WO2011099373A1 - 通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路 - Google Patents

通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路 Download PDF

Info

Publication number
WO2011099373A1
WO2011099373A1 PCT/JP2011/051638 JP2011051638W WO2011099373A1 WO 2011099373 A1 WO2011099373 A1 WO 2011099373A1 JP 2011051638 W JP2011051638 W JP 2011051638W WO 2011099373 A1 WO2011099373 A1 WO 2011099373A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
mobile station
base station
pucch
resource
Prior art date
Application number
PCT/JP2011/051638
Other languages
English (en)
French (fr)
Inventor
政幸 榎本
立志 相羽
翔一 鈴木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011099373A1 publication Critical patent/WO2011099373A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to a mobile communication system and a mobile communication method including a base station apparatus and a mobile station apparatus, and more particularly to a control information transmission / reception method when performing transmission / reception using a plurality of frequency bands.
  • W-CDMA Wideband-Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • 3GPP 3rd Generation Partnership Project
  • HSDPA High-Speed Downlink Packet Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the OFDMA method is used in the downlink, and in the uplink, in addition to the SC-FDMA method, Clustered-SC-FDMA (Clustered-Single-Carrier-Frequency-Division-Multiple-Access, DFT-s -OFDM with Spectrum Division Control (also called DFT-precoded OFDM) is under consideration.
  • the SC-FDMA system and the Clustered-SC-FDMA system proposed as uplink communication systems in LTE and LTE-A are PAPR (Peak-to-Average-Power-Ratio) when transmitting data (information): (Peak power to average power ratio) can be kept low.
  • carrier element, carrier component (CC)) a plurality of continuous / discontinuous frequency bands
  • carrier element, carrier component (CC) Or“ element carrier, component carrier (CC: ComponentrierCarrier)
  • CC ComponentrierCarrier
  • CC Wideband frequency band
  • frequency band aggregation Spectrum : aggregation
  • Carrier aggregation Frequency aggregation, etc.
  • the frequency band used for downlink communication and the frequency band used for uplink communication differ from each other. It has also been proposed to use a bandwidth (Asymmetric carrier aggregation) (Non-Patent Document 1).
  • FIG. 20 is a diagram for explaining frequency band aggregation in the prior art.
  • the frequency band used for downlink (DL: Down Link) communication and the frequency band used for uplink (UL: Up Link) communication as shown in FIG. It is also called symmetric frequency band aggregation (Symmetric carrier aggregation).
  • the base station apparatus and the mobile station apparatus use a plurality of component carriers that are continuous / discontinuous frequency bands in a composite manner, so that a wide frequency band composed of a plurality of component carriers is obtained. You can communicate with.
  • the frequency band used for downlink communication with a bandwidth of 100 MHz is five component carriers having a bandwidth of 20 MHz.
  • DCC # 1 Downlink Component Carrier # 1, DCC # 2, DCC # 3, DCC # 4, DCC # 5
  • the frequency band used for uplink communication with a bandwidth of 100 MHz includes five component carriers having a bandwidth of 20 MHz ( UCC # 1: Uplink Component Carrier # 1, UCC # 2, UCC # 3, UCC # 4, UCC # 5).
  • each downlink component carrier has a downlink channel such as a physical downlink control channel (hereinafter PDCCH: Physical Downlink Control Channel) and a physical downlink shared channel (hereinafter PDSCH: Physical Downlink Shared Channel).
  • the base station apparatus is configured to transmit control information (resource allocation information, MCS (Modulation and Coding Scheme, modulation) for transmitting a downlink transport block transmitted using the PDSCH arranged in each downlink component carrier.
  • control information resource allocation information, MCS (Modulation and Coding Scheme, modulation
  • Encoding scheme) information, HARQ (Hybrid Automatic Repeat Request, hybrid automatic retransmission request) processing information, etc.) are transmitted to the mobile station device using PDCCH (PDSCH is allocated to the mobile station device using PDCCH), PDSCH is used to configure the downlink transport block as a mobile station To the device.
  • Each uplink component carrier is allocated with an uplink channel such as a physical uplink control channel (hereinafter PUCCH: Physical Uplink Control Channel) or a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • control information in HARQ is a signal (information) indicating ACK / NACK (acknowledgment: Positive Acknowledgement / negative acknowledgment: Negative Acknowledgement, ACK signal or NACK signal) for PDCCH and / or downlink transport block and / or Or it is a signal (information) indicating DTX (Discontinuous Transmission).
  • DTX is a signal (information) indicating that the mobile station device has not detected the PDCCH from the base station device.
  • FIG. 21 is a diagram for explaining asymmetric frequency band aggregation in the prior art.
  • the base station device and the mobile station device have different frequency bands used for downlink communication and frequency bands used for uplink communication, and component carriers constituting these frequency bands. Can be used in a wide frequency band.
  • the frequency band used for downlink communication with a bandwidth of 100 MHz is five downlink component carriers (DCC # 1, DCC # 2, DCC # 3, DCC # 4, DCC # 5), and the frequency band used for uplink communication with a bandwidth of 40 MHz is two component carriers (UCC # 1, UCC #) with a bandwidth of 20 MHz. It is shown that it is configured by 2).
  • a downlink / uplink channel is allocated to each of the downlink / uplink component carriers, and the base station apparatus uses the PDSCH assigned by the PDCCH to assign the downlink transport block to the mobile station apparatus.
  • the mobile station apparatus transmits control information in HARQ to the base station apparatus using PUCCH and / or PUSCH.
  • Non-Patent Document 2 in the mobile station apparatus in LTE-A, transmission diversity (PVS (Precoding Vector Switching), STBC (Space Time Block Coding), ORD (Orthogonal Resource) Diversity using a plurality of amplifiers and transmission antennas is used. ) Etc.) are being considered.
  • PVS Precoding Vector Switching
  • STBC Space Time Block Coding
  • ORD Orthogonal Resource
  • the above transmission diversity technique is a technique using a plurality of transmission antennas, and is effective in improving transmission quality in a fading environment.
  • a signal is transmitted by assigning an orthogonal code to each transmission antenna.
  • the receiver processes the signal using the assigned orthogonal code, which is effective for improving the reception quality.
  • the base station apparatus and the mobile station apparatus perform communication when transmitting and receiving downlink signals and transmitting and receiving control information in HARQ.
  • the mobile station apparatus must ensure high quality for the control information in HARQ and transmit it to the base station apparatus. For example, when the mobile station device transmits NACK to the downlink signal from the base station device, the quality is low, and the base station device determines that the ACK is received (transmits NACK on the mobile station device side, When the base station apparatus determines ACK), the base station apparatus does not retransmit the downlink signal. That is, if the quality for the control information in HARQ transmitted from the mobile station apparatus is lowered, as a result, the throughput in the radio communication system is lowered.
  • the present invention has been made in view of such circumstances, and a communication method, a mobile station apparatus, a base station apparatus, and a base station apparatus and a mobile station apparatus that can transmit and receive control information in HARQ with high quality.
  • An object is to provide a mobile communication system and an integrated circuit.
  • the communication method of the present invention is a communication method of a mobile station apparatus that communicates with a base station apparatus, wherein a plurality of physical uplink control channel resources are allocated by the base station apparatus, and the plurality of allocated physical uplink Selecting any two physical uplink control channel resources from among the link control channel resources, and transmitting control information in HARQ to the base station apparatus using the selected physical uplink control channel resources; It is said.
  • the communication method of the present invention is a communication method of a base station apparatus that communicates with a mobile station apparatus, wherein a plurality of physical uplink control channel resources are allocated to the mobile station apparatus, and the allocated plurality of physical HARQ control information is received from the mobile station apparatus using any two physical uplink control channel resources selected by the mobile station apparatus from among uplink control channel resources.
  • some of the limited candidates among all candidates for selecting two physical uplink control channel resources from among the plurality of allocated physical uplink control channel resources is received from the mobile station apparatus using any two physical uplink control channel resources selected by the mobile station apparatus from among the mobile station apparatuses.
  • the mobile station apparatus is a mobile station apparatus that communicates with a base station apparatus, wherein a plurality of physical uplink control channel resources are allocated by the base station apparatus, and the plurality of allocated physical Selecting any two physical uplink control channel resources from among uplink control channel resources, and transmitting control information in HARQ to the base station apparatus using the selected physical uplink control channel resources; It is a feature.
  • a limited part of all candidates for selecting two physical uplink control channel resources from among the plurality of allocated physical uplink control channel resources is selected from among the candidates, and HARQ control information is transmitted to the base station apparatus using the selected physical uplink control channel resource.
  • the base station apparatus of the present invention is a base station apparatus that communicates with a mobile station apparatus, and allocates a plurality of physical uplink control channel resources to the mobile station apparatus, and the allocated physical uplinks
  • the control information in HARQ is received from the mobile station apparatus using any two physical uplink control channel resources selected by the mobile station apparatus from among the control channel resources.
