b2 arrange the M uplink carrier elements and the uplink control information signals according to the order of demodulation or decoding processing of the uplink carrier element signals in the base station device b2.
  • M uplink carrier elements may be selected as an uplink carrier element in which uplink control information signals are arranged in order from the earliest decoding processing order in the base station apparatus b2. Also good.
  • the mobile station apparatus a2 and the base station apparatus b2 assign M uplink carrier elements in the descending order of the amount of radio resources allocated in the uplink carrier element among the uplink carrier elements allocated to the uplink control information. May be selected as an uplink carrier element for arranging the signals.
  • the number of uplink carrier elements selected by the mobile station device a2 and the base station device b2 may be limited to 2 or expanded to 5. In each of the above embodiments, the number of uplink carrier elements may not be three, for example, four or more.
  • the mobile station device a3 and the base station device b3 control the uplink carrier element with the largest amount of radio resources among the uplink shared channels allocated in the uplink carrier element by uplink control.
  • the mobile station device a4 and the base station device b4 select the uplink carrier element to which the information signal is arranged, and the coding rate is the uplink shared channel allocated in the uplink carrier element.
  • the uplink carrier element having the lowest modulation multi-level number is selected as the uplink carrier element for arranging the uplink control information signal.
  • the present invention is not limited to this.
  • the uplink control information signal is arranged based on the amount of radio resources of the uplink shared channel allocated in the uplink carrier element, the coding rate, and the modulation scheme.
  • An uplink carrier element may be selected.
  • the signal of the uplink control information May be selected.
  • the uplink control information signal is not allocated to an uplink shared channel with a large amount of radio resources but a high coding rate, or an uplink shared channel with a low coding rate but a small amount of radio resources.
  • the mobile station device a4 and the base station device b4 have the smallest number of modulation multi-values and the lowest coding rate among the uplink shared channels allocated in the uplink carrier element.
  • the carrier element is selected as the uplink carrier element for arranging the uplink control information signal.
  • the present invention is not limited to this, and, for example, an uplink carrier element having the lowest coding rate may be selected from among uplink shared channels allocated in the uplink carrier element. Further, the uplink carrier element having the smallest modulation multi-level number may be selected. Thereby, the structure of the base station apparatus b4 and the mobile station apparatus a4 can be simplified.
  • the mobile station apparatus a4 and the base station apparatus b4 first select a carrier element having the smallest modulation multilevel number from among the uplink shared channels allocated in the uplink carrier element, and then select the carrier having the smallest modulation multilevel number.
  • the uplink carrier element having the lowest coding rate may be selected as the uplink carrier element in which the uplink control information signal is arranged.
  • the mobile station device a4 and the base station device b4 first select an uplink carrier element having the lowest coding rate from among the uplink shared channels allocated in the uplink carrier element, and then the uplink carrier having the lowest coding rate.
  • the carrier element with the smallest modulation multi-level number may be selected as the uplink carrier element for arranging the uplink control information signal.
  • the mobile station device a5 and the base station device b5 select and notify the mobile station device a5 of the uplink shared channel allocated in the uplink carrier element.
  • the uplink carrier element is selected as the uplink carrier element for arranging the uplink control information signal.
  • the present invention is not limited to this.
  • the uplink shared channel is not allocated in the uplink carrier element that the base station apparatus b5 has previously notified to the mobile station apparatus a5, and the base station apparatus b5 notifies the mobile station apparatus a5 in advance.
  • the uplink shared channel is allocated only to other than the uplink carrier element, the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment are not used without using the fifth embodiment. You may apply. As a result, it is not necessary to assign an uplink shared channel to the uplink carrier element selected by the base station device b5 and notified to the mobile station device a5.
  • the base station apparatuses b1 to b5 measure the power of signals arranged in the uplink shared channel radio resources allocated to the mobile station apparatuses a1 to a5, and the measured power is determined in advance. When it is determined that the value is greater than or equal to the value, an uplink carrier element may be selected. As a result, it is possible to determine that the mobile station apparatuses a1 to a5 have correctly decoded the downlink control information (uplink shared channel assignment information) indicating the radio resource assignment of the uplink shared channel, and the downlink control information ( When decoding of (uplink shared channel allocation information) fails, the uplink control information is not arranged according to a predetermined rule, and an error can be avoided.
  • uplink control information uplink shared channel assignment information
  • the uplink communication that is communication from the mobile station devices a1 to a5 to the base station devices b1 to b5 has been described.
  • the present invention is not limited to this, and the base station devices b1 to b5 are not limited thereto.
  • the present invention may be applied to downlink communication from (first communication device) to mobile station devices a1 to a5 (second communication device).
  • the mobile station apparatus has the configuration and functions of the base station apparatuses b1 to b5
  • the base station apparatus has the configuration and functions of the mobile station apparatus.
  • a program that operates in the base station apparatus and mobile station apparatus related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention. It may be. Information handled by these devices is temporarily stored in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • RAM Random Access Memory
  • ROMs Read Only Memory
  • HDD Hard Disk Drive
  • the mobile station devices a1 to a3 and base station devices b1 to b3 in the above-described embodiment for example, the upper layer processing unit a11, the control unit a12, the reception processing unit a13, the radio resource control unit a111, and the turbo coding Unit a1411, CQI / PMI encoding unit a1412, ACK / NACK encoding unit a1413, RI encoding unit a1414, multiplexing switching unit a1415, a2415, a3415, a4415, a5415, data / control information multiplexing units a1416 to a1418, modulation unit a142, discrete Fourier transform unit a143, uplink reference signal generation unit a144, multiplexing unit a145, transmission unit a145, higher layer processing unit b11, control unit b12, transmission processing unit b14, radio resource control unit b111, carrier element notification unit 512 , Receiving unit b131, de
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the “computer system” is a computer system built in the mobile station devices a1 to a3 or the base station devices b1 to b3, and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention is suitable for use in a mobile station apparatus, a radio communication system, and similar technology related to mobile communication, and assigns radio resources in a plurality of carrier elements and arranges control information arranged in the assigned radio resources, It is possible to reliably communicate with data information.
  • Turbo encoder a1412 ... CQI / PMI encoder, a1413 ... ACK / NACK encoder, a1414 ... RI encoder, a1415, a2415, a3415 a4415, a5415: Multiple switching unit (carrier element selection unit), a1416 to a1418 ... Data / control information multiplexing unit, b11, b51 ... Upper layer processing unit, b12 ... Control unit, b13, b23 , B33, b43, b53 ... reception processing unit, b14 ... transmission processing unit, b111 ... radio resource control unit, b512 ... carrier element notification unit (carrier element selection unit), b131 ...
  • B132 ... demultiplexing part, b133 ... propagation path estimation part, b134 ... propagation path compensation part, b135 ... inverse discrete Fourier transform part, b136 ... demodulation part, b137, b237, b337 , B437, b537 ... decoding unit, b1371 to b1373, b2371 to b2373, b3371 to b3373 ... data / control information demultiplexing unit B1374 ⁇ ⁇ ⁇ turbo decoding unit, b1375 ⁇ CQI / PMI decoding unit, b1376 ⁇ ACK / NACK decoding unit, b1377 ⁇ RI decoding unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 送信処理部(a14)は、上りリンク制御情報を送信する必要がある場合は、基地局装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信する。

Description

無線通信システム、通信装置、通信方法、及び通信プログラム
 本発明は、無線通信システム、通信装置、通信方法、及び通信プログラムに関する。
 本願は、2009年04月24日に、日本に出願された特願2009-106418号に基づき優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式及び無線ネットワークの進化(以下、「Long Term Evolution(LTE)、または、「Evolved Universal Terrestrial Radio Access(EUTRA)」と称する。)、及び、より広帯域な周波数を利用して、さらに高速なデータの通信を実現する無線アクセス方式及び無線ネットワーク(以下、「Long Term Evolution-Advanced(LTE-A)、または、「Advanced Evolved Universal Terrestrial Radio Access(A-EUTRA)」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project;3GPP)において検討されている。
 LTEでは、下りリンクとして、マルチキャリア送信である直交周波数分割多重(Orthogonal Frequency Division Multiplexing;OFDM)方式が用いられる。また、上りリンクとして、シングルキャリア送信である離散フーリエ変換(Discrete Fourier Transform;DFT)-Spread OFDM方式のシングルキャリア通信方式が用いられる。
 また、LTEにおいて、基地局装置から移動局装置への無線通信(下りリンク)では、報知チャネル(Physical Broadcast Channel;PBCH)、下りリンク制御チャネル(Physical Downlink Control Channel;PDCCH)、下りリンク共用チャネル(Physical Downlink Shared Channel;PDSCH)、マルチキャストチャネル(Physical Multicast Channel;PMCH)、制御フォーマットインディケータチャネル(Physical Control Format Indicator Channel;PCFICH)、HARQインディケータチャネル(Physical Hybrid Automatic Repeat Request Indicator Channel;PHICH)が割り当てられる。また、移動局装置から基地局装置への無線通信(上りリンク)では、上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)が割り当てられる。
 LTE-Aでは、LTEとの互換性(compatibility)を持つこと、つまり、LTE-Aの基地局装置が、LTE-A及びLTEの両方の移動局装置と同時に無線通信を行い、また、LTE-Aの移動局装置が、LTE-A及びLTEの両方の基地局装置と無線通信を行えるようにすることが求められており、LTEと同一のチャネル構造を用いることが検討されている。
 例えば、LTE-Aでは、LTEと同一のチャネル構造の周波数帯域(以下、「キャリア要素(CC:Carrier Component)」、または、「コンポーネントキャリア(CC:Component Carrier)」と称する。)を複数用いて、1つの周波数帯域(広帯域な周波数帯域)として使用する技術(周波数帯域集約:Spectrum aggregation、Carrier aggregation、Frequency aggregationなどとも称される。)が提案されている。
 具体的には、周波数帯域集約を用いた通信では、下りリンクのキャリア要素毎に、報知チャネル、下りリンク制御チャネル、下りリンク共用チャネル、マルチキャストチャネル、制御フォーマットインディケータチャネル、HARQインディケータチャネルを送信し、上りリンクのキャリア要素毎に上りリンク共用チャネル、上りリンク制御チャネル、ランダムアクセスチャネルが割り当てられる。つまり、周波数帯域集約は、上りリンクと下りリンクにおいて、上りリンク制御チャネル、上りリンク共用チャネル、下りリンク制御チャネル、下りリンク共用チャネルなどを、キャリア要素の数用いて、複数のデータや複数の制御情報を同時に送受信する技術である(非特許文献1 第5章参照)。
 上記の周波数帯域集約を用いた通信において、非特許文献2には、上りリンクのキャリア要素のいずれか1つに、ある移動局装置に対する上りリンク共用チャネルを割り当てる場合、当該移動局装置が、全ての上りリンク制御情報(Uplink Control Information;UCI)を上りリンク共用チャネルに配置して、送信する技術が記載されている。この技術は、移動局装置の送信電力を抑えることを目的とする技術である。
"3GPP TR36.814 v0.4.1 (2009-02)", February, 2009. "UL control signalling to support bandwidth extension in LTE-Advanced ", 3GPP TSG RAN WG1 Meeting #56, R1-090724, February 9-13, 2009.
 ところで、基地局装置は、例えば通信量の多い移動局装置に対して、複数の上りリンクのキャリア要素に上りリンク共用チャネルを割り当てることが考えられる。
 しかしながら、移動局装置に対して複数の上りリンクのキャリア要素の上りリンク共用チャネルを割り当てる場合、全ての上りリンク制御情報をこの複数の上りリンクキャリア要素全てに逐一割り当てると、データ情報を割り当てる無線リソースが減ってしまうという欠点があった。また、いずれか一つに割り当てるとしても、基地局装置は、どの上りリンク共用チャネルに上りリンク制御情報が配置されるかを判定することができず、当該上りリンク共用チャネルに配置された情報の種類を誤ってしまうという欠点があった。
 本発明は上記の点に鑑みてなされたものであり、情報を確実に通信することができる無線通信システム、通信装置、通信方法、及び通信プログラムを提供する。
 (1)本発明は上記の課題を解決するためになされたものであり、本発明は、第1の通信装置と第2の通信装置が無線通信を行う無線通信システムにおいて、前記第2の通信装置は、複数のトランスポートブロックのための複数の無線リソースを前記第1の通信装置に割り当て、前記第1の通信装置は、上りリンク制御情報を送信する必要がある場合は、前記割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信し、前記第2の通信装置は、前記1つの無線リソースに配置された上りリンク制御情報を抽出することを特徴とする無線通信システムである。
 上記構成によると、前記無線通信システムは、情報を確実に通信することができる。
 (2)また、本発明は、上記の無線通信システムにおいて、前記上りリンク制御情報を配置する1つの無線リソースは、前記第2の通信装置が選択し、前記第1の通信装置に通知するコンポーネントキャリアの無線リソースであることを特徴とする。
 (3)また、本発明は、上記の無線通信システムにおいて、前記上りリンク制御情報を配置する1つの無線リソースは、前記第2の通信装置から通知される無線リソースそれぞれに対する下りリンク制御情報に基づいて、前記第1の通信装置によって選択されることを特徴とする。
 (4)また、本発明は、上記の無線通信システムにおいて、前記下りリンク制御情報は、変調方式に関する情報を含むことを特徴とする。
 (5)また、本発明は、上記の無線通信システムにおいて、前記下りリンク制御情報は、符号化率に関する情報を含むことを特徴とする。
 (6)また、本発明は、上記の無線通信システムにおいて、前記下りリンク制御情報は、無線リソース量に関する情報を含むことを特徴とする。
 (7)また、本発明は、上記の無線通信システムにおいて、前記下りリンク制御情報は、トランスポートブロックの量に関する情報を含むことを特徴とする。
 (8)また、本発明は、上記の無線通信システムにおいて、前記上りリンク制御情報を配置する1つの無線リソースは、前記無線リソースの周波数の高さに基づいて、前記第1の通信装置によって選択されることを特徴とする。
 (9)また、本発明は、第2の通信装置と無線通信を行う第1の通信装置において、上りリンク制御情報を送信する必要がある場合は、前記第2の通信装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信することを特徴とする第1の通信装置である。
 (10)また、本発明は、第1の通信装置と無線通信を行う第2の通信装置において、複数の無線リソースを前記第1の通信装置に割り当て、前記第1の通信装置が、前記割り当てられた複数の無線リソースのうち、1つの無線リソースに配置して送信した上りリンク制御情報を、受信して抽出することを特徴とする第2の通信装置である。
 (11)また、本発明は、第2の通信装置と無線通信を行う第1の通信装置における通信方法において、前記第1の通信装置が、上りリンク制御情報を送信する必要がある場合は、前記第2の通信装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信する過程を有することを特徴とする通信方法である。
 (12)また、本発明は、第1の通信装置と無線通信を行う第2の通信装置における通信方法において、前記第2の通信装置が、複数の無線リソースを前記第1の通信装置に割り当てる過程と、前記第2の通信装置が、前記第1の通信装置が前記割り当てられた複数の無線リソースのうち1つの無線リソースに配置して送信した上りリンク制御情報を、受信して抽出する過程と、を有することを特徴とする通信方法である。
 (13)また、本発明は、第2の通信装置と無線通信を行う第1の通信装置のコンピュータを、上りリンク制御情報を送信する必要がある場合は、前記第2の通信装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信する手段として機能させることを特徴とする通信プログラムである。
 (14)また、本発明は、第1の通信装置と無線通信を行う第2の通信装置における通信方法において、複数の無線リソースを前記第1の通信装置に割り当てる手段、前記第1の通信装置が、前記割り当てた複数の無線リソースのうち、1つの無線リソースに配置して送信した上りリンク制御情報を、受信して抽出する手段、として機能させることを特徴とする通信プログラムである。
 本発明によれば、無線通信システムは、情報を確実に通信することができる。
この発明の第1の実施形態に係る無線通信システムの概念図である。 本実施形態に係る周波数帯域集約処理の一例を示す図である。 本実施形態に係る上りリンクの無線フレームの構成の一例を示す概略図である。 本実施形態に係る本実施形態に係る上りリンク共用チャネルにおける上り制御信号の配置の一例を示す概略図である。 本実施形態に係る移動局装置の構成を示す概略ブロック図である。 本実施形態に係る移動局装置の送信処理部の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の受信処理部の構成を示す概略ブロック図である。 本実施形態に係る無線通信システムの動作の一例を示すフロー図である。 本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。 この発明の第2の実施形態に係る移動局装置の送信処理部の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の受信処理部の構成を示す概略ブロック図である。 本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。 本実施形態に係る上りリンク共用チャネルの構成の別の一例を示す図である。 この発明の第3の実施形態に係る移動局装置の送信処理部の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の受信処理部の構成を示す概略ブロック図である。 本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。 この発明の第4の実施形態に係る移動局装置の送信処理部の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の受信処理部の構成を示す概略ブロック図である。 本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。 この発明の第5の実施形態に係る移動局装置の送信処理部の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の構成を示す概略ブロック図である。 本実施形態に係る基地局装置の受信処理部の構成を示す概略ブロック図である。 本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。
(第1の実施形態)
 以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。
<無線通信システムについて>
 図1は、本発明の第1実施形態に係る無線通信システムの概念図である。図1において、無線通信システムは、移動局装置A1~A3(第1の通信装置)、及び基地局装置B1(第2の通信装置)を具備する。移動局装置A1~A3と基地局装置B1とは、後述する周波数帯域集約を用いた通信を行う。
 図1は、基地局装置B1から移動局装置A1~A3への無線通信(下りリンク)では、下りリンクパイロットチャネル(または、「下りリンクリファレンスシグナル(Downlink Reference Signal;DL RS)」とも称する。)、報知チャネル(Physical Broadcast Channel;PBCH)、下りリンク制御チャネル(Physical Downlink Control Channel;PDCCH)、下りリンク共用チャネル(Physical Downlink Shared Channel;PDSCH)、マルチキャストチャネル(Physical Multicast Channel;PMCH)、制御フォーマットインディケータチャネル(Physical Control Format Indicator Channel;PCFICH)、HARQインディケータチャネル(Physical Hybrid ARQ Indicator Channel;PHICH)が割り当てられることを示す。また、図1は、移動局装置A1~A3から基地局装置B1への無線通信(上りリンク)では、上りリンクパイロットチャネル(または、「上りリンクリファレンスシグナル(Uplink Reference Signal;UL RS)」とも称する。)、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)、上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)が割り当てられることを示す。
 以下、移動局装置A1~A3を移動局装置a1といい、基地局装置B1を基地局装置b1という。
<周波数帯域集約について>
 図2は、本実施形態に係る周波数帯域集約処理の一例を示す図である。図2において、横軸は周波数領域、縦軸は時間領域を示す。
 図2に示すように、下りリンクのサブフレームD1は、20MHzの帯域幅を持った3つのキャリア要素(DCC-0:Downlink Component Carrier-0、DCC-1、DCC-2)のサブフレームによって構成されている。この下りリンクのキャリア要素(下りキャリア要素という)のサブフレーム各々には、右斜線でハッチングした領域が示す下りリンク制御チャネルと、ハッチングをしない領域が示す下りリンク共用チャネルと、が時間多重されて割り当てられる。
 一方、上りリンクのサブフレームU1は、20MHzの帯域幅を持った3つのキャリア要素(UCC-0:Uplink Component Carrier-0、UCC-1、UCC-2)によって構成されている。この上りリンクのキャリア要素(上りキャリア要素という)のサブフレーム各々には、斜めの格子状の線でハッチングした領域が示す上りリンク制御チャネルと、左斜線でハッチングした領域が示す上りリンク共用チャネルと、が周波数多重されて割り当てられる。以下、UCC-n(n=0、1、2)の番号nを上りキャリア要素番号nという。
 例えば、基地局装置b1は、あるサブフレームにおいて、3つの下りキャリア要素のうち1個又は複数の下りキャリア要素の下りリンク共用チャネルに信号を配置して、移動局装置a1へ送信する。また、移動局装置a1は、あるサブフレームにおいて、3つの上りキャリア要素のうち1個又は複数の上りキャリア要素の上りリンク共用チャネルに信号を配置して、基地局装置b1へ送信する。
<上りリンク無線フレームについて>
 図3は、本実施形態に係る上りリンクの無線フレームの構成の一例を示す概略図である。図3は、ある上りキャリア要素における無線フレームの構成を示す。図3において、横軸は時間領域、縦軸は周波数領域である。
 図3に示すように、上りキャリア要素の無線フレームは、複数の物理リソースブロック(PRB;Physical Resource Block)ペア(例えば、符号RBを付した破線で囲まれた領域)から構成されている。この物理リソースブロックペアは、無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅)及び時間帯(2個のスロット=1個のサブフレーム)からなる。
 1個の物理リソースブロックペアは、時間領域で連続する2個の物理リソースブロック(PRB帯域幅×スロット)から構成される。1個の物理リソースブロック(図3において、太線で囲まれている単位)は、周波数領域において12個のサブキャリアから構成され、時間領域において7個のDFT―Spread OFDMシンボルから構成される。
 時間領域においては、7個のDFT―Spread OFDMシンボルから構成されるスロット、2個のスロットから構成されるサブフレーム、10個のサブフレームから構成される無線フレームがある。周波数領域においては、上りリンクのキャリア要素の帯域幅に応じて複数の物理リソースブロック(PRB)が配置される。尚、1個のサブキャリアと1個のDFT―Spread OFDMシンボルから構成されるユニットをリソースエレメント(Resource Element;RE)と称する。
 以下、無線フレーム内に割り当てられるチャネルについて説明をする。
 上りリンクの各サブフレームでは、例えば、上りリンク制御チャネルと、上りリンク共用チャネルと、上りリンク制御チャネル及び上りリンク共用チャネルの伝搬路推定に用いる上りリンクパイロットチャネルとが割り当てられる。
 上りリンク制御チャネルは、上りキャリア要素の帯域幅の両端の物理リソースブロックペア(左斜線でハッチングされた領域)に割り当てられる。
 上りリンク共用チャネルは、上りリンク制御チャネル以外の物理リソースブロックペア(ハッチングされない領域)が割り当てられる。尚、移動局装置a1は、ある1つのサブフレームにおいて、上りリンク制御チャネル及び上りリンク共用チャネルの両方にデータを配置しない。
 上りリンクパイロットチャネル(図示せず)は、上りリンク共用チャネル及び上りリンク制御チャネルに時間多重されて割り当てられる。
 まず、上りリンク制御チャネルに配置する信号について説明をする。
 上りリンク制御チャネルには、チャネル品質情報、スケジューリング要求(SR:Scheduling Request)、ACK(ACKnowledgement;肯定応答)/NACK(Negative-ACKnowledgement;否定応答)など、通信の制御に用いられる情報である上りリンク制御情報(Uplink Control Information;UCI)の信号が配置される。
 尚、チャネル品質情報は、移動局装置a1が下りリンクのリファレンスシグナルで測定した下りリンクのチャネルの伝送品質を示す情報である。また、スケジューリング要求は、移動局装置a1が基地局装置b1に上りリンクの無線リソースの割り当てを要求する情報である。また、ACK/NACKは、移動局装置が受信した下りリンク共用チャネルの復号の成否を示す情報である。
 また、上記のチャネル品質情報には、CQI(Channel Quality Indicator;チャネル品質指標)、RI(Rank Indicator;ランク指標)、PMI(Precoding Matrix Indicator;プレコーディングマトリックス指標)が含まれる。ここで、CQIは、下りリンクのチャネルの誤り訂正方式、誤り訂正の符号化率、データ変調多値数などの無線伝送パラメータを変更するためのチャネル品質を示す情報である。また、RIは、下りリンクにおいてMIMO(Multiple Input Multiple Output)方式にて空間多重送信する場合に移動局装置a1が要求する情報であって、予め送信信号系列を前処理する信号系列の単位(ストリーム)の数(Rank)を示す情報である。また、PMIは、MIMO方式にて空間多重送信する場合に移動局装置a1が要求する情報であって、予め送信信号系列を前処理するプレコーディングの情報である。
 次に、上りリンク共有チャネルに配置する信号について説明をする。
 上りリンク共有チャネルには、上りリンク制御情報以外の情報であるデータ情報(トランスポートブロック;Transport Block)の信号(データ信号という)が配置される。また、本実施形態では、上りリンク共有チャネルが割り当てられた場合、上りリンク共有チャネルに、上りリンク制御情報の信号(上り制御信号という)も配置される。
 以下、上りリンク共有チャネルにおける上り制御信号の配置について説明をする。
<上りリンク共有チャネルについて>
 図4は、本実施形態に係る上りリンク共用チャネルにおける上り制御信号の配置の一例を示す概略図である。図4において、図4(A)は上り制御信号のマッピングを示す図であり、図4(B)は上りリンク共有チャネルでの上り制御信号の配置を示す図である。尚、図4(B)は、あるサブフレームにおいて移動局装置a1に対して割り当てられた上りキャリア要素の上りリンク共用チャネルの1個を示し、また、上りリンク共用チャネルとして2個の物理リソースブロックペアが割り当てられた場合を示す。
 図4(A)において、縦軸は時間領域を示し、各列はDFTを行う単位の区間(DFT区間)である。また、横軸はDFT区間番号を示し、この番号は時間順に付された番号である。また、図4(A)の横軸方向では、DFT後にサブフレームで送信できる上りリンク共用チャネルのDFT-Spread OFDMシンボルの数(図4(B)の例では、12個)の領域に分割され、変調シンボル(信号)が配置されていることを示す。また、図4(A)の縦軸方向では、サブフレームで割り当てられたサブキャリアの数(図4(B)の例では、24個)の領域に分割され、変調シンボルが配置されていることを示す。