  • HARQ control information is received from the mobile station apparatus using any two physical uplink control channel resources selected by the mobile station apparatus from among the candidates.
  • the mobile communication system of the present invention is a mobile communication system in which a base station apparatus and a mobile station apparatus communicate with each other, and the base station apparatus transmits a plurality of physical uplink control channel resources to the mobile station apparatus.
  • the mobile station apparatus selects any two physical uplink control channel resources from among the plurality of allocated physical uplink control channel resources, and uses the selected physical uplink control channel resources. , HARQ control information is transmitted to the base station apparatus.
  • the mobile station apparatus includes all candidates for selecting two physical uplink control channel resources from among the plurality of allocated physical uplink control channel resources. Then, any two physical uplink control channel resources are selected from the limited candidates, and HARQ control information is transmitted to the base station apparatus using the selected physical uplink control channel resources. It is characterized by doing.
  • An integrated circuit according to the present invention is an integrated circuit mounted on a mobile station apparatus, wherein a plurality of physical uplink control channel resources are allocated by the base station apparatus, and the plurality of allocated physical uplink Selecting any two physical uplink control channel resources from among the link control channel resources, and transmitting control information in HARQ to the base station apparatus using the selected physical uplink control channel resources; It is said.
  • a base station apparatus and a mobile station apparatus can transmit and receive control information in HARQ with high quality, and smooth exchange of PDSCH and / or PDCCH and HARQ transmitted and received between the base station apparatus and the mobile station apparatus. Can be done.
  • FIG. 1 It is a figure which shows one structural example of the channel in embodiment of this invention. It is a figure which shows an example of schematic structure of the uplink radio frame (uplink radio resource) in this invention. It is a functional block diagram which shows the example of 1 structure of the base station apparatus 100 of this invention. It is a functional block diagram which shows the example of 1 structure of the mobile station apparatus 200 of this invention. It is a figure which shows the example of the mobile communication system which can apply the 1st Embodiment of this invention.
  • the mobile station apparatus 200 transmits HARQ control information to the base station apparatus 100, the mobile station apparatus 200 selects two PUCCH resources from among the PUCCH resources allocated by the base station apparatus 100.
  • FIG. 6 is a sequence chart when the base station apparatus 100 and the mobile station apparatus 200 according to the first embodiment of the present invention transmit and receive control information in HARQ.
  • the 2nd Embodiment of this invention it is a figure which shows the selection candidate of a PUCCH resource at the time of selecting two PUCCH resources in case the six PUCCH resources are allocated.
  • the 2nd Embodiment of this invention it is a figure shown about the example of the selection candidate different from FIG. 8 of the PUCCH resource at the time of utilizing two PUCCH resources.
  • the 2nd Embodiment of this invention it is a figure which shows two examples of the selection candidate of a PUCCH resource when seven PUCCH resources are allocated.
  • the selection candidate of the PUCCH resource at the time of selecting two PUCCH resources when eight PUCCH resources are allocated from the base station apparatus 100.
  • FIG. in the 2nd Embodiment of this invention it is a figure shown about the selection candidate of the PUCCH resource at the time of selecting two PUCCH resources when nine PUCCH resources are allocated.
  • the PUCCH resource for the control information transmission in HARQ is supplied to the mobile station apparatus 200, and the sequence chart which transmits the control information in HARQ based on the resource is shown.
  • the PUCCH resource for the control information transmission in HARQ is supplied to the mobile station apparatus 200, and the sequence chart which transmits the control information in HARQ based on the resource is shown.
  • selection candidate examples of specific one or two PUCCH resource numbers when selecting one or two PUCCH resources when six PUCCH resources are allocated (respectively selection candidates) 5 corresponds to the numbers 1 to 5.
  • examples of selection candidates of specific one or two PUCCH resource numbers (respectively selection candidates) 5 corresponds to the numbers 1 to 5.
  • selection candidate examples of specific one or two PUCCH resource numbers when selecting one or two PUCCH resources when eight PUCCH resources are allocated (respectively selection candidates) 6 corresponds to the numbers 1 to 5.
  • examples of selection candidates of specific one or two PUCCH resource numbers (respectively selection candidates) 6 corresponds to the numbers 1 to 5. It is a figure explaining the frequency band aggregation in a prior art. It is a figure explaining the asymmetric frequency band aggregation in a prior art.
  • FIG. 1 is a diagram illustrating a configuration example of a channel according to the embodiment of the present invention.
  • the downlink physical channel is configured by a physical broadcast channel (PBCH: Physical Broadcast Channel), PDCCH, PDSCH, and physical hybrid automatic repeat request instruction channel (PHICH: Physical Hybrid ARQ Indicator Channel).
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Broadcast Channel
  • PDSCH Physical hybrid automatic repeat request instruction channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • the uplink physical channel is configured by PUSCH and PUCCH.
  • PBCH maps the broadcast channel (BCH) at 40 millisecond intervals. The timing of 40 milliseconds is a blind detection. That is, explicit signaling is not performed for timing presentation.
  • a subframe including PBCH can be decoded only by the subframe (self-decodable).
  • the PDCCH is a channel used to notify the mobile station apparatus 200 of PDSCH resource allocation, HARQ information for downlink data, and uplink transmission permission that is PUSCH resource allocation.
  • the PDCCH is configured by a plurality of CCEs (Control / Channel / Element), and the mobile station apparatus 200 receives the PDCCH from the base station apparatus 100 by detecting the PDCCH configured by the CCE.
  • CCE is composed of a plurality of resource element groups (REG: Resource Element Group, also called mini-CCE) distributed in frequency and time domains.
  • the resource element is a unit resource composed of one OFDM symbol (time component) and one subcarrier (frequency component).
  • REG is a downlink pilot channel in the frequency domain within the same OFDM symbol. Except for this, it is composed of four downlink resource elements that are continuous in the frequency domain.
  • one PDCCH is composed of one, two, four, and eight CCEs having consecutive CCE identification numbers (CCE indexes).
  • the PDCCH is encoded (Separate-Coding) separately for each mobile station apparatus 200 and for each type. That is, the mobile station apparatus 200 detects a plurality of PDCCHs, and acquires information indicating downlink or uplink resource allocation and other control information.
  • a CRC (Cyclic Redundancy Check) value is assigned to each PDCCH, and the mobile station apparatus 200 performs CRC for each set of CCEs in which the PDCCH can be configured, and acquires the PDCCH for which the CRC was successful.
  • This is called blind decoding
  • the range of the CCE set in which the PDCCH in which the mobile station apparatus 200 performs this blind decoding can be configured is called a search space.
  • the mobile station apparatus 200 performs blind decoding on the CCE in the search area and detects the PDCCH.
  • the mobile station device 200 uses the PDSCH in accordance with the resource allocation indicated by the PDCCH from the base station device 100, and uses the downlink signal (data) (downlink data ( Downlink shared channel (DL-SCH)) and / or downlink control data is received, that is, this PDCCH is a signal for resource allocation to the downlink (hereinafter referred to as “downlink transmission permission signal” or “downlink transmission enable signal”).
  • this PDCCH is a signal for resource allocation to the downlink (hereinafter referred to as “downlink transmission permission signal” or “downlink transmission enable signal”).
  • the PDCCH includes PUSCH resource allocation
  • the mobile station device 200 uses the PUSCH according to the resource allocation instructed by the PDCCH from the base station device 100.
  • Uplink signal (data) uplink Data (uplink shared channel (UL-SCH) and / or uplink control data), that is, this PDCCH is a signal that permits data transmission to the uplink (hereinafter referred to as “uplink transmission permission signal”). Or “uplink grant”).
  • PDSCH is a channel mainly used for transmitting downlink data (downlink shared channel (DL-SCH)) or paging information (paging channel (PCH)).
  • downlink data downlink shared channel (DL-SCH)
  • DL-SCH paging information
  • DL-SCH is a transport channel.
  • HARQ and dynamic adaptive radio link control are supported.
  • the DL-SCH supports dynamic resource allocation and quasi-static resource allocation.
  • the PUSCH is a channel mainly used for transmitting uplink data (uplink shared channel: UL-SCH). Moreover, when the base station apparatus 100 schedules the mobile station apparatus 200, uplink control data is also transmitted using PUSCH.
  • the uplink control data includes channel state information CSI (Channel State information or Channel statistical information), downlink channel quality identifier CQI (Channel Quality Indicator), precoding matrix identifier PMI (Precoding Matrix Indicator), , Rank identifier RI (Rank Indicator), control information in HARQ for transmission of a downlink signal (downlink transport block), and the like are included.
  • the HARQ control information for downlink signal transmission includes information indicating ACK / NACK and / or information indicating DTX (Discontinuous Transmission) for the PDCCH and / or downlink transport block.
  • the DTX is information indicating that the mobile station apparatus 200 has not been able to detect the PDCCH from the base station apparatus 100.
  • PUSCH a 24-bit CRC code generated using a predetermined generator polynomial is added to data from data (uplink transport block) transmitted on PUSCH, and then transmitted to base station apparatus 100.
  • uplink data indicates transmission of user data
  • UL-SCH is a transport channel.
  • HARQ and dynamic adaptive radio link control are supported.
  • the UL-SCH supports dynamic resource allocation and semi-static resource allocation.
  • radio resource control signals exchanged between the base station apparatus 100 and the mobile station apparatus 200 hereinafter referred to as “RRC signaling: Radio Resource”. Control-Signaling "), MAC (Medium Access-Control) control elements, and the like may be included.
  • RRC signaling is a signal exchanged between the base station apparatus 100 and the mobile station apparatus 200 in an upper layer (radio resource control (Radio Resource Control) layer).
  • the PUCCH is a channel used for transmitting uplink control data.
  • the uplink control data is, for example, channel state information CSI transmitted (feedback) from the mobile station apparatus 200 to the base station apparatus 100, a downlink channel quality identifier CQI, a precoding matrix, as described above.
  • An identifier PMI and a rank identifier RI are included.
  • the mobile station apparatus 200 performs a scheduling request (SR: Scheduling Request) for requesting allocation of resources for transmitting uplink data, and HARQ for a downlink signal (downlink transport block) as described above. Control information and the like.
  • ACK and NACK are used for HARQ.
  • HARQ performs error control by combining automatic retransmission (Automatic Repeat reQuest; ARQ) and error correction codes such as turbo coding.
  • ARQ Automatic Repeat reQuest
  • HARQ using Chase Combining (CC) requests retransmission of exactly the same packet when an error is detected in a received packet. By combining these two received packets, the reception quality is improved.
  • HARQ that uses incremental redundancy (IR) divides redundant bits and retransmits them in small increments, so that the error correction capability is improved by reducing the coding rate as the number of retransmissions increases. It is strengthening.
  • FIG. 2 is a diagram showing an example of a schematic configuration of an uplink radio frame (uplink radio resource) in the present invention.
  • the uplink radio frame is composed of a plurality of PRB pairs.
  • one PRB pair is composed of two PRBs (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • the PUCCH is arranged in several resource blocks at both ends of the system bandwidth (indicated by hatching in FIG. 2), and is hopped for each slot to obtain frequency diversity.
  • One PRB is composed of 12 subcarriers in the frequency domain, and is composed of 7 SC-FDMA symbols in the time domain.
  • the system bandwidth is a communication bandwidth of the base station apparatus 100 and is composed of a plurality of PRBs.
  • On the time domain a slot composed of 7 SC-FDMA symbols, a subframe composed of 2 slots, and a radio frame composed of 10 subframes are defined.
  • a unit composed of one subcarrier and one SC-FDMA symbol is called a resource element.
  • a plurality of PRBs are arranged according to the system bandwidth.
  • a PUCCH and a PUSCH are arranged, and an uplink pilot channel used for channel estimation is arranged in the PUCCH and PUSCH.
  • the PUCCH is arranged from the physical resource block PRB pairs at both ends of the system bandwidth, and the PUSCH is arranged in the remaining physical resource block PRB pairs.
  • the uplink pilot channel is not shown in FIG. 2 for simplicity of explanation, but the uplink pilot channel is time-multiplexed with PUSCH and PUCCH.
  • CAZAC Constant-Amplitude-and Zero-Auto-Auto
  • a frequency direction (12 subcarriers), a time direction (for propagation path estimation), and a sequence length of 12 for one schedule unit (2 resource blocks) -Correlation) Code spreading
  • the CAZAC sequence is a sequence having a constant amplitude and excellent autocorrelation characteristics in the time domain and the frequency domain. Since the amplitude is constant in the time domain, the PAPR (Peak-to-Average-Power-Ratio) can be kept low.
  • multiplexing between users can be realized by applying a cyclic shift (Cyclic Shift) to a CAZAC sequence having a length of 12.
  • code spreading in the time domain can be used by a block code, and specifically, a Walsh code having a sequence length of 4 can be used.
  • the PUCCH resource for transmitting control information in HARQ can realize user multiplexing with a code at the same time and frequency resource.
  • FIG. 3 is a functional block diagram showing a configuration example of the base station apparatus 100 of the present invention.
  • the base station apparatus 100 of the present invention includes one or more antennas.
  • the base station apparatus 100 of the present invention includes a transmission unit 310, a scheduling unit 320, a reception unit 330, and an antenna 340.
  • the transmission unit 310 includes an information multiplexing unit 311, a modulation unit 312, a mapping unit 313, and a wireless transmission unit 314.
  • the scheduling unit 320 includes a time / frequency resource control unit 321 and an orthogonal resource control unit 322, and the reception unit 330 includes a radio reception unit 331, an information extraction unit 332, a propagation path compensation / despreading unit 333, A demodulator 334.
  • the antennas 340 are provided as many as necessary for transmitting downlink signals and receiving uplink signals.
  • the downlink signal generated in the base station apparatus 100 and transmitted to each mobile station apparatus 200 and the information of the PUCCH resource for control information transmission in HARQ output from the scheduling section 320 are input to the information multiplexing section 311.
  • a downlink signal to be transmitted to each mobile station apparatus 200 is generated.
  • the format of PUCCH resource information is not limited here, and it may be transmitted explicitly using several bits to several tens of bits, or may be uniquely determined from other information.
  • the downlink signal may include control information in each layer.
  • the signal output from the information multiplexing unit 311 is modulated by the modulation unit 312 under the designation of the scheduling unit 320 and converted into a signal format to be transmitted. Specifically, the bit string is modulated into a signal such as QAM or QPSK, and the modulation method may be changed according to control information from a scheduling unit 320 described later.
  • the signal modulated by the modulation unit 312 is supplied to the mapping unit 313 and mapped to the resource according to the designation of the scheduling unit 320. Specifically, in the case of OFDMA, it is mapped to a frequency and time resource specified for each mobile station device 200, and information broadcast to all mobile station devices 200 is also mapped to a predetermined frequency and time resource.
  • the output of the mapping unit 313 is supplied to the wireless transmission unit 314 and converted into a form suitable for the transmission method.
  • a time domain signal is generated by performing IFFT (Inverse Fast Fourier ⁇ Transformation) on a frequency domain signal. If spatial multiplexing using MIMO (Multiple Input Multiple Output) is adopted, this processing is performed in this block.
  • IFFT Inverse Fast Fourier ⁇ Transformation
  • the output signal of the wireless transmission unit 314 is supplied to the antenna 340 and is transmitted to each mobile station apparatus 200 from here.
  • the scheduling unit 320 receives control information from an upper layer, and performs resource allocation to each mobile station device 200, determination of a modulation scheme, a coding rate, and the like.
  • the time / frequency resource control unit 321 is a function for controlling which information (control information, signal to each mobile station device 200) including uplink and downlink is allocated to which frequency resource. Link signal mapping and uplink signal control signal output management are performed.
  • the orthogonal resource control unit 322 performs assignment and management of orthogonal codes used by each mobile station apparatus 200 in an uplink signal for performing CDMA.
  • a combination of a frequency resource managed by the time / frequency resource control unit 321 and an orthogonal resource managed by the orthogonal resource control unit 322 is allocated and orthogonal to this frequency resource.
  • a combination of resources can be a PUCCH resource.
  • the base station apparatus 100 can allocate at least one PUCCH resource to the mobile station apparatus 200 for one downlink component carrier.
  • the signal transmitted from the mobile station apparatus 200 is received by the antenna 340 and then input to the radio reception unit 331.
  • the wireless reception unit 331 receives data and control signals, generates a digital signal corresponding to the transmission method, and outputs it.
  • a signal subjected to FFT processing in units of processing time is output after analog / digital conversion of the received signal.
  • the output of the wireless reception unit 331 is input to the information extraction unit 332 and is divided for each type of information. Specifically, the received signal is divided for each data from each mobile station apparatus 200, and among them, it is divided into control information and a signal to a higher layer. In the present invention, it is assumed that the information extraction unit 332 separates and outputs the time and frequency resources including the control information in the target HARQ.
  • the output of the information extraction unit 332 is input to the propagation path compensation / despreading unit 333.
  • the propagation path compensation / despreading section 333 estimates the propagation path from the reference signal included in the input signal, compensates for the received signal, and simultaneously uses the orthogonal code managed by the scheduling section 320. Is despread.
  • the propagation path is calculated after despreading based on the spread code information input from the scheduling unit 320.
  • the order in which propagation path compensation and despreading are performed does not matter.