 図4(A)において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルが配置される領域を示す。ACK/NACKの変調シンボルは、DFT区間番号が最も小さい領域からDFT区間番号が大きくなる方向へ3番目と4番目、9番目と10番目の領域であって、時間が最も大きい領域から時間が小さくなる方向へ連続して6個の領域、に配置されている。また、図4(A)において、右斜線でハッチングした領域をRIの変調シンボルが配置される領域を示す。RIの変調シンボルは、DFT区間番号が最も小さい領域からDFT区間番号が大きくなる方向へ2番目と5番目、8番目と11番目の領域であって、時間が最も大きい領域から時間が小さくなる方向へ連続して6個の領域、に配置されている。
 また、図4(A)において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルが配置される領域を示す。CQI又はPMIの変調シンボルは、時間が最も小さい領域において、DFT区間番号が最も小さい領域からDFT区間番号が大きくなる方向へ順番に配置される。そして、時間が最も小さい領域のすべてに配置が終わると、CQI又はPMIの変調シンボルは、CQI又はPMIの変調シンボルを配置した時間領域(行)の次に時間が小さい領域において、DFT区間番号が最も小さい領域からDFT区間番号が大きくなる方向へ順番に配置される。図4(A)は、同様の配置をくり返して、時間が最も小さい領域から時間が大きくなる方向へ4番目の領域であって、DFT区間番号が最も小さい領域からDFT区間番号が大きくなる方向へ10番目の領域まで、CQI又はPMIの変調シンボルが配置されることを示す。
 また、図4(A)において、ハッチングされていない領域は、データ情報の変調シンボルが配置される領域を示す。データ情報の変調シンボルは、CQIとPMIの変調シンボルを全て配置した後、CQIとPMIの変調シンボルと同様に配置される。但し、データの変調シンボルを配置した後、一部のデータの変調シンボルはACK/NACKとRIの変調シンボルで上書きされる。
 図4(B)において、横軸は時間領域、縦軸は周波数領域を示す。図4(B)において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。
 上りリンク共有チャネルに配置されたシンボルは、図4(A)のように配置した変調シンボルを、離散フーリエ変換(Discrete Fourier Transform;DFT)したシンボルである。具体的には、図4(B)において、図4(A)の変調シンボルは、DFT区間番号が小さい方の時間領域(列)から順に離散フーリエ変換し、離散フーリエ変換した周波数領域のシンボルを時間が小さい方から順に配置される。
<移動局装置a1の構成について>
 図5は、本実施形態に係る移動局装置の構成を示す概略ブロック図である。図示するように、移動局装置a1は、上位層処理部a11、制御部a12、受信処理部a13、複数の受信アンテナ、送信処理部a14、及び、複数の送信アンテナ、を含んで構成される。また、上位層処理部a11は、無線リソース制御部a111を含んで構成される。尚、図5では、受信アンテナと送信アンテナとを別の構成としたが、信号の入出力を切り替える作用のあるサイリスタなどを用いてアンテナを共有するようにしてもよい。
 上位層処理部a11は、ユーザの操作等により生成した上りキャリア要素毎のデータ情報を、送信処理部a14に出力する。また、上位層処理部a11は、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、無線リソース制御(RRC:Radio Resource Control)層の処理を行う。
 上記の処理において、上位層処理部a11が備える無線リソース制御部a111は、自装置の各種設定情報、通信状態、及び、バッファ状況の管理などを行う。また、無線リソース制御部a111は、各上りキャリア要素の各チャネルに配置する情報を生成し、上りキャリア要素毎に送信処理部a14に出力する。例えば、無線リソース制御部a111は、HARQ(Hybrid Automatic Repeat Request)処理の結果に応じて下りリンク共用チャネルのデータに対するACK/NACKを生成し、生成したACK/NACKを送信処理部a14に出力する。尚、HARQとは、復号の成否(ACK/NACK)を基地局装置b1に送信し、誤りにより復号できない(NACK)場合に基地局装置b1が信号を再送し、再度受信した信号とすでに受信した信号との合成信号に対して復号処理を行う技術である。
 また、無線リソース制御部a111は、基地局装置b1から下りリンク制御チャネルで通知された下りリンク制御情報(Downlink Control Information)に基づき、受信処理部a13及び送信処理部a14の制御を行うために制御情報を生成し、制御部a12に出力する。例えば、無線リソース制御部a111は、自装置に対する上りリンク共用チャネルが割り当てられた上りキャリア要素を示す共用チャネル割当情報を、制御部a12に出力する。また、例えば、無線リソース制御部a111は、上りリンク共有チャネルに信号を配置する場合、図4に示したマッピングを行うことを示すマッピング情報を記憶部(図示せず)から読み出し、制御部a12に出力する。尚、このマッピング情報は、移動局装置a1の製造時又はソフトウェアの更新時に予め記憶してもよいし、基地局装置b1から通知された場合に予め記憶してもよい。
 制御部a12は、上位層処理部a11からの制御情報に基づいて、受信処理部a13及び送信処理部a14の制御を行う制御信号を生成する。尚、この制御信号のうち共用チャネル割当情報に基づいて生成された制御信号を、共用チャネル割当情報信号という。この共用チャネル割当情報信号は、上りリンク共用チャネルが割り当てられた上りキャリア要素番号n(n=0、1、2)の1個或いは複数、又は、上りリンク共用チャネルが割り当てられていないことを示す「9」のいずれかの値である。
 制御部a12は、生成した制御信号を受信処理部a13及び送信処理部a14に出力して受信処理部a13及び送信処理部a14の制御を行う。
 受信処理部a13は、受信アンテナを介して基地局装置b1から受信した受信信号を、制御部a12から入力された制御信号に従って、復調、復号する。受信処理部a13は、復号した情報を上位層処理部a11に出力する。また、受信処理部a13は、検出した下りリンクパイロット信号の受信品質等に基づいて、チャネル品質情報(CQI/PMI/RI)を生成し、送信処理部a14に出力する。
 送信処理部a14は、制御部a12からの制御信号に従って、上りリンクリファレンスシグナルを生成する。また、送信処理部a14は、上位層処理部a11から入力されたデータ情報、ACK/NACK、及び受信処理部a13から入力されたチャネル品質情報、を符号化及び変調し、変調シンボルを生成する。
 送信処理部a14は、生成した変調シンボルを上りリンク共用チャネル及び上りリンク制御チャネルに配置し、生成した上りリンクリファレンスシグナルと多重して、送信アンテナを介して基地局装置b1に送信する。
 この変調シンボルの配置において、送信処理部a14は、図4で示したように、上りリンク制御情報を上りリンク共用チャネルに配置する。ここで、自装置に対して上りリンク共用チャネルが割り当てられた上りキャリア要素が複数ある場合、送信処理部a14は、予め定められた配置規則に従って上りキャリア要素を選択し、選択した上りキャリア要素の上りリンク共用チャネルに上りリンク制御情報を配置する。
 以下、送信処理部a14についての詳細を説明する。
<送信処理部a14の構成について>
 図6は、本実施形態に係る移動局装置の送信処理部a14の構成を示す概略ブロック図である。図示するように、送信処理部a14は、符号化部a141、変調部a142、離散フーリエ変換部a143、上りリンクリファレンスシグナル生成部a144、多重部a145、及び、送信部a146を含んで構成される。また、符号化部a141は、ターボ符号化部a1411、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414、多重切替部a1415(キャリア要素選択部)、及びデータ/制御情報多重部a1416~a1418を含んで構成される。尚、図6は、図2に示したように、3つの上りキャリア要素を用いて、基地局装置b1と通信を行う場合を示す図である。また、送信処理部a14の各部は、制御部a12から入力される制御信号に従って処理を行う。
 ターボ符号化部a1411は、上位層処理部a11から入力された上りキャリア要素毎のデータ情報を、それぞれ、基地局装置b1から通知された符号化率でターボ誤り訂正符号化し、符号化ビット(データ符号化ビットという)を生成する。ターボ符号化部a1411は、生成した上りキャリア要素毎のデータ符号化ビットを、上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に出力する。尚、ターボ符号化部a1411は、上りリンク共用チャネルにCQI/PMIを多重する場合は、CQI/PMIの符号化ビット分だけデータの符号化ビットを減らすようにターボ誤り訂正符号化する。
 CQI/PMI符号化部a1412は、制御部a12から入力された共用チャネル割当情報信号に基づいて、受信処理部a14から入力されたCQI/PMIを誤り訂正符号化し、CQI/PMIの符号化ビットを生成する。CQI/PMI符号化部a1412は、生成した符号化ビット(CQI/PMI符号化ビットという)を、多重切替部a1415に出力する。
 ACK/NACK符号化部a1413は、制御部a12から入力された共用チャネル割当情報信号に基づいて、上位層処理部a1413から入力されたACK/NACKを誤り訂正符号化し、生成した符号化ビット(ACK/NACK符号化ビットという)を、多重切替部a1415に出力する。
 RI符号化部a1414は、制御部a12から入力された共用チャネル割当情報信号に基づいて、受信処理部a14から入力されたRIを誤り訂正符号化し、生成した符号化ビット(RI符号化ビットという)を、多重切替部a1415に出力する。
 CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414は、共用チャネル割当情報信号が「9」である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられていないことを示すと判定した場合と、共用チャネル割当情報信号が1個、又は複数個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、自装置に対して1個、又は複数個の上りリンク共用チャネルが割り当てられていることを示すと判定した場合とで、誤り訂正符号化の切り替え処理を行なう。つまり、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414は、符号化ビットが上りリンク制御チャネル、又は上りリンク共用チャネルで送信されるかで異なる誤り訂正符号化を行なう。
 多重切替部a1415は、制御部a12から入力された共用チャネル割当情報信号に基づいて、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414から入力された符号化ビットの出力先を切り替える制御情報配置切り替え処理を行う。
 ここで、多重切替部a1415が行う制御情報配置切り替え処理について説明をする。
 多重切替部a1415は、共用チャネル割当情報信号が「9」である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられていないことを示すと判定した場合、符号化ビットの出力先を多重部a145に決定する。この場合、出力された符号化ビットは変調部(図示せず)で変調され、多重部a145で上りリンク制御チャネルに配置される。
 一方、多重切替部a1415は、共用チャネル割当情報信号が1個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられた上りキャリア要素が1個であると判定した場合、符号化ビットの出力先を、当該上りリンク共用チャネルが割り当てられた上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418のうち一つに決定する。
 また、多重切替部a1415は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられた上りキャリア要素が複数個であると判定した場合、符号化ビットの出力先を、予め定められた配置規則に従って、以下のように決定する。
 本実施形態では、まず、多重切替部a1415は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、最も大きい値の上りキャリア要素番号nを選択する。多重切替部a1415は、選択した上りキャリア要素番号nの上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418のうち一つに、符号化ビットの出力先を決定する。すなわち、多重切替部a1415は、無線リソースが割り当てられた複数のキャリア要素から予め定めた規則に従ってキャリア要素を選択する。
 多重切替部a1415は、以上の制御情報配置切り替え処理により決定した出力先に、符号化ビットを出力する。
 データ/制御情報多重部a1416~a1418は、それぞれ、上りキャリア要素番号0~2の上りキャリア要素に対応し、対応する上りキャリア要素に配置する信号の符号化ビットを並び替える。データ/制御情報多重部a1416~a1418が持つ機能は同じであるので、その1つ(データ/制御情報多重部a1418)を代表して説明する。
 データ/制御情報多重部a1418は、ターボ符号化部a1411から入力されたデータ符号化ビットと、多重切替部a1415から入力された符号化ビットと、を次のように並び換える。まず、データ/制御情報多重部a1418は、CQI/PMI符号化ビットの後方にデータ符号化ビットを結合する。次に、ACK/NACK符号化ビット及びRI符号化ビットの変調シンボルが、図4(A)に示した配置になるように、データ符号化ビットをACK/NACK符号化ビット及びRI符号化ビットで上書きする。
 データ/制御情報多重部a1418は、順序を並び換えた符号化ビットを変調部a142へ出力する。尚、多重切替部a1415から符号化ビットが入力されない場合、データ/制御情報多重部a1418は、CQI/PMI符号化ビット、ACK/NACK符号化ビット、及びRI符号化ビットの挿入は行わず、データ符号化ビットのみを変調部a142へ出力する。すなわち、データ/制御情報多重部a1418は、多重切替部a1415が選択した上りキャリア要素の無線リソースに、上りリンク制御情報を配置する。
 変調部a142は、データ/制御情報多重部a1416~a1418から入力された各上りキャリア要素の符号化ビットのそれぞれを、4相位相偏移変調(Quadrature Phase Shift Keying;QPSK)、16値直交振幅変調(16Quadrature Amplitude Modulation;16QAM)、64値直交振幅変調(64Quadrature Amplitude Modulation;64QAM)等のいずれかの変調方式であって予め移動局装置a1が基地局装置b1から通知された変調方式で変調し、変調シンボルの信号を生成する。
 変調部a142は、生成した各上りキャリア要素の信号を、離散フーリエ変換部a143へ出力する。
 離散フーリエ変換部a143は、変調部a142から入力された各上りキャリア要素の信号のそれぞれを、図4(A)のように並列に並べ替える。離散フーリエ変換部a143は、並列に並び換えた信号に離散フーリエ変換を行い、周波数領域の信号を生成する。離散フーリエ変換部a143は、生成した各上りキャリア要素の信号を、多重部a145へ出力する。
 上りリンクリファレンスシグナル生成部a144は、各上りキャリア要素の信号系列であって移動局装置a1と基地局装置b1で既知の系列信号(上りリンクリファレンスシグナル)を生成する。尚、この上りリンクリファレンスシグナルは、移動局装置a1を識別する移動局ID及び基地局装置b1を識別する基地局IDに基づいて生成される。
 上りリンクリファレンスシグナル生成部a144は、生成した上りリンクリファレンスシグナルを多重部a145へ出力する。
 多重部a145は、離散フーリエ変換部a143から入力された各上りキャリア要素の信号と、上りリンクリファレンスシグナル生成部a145から入力された上りリンクリファレンスシグナルと、を、基地局装置b1から割り当てられた上りリンク共用チャネルのリソースエレメントに配置する(図4(B)参照)。多重部a145は、配置した各上りキャリア要素の信号を、送信部a146に出力する。
 尚、多重部a145は、多重切替部a1415から符号化ビットを変調した信号が入力された場合、この信号を、上りリンク制御チャネルに配置する。
 送信部a146は、多重部a145から入力された周波数領域の信号に対し、逆高速フーリエ変換(Inverse Fast Fourier Transform;IFFT)を行って、DFT-Spread OFDMシンボルを生成する。尚、DFT-Spread OFDMシンボルは、時間領域の信号にフーリエ変換を行った(本実施形態では、離散フーリエ変換部a143が行う)周波数領域の信号を、別の周波数に配置(本実施形態では、多重部a145が行う)し、逆フーリエ変換を行う(本実施形態では、送信部a146が行う)ことで生成したOFDMシンボルである。
 送信部a146は、生成したDFT-Spread OFDMシンボルに対して、ガードインターバル(Guard Interval;GI)を付加し、ベースバンドのディジタル信号を生成する。送信部a146は、生成したディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分及び直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、各送信アンテナに出力して送信する。
<基地局装置b1の構成について>
 図7は、本実施形態に係る基地局装置b1の構成を示す概略ブロック図である。図示するように、基地局装置b1は、上位層処理部b11、制御部b12、受信処理部b13、複数の受信アンテナ、送信処理部b14、及び、複数の送信アンテナ、を含んで構成される。また、上位層処理部b11は、無線リソース制御部b111を含んで構成される。尚、図7では、受信アンテナと送信アンテナとを別の構成としたが、信号の入出力を切り替える作用のあるサイリスタなどを用いてアンテナを共有するようにしてもよい。
 上位層処理部b11は、上りキャリア要素毎のデータ情報を、送信処理部b14に出力する。また、上位層処理部b11は、パケットデータ統合プロトコル層、無線リンク制御層、無線リソース制御層の処理を行う。上位層の無線リソース制御部は、各移動局装置の各種設定情報、通信状態、及び、バッファ状況の管理などを行っている。
 上記の処理において、上位層処理部b11が備える無線リソース制御部b111は、上りキャリア要素を複数選択し、選択した各上りキャリア要素内の無線リソースを上りリンク制御情報又はデータ情報を配置する無線リソースとして移動局装置a1に割り当てる。無線リソース制御部b111は、当該割り当てを示す上り共用チャネル割当情報を下りリンク制御情報として、送信処理部b14を介して、移動局装置a1に送信する。
 また、無線リソース制御部b111は、移動局装置a1各々の各種設定情報、通信状態、及び、バッファ状況の管理などを行う。また、無線リソース制御部b111は、各下りキャリア要素の各チャネルに配置する情報を生成、又はネットワークから取得し、下りキャリア要素毎に送信処理部b14に出力する。例えば、無線リソース制御部b111は、HARQ処理の結果に応じて上りリンク共用チャネルのデータに対するACK/NACKを生成し、生成したACK/NACKを送信処理部b14に出力する。また、例えば、無線リソース制御部b111は、下りリンク制御情報を生成し、送信処理部b14に出力する。
 また、無線リソース制御部b111は、移動局装置a1から上りリンク制御チャネル、又は、上りリンク共用チャネルで通知された上りリンク制御情報(ACK/NACK、チャネル品質情報、スケジューリング要求、及び移動局装置a1のバッファの状況)に基づき、受信処理部b13及び送信処理部b14の制御を行うために制御情報を生成し、制御部b12に出力する。例えば、無線リソース制御部a111は、移動局装置a1各々について、上りリンク共用チャネルを割り当てた上りキャリア要素を示す共用チャネル割当情報を、制御部a12に出力する。また、例えば、無線リソース制御部b111は、上りリンク共有チャネルの信号を抽出する場合、図4に示したマッピングの逆のデマッピングを行うことを示すデマッピング情報を記憶部(図示せず)から読み出し、制御部b12に出力する。尚、このデマッピング情報は、基地局装置b1の製造時、ソフトウェアの更新時、又は、オペレータの操作による更新時に、予め記憶してもよいし、移動局装置a1から通知された場合に予め記憶してもよい。
 制御部b12は、上位層処理部b11からの制御情報に基づいて、受信処理部b13及び送信処理部b14の制御を行う制御信号を生成する。尚、共用チャネル割当情報に基づいて生成された共用チャネル割当情報信号は、移動局装置a1に上りリンク共用チャネルを割り当てた上りキャリア要素番号n(n=0、1、2)の1個或いは複数、又は、上りリンク共用チャネルが割り当てられていないことを示す「9」のいずれかの値である。
 受信処理部b13は、制御部b12から入力された制御信号に従って、受信アンテナを介して移動局装置a1から受信した受信信号を復調、復号する。受信処理部b13は、復号した情報を上位層処理部b11に出力する。この復調処理において、受信処理部b13は、上りリンク共用チャネルを複数割り当てた移動局装置a1から受信した受信信号から、予め定められた配置規則に従って、上りリンク制御情報を抽出し、復調、復号を行う。受信処理部b13の詳細については、後述する。
 送信処理部b14は、制御部b12からの制御信号に従って、下りリンクリファレンスシグナルを生成する。また、送信処理部b14は、上位層処理部b11から入力されたデータ情報、下りリンク制御情報(例えば、上り共用チャネル割当情報、各下りキャリア要素内の下りリンク共用チャネルの無線リソースの割り当てを示す下り共用チャネル割当情報)を符号化及び変調し、変調シンボルを生成する。
 送信処理部b14は、生成した変調シンボルを下りリンク共用チャネル及び下りリンク制御チャネルに配置し、生成した下りリンクリファレンスシグナルと多重して、送信アンテナを介して移動局装置a1に送信する。
<受信処理部b13の構成について>
 以下、受信処理部b13の詳細について説明をする。
 図8は、本実施形態に係る基地局装置b1の受信処理部b13の構成を示す概略ブロック図である。図示するように、受信処理部b13は、受信部b131、多重分離部b132、伝搬路推定部b133、伝搬路補償部b134、逆離散フーリエ変換部b135、復調部b136、及び復号化部b137を含んで構成される。また、復号化部b137は、データ/制御情報多重分離部b1371~b1373、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377を含んで構成される。尚、図8は、図2に示したように、3つの上りキャリア要素を用いて、移動局装置a1と通信を行う場合を示す図である。また、受信処理部b13の各部は、制御部b12から入力される制御信号に従って処理を行う。
 受信部b131は、各受信アンテナを介して受信した各上りキャリア要素の信号を、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分及び直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。受信部b131は、変換したディジタル信号からガードインターバルに相当する部分を除去する。受信部b131は、ガードインターバルを除去した信号に対して高速フーリエ変換を行い、周波数領域の信号を抽出する。受信部b131は、抽出した上りキャリア要素毎の信号を多重分離部b132に出力する。
 多重分離部b132は、受信部b131から入力された信号を、上りキャリア要素毎に、上りリンク制御チャネル、上りリンク共用チャネル、及び上りリンクパイロットチャネルに配置された信号に、それぞれ分離する。尚、この分離は、予め基地局装置b1が決定して各移動局装置a1に通知した無線リソースの割当情報に基づいて行われる。
 多重分離部b132は、分離した上りリンク制御チャネル及び上りリンク共用チャネルの信号を、伝搬路補償部b134に出力する。また、多重分離部b132は、分離した上りリンクパイロットチャネルに配置された信号(上りリンクリファレンスシグナル)を、伝搬路推定部b133に出力する。
 伝搬路推定部b133は、多重分離部b132から入力された各上りキャリア要素の上りリンクリファレンスシグナルの系列から、上りリンク共用チャネルの伝搬路の推定値を算出し、伝搬路の推定値を伝搬路補償部b134に出力する。
 伝搬路補償部b134は、伝搬路推定部b133から入力された伝搬路の推定値を用いて、多重分離部b132から入力された各上りキャリア要素の上りリンク制御チャネル及び上りリンク共用チャネルの信号に対して伝搬路の補償を行う。伝搬路補償部b134は、伝搬路の補償を行った信号を、逆離散フーリエ変換部b135に出力する。
 逆離散フーリエ変換部b135は、伝搬路補償部b134から入力された各キャリア要素の信号を、予め定められた周波数であって移動局装置a1の離散フーリエ変換部a143が離散フーリエ変換を行った周波数に、配置する。逆離散フーリエ変換部b135は、配置を変更した信号に対して逆離散フーリエ変換し、上りリンク共用チャネルの信号を復調部b136へ出力する。
 復調部b136は、逆離散フーリエ変換部b135から入力された各上りキャリア要素の信号それぞれに対して、QPSK、16QAM、64QAM等のいずれかの変調方式であって予め基地局装置b1が決定して各移動局装置a1に通知した変調方式で復調する。復調部b136は、復調した各上りキャリア要素の符号化ビットを直列に並べ替え、上りキャリア要素に対応するデータ/制御情報多重分離部b1371~b1373に出力する。
 データ/制御情報多重分離部b1371~b1373は、それぞれ、上りキャリア要素番号0~2の上りキャリア要素に対応し、対応する上りキャリア要素に配置された信号の符号化ビットを分離する制御情報分離処理を行う。データ/制御情報多重分離部b1371~b1373が持つ機能は同じであるので、その1つ(データ/制御情報多重分離部b1373)を代表して説明する。
 データ/制御情報多重分離部b1373が行う制御情報分離処理について説明をする。
 データ/制御情報多重分離部b1373は、共用チャネル割当情報信号が「9」である場合、つまり、入力された情報を送信した移動局装置a1に対して上りリンク共用チャネルを割り当てていないこと示すと判定した場合、上りリンク制御チャネルの符号化ビットから上りリンク制御情報の符号化ビット(CQI/PMI符号化ビット、ACK/NACK符号化ビット、RI符号化ビット)を抽出する。尚、この場合、データ/制御情報多重分離部b1373は、上りリンク共有チャネルの符号化ビットは抽出しない。
 一方、データ/制御情報多重分離部b1373は、共用チャネル割当情報信号が1個の上りキャリア要素番号「2」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。この場合は、基地局装置b1が、データ/制御情報多重分離部b1373に入力された情報を送信した移動局装置a1に対して、上りキャリア要素番号「2」の上りキャリア要素の上りリンク共用チャネルを1個だけ割り当てた場合である。尚、データ/制御情報多重分離部b1371、b1372については、それぞれ、共用チャネル割当情報信号が1個の上りキャリア要素番号「0」、「1」である場合に上記の符号化ビットの分離処理を行う。
 また、データ/制御情報多重分離部b1373は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、予め定められた配置規則であって移動局装置a1が用いた配置規則と同じ配置規則に従って、以下のように符号化ビットの分離処理を行う。尚、この場合は、基地局装置b1が、データ/制御情報多重分離部b1373に入力された情報を送信した移動局装置a1に対して、複数個の上りキャリア要素番号の上りキャリア要素の上りリンク共用チャネルを割り当てた場合である。
 まず、データ/制御情報多重分離部b1373は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、最も大きい値の上りキャリア要素番号nを選択する。データ/制御情報多重分離部b1373は、選択した上りキャリア要素番号nが「2」であるか否かを判定する。「2」であると判定した場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。すなわち、データ/制御情報多重分離部b1373は、無線リソースが割り当てられた複数の上りキャリア要素から予め定めた規則に従って上りキャリア要素を選択し、選択した上りキャリア要素内の無線リソースに配置された上りリンク制御情報を抽出する。尚、データ/制御情報多重分離部b1372については、選択した上りキャリア要素番号nが「1」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 データ/制御情報多重分離部b1373は、以上の制御情報分離処理により分離したデータ符号化ビット、CQI/PMI符号化ビット、ACK/NACK符号化ビット、及びRI符号化ビットを、それぞれ、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377に出力する。
 ターボ復号化部b1374は、データ/制御情報多重分離部b1371~b1373から入力された各上りキャリア要素のデータ符号化ビットに対して、ターボ復号による誤り訂正復号をし、復号したデータを上位層処理部b11に出力する。尚、ターボ復号化部b1374は、移動局装置a1において、ACK/NACK及びRIの符号化ビットに置き換えられたデータ符号化ビットは、ビットの値が0か1かの確率が同じだとして誤り訂正復号をする。
 CQI/PMI復号化部b1375は、データ/制御情報多重分離部b1371~b1373から入力されたCQI/PMI符号化ビットに対して、誤り訂正復号をし、上位層処理部b11に出力する。
 ACK/NACK復号化部b1376は、データ/制御情報多重分離部b1371~b1373から入力されたACK/NACK符号化ビットに対して、誤り訂正復号をし、上位層処理部b11に出力する。
 RI復号化部b1377は、データ/制御情報多重分離部b1371~b1373から入力されたRI符号化ビットに対して、誤り訂正復号をし、上位層処理部b11に出力する。
 CQI/PMI復号化部a1374、ACK/NACK復号化部a1376、RI復号化部a1377は、共用チャネル割当情報信号が「9」である場合、つまり、移動局装置a1に対して上りリンク共用チャネルを割り当てていないことを示すと判定した場合と、共用チャネル割当情報信号が1個、又は複数個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、移動局装置a1に対して1個、又は複数個の上りリンク共用チャネルを割り当てていることを示すと判定した場合とで、誤り訂正符号化の切り替え処理を行なう。つまり、CQI/PMI復号化部a1374、ACK/NACK復号化部a1376、RI復号化部a1377は、符号化ビットが上りリンク制御チャネル、又は上りリンク共用チャネルで送信されたかで異なる誤り訂正復号化を行なう。
<無線通信システムの動作について>
 以下、無線通信システムの動作について説明をする。
 図9は、本実施形態に係る無線通信システムの動作の一例を示すフロー図である。
(ステップS100)基地局装置b1は、基地局装置b1が通信に用いる全ての下りキャリア要素の全周波数帯域に分散させて、移動局装置a1が既知である下りリンクリファレンスシグナルを送信する。次に、ステップS101に進む。
(ステップS101)基地局装置b1は、下りリンク共用チャネルを用いて移動局装置a1にデータ情報を送信する。次に、ステップS102に進む。
(ステップS102)基地局装置b1は、上りキャリア要素の上りリンク共用チャネルを移動局装置a1に割り当て、当該割り当てを示す上り共用チャネル割当情報を生成する。基地局装置b1は、生成した上り共用チャネル割当情報を下りリンク制御チャネルを用いて送信する。次に、ステップS103に進む。
(ステップS103)移動局装置a1、ステップS100で送信された下りリンクリファレンスシグナルを受信し、受信した下りリンクリファレンスシグナルに基づいて、チャネル品質情報を生成する。次に、ステップS104に進む。
(ステップS104)移動局装置a1は、ステップS101で基地局装置b1が送信した下りリンク共用チャネルのデータを受信し、受信したデータ情報に対するACK/NACKを生成する。次に、ステップS105に進む。
(ステップS105)移動局装置a1は、ステップS102で送信された上り共用チャネル割当情報を受信し、受信した上り共用チャネル割当情報に基づいて、ACK/NACK、チャネル品質情報を送信する上りキャリア要素の上りリンク共用チャネルを選択する。本実施形態では、移動局装置a1は、上記のように、割り当てられた上りリンク共用チャネルのうち、周波数が最も高い上りキャリア要素の上りリンク共用チャネルを選択する。次に、ステップS106に進む。
(ステップS106)移動局装置a1は、データ情報、ACK/NACK、チャネル品質情報を符号化、及び、変調し、基地局装置に割り当てられた上りキャリア要素の無線リソースに多重する。次に、ステップS107に進む。
(ステップS107)移動局装置a1は、上りリンク共用チャネルが割り当てられている場合、データ情報、ACK/NACK、チャネル品質情報を上りリンク共用チャネルで送信する。次に、ステップS108に進む。
(ステップS108)基地局装置b1は、ステップS102で移動局装置a1に割り当てた上りリンクのキャリア要素の上りリンク共用チャネルに配置された信号を受信する。次に、ステップS109に進む。
(ステップS109)基地局装置b1は、ステップS108で受信した上りリンク共用チャネルを復調する。次に、S110に進む。
(ステップS110)基地局装置b1は、ステップS102で生成した上り共用チャネル割当情報に基づいて、ACK/NACK、チャネル品質情報が配置された上りキャリア要素の上りリンク共用チャネルを選択する。本実施形態では、基地局装置b1は、上記のように、割り当てられた上りリンク共用チャネルのうち、周波数が最も高い上りキャリア要素の上りリンク共用チャネルを選択する。次に、ステップS111に進む。
(ステップS111)基地局装置b1は、ステップS110で選択した上りキャリア要素の上りリンク共用チャネルからデータ情報、ACK/NACK、チャネル品質情報を分離する。次に、ステップS112に進む。
(ステップS112)基地局装置b1は、ステップS111で分離したデータ情報、ACK/NACK、チャネル品質情報を復調、及び、復号する。ステップS112の後、基地局装置b1と移動局装置a1は、上りリンク共用チャネルの送信に関する処理を終了する。
<上りリンク共用チャネルの構成>
 図10は、本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。図10において、横軸は時間領域、縦軸は周波数領域を示す。また、図10は、1個のサブフレームにおける上りリンク共用チャネルの構成を示す。図10は、図2に示した周波数帯域集約を用いた通信を行うときに、基地局装置b1が、ある移動局装置a1に対して、UCC-0とUCC-2に上りリンク共用チャネルを割り当てた場合の図である。
 図10において、UCC-0、UCC-2には、それぞれ、符号U101を付した上りリンク共有チャネルのシンボルU101、符号U121を付した上りリンク共有チャネルのシンボルU121が配置されている。
 シンボルU101、U121において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。このシンボルU101、U121は、図4(B)のシンボルである。
 符号U102を付したシンボルU102、符号U122を付したシンボルU122は、それぞれ、シンボルU101、U121から上りリンクリファレンスシグナルを除いた上りリンク共有チャネルのシンボルを示す。
 符号U103を付したシンボルU103、符号U123を付したシンボルU123は、それぞれ、シンボルU102、U122に対して逆離散フーリエ変換を行って生成したシンボルを示す。
 シンボルU103において、ハッチングされていない領域は、データ情報の変調シンボルを示す。シンボルU123において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルを示し、左斜線でハッチングした領域をRIの変調シンボルを示す。また、シンボルU123において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルを示し、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 図10は、UCC-0とUCC-2に上りリンク共用チャネルを割り当てた場合、周波数が最も高い上りキャリア要素であるUCC-2の上りリンク共用チャネルに、上りリンク制御情報(CQI/PMI、RI、ACK/NACK)が配置されていることを示す。
 このように、本実施形態によれば、無線通信システムは、基地局装置b1が複数の上りキャリア要素内の無線リソースを割り当て、移動局装置a1が予め定めた規則に従って選択した上りキャリア要素内の無線リソースに上りリンク制御情報を配置して送信し、基地局装置b1が予め定めた規則に従って選択した上りキャリア要素内の無線リソースに配置された上りリンク制御情報を抽出する。これにより、無線通信システムは、複数の上りキャリア要素内の無線リソースを割り当て、割り当てられた無線リソースに配置した上りリンク制御情報とデータ情報とを確実に通信することができる。
 また、上記実施形態において、無線通信システムは、移動局装置a1と基地局装置b1とが予め定めた規則に従って1個の上りキャリア要素を選択するので、選択した1個の上りキャリア要素でのみ信号の多重又は分離を行い、他の上りキャリア要素では信号の多重及び分離を行わずにデータ情報を抽出することができ、複数の上りキャリア要素の上りリンク共用チャネルに上りリンク制御情報を配置する場合と比較して処理負荷を軽減することができる。
 また、上記実施形態において、無線通信システムは、基地局装置b1が上りリンク制御情報を上りリンク共用チャネルに配置するので、上りリンク制御チャネルで上りリンク制御情報を送信する場合と比較して、送信電力を抑圧することができる。
(第2の実施形態)
 以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。
 上記第1の実施形態では、無線通信システムは、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、1個の上りキャリア要素を選択する場合について説明をした。本実施形態では、無線通信システムが、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、複数(M個)の上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択する場合について説明をする。
 本実施形態に係る無線通信システムと第1の実施形態に係る無線通信システムとを比較すると、移動局装置の送信処理部及び基地局装置の受信処理部が異なる。しかし、他の構成要素が持つ構成及び機能は、第1の実施形態と同じであるので、第1の実施形態と同じ機能についての説明は省略する。以下、本実施形態に係る移動局装置を移動局装置a2といい、基地局装置を基地局装置b2という。
<送信処理部a24の構成について>
 図11は、この発明の第2の実施形態に係る移動局装置a2の送信処理部a24の構成を示す概略ブロック図である。本実施形態に係る送信処理部a24(図11)と第1の実施形態に係る送信処理部a14(図6)とを比較すると、多重切替部a2415が異なる。しかし、他の構成要素(ターボ符号化部a1411、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414、データ/制御情報多重部a1416~a1418、変調部a142、離散フーリエ変換部a143、多重部a145、上りリンクリファレンスシグナル生成部a144、及び、送信部a145)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 以下、多重切替部a2415が行う制御情報配置切り替え処理について説明をする。
 多重切替部a2415は、共用チャネル割当情報信号が「9」である場合、符号化ビットの出力先を多重部a145に決定する。
 一方、多重切替部a2415は、共用チャネル割当情報信号が1個の上りキャリア要素番号n(n=0、1、2)である場合、符号化ビットの出力先を、当該上りリンク共用チャネルが割り当てられた上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に決定する。
 また、多重切替部a2415は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられた上りキャリア要素が複数個であると判定した場合、符号化ビットの出力先を、予め定められた配置規則に従って、以下のように決定する。
 本実施形態では、まず、多重切替部a2415は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、最も大きい値の上りキャリア要素番号nから値の小さくなる方へ順番に、予め定められた個数(M個とする)の上りキャリア要素番号nを選択する。多重切替部a2415は、選択したM個の上りキャリア要素番号nの上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に、符号化ビットの出力先を決定する。つまり、多重切替部a2415は、周波数が最も高い上りキャリア要素から周波数が低くなる方へ順番にM個の上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に符号化ビットの出力先を決定する。すなわち、多重切替部a2415は、複数の上りキャリア要素を選択する。
 多重切替部a2415は、以上の制御情報配置切り替え処理により決定した出力先に、符号化ビットを出力する。
<受信処理部b23の構成について>
 図12は、本実施形態に係る基地局装置b2の受信処理部b23の構成を示す概略ブロック図である。本実施形態に係る受信処理部b23(図12)と第1の実施形態に係る受信処理部b13(図8)とを比較すると、データ/制御情報多重分離部b2371~b2373が異なる。しかし、他の構成要素(受信部b131、多重分離部b132、伝搬路推定部b133、伝搬路補償部b134、逆離散フーリエ変換部b135、復調部b136、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 データ/制御情報多重分離部b2371~b2373は、それぞれ、上りキャリア要素番号0~2の上りキャリア要素に対応し、対応する上りキャリア要素に配置された信号の符号化ビットを分離する制御情報分離処理を行う。データ/制御情報多重分離部b2371~b2373が持つ機能は同じであるので、その1つ(データ/制御情報多重分離部b2373)を代表して説明する。
 以下、データ/制御情報多重分離部b2373が行う制御情報分離処理について説明をする。
 データ/制御情報多重分離部b2373は、共用チャネル割当情報信号が「9」である場合、上りリンク制御チャネルの符号化ビットから上りリンク制御情報の符号化ビットを抽出する。
 一方、データ/制御情報多重分離部b2373は、共用チャネル割当情報信号が1個の上りキャリア要素番号「2」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 また、データ/制御情報多重分離部b2373は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、予め定められた配置規則であって移動局装置a2が用いた配置規則と同じ配置規則に従って、以下のように符号化ビットの分離処理を行う。
 まず、データ/制御情報多重分離部b2373は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、最も大きい値の上りキャリア要素番号nから値の小さくなる方へ順番に、予め定められたM個の上りキャリア要素番号nを選択する。データ/制御情報多重分離部b2373は、選択した上りキャリア要素番号nが「2」であるか否かを判定する。「2」であると判定した場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。すなわち、データ/制御情報多重分離部b2373は、複数のキャリア要素を選択する。尚、データ/制御情報多重分離部b2381、b2372については、それぞれ、選択した上りキャリア要素番号nが「0」、「1」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 データ/制御情報多重分離部b2373は、以上の制御情報分離処理により分離したデータ符号化ビット、CQI/PMI符号化ビット、ACK/NACK符号化ビット、及びRI符号化ビットを、それぞれ、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377に出力する。
<上りリンク共用チャネルの構成>
 図13は、本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。図13において、横軸は時間領域、縦軸は周波数領域を示す。また、図13は、1個のサブフレームにおける上りリンク共用チャネルの構成を示す。図13は、図2に示した周波数帯域集約を用いた通信を行うときに、基地局装置b2が、ある移動局装置a2に対して、UCC-0とUCC-2に上りリンク共用チャネルを割り当て、予め定めた個数MがM=2個の場合の図である。