  • the propagation path compensation / despreading unit 333 performs output for each spreading code.
  • the output of the propagation path compensation / despreading unit 333 is input to the synthesizing / demodulating unit 334, and demodulation processing for reproducing the transmitted bits is performed.
  • demodulation processing for regenerating transmitted bits at the same time as combining two input sequences is performed.
  • Combining is a process for improving reception quality by performing weighted addition according to propagation path conditions.
  • the transmitted signal is control information in HARQ
  • the bit is passed to an upper layer and used for processing such as retransmission processing.
  • the processing order of the propagation path compensation / despreading unit 333 and the combining / demodulating unit 334 is not limited. Furthermore, by using MMSE (Minimum Mean Square Error) in order to improve the reception quality, these processes can be performed simultaneously.
  • MMSE Minimum Mean Square Error
  • FIG. 4 is a functional block diagram showing a configuration example of the mobile station apparatus 200 of the present invention.
  • the mobile station apparatus 200 of the present invention includes, for example, two or more antennas.
  • mobile station apparatus 200 combines reception section 410, schedule information management section 420, transmission section 430, and antennas 440-1 to 440-M (hereinafter referred to as antennas 440-1 to 440-M).
  • the reception unit 410 includes a wireless reception unit 411, a propagation path compensation unit 412, and a decoding processing unit 413.
  • the decoding processing unit 413 includes an error correction / detection unit 4131, a demodulation unit 4133, and an information extraction / separation unit 4135.
  • the schedule information management unit 420 includes a downlink scheduling management unit 421, an orthogonal resource management unit 422, a control information management unit 423, and an uplink scheduling management unit 424.
  • the transmission unit 430 includes an information multiplexing unit 431, a modulation A spreading unit 432, a mapping unit 433, and a wireless transmission unit 434 are provided.
  • the antennas 440 are provided as many as necessary for transmitting two or more uplink signals and receiving downlink signals.
  • the received signal is input to the radio reception unit 411.
  • the wireless reception unit 411 performs processing according to a communication method in addition to analog / digital (A / D) conversion and the like, and outputs the result. Specifically, in the case of OFDMA, the time-series signal after A / D conversion is subjected to FFT processing, converted into a time / frequency domain signal, and output.
  • the output signal of the wireless reception unit 411 is input to the propagation path compensation unit 412, performs propagation path estimation using a reference signal or the like given to this input signal, performs propagation path compensation based on this, and outputs it. .
  • the output of the propagation path compensation unit 412 is input to the decoding processing unit 413, which is demodulated based on the output of the schedule information management unit 420, and after error correction / detection is performed if necessary, for each type.
  • the first output is classified and used for scheduling, and the second output is processed in an upper layer.
  • the processing order of the information extraction / separation unit 4135, the error correction / detection unit 4131, and the demodulation unit 4133 in the decoding processing unit 413 is not limited.
  • these processes may be performed before and after depending on the type of transmitted information, and these processes may be performed depending on the system.
  • the transmission unit 430 transmits uplink control information such as uplink data and control information in HARQ.
  • uplink control information such as uplink data and control information in HARQ.
  • HARQ control information managed by the downlink data and control information management unit 423 is supplied to the information multiplexing unit 431 at the transmission timing.
  • a process for transmitting the input information at the same time is performed, but here it is assumed that only control information in HARQ is transmitted using the PUCCH resource transmitted from base station apparatus 100.
  • the HARQ control information input to the information multiplexing unit 431 is supplied to the modulation / spreading unit 432.
  • the modulation / spreading unit 432 performs modulation and spreading processing using the modulation scheme information and spreading code supplied from the schedule information management unit 420.
  • provided PUCCH resources (combination of frequency resources and spreading codes) are two of the PUCCH resources allocated from the base station apparatus 100, and two output sequences are generated.
  • code spreading in the PUCCH resource to be used may be performed in two stages.
  • two types of codes are paired. For example, when spreading using a CAZAC sequence having a sequence length of 12 in the frequency direction and spreading using a Walsh sequence having a sequence length of 4 in the time direction, specifically, two CAZAC sequences and two Walsh sequences, It is given to one mobile station apparatus 200.
  • the two outputs of the modulation / spreading section 432 are output to the mapping section 433 and mapped based on the resource information allocated by the base station apparatus 100 managed by the uplink scheduling management section 424.
  • the resource information indicates time and frequency resources in OFDMA.
  • the number of outputs of the mapping unit 433 is the same as the number of outputs of the modulation / spreading unit 432. For example, when the number of outputs of the modulation / spreading unit 432 is two, two are output.
  • the mapped signal is input to the wireless transmission unit 434 by the mapping unit 433 and converted into a signal format to be transmitted. In the case of OFDMA, an operation of converting a signal in the frequency domain by IFFT and providing a guard interval corresponds to this.
  • the output of the wireless transmission unit 434 has a sequence corresponding to the number of antennas and is supplied to the antenna 440.
  • the base station apparatus 100 behaves as two outputs.
  • a cyclic delay is applied to each of the two outputs.
  • a total of four outputs may be provided.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of a plurality of downlink component carriers, allocates one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH, The mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources, and transmits HARQ control information for each PDSCH and / or PDCCH to the base station apparatus 100 using the selected PUCCH resources. Is possible.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of a plurality of downlink component carriers, and assigns one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH. Allocation, mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources, bundles HARQ control information for PDSCH and / or PDCCH, and uses the selected PUCCH resources to It is possible to transmit to the station apparatus 100.
  • the number of candidate combinations of two PUCCH resources that the mobile station device 200 selects from among the PUCCH resources allocated from the base station device 100 can be limited. That is, the mobile station apparatus 200 reduces the number of detection errors of two PUCCH resources by limiting the number of combinations of two PUCCH resources selected from the PUCCH resources allocated from the base station apparatus 100.
  • the number of candidate combinations of two PUCCH resources that the mobile station device 200 selects from among the PUCCH resources allocated from the base station device 100 is the number of PDSCHs that the mobile station device 200 receives in the same subframe. It can be limited to the same (or more than the number of PDSCHs).
  • the base station apparatus 100 allocates PUCCH resources that are less than twice the number of allocated PDSCHs, so that the number of PUCCH resources that can be multiplexed is reduced from two PUCCH resources without significantly reducing the number of mobile station apparatuses 200 that can be multiplexed.
  • a PUCCH resource can be selected.
  • the mobile station apparatus 200 uses the two selected PUCCH resources, and both the two PUCCH resources transmit the same HARQ control information, thereby performing transmission diversity and improving reception quality. I am trying.
  • the frequency band is defined by the bandwidth (Hz), but may be defined by the number of resource blocks (RB) configured by the frequency and time.
  • a component carrier hereinafter also referred to as “carrier component”, “element carrier”, or “carrier element” in the present embodiment refers to a frequency band (system band) in which the base station apparatus 100 and the mobile station apparatus 200 have a wide bandwidth.
  • the frequency band (narrow band) that is aggregated when communication is carried out using the Base station apparatus 100 and mobile station apparatus 200 form a wide frequency band by aggregating a plurality of component carriers, and by using these component carriers in combination, high-speed data communication (information transmission / reception) ) Can be realized (frequency band aggregation described above).
  • the base station apparatus 100 and the mobile station apparatus 200 aggregate five component carriers having a bandwidth of 20 MHz to form a wide frequency band having a bandwidth of 100 MHz, and these five component carriers are combined. It can be used in combination to communicate.
  • a component carrier is a frequency band (for example, a frequency band having a bandwidth of 20 MHz) that constitutes this wide frequency band (for example, a frequency band having a bandwidth of 100 MHz). Show.
  • the component carrier indicates the (center) carrier frequency of each (narrow band) frequency band constituting this wide frequency band. That is, the downlink component carrier has a partial band (width) in a frequency band that can be used when the base station apparatus 100 and the mobile station apparatus 200 transmit and receive downlink signals, and the uplink component carrier The base station apparatus 100 and the mobile station apparatus 200 have a partial band (width) in a frequency band that can be used when transmitting and receiving uplink signals.
  • a component carrier may be defined as a unit in which a specific physical channel (for example, PDCCH, PDSCH, PUCCH, PUSCH, etc.) is configured.
  • the component carrier may be arranged in a continuous frequency band or a discontinuous frequency band, and a plurality of component carriers that are continuous and / or discontinuous frequency bands are aggregated.
  • a wide frequency band is configured.
  • the frequency band used for downlink communication composed of downlink component carriers may be downlink system band or downlink system bandwidth
  • the frequency bands to be used do not have to be the same.
  • Base station apparatus 100 and mobile station apparatus 200 use component carriers in a composite manner even if the frequency band used for downlink communication and the frequency band used for uplink communication are different bandwidths. Thus, communication can be performed (asymmetric frequency band aggregation described above).