 この場合、移動局装置a2の多重切替部a2415、及び基地局装置b2のデータ/制御情報多重分離部b2371~b2373は、共用チャネル割当情報信号の上りキャリア要素番号「0」、「2」を選択する。
 図13において、UCC-0、UCC-2には、それぞれ、符号U201を付した上りリンク共有チャネルのシンボルU201、符号U221を付した上りリンク共有チャネルのシンボルU221が配置されている。
 シンボルU201、U221において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。このシンボルU201、U221は、図4(B)のシンボルである。
 符号U202を付したシンボルU202、符号U222を付したシンボルU222は、それぞれ、シンボルU201、U221から上りリンクリファレンスシグナルを除いた上りリンク共有チャネルのシンボルを示す。
 符号U203を付したシンボルU203、符号U223を付したシンボルU223は、それぞれ、シンボルU202、U222に対して逆離散フーリエ変換を行って生成したシンボルを示す。
 シンボルU203、U223において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルを示す。また、シンボルU203、U223において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルを示し、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 また、図13において、U203のACK/NACKの変調シンボルは、DCC-0とDCC-1の下りリンク共用チャネルに対するACK/NACKの変調シンボルである。また、図13において、U223のACK/NACKの変調シンボルは、DCC-2の下りリンク共用チャネルに対するACK/NACKの変調シンボルである。このように、この上りリンク共用チャネルの上りキャリア要素各々に配置する下りキャリア要素のACK/NACKの種類を、予め定めてもよい。また、複数の上りリンク共用チャネルの上りキャリア要素に、分散してACK/NACKを配置してもよい。
 図14は、本実施形態に係る上りリンク共用チャネルの構成の別の一例を示す図である。図14において、横軸は時間領域、縦軸は周波数領域を示す。また、図14は、1個のサブフレームにおける上りリンク共用チャネルの構成を示す。図14は、図2に示した周波数帯域集約を用いた通信を行うときに、基地局装置b2が、ある移動局装置a2に対して、UCC-0、UCC-1、及びUCC-2に上りリンク共用チャネルを割り当て、予め定めた個数MがM=2個の場合の図である。
 この場合、移動局装置a2の多重切替部a2415、及び基地局装置b2のデータ/制御情報多重分離部b2371~b2373は、共用チャネル割当情報信号の上りキャリア要素番号「0」、「1」「2」のうち、値が大きい順(周波数が高い順)に上りキャリア要素番号「2」、「1」を選択する。
 図14において、UCC-0、UCC-1、UCC-2には、それぞれ、符号U301を付した上りリンク共有チャネルのシンボルU301、符号U311を付した上りリンク共有チャネルのシンボルU311、符号U321を付した上りリンク共有チャネルのシンボルU321が配置されている。
 シンボルU301、U311、U321において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。このシンボルU301、U311、U321は、図4(B)のシンボルである。
 符号U302を付したシンボルU302、符号U312を付したシンボルU312、及び符号U322を付したシンボルU322は、それぞれ、シンボルU301、U311、U321から上りリンクリファレンスシグナルを除いた上りリンク共有チャネルのシンボルを示す。
 符号U303を付したシンボルU303、符号U313を付したシンボルU313、符号U323を付したシンボルU323は、それぞれ、シンボルU302、U312、U322に対して逆離散フーリエ変換を行って生成したシンボルを示す。
 シンボルU303において、ハッチングされていない領域は、データ情報の変調シンボルを示す。また、シンボルU313、U323において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルを示す。また、シンボルU313、U323において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルを示し、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 また、図14において、U313のACK/NACKの変調シンボルは、DCC-0とDCC-1の下りリンク共用チャネルに対するACK/NACKの変調シンボルである。また、図13において、U323のACK/NACKの変調シンボルは、DCC-2の下りリンク共用チャネルに対するACK/NACKの変調シンボルである。
 このように、本実施形態によれば、無線通信システムは、移動局装置a2が選択した複数の上りキャリア要素の上りリンク共用チャネルに上りリンク制御情報を配置して送信するので、1個の上りリンク共用チャネルに上りリンク制御情報が集中することで、この上りリンク共用チャネルの符号化率が高くなり特性が悪くなることを回避することができる。
(第3の実施形態)
 以下、図面を参照しながら本発明の第3の実施形態について詳しく説明する。
 上記第1の実施形態では、無線通信システムは、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、周波数が最も高い上りキャリア要素を選択する場合について説明をした。本実施形態では、無線通信システムが、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、上りリンク共用チャネルの無線リソースの量が最も多い上りキャリア要素を選択する場合について説明をする。
 本実施形態に係る無線通信システムと第1の実施形態に係る無線通信システムとを比較すると、移動局装置の送信処理部及び基地局装置の受信処理部が異なる。しかし、他の構成要素が持つ構成及び機能は、第1の実施形態と同じであるので、第1の実施形態と同じ機能についての説明は省略する。以下、本実施形態に係る移動局装置を移動局装置a3といい、基地局装置を基地局装置b3という。
<送信処理部a34の構成について>
 図15は、この発明の第3の実施形態に係る移動局装置a3の送信処理部a34の構成を示す概略ブロック図である。本実施形態に係る送信処理部a34(図15)と第1の実施形態に係る送信処理部a14(図6)とを比較すると、多重切替部a3415が異なる。しかし、他の構成要素(ターボ符号化部a1411、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414、データ/制御情報多重部a1416~a1418、変調部a142、離散フーリエ変換部a143、多重部a145、上りリンクリファレンスシグナル生成部a144、及び、送信部a145)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 以下、多重切替部a3415が行う制御情報配置切り替え処理について説明をする。
 多重切替部a3415は、共用チャネル割当情報信号が「9」である場合、符号化ビットの出力先を多重部a145に決定する。
 一方、多重切替部a3415は、共用チャネル割当情報信号が1個の上りキャリア要素番号n(n=0、1、2)である場合、符号化ビットの出力先を、当該上りリンク共用チャネルが割り当てられた上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に決定する。
 また、多重切替部a3415は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられた上りキャリア要素が複数個であると判定した場合、符号化ビットの出力先を、予め定められた配置規則に従って、以下のように決定する。
 本実施形態では、まず、多重切替部a3415は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、割り当てられた上りリンク共用チャネルの無線リソースの量が最も多い上りキャリア要素の上りキャリア要素番号nを選択する。具体的に、多重切替部a3415は、割り当てられた各上りキャリア要素の上りリンク共用チャネルの物理リソースブロックペアの数を算出し、算出した数が最も多い上りキャリア要素の上りキャリア要素番号nを選択する。すなわち、多重切替部a3415は、無線リソースが割り当てられた複数の上りキャリア要素のうち、上りキャリア要素内に割り当てられた上りリンク共用チャネルの無線リソースの量が最も多い上りキャリア要素を選択する。多重切替部a3415は、選択した上りキャリア要素番号nの上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に、符号化ビットの出力先を決定する。
 多重切替部a3415は、以上の制御情報配置切り替え処理により決定した出力先に、符号化ビットを出力する。
<受信処理部b33の構成について>
 図16は、本実施形態に係る基地局装置b3の受信処理部b33の構成を示す概略ブロック図である。本実施形態に係る受信処理部b33(図16)と第1の実施形態に係る受信処理部b13(図8)とを比較すると、データ/制御情報多重分離部b3371~b3373が異なる。しかし、他の構成要素(受信部b131、多重分離部b132、伝搬路推定部b133、伝搬路補償部b134、逆離散フーリエ変換部b135、復調部b136、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 データ/制御情報多重分離部b3371~b3373は、それぞれ、上りキャリア要素番号0~2の上りキャリア要素に対応し、対応する上りキャリア要素に配置された信号の符号化ビットを分離する制御情報分離処理を行う。データ/制御情報多重分離部b3371~b3373が持つ機能は同じであるので、その1つ(データ/制御情報多重分離部b3373)を代表して説明する。
 以下、データ/制御情報多重分離部b3373が行う制御情報分離処理について説明をする。
 データ/制御情報多重分離部b3373は、共用チャネル割当情報信号が「9」である場合、上りリンク制御チャネルの符号化ビットから上りリンク制御情報の符号化ビットを抽出する。
 一方、データ/制御情報多重分離部b3373は、共用チャネル割当情報信号が1個の上りキャリア要素番号「2」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 また、データ/制御情報多重分離部b3373は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、予め定められた配置規則であって移動局装置a3が用いた配置規則と同じ配置規則に従って、以下のように符号化ビットの分離処理を行う。
 まず、データ/制御情報多重分離部b3373は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、割り当てられた上りリンク共用チャネルの無線リソースの量が最も多い上りキャリア要素の上りキャリア要素番号nを選択する。データ/制御情報多重分離部b3373は、選択した上りキャリア要素番号nが「2」であるか否かを判定する。「2」であると判定した場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。すなわち、データ/制御情報多重分離部b3373は、無線リソースが割り当てられた複数の上りキャリア要素のうち、上りキャリア要素内に割り当てられた上りリンク共用チャネルの無線リソースの量が最も多い上りキャリア要素を選択する。尚、データ/制御情報多重分離部b3381、b3372については、それぞれ、選択した上りキャリア要素番号nが「0」、「1」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 データ/制御情報多重分離部b3373は、以上の制御情報分離処理により分離したデータ符号化ビット、CQI/PMI符号化ビット、ACK/NACK符号化ビット、及びRI符号化ビットを、それぞれ、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377に出力する。
<上りリンク共用チャネルの構成>
 図17は、本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。図17において、横軸は時間領域、縦軸は周波数領域を示す。また、図17は、1個のサブフレームにおける上りリンク共用チャネルの構成を示す。図17は、図2に示した周波数帯域集約を用いた通信を行うときに、基地局装置b3が、ある移動局装置a3に対して、UCC-0とUCC-2に上りリンク共用チャネルを割り当てた場合の図である。
 また、図17は、UCC-0の上りリンク共用チャネルに割り当てられた物理リソースペアの数(例えば、50個)は、UCC-2の上りリンク共用チャネルに割り当てられた物理リソースペアの数(例えば、30個)より多い場合を示す。
 この場合、移動局装置a3の多重切替部a3415、及び基地局装置b3のデータ/制御情報多重分離部b3371~b3373は、共用チャネル割当情報信号の上りキャリア要素番号「0」を選択する。
 図17において、UCC-0、UCC-2には、それぞれ、符号U401を付した上りリンク共有チャネルのシンボルU401、符号U421を付した上りリンク共有チャネルのシンボルU421が配置されている。
 シンボルU401、U421において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。このシンボルU401、U421は、図4(B)のシンボルである。
 符号U402を付したシンボルU402、符号U422を付したシンボルU422は、それぞれ、シンボルU401、U421から上りリンクリファレンスシグナルを除いた上りリンク共有チャネルのシンボルを示す。
 符号U403を付したシンボルU403、符号U423を付したシンボルU423は、それぞれ、シンボルU402、U422に対して逆離散フーリエ変換を行って生成したシンボルを示す。
 シンボルU403において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルを示す。また、シンボルU403において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルを示し、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 シンボルU423において、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 このように、本実施形態によれば、無線通信システムは、移動局装置a3及び基地局装置b3が上りキャリア要素内に割り当てられた無線リソースの量が最も多い上りキャリア要素を選択するので、無線リソースの量が少ない上りキャリア要素を選択する場合と比較して上りリンク制御情報の受信特性を向上させることができる。
(第4の実施形態)
 以下、図面を参照しながら本発明の第4の実施形態について詳しく説明する。
 上記第1の実施形態では、無線通信システムは、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、周波数が最も高い上りキャリア要素を選択する場合について説明をした。本実施形態では、無線通信システムが、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、上りリンク共用チャネルの変調方式と符号化率に基づいて選択する場合について説明をする。
 本実施形態に係る無線通信システムと第1の実施形態に係る無線通信システムとを比較すると、移動局装置の送信処理部及び基地局装置の受信処理部が異なる。しかし、他の構成要素が持つ構成及び機能は、第1の実施形態と同じであるので、第1の実施形態と同じ機能についての説明は省略する。以下、本実施形態に係る移動局装置を移動局装置a4といい、基地局装置を基地局装置b4という。
<送信処理部a44の構成について>
 図18は、この発明の第4の実施形態に係る移動局装置a4の送信処理部a44の構成を示す概略ブロック図である。本実施形態に係る送信処理部a44(図18)と第1の実施形態に係る送信処理部a14(図6)とを比較すると、多重切替部a4415が異なる。しかし、他の構成要素(ターボ符号化部a1411、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414、データ/制御情報多重部a1416~a1418、変調部a142、離散フーリエ変換部a143、多重部a145、上りリンクリファレンスシグナル生成部a144、及び、送信部a145)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 以下、多重切替部a4415が行う制御情報配置切り替え処理について説明をする。
 多重切替部a4415は、共用チャネル割当情報信号が「9」である場合、符号化ビットの出力先を多重部a145に決定する。
 一方、多重切替部a4415は、共用チャネル割当情報信号が1個の上りキャリア要素番号n(n=0、1、2)である場合、符号化ビットの出力先を、当該上りリンク共用チャネルが割り当てられた上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に決定する。
 また、多重切替部a4415は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、つまり、自装置に対する上りリンク共用チャネルが割り当てられた上りキャリア要素が複数個であると判定した場合、符号化ビットの出力先を、予め定められた配置規則に従って、以下のように決定する。
 本実施形態では、まず、多重切替部a4415は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、割り当てられた上りリンク共用チャネルの変調方式と符号化率に基づいて、上りリンク共用チャネルの変調方式の変調多値数が最も小さく、符号化率が最も低い上りキャリア要素の上りキャリア要素番号nを選択する。なお、変調方式と符号化率は、上記のように予め基地局装置b1が決定して各移動局装置a1に通知されている。
 具体的に、多重切替部a4415は、割り当てられた各上りキャリア要素の上りリンク共用チャネルの符号化率を算出し、変調方式の変調多値数が最も小さく、算出した符号化率が最も低い上りキャリア要素の上りキャリア要素番号nを選択する。また、多重切替部a4415は、基地局装置b4が送信した上り共用チャネル割当情報などに含まれる変調方式と符号化率を算出するための情報に基づいて、上りキャリア要素の上りキャリア要素番号nを選択してもよい。すなわち、多重切替部a4415は、無線リソースが割り当てられた複数の上りキャリア要素のうち、上りキャリア要素内に割り当てられた上りリンク共用チャネルの変調多値数が最も小さく、符号化率が最も低い上りキャリア要素を選択する。多重切替部a4415は、選択した上りキャリア要素番号nの上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に、符号化ビットの出力先を決定する。
 多重切替部a4415は、以上の制御情報配置切り替え処理により決定した出力先に、符号化ビットを出力する。
<受信処理部b43の構成について>
 図19は、本実施形態に係る基地局装置b4の受信処理部b43の構成を示す概略ブロック図である。本実施形態に係る受信処理部b43(図19)と第1の実施形態に係る受信処理部b13(図8)とを比較すると、データ/制御情報多重分離部b4371~b4373が異なる。しかし、他の構成要素(受信部b131、多重分離部b132、伝搬路推定部b133、伝搬路補償部b134、逆離散フーリエ変換部b135、復調部b136、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 データ/制御情報多重分離部b4371~b4373は、それぞれ、上りキャリア要素番号0~2の上りキャリア要素に対応し、対応する上りキャリア要素に配置された信号の符号化ビットを分離する制御情報分離処理を行う。データ/制御情報多重分離部b4371~b4373が持つ機能は同じであるので、その1つ(データ/制御情報多重分離部b4373)を代表して説明する。
 以下、データ/制御情報多重分離部b4373が行う制御情報分離処理について説明をする。
 データ/制御情報多重分離部b4373は、共用チャネル割当情報信号が「9」である場合、上りリンク制御チャネルの符号化ビットから上りリンク制御情報の符号化ビットを抽出する。
 一方、データ/制御情報多重分離部b4373は、共用チャネル割当情報信号が1個の上りキャリア要素番号「2」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 また、データ/制御情報多重分離部b4373は、共用チャネル割当情報信号が複数個の上りキャリア要素番号n(n=0、1、2)である場合、予め定められた配置規則であって移動局装置a4が用いた配置規則と同じ配置規則に従って、以下のように符号化ビットの分離処理を行う。
 まず、データ/制御情報多重分離部b4373は、共用チャネル割当情報信号の上りキャリア要素番号nのうち、割り当てられた上りリンク共用チャネルの符号化率が最も低く、変調多値数が小さい上りキャリア要素の上りキャリア要素番号nを選択する。データ/制御情報多重分離部b4373は、選択した上りキャリア要素番号nが「2」であるか否かを判定する。「2」であると判定した場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。すなわち、データ/制御情報多重分離部b4373は、無線リソースが割り当てられた複数の上りキャリア要素のうち、割り当てられた上りリンク共用チャネルの符号化率が最も低く、変調多値数が小さい上りキャリア要素を選択する。尚、データ/制御情報多重分離部b4381、b4372については、それぞれ、選択した上りキャリア要素番号nが「0」、「1」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 データ/制御情報多重分離部b4373は、以上の制御情報分離処理により分離したデータ符号化ビット、CQI/PMI符号化ビット、ACK/NACK符号化ビット、及びRI符号化ビットを、それぞれ、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377に出力する。
<上りリンク共用チャネルの構成>
 図20は、本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。図20において、横軸は時間領域、縦軸は周波数領域を示す。また、図20は、1個のサブフレームにおける上りリンク共用チャネルの構成を示す。図20は、図2に示した周波数帯域集約を用いた通信を行うときに、基地局装置b4が、ある移動局装置a4に対して、UCC-0とUCC-2に上りリンク共用チャネルを割り当てた場合の図である。
 また、図20は、UCC-0の上りリンク共用チャネルの符号化率(例えば、1/3)は、UCC-2の上りリンク共用チャネルの符号化率(例えば、2/5)より多い場合を示す。
 この場合、移動局装置a3の多重切替部a4415、及び基地局装置b4のデータ/制御情報多重分離部b4371~b4373は、共用チャネル割当情報信号の上りキャリア要素番号「0」を選択する。
 図20において、UCC-0、UCC-2には、それぞれ、符号U501を付した上りリンク共有チャネルのシンボルU501、符号U521を付した上りリンク共有チャネルのシンボルU521が配置されている。
 シンボルU501、U521において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。このシンボルU501、U521は、図4(B)のシンボルである。
 符号U502を付したシンボルU502、符号U522を付したシンボルU522は、それぞれ、シンボルU501、U521から上りリンクリファレンスシグナルを除いた上りリンク共有チャネルのシンボルを示す。
 符号U503を付したシンボルU503、符号U523を付したシンボルU523は、それぞれ、シンボルU502、U522に対して逆離散フーリエ変換を行って生成したシンボルを示す。
 シンボルU503において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルを示す。また、シンボルU503において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルを示し、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 シンボルU523において、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 このように、本実施形態によれば、無線通信システムは、移動局装置a4及び基地局装置b4が上りキャリア要素内に割り当てられた無線リソースの符号化率が最も低い上りキャリア要素を選択するので、無線リソースの符号化率が高い上りキャリア要素を選択する場合と比較して上りリンク制御情報の受信特性を向上させることができる。
(第5の実施形態)
 以下、図面を参照しながら本発明の第5の実施形態について詳しく説明する。
 上記第1の実施形態では、無線通信システムは、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、周波数が最も高い上りキャリア要素を選択する場合について説明をした。本実施形態では、無線通信システムが、上りリンク共用チャネルを割り当てた上りキャリア要素のうち、基地局装置が選択し、移動局装置に通知した上りキャリア要素を優先的に選択する場合について説明をする。基地局装置は、各上りキャリア要素で受信した上りリンク共用チャネル、及び上りリンクリファレンスシグナルなどの信号を基に各上りキャリア要素の伝搬路の品質を測定し、品質の良い上りキャリア要素を選択し、選択した上りキャリア要素の上りキャリア要素番号を、移動局装置に通知する。
 本実施形態に係る無線通信システムと第1の実施形態に係る無線通信システムとを比較すると、移動局装置の送信処理部及び基地局装置が異なる。しかし、他の構成要素が持つ構成及び機能は、第1の実施形態と同じであるので、第1の実施形態と同じ機能についての説明は省略する。以下、本実施形態に係る移動局装置を移動局装置a5といい、基地局装置を基地局装置b5という。
<送信処理部a54の構成について>
 図21は、この発明の第5の実施形態に係る移動局装置a5の送信処理部a54の構成を示す概略ブロック図である。本実施形態に係る送信処理部a54(図21)と第1の実施形態に係る送信処理部a14(図6)とを比較すると、多重切替部a5415が異なる。しかし、他の構成要素(ターボ符号化部a1411、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414、データ/制御情報多重部a1416~a1418、変調部a142、離散フーリエ変換部a143、多重部a145、上りリンクリファレンスシグナル生成部a144、及び、送信部a145)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 以下、多重切替部a5415が行う制御情報配置切り替え処理について説明をする。
 多重切替部a5415は、共用チャネル割当情報信号が「9」である場合、符号化ビットの出力先を多重部a145に決定する。
 一方、多重切替部a5415は、共用チャネル割当情報信号が「9」でない場合、予め基地局装置b5から通知された上りキャリア要素の上りキャリア要素番号nを選択する。すなわち、多重切替部a5415は、無線リソースが割り当てられた複数の上りキャリア要素のうち、予め基地局装置b5から通知された上りキャリア要素を優先的に選択する。多重切替部a5415は、基地局装置b5から通知された上りキャリア要素に対応するデータ/制御情報多重部a1416~a1418に、符号化ビットの出力先を決定する。
 多重切替部a5415は、以上の制御情報配置切り替え処理により決定した出力先に、符号化ビットを出力する。
<基地局装置b1の構成について>
 図22は、本実施形態に係る基地局装置b5の構成を示す概略ブロック図である。
 本実施形態に係る基地局装置b5(図22)と第1の実施形態に係る基地局装置b1(図7)とを比較すると、上位層b51のキャリア要素通知部b512(キャリア要素選択部)及び受信処理部b53が異なる。しかし、他の構成要素(無線リソース制御部b111、制御部b12及び送信処理部b14)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 キャリア要素通知部b512は、各上りキャリア要素で受信した上りリンク共用チャネル、及び上りリンクリファレンスシグナルなどの信号を基に測定した上りキャリア要素の伝搬路の品質情報に基づいて、伝搬路の品質の良い上りキャリア要素を選択する。
 キャリア要素通知部b512は、選択した上りキャリア要素の上りキャリア要素番号nを、送信処理部b14を介して移動局装置a5に通知する。また、キャリア要素通知部b512は、選択した上りキャリア要素の上りキャリア要素番号nを、制御部b12を介して受信処理b53に出力する。
<受信処理部b43の構成について>
 図23は、本実施形態に係る基地局装置b5の受信処理部b53の構成を示す概略ブロック図である。本実施形態に係る受信処理部b53(図19)と第1の実施形態に係る受信処理部b13(図8)とを比較すると、データ/制御情報多重分離部b5371~b5373が異なる。しかし、他の構成要素(受信部b131、多重分離部b132、伝搬路推定部b133、伝搬路補償部b134、逆離散フーリエ変換部b135、復調部b136、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 データ/制御情報多重分離部b5371~b5373は、それぞれ、上りキャリア要素番号0~2の上りキャリア要素に対応し、対応する上りキャリア要素に配置された信号の符号化ビットを分離する制御情報分離処理を行う。データ/制御情報多重分離部b5371~b5373が持つ機能は同じであるので、その1つ(データ/制御情報多重分離部b4373)を代表して説明する。
 以下、データ/制御情報多重分離部b5373が行う制御情報分離処理について説明をする。
 データ/制御情報多重分離部b5373は、共用チャネル割当情報信号が「9」である場合、上りリンク制御チャネルの符号化ビットから上りリンク制御情報の符号化ビットを抽出する。
 一方、データ/制御情報多重分離部b5373は、共用チャネル割当情報信号が「9」でない場合、キャリア要素通知部b512から入力された上りキャリア要素番号nが「2」であるか否かを判定する。「2」であると判定した場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。すなわち、データ/制御情報多重分離部b5373は、無線リソースが割り当てられた複数の上りキャリア要素のうち、予め移動局装置a5が通知した上りキャリア要素を優先的に選択する。尚、データ/制御情報多重分離部b5381、b5372については、それぞれ、選択した上りキャリア要素番号nが「0」、「1」である場合、図4(A)の割り当てに従って、上りリンク共用チャネルの符号化ビットを分離する。
 データ/制御情報多重分離部b5373は、以上の制御情報分離処理により分離したデータ符号化ビット、CQI/PMI符号化ビット、ACK/NACK符号化ビット、及びRI符号化ビットを、それぞれ、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、及びRI復号化部b1377に出力する。
<上りリンク共用チャネルの構成>
 図24は、本実施形態に係る上りリンク共用チャネルの構成の一例を示す図である。図24において、横軸は時間領域、縦軸は周波数領域を示す。また、図24は、1個のサブフレームにおける上りリンク共用チャネルの構成を示す。図24は、図2に示した周波数帯域集約を用いた通信を行うときに、基地局装置b5が、ある移動局装置a5に対して、UCC-0とUCC-2に上りリンク共用チャネルを割り当てた場合の図である。
 また、図24は、基地局装置b5が、上りリンク制御情報を優先的に配置する上りキャリア要素としてUCC-0を選択し、優先的に配置する上りキャリア要素の上りキャリア要素番号として「0」を、移動局装置a5に通知した場合を示す。
 この場合、移動局装置a5の多重切替部a5415、及び基地局装置b5のデータ/制御情報多重分離部b5371~b5373は、共用チャネル割当情報信号の上りキャリア要素番号「0」を選択する。
 図24において、UCC-0、UCC-2には、それぞれ、符号U601を付した上りリンク共有チャネルのシンボルU601、符号U621を付した上りリンク共有チャネルのシンボルU621が配置されている。
 シンボルU601、U621において、右斜線でハッチングされた領域は上りリンク共有チャネルに配置されたシンボルを示し、点でハッチングされた領域は上りリンクリファレンスシグナルを示す。このシンボルU601、U621は、図4(B)のシンボルである。
 符号U602を付したシンボルU602、符号U622を付したシンボルU622は、それぞれ、シンボルU601、U621から上りリンクリファレンスシグナルを除いた上りリンク共有チャネルのシンボルを示す。
 符号U603を付したシンボルU603、符号U623を付したシンボルU623は、それぞれ、シンボルU602、U622に対して逆離散フーリエ変換を行って生成したシンボルを示す。
 シンボルU603において、斜めの格子状の線でハッチングされた領域は、ACK/NACKの変調シンボルを示す。また、シンボルU603において、左斜線でハッチングされた領域は、CQI又はPMIの変調シンボルを示し、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 シンボルU623において、ハッチングされていない領域は、データ情報の変調シンボルを示す。
 このように、本実施形態によれば、無線通信システムは、移動局装置a5及び基地局装置b5が、伝搬路の品質の良い上りキャリア要素を選択するので、伝搬路の品質の悪い上りキャリア要素を選択する場合と比較して上りリンク制御情報の受信特性を向上させることができる。
 尚、上記第1実施形態において、移動局装置a1及び基地局装置b1は、割り当てた上りリンク共用チャネルのうち、周波数が最も高い上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択した。しかし、本発明は、これに限らず、周波数が最も低い上りキャリア要素や、周波数が中心の上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよい。
 また、予め定めた優先順序、例えば、基地局装置b1での上りキャリア要素の信号の復調又は復号処理の順序、に従って、上りリンク制御情報の信号を配置する上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよい。例えば、基地局装置b1での復号処理の順序が最も早い上りキャリア要素の上りリンク共用チャネルを選択した場合、基地局装置b1で上りリンク制御情報を早く復号することができ、迅速に通信の制御を行うことができる。尚、基地局装置b1での復号処理の順序が最も早い上りキャリア要素の上りリンク共用チャネルは、周波数の最も高い、又は、低いキャリア要素に対応する上りリンク共用チャネルとしてもよい。
 また、上記第2の実施形態において、移動局装置a2及び基地局装置b2が、周波数が最も高い上りキャリア要素から周波数が低くなる方へ順番にM個の上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択した。しかし、本発明はこれに限らず、例えば、移動局装置a2及び基地局装置b2は、周波数が最も小さい上りキャリア要素から周波数が高くなる方へ順番にM個の上りキャリア要素を、上りリンク制御情報の信号を配置するキャリア要素として選択してもよい。また、例えば、移動局装置a2及び基地局装置b2は、基地局装置b2での上りキャリア要素の信号の復調又は復号処理の順序に従ってM個の上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよく、例えば、基地局装置b2での復号処理の順序が早い順にM個の上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよい。また、例えば、移動局装置a2及び基地局装置b2が、割り当てた上りキャリア要素のうち、上りキャリア要素内に割り当てられた無線リソースの量が多い順にM個の上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよい。
 また、上記第2の実施形態において、移動局装置a2及び基地局装置b2が選択する上りキャリア要素の数を2個までに限定する、又は5個までに拡張するなどしてもよい。また、上記各実施形態において、上りキャリア要素は3個でなくてもよく、例えば、4個以上であってもよい。
 また、上記第3の実施形態において、移動局装置a3及び基地局装置b3は、上りキャリア要素内に割り当てた上りリンク共用チャネルのうち、無線リソースの量が最も多い上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択し、上記第4の実施形態において、移動局装置a4及び基地局装置b4は、上りキャリア要素内に割り当てた上りリンク共用チャネルのうち、符号化率が最も低く、変調多値数が小さい上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択した。しかし、本発明はこれに限らず、例えば、上りキャリア要素内に割り当てられた上りリンク共用チャネルの無線リソースの量、及び符号化率、変調方式に基づいて、上りリンク制御情報の信号を配置する上りキャリア要素を選択してもよい。
 また、上りキャリア要素内に割り当てられた上りリンク共用チャネルの無線リソースの量、及び符号化率、変調方式から算出できる、上りリンク共用チャネルのデータ情報の量に基づいて、上りリンク制御情報の信号を配置する上りキャリア要素を選択してもよい。これにより、無線リソースの量は多いが符号化率が高い上りリンク共用チャネル、又は符号化率が低いが無線リソースの量が少ない上りリンク共用チャネルなどに上りリンク制御情報の信号を配置することなく、無線リソースの量、符号化率、変調多値数を総合的に判断して、上りリンク制御情報の信号の特性が良くなる上りリンク共用チャネルを選択することができる。
 また、上記第4の実施形態において、移動局装置a4及び基地局装置b4は、上りキャリア要素内に割り当てた上りリンク共用チャネルのうち、変調多値数が最も小さく、符号化率が最も低い上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択した。しかし、本発明はこれに限らず、例えば、上りキャリア要素内に割り当てられた上りリンク共用チャネルのうち、符号化率が最も低い上りキャリア要素を選択してもよい。また、変調多値数が最も小さい上りキャリア要素を選択してもよい。これにより、基地局装置b4及び移動局装置a4の構成を簡略化することができる。
 また、移動局装置a4及び基地局装置b4は、上りキャリア要素内に割り当てた上りリンク共用チャネルのうち、まず、変調多値数が最も小さいキャリア要素を選択し、変調多値数が最も小さいキャリア要素が複数ある場合には、符号化率が最も低い上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよい。また、移動局装置a4及び基地局装置b4は、上りキャリア要素内に割り当てた上りリンク共用チャネルのうち、まず、符号化率が最も低い上りキャリア要素を選択し、符号化率が最も低い上りキャリア要素が複数ある場合には、変調多値数が最も小さいキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択してもよい。
 また、上記第5の実施形態において、移動局装置a5及び基地局装置b5は、上りキャリア要素内に割り当てた上りリンク共用チャネルのうち、基地局装置b5が選択し、移動局装置a5に通知した上りキャリア要素を、上りリンク制御情報の信号を配置する上りキャリア要素として選択した。しかし、本発明はこれに限らず、例えば、予め基地局装置b5が移動局装置a5に通知した上りキャリア要素内に上りリンク共用チャネルを割り当てず、予め基地局装置b5が移動局装置a5に通知した上りキャリア要素以外にのみ上りリンク共用チャネルを割り当てた場合、第5の実施形態を用いず、第1の実施形態、及び第2の実施形態、第3の実施形態、第4の実施形態を適用してもよい。これにより、基地局装置b5が選択し、移動局装置a5に通知した上りキャリア要素に必ず上りリンク共用チャネルを割り当てる必要がなくなる。
 また、上記各実施形態において、基地局装置b1~b5は、移動局装置a1~a5に割り当てた上りリンク共用チャネルの無線リソースに配置された信号の電力を測定し、測定した電力が予め定めた値以上になったと判定した場合に、上りキャリア要素を選択するようにしてもよい。これにより、上りリンク共用チャネルの無線リソースの割り当てを示す下りリンク制御情報(上り共用チャネル割当情報)を、移動局装置a1~a5が正しく復号したことを判定することができ、下りリンク制御情報(上り共用チャネル割当情報)の復号に失敗したときに上りリンク制御情報が予め定めた規則に従って配置されず、エラーが起きるのを回避することができる。
 また、上記各実施形態において、移動局装置a1~a5から基地局装置b1~b5への通信である上りリンクの通信について説明をしたが、本発明はこれに限らず、基地局装置b1~b5(第1の通信装置)から移動局装置a1~a5(第2の通信装置)への下りリンクの通信に適用してもよい。この場合、移動局装置は上記基地局装置b1~b5が持つ構成及び機能を備え、基地局装置は上記移動局装置が持つ構成及び機能を備える。
 本発明に関わる基地局装置及び移動局装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における移動局装置a1~a3、基地局装置b1~b3の一部、例えば、上位層処理部a11、制御部a12、受信処理部a13、無線リソース制御部a111、ターボ符号化部a1411、CQI/PMI符号化部a1412、ACK/NACK符号化部a1413、RI符号化部a1414、多重切替部a1415、a2415、a3415、a4415、a5415、データ/制御情報多重部a1416~a1418、変調部a142、離散フーリエ変換部a143、上りリンクリファレンスシグナル生成部a144、多重部a145、送信部a145、上位層処理部b11、制御部b12、送信処理部b14、無線リソース制御部b111、キャリア要素通知部512、受信部b131、多重分離部b132、伝搬路推定部b133、伝搬路補償部b134、逆離散フーリエ変換部b135、復調部b136、データ/制御情報多重分離部b1371~b1373、b2371~b2373、b3371~b3373、b4371~b4373、b5371~b5373、ターボ復号化部b1374、CQI/PMI復号化部b1375、ACK/NACK復号化部b1376、RI復号化部b1377をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。尚、ここでいう「コンピュータシステム」とは、移動局装置a1~a3、又は基地局装置b1~b3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本発明は、移動体通信に係る移動局装置、無線通信システム、それと類似の技術において用いて好適であり、複数のキャリア要素内の無線リソースを割り当て、割り当てられた無線リソースに配置した制御情報とデータ情報とを確実に通信することができる。
 A1~A3、a1~a5・・・移動局装置(第1の通信装置)、B1、b1~b5・・・基地局装置(第2の通信装置)、a11・・・上位層処理部、a12・・・制御部、a13・・・受信処理部、a14、a24、a34、a44、a54・・・送信処理部、a111・・・無線リソース制御部、a141、a241、a341、a441、a541・・・符号化部、a142・・・変調部、a143・・・離散フーリエ変換部、a144・・・上りリンクリファレンスシグナル生成部、a145・・・多重部、a145・・・送信部、a1411・・・ターボ符号化部、a1412・・・CQI/PMI符号化部、a1413・・・ACK/NACK符号化部、a1414・・・RI符号化部、a1415、a2415、a3415、a4415、a5415・・・多重切替部(キャリア要素選択部)、a1416~a1418・・・データ/制御情報多重部、b11、b51・・・上位層処理部、b12・・・制御部、b13、b23、b33、b43、b53・・・受信処理部、b14・・・送信処理部、b111・・・無線リソース制御部、b512・・・キャリア要素通知部(キャリア要素選択部)、b131・・・受信部、b132・・・多重分離部、b133・・・伝搬路推定部、b134・・・伝搬路補償部、b135・・・逆離散フーリエ変換部、b136・・・復調部、b137、b237、b337、b437、b537・・・復号化部、b1371~b1373、b2371~b2373、b3371~b3373・・・データ/制御情報多重分離部、b1374・・・ターボ復号化部、b1375・・・CQI/PMI復号化部、b1376・・・ACK/NACK復号化部、b1377・・・RI復号化部