  • FIG. 5 is a diagram showing an example of a mobile communication system to which the first embodiment of the present invention can be applied.
  • the frequency bands used for downlink communication with a bandwidth of 100 MHz are five downlink component carriers (DCC # 1, DCC # 2, DCC # 3) each having a bandwidth of 20 MHz. , DCC # 4, DCC # 5), and the frequency band used for uplink communication having a bandwidth of 100 MHz is five uplink component carriers (UCC #) each having a bandwidth of 20 MHz. 1, UCC # 2, UCC # 3, UCC # 4, UCC # 5).
  • a downlink / uplink channel is allocated to each downlink / uplink component carrier.
  • the base station apparatus 100 can allocate a PDSCH using a PDCCH arranged in a downlink component carrier.
  • the base station apparatus 100 allocates the PDSCH arranged in the DCC # 1 using the PDCCH arranged in the DCC # 1 (PDCCH indicated by hatching).
  • the PDSCH allocated to DCC # 1 is assigned by the PDCCH indicated by the diagonal lines in DCC # 1).
  • the base station apparatus 100 can allocate a plurality of PDSCHs in the same subframe using a plurality of PDCCHs arranged in one downlink component carrier.
  • the base station device 100 transmits information including a component carrier instruction (Component Carrier Indicator) to each of a plurality of PDCCHs arranged in one component carrier in the downlink, and transmits the information to the mobile station device 200.
  • a plurality of PDCCHs are used to allocate a plurality of PDSCHs in the same subframe. That is, in FIG.
  • the base station apparatus 100 displays information indicating a component carrier instruction indicating that the PDSCH of DCC # 3 is allocated to the PDCCH indicated by the grid line in DCC # 3 using the network line in DCC # 3.
  • Information indicating a component carrier instruction indicating that the PDSCH of DCC # 4 is assigned to the indicated PDCCH is transmitted to the mobile station apparatus 200.
  • the base station apparatus 100 may transmit to the mobile station apparatus 200 including information indicating a component carrier instruction indicating that the DCSCH of DCC # 1 is allocated to the PDCCH indicated by the diagonal lines in DCC # 1. good.
  • base station apparatus 100 is arranged in DCC # 3 and DCC # 4 using two PDCCHs (PDCCHs indicated by grid lines and network lines, respectively) arranged in DCC # 3.
  • PDSCH assigned to DCC # 3 by PDCCH indicated by the grid line in DCC # 3 is assigned to DCC # 4 by PDCCH indicated by the network line in DCC # 3.
  • Assigned PDSCH Base station apparatus 100 uses PDSCH arranged in DCC # 1, DCC # 3, and DCC # 4 to transmit (up to three) downlink transport blocks to mobile station apparatus 200 in the same subframe. can do.
  • the mobile station apparatus 200 transmits a plurality of uplink transport blocks to the base station apparatus 100 in the same subframe using the PUSCH of each uplink component carrier.
  • the mobile station apparatus 200 uses five PUSCHs of UCC # 1, UCC # 2, UCC # 3, UCC # 4, and UCC # 5, and (up to five) uplink transport blocks are It transmits to the base station apparatus 100 in the same subframe.
  • mobile station apparatus 200 transmits control information in HARQ for (multiple) PDCCH and / or (multiple) downlink transport blocks transmitted from base station apparatus 100 to base station apparatus 100.
  • the mobile station apparatus 200 transmits control information in HARQ for five PDCCHs and / or five downlink transport blocks transmitted from the base station apparatus 100 in the same subframe to the base station apparatus 100.
  • the mobile station apparatus 200 bundles control information in HARQ for the (plurality) of PDCCHs and / or (plurality) of downlink transport blocks transmitted from the base station apparatus 100 into bundling. Or multiplexing (using a plurality of bits and multiplexing) and transmitting to base station apparatus 100.
  • the base station device 100 allocates a PUCCH resource for the mobile station device 200 to transmit control information in HARQ to the mobile station device 200.
  • the base station apparatus 100 allocates a PUCCH resource for the mobile station apparatus 200 to transmit control information in HARQ for each PDSCH transmitted on each downlink component carrier. That is, base station apparatus 100 allocates a PUCCH resource for mobile station apparatus 200 to transmit control information in HARQ in association with a PDCCH to which a PDSCH transmitted on each downlink component carrier is allocated.
  • the base station apparatus 100 may semi-statically allocate PUCCH resources for the mobile station apparatus 200 to transmit control information in HARQ by RRC signaling.
  • the base station apparatus 100 uses the broadcast information (using a broadcast channel (PBCH)) to broadcast the downlink component carrier and the uplink component carrier in each downlink component carrier, Set to cell specific. Also, the base station apparatus 100 sets the association between the downlink component carrier and the uplink component carrier specific to the mobile station apparatus 200 by RRC signaling transmitted for each mobile station apparatus 200. Furthermore, the base station apparatus 100 uses a broadcast channel or RRC signaling to specify an uplink component carrier to which the mobile station apparatus 200 transmits control information in HARQ as a cell-specific or mobile station apparatus 200-specific. Set.
  • PBCH broadcast channel
  • base station apparatus 100 uses PUCCH resources (for transmitting control information in HARQ) by mobile station apparatus 200 using broadcast information broadcast on each downlink component carrier (using broadcast channel (PBCH)).
  • PUCCH resource area is allocated (reserved).
  • the base station apparatus 100 allocates (reserves) a PUCCH resource (PUCCH resource area) for the mobile station apparatus 200 to transmit control information in HARQ by RRC signaling transmitted for each mobile station apparatus 200.
  • the base station apparatus 100 arranges the HARQ control information in which area of the PUCCH resource area by the mobile station apparatus 200 depending on the position in the PDCCH resource (PDCCH resource area) of the PDCCH arranged in the downlink component carrier. Specifies whether to transmit (which region in the PUCCH resource region is used to transmit control information in HARQ). That is, the mobile station apparatus 200 is set by a broadcast channel or RRC signaling depending on how the PDCCH arranged in the downlink component carrier is arranged in the PDCCH resource (PDCCH resource region). Also, control information in HARQ is arranged on the PUCCH (in the PUCCH resource area) and transmitted to the base station apparatus 100.
  • the correspondence between the PDCCH arranged in the downlink component carrier and each PUCCH is defined by, for example, associating the CCE index at the head of the CCE constituting each PDCCH with the index of each PUCCH resource.
  • the CCE index at the beginning of the CCE that constitutes the PDCCH indicated by the oblique lines, the index of the PUCCH resource indicated by the oblique lines surrounded by the solid lines, and the CCE at the beginning of the CCE that constitutes the PDCCH indicated by the grid lines This indicates that the PUCCH index indicated by the index and the grid line, the CCE index at the head of the CCE constituting the PDCCH indicated by the network line, and the PUCCH index indicated by the network line correspond to each other. That is, in FIG.
  • the base station apparatus 100 uses a broadcast channel or RRC signaling, and a downlink component carrier (DCC # 1) and an uplink component carrier (UCC) on which PDCCH is arranged. # 1) is supported. Also, the base station apparatus 100 uses the broadcast channel or RRC signaling to associate the downlink component carrier (DCC # 3) on which the PDCCH is arranged with the uplink component carrier (UCC # 3). It shows that.
  • the mobile station apparatus 200 transmits control information in HARQ on any one uplink component carrier.
  • the PUCCH resource that can be set in one uplink component carrier in the base station device 100 so that the mobile station device 200 can transmit HARQ control information using the PUCCH resource in one uplink component carrier. Is allocated (reserved), and the mobile station apparatus 200 can transmit HARQ control information to the base station apparatus 100 using the PUCCH resource in the area.
  • the PUCCH resource that can be set in one uplink component carrier in the base station device 100 so that the mobile station device 200 can transmit HARQ control information using the PUCCH resource in one uplink component carrier. Is allocated (reserved), and the mobile station apparatus 200 can transmit HARQ control information to the base station apparatus 100 using the PUCCH resource in the area.
  • the arrow from the PUCCH resource indicated by the oblique line surrounded by the solid line in UCC # 1 to the PUCCH resource indicated by the oblique line surrounded by the dotted line in UCC # 3 indicates that the base station apparatus 100 is a broadcast channel or
  • the mobile station apparatus 200 uses RRC signaling to allocate (reserve) a PUCCH resource (PUCCH resource area) that can be set in UCC # 3 in order to transmit control information in HARQ. Show.
  • the mobile station apparatus 200 performs bundling or multiplexing control information in HARQ for (plural) PDCCH and / or (plural) downlink transport blocks from the base station apparatus 100. It transmits to the base station apparatus 100.
  • the mobile station apparatus 200 may receive the PDCCH transmitted from the base station apparatus 100 using DCC # 1, DCC # 3 and / or the PDSCH transmitted using DCC # 1, DCC # 3, DCC # 4.