Claims (14)

  1.  第1の通信装置と第2の通信装置が無線通信を行う無線通信システムにおいて、
     前記第2の通信装置は、複数のトランスポートブロックのための複数の無線リソースを前記第1の通信装置に割り当て、
     前記第1の通信装置は、上りリンク制御情報を送信する必要がある場合は、前記割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信し、
     前記第2の通信装置は、前記1つの無線リソースに配置された上りリンク制御情報を抽出することを特徴とする無線通信システム。
  2.  前記上りリンク制御情報を配置する1つの無線リソースは、前記第2の通信装置が選択し、前記第1の通信装置に通知するコンポーネントキャリアの無線リソースであることを特徴とする請求項1に記載の無線通信システム。
  3.  前記上りリンク制御情報を配置する1つの無線リソースは、前記第2の通信装置から通知される無線リソースそれぞれに対する下りリンク制御情報に基づいて、前記第1の通信装置によって選択されることを特徴とする請求項1に記載の無線通信システム。
  4.  前記下りリンク制御情報は、変調方式に関する情報を含むことを特徴とする請求項3に記載の無線通信システム。
  5.  前記下りリンク制御情報は、符号化率に関する情報を含むことを特徴とする請求項3に記載の無線通信システム。
  6.  前記下りリンク制御情報は、無線リソース量に関する情報を含むことを特徴とする請求項3に記載の無線通信システム。
  7.  前記下りリンク制御情報は、トランスポートブロックの量に関する情報を含むことを特徴とする請求項3に記載の無線通信システム。
  8.  前記上りリンク制御情報を配置する1つの無線リソースは、前記無線リソースの周波数の高さに基づいて、前記第1の通信装置によって選択されることを特徴とする請求項1に記載の無線通信システム。
  9.  第2の通信装置と無線通信を行う第1の通信装置において、
     上りリンク制御情報を送信する必要がある場合は、前記第2の通信装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信することを特徴とする第1の通信装置。
  10.  第1の通信装置と無線通信を行う第2の通信装置において、
     複数の無線リソースを前記第1の通信装置に割り当て、
     前記第1の通信装置が、前記割り当てられた複数の無線リソースのうち、1つの無線リソースに配置して送信した上りリンク制御情報を、受信して抽出することを特徴とする第2の通信装置。
  11.  第2の通信装置と無線通信を行う第1の通信装置における通信方法において、
     前記第1の通信装置が、上りリンク制御情報を送信する必要がある場合は、前記第2の通信装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信する過程を有することを特徴とする通信方法。
  12.  第1の通信装置と無線通信を行う第2の通信装置における通信方法において、
     前記第2の通信装置が、複数の無線リソースを前記第1の通信装置に割り当てる過程と、
     前記第2の通信装置が、前記第1の通信装置が前記割り当てられた複数の無線リソースのうち1つの無線リソースに配置して送信した上りリンク制御情報を、受信して抽出する過程と、
    を有することを特徴とする通信方法。
  13.  第2の通信装置と無線通信を行う第1の通信装置のコンピュータを、
     上りリンク制御情報を送信する必要がある場合は、前記第2の通信装置に割り当てられた複数の無線リソースのうち、1つの無線リソースに前記上りリンク制御情報を配置して送信する手段として機能させることを特徴とする通信プログラム。
  14.  第1の通信装置と無線通信を行う第2の通信装置における通信方法において、
     複数の無線リソースを前記第1の通信装置に割り当てる手段、
     前記第1の通信装置が、前記割り当てた複数の無線リソースのうち、1つの無線リソースに配置して送信した上りリンク制御情報を、受信して抽出する手段、
    として機能させることを特徴とする通信プログラム。
PCT/JP2010/002556 2009-04-24 2010-04-07 無線通信システム、通信装置、通信方法、及び通信プログラム WO2010122722A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2758216A CA2758216C (en) 2009-04-24 2010-04-07 Wireless communication system, communication apparatus, communication method and communication program
KR1020117024645A KR101357350B1 (ko) 2009-04-24 2010-04-07 무선 통신 시스템, 통신 장치 및 통신 방법
CN201080018129.5A CN102405680B (zh) 2009-04-24 2010-04-07 无线通信系统、通信装置、通信方法、及通信程序
EP10766785A EP2424319A4 (en) 2009-04-24 2010-04-07 WIRELESS COMMUNICATION SYSTEM, COMMUNICATION DEVICE, COMMUNICATION PROCESS AND COMMUNICATION PROGRAM
JP2011510167A JP4965740B2 (ja) 2009-04-24 2010-04-07 無線通信システム、通信装置、通信方法、及び通信プログラム
US13/264,876 US8340043B2 (en) 2009-04-24 2010-04-07 Wireless communication system, communication device, and communication method
AU2010240406A AU2010240406B2 (en) 2009-04-24 2010-04-07 Wireless communication system, communication apparatus, communication method and communication program
US13/682,334 US9055571B2 (en) 2009-04-24 2012-11-20 Wireless communication system, communication device and communication method
US14/704,763 US9326243B2 (en) 2009-04-24 2015-05-05 Wireless communication system, communication device and communication method
US15/074,613 US9883519B2 (en) 2009-04-24 2016-03-18 Wireless communication system, communication device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009106418 2009-04-24
JP2009-106418 2009-04-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/264,876 A-371-Of-International US8340043B2 (en) 2009-04-24 2010-04-07 Wireless communication system, communication device, and communication method
US13/682,334 Continuation US9055571B2 (en) 2009-04-24 2012-11-20 Wireless communication system, communication device and communication method