  • Control information in HARQ for bundling or multiplexing is transmitted to base station apparatus 100.
  • the mobile station apparatus 200 bundles control information in HARQ and transmits the control information to the base station apparatus 100
  • one information is obtained from the control information in HARQ for each of the (plural) PDCCH and / or (multiple) PDSCH.
  • Control information in HARQ is calculated (generated), and the calculated control information in one HARQ is transmitted to base station apparatus 100.
  • the mobile station apparatus 200 calculates information (HARQ) indicating one ACK / NACK by calculating a logical product or logical sum of information indicating ACK / NACK for each of a plurality of PDSCHs (which may be downlink transport blocks). Control information) is transmitted to the base station apparatus 100.
  • HARQ information indicating one ACK / NACK by calculating a logical product or logical sum of information indicating ACK / NACK for each of a plurality of PDSCHs (which may be downlink transport blocks).
  • Control information is transmitted to the base station apparatus 100. For example, in FIG.
  • the mobile station apparatus 200 uses the DCSCH # 1, DCC # 3, and DCC # 4 PDSCH from the base station apparatus 100 to indicate ACK / NACK for each PDSCH transmitted in the same subframe.
  • the logical product of (control information in HARQ) is calculated and transmitted to the base station apparatus 100 as information indicating one ACK / NACK (control information in HARQ).
  • mobile station apparatus 200 When bundling control information in HARQ and transmitting it to base station apparatus 100, mobile station apparatus 200 is designated by a plurality of PDCCHs (positions of a plurality of PDCCHs in the PDCCH resource region) transmitted from base station apparatus 100. Using one of a plurality of PUCCH resources, for example, 1-bit information (for example, information indicating ACK or NACK) is transmitted to base station apparatus 100 (when transmitting MIMO, 2-bit information is transmitted) ). At this time, the mobile station apparatus 200 further has several bits depending on which PUCCH area is used among the PUCCH arrangement areas specified according to the detected positions of the plurality of PDCCHs and the number of PDCCHs. The information is transmitted to the base station apparatus 100. For example, in FIG. 5, the mobile station apparatus 200 uses three PUCCH areas corresponding to the three PDCCHs transmitted by the base station apparatus 100, and further performs selection of the three PUCCH areas. A total of six types of information may be transmitted to the base station apparatus 100.
  • the base station apparatus 100 and the mobile station apparatus 200 receive control information in HARQ and / or up to which PDCCH the mobile station apparatus 200 ( Detection), for example, (ACK, received up to the shaded PDCCH), (NACK, received up to the shaded PDCCH), (ACK, received up to the grid line PDCCH), (NACK, received up to the grid line PDCCH) ), (ACK, received up to network PDCCH), (NACK, received up to network PDCCH), and so on.
  • the mobile station apparatus 200 detects DTX for at least one PDCCH among a plurality of PDCCHs, the mobile station apparatus 200 transmits a signal indicating NACK to the base station apparatus 100.
  • the mobile station apparatus 200 when the mobile station apparatus 200 multiplexes control information in HARQ and transmits it to the base station apparatus 100, all of the control information in HARQ for each of the (plural) PDCCH and / or (plural) PDSCH A plurality of control information expressing combinations are transmitted to base station apparatus 100 (the following plurality of control information, which is information necessary for expressing all combinations, may be transmitted to base station apparatus 100).
  • the mobile station apparatus 200 uses a plurality of bits for a combination of information indicating DTX and / or ACK / NACK for each of (plural) PDCCH and / or (plural) PDSCH (may be a downlink transport block). And transmitted to the base station apparatus 100. Further, in FIG.
  • mobile station apparatus 200 shows information indicating DTX and / or ACK / NACK for each of PDCCH and / or PDSCH transmitted from base station apparatus 100 using DCC # 1, DCC # 3, and DCC # 4. The combination is expressed using a plurality of bits and transmitted to the base station apparatus 100.
  • the base station apparatus 200 When the mobile station apparatus 200 multiplexes control information in HARQ and transmits the multiplexed information to the base station apparatus 100, the base station apparatus transmits, for example, 1-bit or 2-bit information on one PUCCH according to a preset format. To 100. At this time, the mobile station apparatus 200 further has several bits depending on which PUCCH area is used among the PUCCH arrangement areas specified according to the detected positions of the plurality of PDCCHs and the number of PDCCHs. The information is transmitted to the base station apparatus 100. For example, in FIG. 5, when the mobile station apparatus 200 can transmit 2-bit information on each of three PUCCHs corresponding to the three PDCCHs transmitted from the base station apparatus 100, the three PUCCHs are further transmitted. Is selected, a total of 12 types of information are transmitted to the base station apparatus 100.
  • the base station apparatus 100 and the mobile station apparatus 200 can use, for example, (ACK, ACK, ACK), ( (ACK, ACK, NACK), (ACK, ACK, DTX), (ACK, NACK, ACK), (ACK, NACK, NACK), (ACK, NACK, DTX), (NACK, NACK, ACK), (NACK, Pre-mapped information such as (NACK, NACK), (NACK, NACK, DTX), (ACK, DTX, ACK), (ACK, DTX, NACK), (ACK, DTX, DTX) Control information, and PUCCH resources and information bit relationships defined in a table or the like) are transmitted and received.
  • NACK and DTX are transmitted in combination (if the amount of information is 27 types when ACK / NACK / DTX is combined with 12 types).
  • the base station apparatus 100 and the mobile station apparatus 200 transmit and receive information such as (ACK, ACK, NACK / DTX)).
  • base station apparatus 100 allocates one PUCCH resource for each PDSCH, and mobile station apparatus 200 uses the allocated PUCCH to multiplex or band a control signal in HARQ. Ring and transmit to base station apparatus 100.
  • mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by base station apparatus 100, and transmits control information in HARQ to base station apparatus 100 using the selected PUCCH resources.
  • the two PUCCH resources selected by the mobile station apparatus 200 correspond to the PDSCH arranged on the component carrier having the highest (or lower) frequency among the plurality of PDSCHs received by the mobile station apparatus 200 on each component carrier. Two PUCCH resources may be used.
  • FIG. 6 shows two PUCCH resources allocated by the base station apparatus 100 when the mobile station apparatus 200 according to the first embodiment of the present invention transmits control information in HARQ to the base station apparatus 100. It is a figure explaining an example of the selection candidate at the time of selecting a PUCCH resource.
  • FIG. 6 illustrates an example of selection candidates when the mobile station apparatus 200 selects two PUCCH resources from the five PUCCH resources allocated by the base station apparatus 100 as an example.
  • numbers 0 to 4 indicate PUCCH resources (n (1) PUCCH X ).
  • n (1) and PUCCH X the time allocated by the base station apparatus 100 indicates a resource and / or frequency resources and / or code resource
  • X in n (1) PUCCH X is n (1) PUCCH of PUCCH X Indicates the resource number. That is, X in n (1) PUCCH X indicates the PUCCH resource number (PUCCH resource index, hereinafter also referred to as resource number) of the PUCCH resource allocated by the base station apparatus 100 for each PDSCH.
  • PUCCH resource index hereinafter also referred to as resource number
  • the PUCCH resource number can be defined by the frequency position of the PDCCH used by the base station apparatus 100 to allocate the PDSCH.
  • a PUCCH resource number can be assigned in order from a low (high) position in frequency, corresponding to PDCCHs arranged in order from a low (high) frequency position.
  • PUCCH resource numbers can be assigned in order from a low (high) position in frequency, corresponding to PDSCHs arranged in order from a low (high) frequency position.
  • FIG. 6 shows an example of selection candidates when mobile station apparatus 200 transmits control information in HARQ for each of five PDSCHs and / or five PDCCHs to base station apparatus 100.
  • the mobile station apparatus 200 selects two PUCCH resources from among the five PUCCH resources allocated by the base station apparatus 100, and controls HARQ for each of (5) PDSCH and / or (5) PDCCH. Information is transmitted to base station apparatus 100 using the selected PUCCH resource.
  • the mobile station apparatus 200 selects two PUCCH resources from the five PUCCH resources allocated by the base station apparatus 100, and controls HARQ control information for each of (5) PDSCH and / or (5) PDCCH. Are transmitted to base station apparatus 100 using the selected PUCCH resource.
  • the mobile station apparatus 200 selects two PUCCH resources from among the five PUCCH resources, the selection candidates of the combination of the two PUCCH resources are limited, and two of the limited selection candidates are selected. Select one PUCCH resource.
  • FIG. 6 shows, as an example, that the number of PUCCH resource selection candidates that can be selected by the mobile station apparatus 200 is limited to five (respectively, selection candidate numbers 1 to 5) out of ten possible combinations. ing. That is, in FIG.
  • the mobile station apparatus 200 selects the PUCCH resource selection candidate when the two PUCCH resources are selected from the five PUCCH resources allocated from the base station apparatus 100 as the first selection candidate (resource Number 0, resource number 1), second selection candidate (resource number 1, resource number 2), third selection candidate (resource number 2, resource number 3), fourth selection candidate (resource number 3, resource number) 4) This indicates that the selection is limited to the fifth selection candidate (resource number 4, resource number 0).
  • the mobile station apparatus 200 selects a PUCCH resource of a combination of two specific PUCCH resource numbers from the five PUCCH resources allocated by the base station apparatus 100, and uses the selected PUCCH resource. Then, control information in HARQ is transmitted to base station apparatus 100.
  • a combination selection candidate is a combination of two specific PUCCH resource numbers (for example, 1st selection candidate (resource number 0, resource number 1), 2nd selection candidate (resource number 1, resource number 2), 3rd selection candidate (resource number 2, resource number 3), 4th selection Restricted to candidates (resource number 3, resource number 4) and fifth selection candidates (resource number 4, resource number 0), that is, PUCCH resources that can be used when mobile station apparatus 200 transmits control information in HARQ Can be limited to predetermined combinations, for example, selection of combinations. Method can also be limited to a combination of the two PUCCH resource numbers are consecutive.
  • the mobile station apparatus 200 transmits control information in HARQ using two PUCCH resources selected from the limited selection candidates, so that the two PUCCH resources in the base station apparatus 100 are transmitted. Detection errors can be reduced. That is, by limiting the selection candidates of the two PUCCH resources selected by the mobile station device 200 from the ten combinations of all the PUCCH resources shown in all the combinations 501 in FIG. Compared to a case where all combinations are selection candidates, detection errors of two PUCCH resources in the base station apparatus 100 can be reduced.
  • control information can be exchanged smoothly.
  • the mobile station apparatus 200 selects a PUCCH resource of a combination of two specific PUCCH resource numbers from among a plurality of PUCCH resources allocated from the base station apparatus 100, each is used as each selection candidate. It is possible to limit the selection candidates by minimizing the use of the PUCCH resources. That is, in FIG. 6, the PUCCH resources to be included in the selection candidates are the first selection candidate (resource number 0, resource number 1), the second selection candidate (resource number 1, resource number 2), and the third selection candidate ( (Resource number 2, resource number 3) indicates that the selection candidates are limited to the fourth selection candidate (resource number 3, resource number 4) and the fifth selection candidate (resource number 4, resource number 0). Yes.
  • the mobile station apparatus 200 when the mobile station apparatus 200 selects two PUCCH resources from the five PUCCH resources allocated by the base station apparatus 100, the mobile station apparatus 200 minimizes the PUCCH resources included in the selection candidates. To transmit control information in HARQ to the base station apparatus 100 using the selected PUCCH resource.
  • the mobile station apparatus 200 selects two PUCCH resources from the plurality of PUCCH resources allocated from the base station apparatus 100, the mobile station apparatus 200 moves by limiting the PUCCH resources included in the selection candidates to the minimum.
  • station apparatus 200 transmits control information in HARQ using two PUCCH resources, it becomes possible to reduce extraction errors of two PUCCH resources in base station apparatus 100. That is, all of the PUCCH resources are restricted by limiting the selection candidates of the combinations of the two PUCCH resources selected by the mobile station apparatus 200 from all 10 combinations of the PUCCH resources shown in all the combinations 501 in FIG. As compared with the case where the combination of the two is a selection candidate, it is possible to reduce extraction errors of two PUCCH resources in the base station apparatus 100.
  • the mobile station apparatus 200 selects all PUCCH resource selection candidates evenly. In this case, it is not necessary to accurately detect the two PUCCH resources. For example, if one of the PUCCH resources can be detected correctly, the remaining one of the PUCCH resources is selected from the selection candidates limited in advance, so that detection errors of two PUCCH resources can be reduced. .
  • the mobile station apparatus 200 when the mobile station apparatus 200 selects two PUCCH resources from among the five PUCCH resources, the number of selection candidates is limited, and the mobile station apparatus 200 can select from the limited selection candidates.
  • Two PUCCH resources are selected. That is, when mobile station apparatus 200 selects two PUCCH resources from among a plurality of PUCCH resources allocated from base station apparatus 100, the number of selection candidates is determined from base station apparatus 100 in the same subframe. Limit to the same number of PDSCHs received (transmitted) (or more than the number of PDSCHs). That is, in FIG. 6, the number of selection candidates when the mobile station device 200 selects two PUCCH resources from the PUCCH resources allocated from the base station device 100 is determined from the base station device 100 in the same subframe.
  • the number of PDSCHs to be received is limited to five.
  • the mobile station apparatus 200 assigns two PUCCH resources from among the PUCCH resources allocated by the base station apparatus 100.
  • the number of selection candidates at the time of selection is limited to three.
  • the number of selection candidates is received from base station apparatus 100 in the same subframe.
  • the number of selection candidates for two PUCCH resources selected from the PUCCH resources allocated by the base station apparatus 100 is the same from the base station apparatus 100. It may be greater than or equal to the number of PDSCHs received in the subframe.
  • the base station apparatus 100 receives the two PUCCH resources transmitted from the mobile station apparatus 200 and detects the two PUCCH resources selected by the mobile station apparatus 200 from the plurality of allocated PUCCH resources. By doing so, control information in bundling or multiplexed HARQ is demodulated based on the detected PUCCH resource and information (information bits) included in the PUCCH resource.
  • the base station apparatus 100 that has received two PUCCH resources (frequency resource and code resource (time is the same as each resource)) transmitted by the mobile station apparatus 200, from among a plurality of allocated PUCCH resources, The mobile station device 200 detects which two PUCCH resources are selected. For example, in order to detect two PUCCH resources selected by the mobile station device 200, the base station device 100 uses code resources in frequency resources in each of the PUCCH resource selection candidates (consisting of two different PUCCH resources). Based on the above, despreading is performed on the reference signal included in the control information in HARQ. Furthermore, as a result of performing despreading, base station apparatus 100 determines (detects) the PUCCH resource with the highest power and the PUCCH resource with the second highest power as the two PUCCH resources selected by mobile station apparatus 200. .
  • the base station device 100 when the detected PUCCH resource is a PUCCH resource that is not included in the selection candidates to be selected by the mobile station device 200, the base station device 100 has the most power among the combinations among the selection candidates.
  • the PUCCH resource having a large is determined as the PUCCH resource selected by the mobile station apparatus 200.
  • the base station apparatus 100 that has received two PUCCH resources transmitted from the mobile station apparatus 200 detects the PUCCH resource with the resource number 3 as the PUCCH resource with the highest power, and has the second largest power.
  • a PUCCH resource with resource number 0 is detected as a PUCCH resource (when it is a PUCCH resource that is not included in the selection candidates to be selected by the mobile station apparatus 200), combinations in the selection candidates (that is, resource numbers) 2 or resource number 4), the PUCCH resource with the highest power is determined as the PUCCH resource selected by the mobile station apparatus 200.
  • the base station apparatus 100 compares the power of the PUCCH resource with the resource number 2 and the power of the PUCCH resource with the resource number 4, and if the power of the PUCCH resource with the resource number 2 is larger, the mobile station apparatus 200 However, it is determined that the PUCCH resource with the resource number 3 and the PUCCH resource with the resource number 2 are selected and transmitted to the base station apparatus 100.
  • base station apparatus 100 detects two PUCCH resources selected by mobile station apparatus 200 by despreading control information in HARQ (not including the reference signal) transmitted from mobile station apparatus 200. You can also. Further, the base station apparatus 100 combines the result of despreading the control information in HARQ (not including the reference signal) transmitted from the mobile station apparatus 200 and the result of despreading the reference signal, Two PUCCH resources selected by the mobile station apparatus 200 may be detected. Specifically, the sum or product of the power obtained as a result of despreading the control information in HARQ and the power obtained as a result of despreading the reference signal is calculated, and the power is moved from the calculated power. Two PUCCH resources selected by the station apparatus 200 may be detected.
  • the mobile station apparatus calculates (detects) the largest power from the power obtained as a result of despreading control information in HARQ and the power obtained as a result of despreading the reference signal. Two PUCCH resources selected by 200 are detected.
  • FIG. 7 is a sequence chart when the base station apparatus 100 and the mobile station apparatus 200 according to the first embodiment of the present invention transmit / receive control information in HARQ.
  • the base station apparatus 100 allocates one PUCCH resource for each PDSCH so that the mobile station apparatus 200 transmits control information in HARQ (step S1).
  • the base station apparatus 100 can allocate a PUCCH resource to the mobile station apparatus 200 in association with a PDCCH to which a PDSCH to be transmitted on each downlink component carrier is allocated.