Publications (1)

Publication Number Publication Date
WO2010122722A1 true WO2010122722A1 (ja) 2010-10-28

Family

ID=43010852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002556 WO2010122722A1 (ja) 2009-04-24 2010-04-07 無線通信システム、通信装置、通信方法、及び通信プログラム

Country Status (8)

Country Link
US (4) US8340043B2 (ja)
EP (1) EP2424319A4 (ja)
JP (4) JP4965740B2 (ja)
KR (1) KR101357350B1 (ja)
CN (2) CN103945547B (ja)
AU (1) AU2010240406B2 (ja)
CA (1) CA2758216C (ja)
WO (1) WO2010122722A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013117798A1 (en) * 2012-02-06 2013-08-15 Nokia Corporation Method and apparatus for uplink communication
US10178655B2 (en) 2013-08-27 2019-01-08 Xi'an Zhongxing New Software Co. Ltd. Method and device for transmitting uplink control information
JPWO2018074071A1 (ja) * 2016-10-20 2019-08-08 シャープ株式会社 端末装置、基地局装置、および、通信方法
US20220311484A1 (en) * 2011-04-19 2022-09-29 Sun Patent Trust Pre-coding method and pre-coding device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319259B1 (en) * 2008-08-27 2016-10-19 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement, cell id collision detection
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
KR101362116B1 (ko) * 2010-07-29 2014-02-12 한국전자통신연구원 사용자 기기 모뎀을 위한 물리 상향링크 공유 채널 인코더 및 그것의 인코딩 방법
CN103026770B (zh) * 2010-08-13 2015-03-11 华为技术有限公司 用于改善通信系统中的harq反馈的装置及方法
US20130051277A1 (en) * 2011-08-30 2013-02-28 Renesas Mobile Corporation Method and apparatus for allocating resources for device-to-device discovery
WO2013043026A2 (ko) * 2011-09-25 2013-03-28 엘지전자 주식회사 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호 수신방법 및 기지국
EP3082288B1 (en) * 2011-11-22 2018-01-17 Huawei Technologies Co., Ltd. Method and device for implementing lte baseband resource pool
CN104094654B (zh) * 2012-01-29 2018-10-19 阿尔卡特朗讯 用于时分复用无线通信系统的高干扰指示
CN105027470B (zh) * 2013-03-07 2018-03-23 Lg 电子株式会社 在无线lan系统中通过站接收信号的方法和设备
CN104780029B (zh) * 2014-01-14 2019-02-19 华为技术有限公司 一种混合自动重传请求方法及相关装置
US9462447B2 (en) * 2014-10-31 2016-10-04 Motorola Solutions, Inc. Methods and systems for allocating resources from component carriers to a public-safety mobile radio
US11477766B2 (en) * 2016-05-24 2022-10-18 Qualcomm Incorporated Uplink control information reporting
CN110168974A (zh) * 2016-08-19 2019-08-23 瑞典爱立信有限公司 用于对下行链路控制信道传输编码和解码的方法和设备
US10356764B2 (en) * 2016-09-30 2019-07-16 Qualcomm Incorporated Channelization for uplink transmissions
US10587388B2 (en) 2017-08-22 2020-03-10 Cavium, Llc. Method and apparatus for uplink control channel detection
US10448377B2 (en) 2017-09-28 2019-10-15 Cavium, Llc Methods and apparatus for control channel detection in an uplink shared channel
EP3790246B1 (en) * 2018-06-08 2023-06-21 Mitsubishi Electric Corporation Radio transmission device, radio reception device, radio communication device, radio transmission method, control circuit, and recording medium
US11445487B2 (en) 2018-06-15 2022-09-13 At&T Intellectual Property I, L.P. Single user super position transmission for future generation wireless communication systems
US11140668B2 (en) 2018-06-22 2021-10-05 At&T Intellectual Property I, L.P. Performance of 5G MIMO
US10945281B2 (en) 2019-02-15 2021-03-09 At&T Intellectual Property I, L.P. Facilitating improved performance of multiple downlink control channels in advanced networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236018A (ja) * 2007-03-16 2008-10-02 Nec Corp 移動無線システムにおけるリソース割当制御方法および装置
JP2009049539A (ja) * 2007-08-14 2009-03-05 Ntt Docomo Inc ユーザ装置、基地局及び上りリンク制御チャネル構成方法
JP2009106418A (ja) 2007-10-29 2009-05-21 Seiko Epson Corp センサ装着用バンド及び生体情報機器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843670B1 (fr) * 2002-08-14 2005-01-14 Evolium Sas Procede pour l'allocation de ressources en mode paquet dans un systeme de radiocommunications mobiles
JP4675167B2 (ja) * 2005-06-14 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ チャネル割り当て方法、無線通信システム、基地局装置、ユーザ端末
WO2007083728A1 (ja) * 2006-01-23 2007-07-26 Sharp Kabushiki Kaisha 基地局装置、移動局装置、移動局識別情報割り当て方法、プログラム及び記録媒体
US8839362B2 (en) * 2006-07-31 2014-09-16 Motorola Mobility Llc Method and apparatus for managing transmit power for device-to-device communication
JP4563417B2 (ja) * 2007-03-20 2010-10-13 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置、通信方法及び通信システム
EP3429120B1 (en) * 2007-07-16 2019-11-06 Samsung Electronics Co., Ltd. Apparatus and method for transmitting of channel quality indicator and acknowledgement signals in sc-fdma communication systems
CN101796749B (zh) * 2007-09-14 2014-05-14 Lg电子株式会社 在无线通信系统中传送控制信息的方法
KR101467791B1 (ko) * 2007-11-05 2014-12-03 엘지전자 주식회사 데이터 정보와 제어정보의 다중화 방법
KR101447750B1 (ko) * 2008-01-04 2014-10-06 엘지전자 주식회사 랜덤 액세스 과정을 수행하는 방법
US8630240B2 (en) * 2008-02-19 2014-01-14 Texas Instruments Incorporated Mapping between logical and physical uplink control resource blocks in wireless networks
WO2009107985A1 (en) * 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
US20090276675A1 (en) * 2008-05-05 2009-11-05 Jussi Ojala Signaling of redundancy version and new data indication
KR100925444B1 (ko) * 2008-05-27 2009-11-06 엘지전자 주식회사 상향링크 채널을 통해 데이터와 제어 정보를 포함하는 상향링크 신호를 전송하는 방법
KR101638900B1 (ko) * 2008-08-05 2016-07-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 제어정보를 전송하는 방법
EP2340630B1 (en) * 2008-09-23 2019-12-04 IDTP Holdings, Inc. Efficient transmission and reception of feedback data and user data
AR073833A1 (es) * 2008-10-20 2010-12-01 Interdigital Patent Holdings Metodos para el control ascendente de transmision de informacion para agregar ona portadora
WO2010047545A2 (ko) * 2008-10-22 2010-04-29 엘지전자 주식회사 광대역 지원을 위한 다중 캐리어 결합 상황에서 효과적인 초기 접속 방식
WO2010050754A2 (ko) * 2008-10-29 2010-05-06 엘지전자 주식회사 광대역 지원을 위한 다중 캐리어 결합 상황에서 효과적인 물리 채널 전송방법
KR101603651B1 (ko) * 2008-10-30 2016-03-15 엘지전자 주식회사 단일 주파수 대역만을 사용하는 제1 사용자 기기와 복수의 주파수 대역을 사용하는 제2 사용자 기기를 지원하는 무선 통신 시스템에 있어서, 사용자 기기와 기지국 간의 무선 통신 방법
KR101648775B1 (ko) * 2008-10-30 2016-08-17 엘지전자 주식회사 무선 통신 시스템에서 harq 확인 응답 전송 및 전송 블록 재전송 방법
KR101711864B1 (ko) * 2008-12-23 2017-03-03 엘지전자 주식회사 반송파 집성 환경에서의 상향링크 αck/nack 시그널링
KR20100073976A (ko) * 2008-12-23 2010-07-01 엘지전자 주식회사 상향링크 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2010087674A2 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
KR20100088554A (ko) * 2009-01-30 2010-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 및 전송 방법 및 장치
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
US9450727B2 (en) * 2009-02-03 2016-09-20 Google Technology Holdings LLC Physical layer acknowledgement signaling resource allocation in wireless communication systems
US8934417B2 (en) * 2009-03-16 2015-01-13 Google Technology Holdings LLC Resource allocation in wireless communication systems
US9184883B2 (en) * 2009-03-31 2015-11-10 Lg Electronics Inc. Method for allocating resource to uplink control signal in wireless communication system and apparatus therefor
WO2010123893A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236018A (ja) * 2007-03-16 2008-10-02 Nec Corp 移動無線システムにおけるリソース割当制御方法および装置
JP2009049539A (ja) * 2007-08-14 2009-03-05 Ntt Docomo Inc ユーザ装置、基地局及び上りリンク制御チャネル構成方法
JP2009106418A (ja) 2007-10-29 2009-05-21 Seiko Epson Corp センサ装着用バンド及び生体情報機器

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"UL control signaling to support bandwidth extension in LTE-Advanced", 3GPP TSG RAN WG1 MEETING #56, 9 February 2009 (2009-02-09)
3GPP TR36.814 VO.4.1 (2009-02, February 2009 (2009-02-01)
3GPP TR36.814 VO.4.1, 3GPP, February 2009 (2009-02-01), XP050380817 *
NOKIA SIEMENS NETWORKS ET AL.: "UL control signalling to support bandwidth extension in LTE-Advanced", 3GPP R1-090724, 3GPP, 9 February 2009 (2009-02-09), XP050318591 *
QUALCOMM EUROPE: "Flexible Data and Reference Multiplexing for LTE-Advanced Uplink", 3GPP R1-091472, 3GPP, 23 March 2009 (2009-03-23), XP050339037 *
See also references of EP2424319A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311484A1 (en) * 2011-04-19 2022-09-29 Sun Patent Trust Pre-coding method and pre-coding device
US11695457B2 (en) * 2011-04-19 2023-07-04 Sun Patent Trust Pre-coding method and pre-coding device
WO2013117798A1 (en) * 2012-02-06 2013-08-15 Nokia Corporation Method and apparatus for uplink communication
US10178655B2 (en) 2013-08-27 2019-01-08 Xi'an Zhongxing New Software Co. Ltd. Method and device for transmitting uplink control information
JPWO2018074071A1 (ja) * 2016-10-20 2019-08-08 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11140700B2 (en) 2016-10-20 2021-10-05 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method

Also Published As

Publication number Publication date
CN103945547B (zh) 2017-09-08
CA2758216A1 (en) 2010-10-28
JP2014220835A (ja) 2014-11-20
KR101357350B1 (ko) 2014-02-03
JP5629924B2 (ja) 2014-11-26
AU2010240406B2 (en) 2014-08-21
US20120044893A1 (en) 2012-02-23
JP4965740B2 (ja) 2012-07-04
KR20120004458A (ko) 2012-01-12
JP5706027B2 (ja) 2015-04-22
US20130077588A1 (en) 2013-03-28
US20150237581A1 (en) 2015-08-20
CN103945547A (zh) 2014-07-23
CN102405680A (zh) 2012-04-04
JP2015133731A (ja) 2015-07-23
EP2424319A1 (en) 2012-02-29
US9055571B2 (en) 2015-06-09
AU2010240406A1 (en) 2011-11-10
US20160205698A1 (en) 2016-07-14
US9326243B2 (en) 2016-04-26
US8340043B2 (en) 2012-12-25
CN102405680B (zh) 2015-06-03
JPWO2010122722A1 (ja) 2012-10-25
EP2424319A4 (en) 2012-08-15
JP5927684B2 (ja) 2016-06-01
US9883519B2 (en) 2018-01-30
CA2758216C (en) 2016-08-02
JP2012124971A (ja) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5927684B2 (ja) 端末装置、基地局装置、および通信方法
JP2012124971A5 (ja)
JP5087061B2 (ja) 無線通信システム、基地局装置、移動局装置および無線通信方法
JP4878651B1 (ja) 移動局装置、通信システム、通信方法および集積回路
JP4969682B2 (ja) 移動局装置、通信システム、通信方法および集積回路
JP2011142532A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP2012065126A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP2009164816A (ja) 無線通信システム、第1の無線通信装置、第2の無線通信装置、無線受信方法および無線送信方法
JP5490773B2 (ja) 基地局装置および通信方法
JP2012005034A (ja) 移動局装置、送信方法、集積回路および制御プログラム
JP2010252257A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法及びプログラム
JP5570567B2 (ja) 基地局装置、移動局装置、無線通信方法および集積回路
JP5497095B2 (ja) 移動局装置、通信システム、通信方法および集積回路
WO2011099373A1 (ja) 通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018129.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510167

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2758216

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13264876

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117024645

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7682/CHENP/2011

Country of ref document: IN

Ref document number: 2010766785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010240406

Country of ref document: AU

Date of ref document: 20100407

Kind code of ref document: A