  • the base station apparatus 100 dynamically assigns a PUCCH resource to the mobile station apparatus 200 for each PDSCH (in association with the PDCCH to which the PDSCH is allocated). Is also called.
  • the base station apparatus 100 dynamically assigning the PUCCH resource means that the base station apparatus 100 assigns the PUCCH resource to the mobile station apparatus 200 every 1 ms, for example.
  • the base station apparatus 100 allocates PUCCH resources for the mobile station apparatus 200 to transmit control information in HARQ to the mobile station apparatus 200 using RRC signaling (a signal in an upper layer). Also good.
  • the allocation of the PUCCH resource by using the RRC signaling by the base station apparatus 100 is also referred to as quasi-static (semi-static) allocation of the PUCCH resource to the mobile station apparatus 200.
  • the base station apparatus 100 allocating PUCCH resources semi-statically means that, for example, the base station apparatus 100 allocates PUCCH resources to the mobile station apparatus 200 at intervals of about 100 ms.
  • the mobile station apparatus 200 to which the PUCCH resource is semi-statically allocated by the base station apparatus 100 holds the allocated PUCCH resource in a long-term (permanent), for example, at a timing at which control information in HARQ should be transmitted ( When it becomes necessary to transmit control information in HARQ, the control information in HARQ is transmitted to base station apparatus 100 using the PUCCH resource.
  • the base station apparatus 100 transmits the downlink transport block to the mobile station apparatus 200 using PDSCH (step S2). For example, the base station apparatus 100 transmits a plurality of downlink transport blocks to the mobile station apparatus 200 in the same subframe using a plurality of PDSCHs in each downlink component carrier.
  • the mobile station apparatus 200 that has received the downlink transport block using the PDSCH from the base station apparatus 100 generates HARQ control information based on the reception state of the PDSCH (downlink transport block), and controls the HARQ control information.
  • the PUCCH resource corresponding to is selected (step S3).
  • the mobile station apparatus 200 generates control information in HARQ for (multiple) PDCCH and / or (multiple) PDSCH transmitted from the base station apparatus 100 as control information in HARQ, and uses the control information in HARQ.
  • the corresponding PUCCH resource is selected. That is, the mobile station apparatus 200 selects two PUCCH resources according to the control information in HARQ from the (plural) PUCCH resources allocated by the base station apparatus 100.
  • the mobile station apparatus 200 uses the selection method as described above as a selection method when selecting two PUCCH resources from the (plural) PUCCH resources allocated by the base station apparatus 100.
  • the mobile station apparatus 200 arranges bits (information bits) corresponding to the control information in HARQ (selected according to the control information in HARQ) in the two selected PUCCH resources, and transmits the selected information to the base station apparatus 100. Transmit (step S4). That is, mobile station apparatus 200 transmits (selected) bits to base station apparatus 100 using two (selected) PUCCH resources.
  • the base station apparatus 100 that has received two PUCCH resources from the mobile station apparatus 200 extracts (detects) control information in HARQ (step S5).
  • the extraction method used when the base station apparatus 100 extracts (detects) control information in HARQ from two PUCCH resources transmitted from the mobile station apparatus 200 uses the extraction (detection) method as described above. That is, for example, in order to extract (detect) two PUCCH resources selected by the mobile station apparatus 200, the base station apparatus 100 uses a selection candidate of a combination of PUCCH resources that the mobile station apparatus 200 may select. Then, a combination of PUCCH resources that showed the largest power as a result of despreading is detected. That is, base station apparatus 100 determines the combination of PUCCH resources that showed the largest power as a result of despreading as the two PUCCH resources selected by mobile station apparatus 200, and extracts (detects) control information in HARQ. .
  • the transmission / reception of control information in HARQ by the base station apparatus 100 and the mobile station apparatus 200 described above is performed when the mobile station apparatus 200 transmits control information in HARQ to the base station apparatus 100 by applying transmission diversity. Also apply. That is, transmission / reception of control information in HARQ by the base station apparatus 100 and the mobile station apparatus 200 described above is performed not only for the mobile station apparatus 200 having a single antenna but also for a mobile station apparatus having a plurality of antennas. 200 applies.
  • the mobile station apparatus 200 having a plurality of antennas selects two PUCCH resources from among the (plurality) of PUCCH resources allocated by the base station apparatus 100 using the method described above, Control information in HARQ for each of (a plurality of) PDCCHs and / or (a plurality of) PDSCHs is transmitted to base station apparatus 100 by applying transmission diversity using the selected PUCCH resource.
  • the mobile station apparatus 200 applies transmission diversity and transmits two PUCCH resources to the base station apparatus 100
  • the information transmitted in each of the two PUCCH resources is the same information (the same symbol, Modulation symbol or coding symbol).
  • the mobile station apparatus 200 transmits each of the two PUCCH resources in which the same information is arranged to the base station apparatus 100 using different antennas.
  • different antennas are antennas that are logically identified.
  • the base station apparatus 100 allocates one PDSCH for each of the plurality of downlink component carriers, and allocates one PUCCH resource for each allocated PDSCH. Also, the mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources, and uses HARQ control information for each of the PDSCH and / or PDCCH using the selected PUCCH resources with a plurality of antennas. It transmits to the base station apparatus 100 (for example, applying transmission diversity).
  • base station apparatus 100 allocates one PDSCH for each of a plurality of downlink component carriers, and allocates one PUCCH resource for each allocated PDSCH. Also, the mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources, bundles HARQ control information for each PDSCH and / or PDCCH, and uses the selected PUCCH resources to Are transmitted to the base station apparatus 100 (for example, applying transmission diversity).
  • the mobile station apparatus 200 uses two PUCCH resources allocated from the base station apparatus 100. Select PUCCH resources, calculate (generate) control information in one HARQ from control information in HARQ for each of (plural) PDCCH and / or (multiple) PDSCH, and calculate control information in one calculated HARQ, Transmit with the two selected PUCCH resources.
  • mobile station apparatus 200 multiplexes control information in HARQ and applies transmission diversity to base station apparatus 100
  • two PUCCH resources among the PUCCH resources allocated from base station apparatus 100 are used.
  • a plurality of control information expressing all combinations of control information in HARQ for each of the (multiple) PDCCH and / or (multiple) PDSCH is transmitted using the two selected PUCCH resources.
  • the selection candidates of combinations of the two PUCCH resources to be selected are limited as described above. To do. That is, for example, when the mobile station apparatus 200 selects two PUCCH resources from among the PUCCH resources allocated by the base station apparatus 100, the combination selection candidates are selected as combinations of PUCCH resources having adjacent PUCCH resource numbers. Restrict to. Furthermore, when the mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by the base station apparatus 100, the number of selection candidates for the two PUCCH resources to be selected is limited as described above. To do.
  • the mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by the base station apparatus 100, the number of selection candidates is received from the base station apparatus 100 in the same subframe. Limit the number to (or more than) the number of PDSCHs that have been (transmitted).
  • the mobile station apparatus 200 selects two PUCCH resources from the (multiple) PUCCH resources allocated by the base station apparatus 100, and transmits control information in HARQ using the selected PUCCH resources, whereby control information in HARQ Can be transmitted to the base station apparatus 100 while maintaining high quality. That is, the mobile station apparatus 200 uses two PUCCH resources to transmit control information in HARQ, so that even if the characteristics for one PUCCH resource are degraded, the PUCCH resource is in a good propagation path in another state. Can be gained (diversity effect can be obtained), and the quality of control information in HARQ transmitted to base station apparatus 100 can be kept high.
  • the mobile station apparatus 200 selects two PUCCH resources from among a plurality of PUCCH resources allocated by the base station apparatus 100, and transmits control information in HARQ using the selected PUCCH resources.
  • the transmission power when the station apparatus 200 transmits control information in HARQ can be suppressed low. That is, the mobile station device 200 does not need to transmit HARQ control information using all of the plurality of PUCCH resources allocated by the base station device 100, and the PUCCH resource used when transmitting the HARQ control information is eliminated.
  • the transmission power in the mobile station apparatus 200 can be kept low.
  • base station apparatus 100 transmits a signal for allocating PUCCH resources by allocating PUCCH resources for mobile station apparatus 200 to transmit control information in HARQ for each PDSCH (in association with PDCCH to which PDSCH is allocated). There is no need, and PUCCH resources can be allocated efficiently.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of a plurality of downlink component carriers, and allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH.
  • Mobile station apparatus 200 selects two of the allocated PUCCH resources, and transmits HARQ control information for each of PDSCH and / or PDCCH to base station apparatus 100 using the selected PUCCH resource. It is possible.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of a plurality of downlink component carriers, and allocates at least one PUCCH resource for each allocated PDSCH to the mobile station apparatus 200.
  • Mobile station apparatus 200 selects two of the allocated PUCCH resources, bundles HARQ control information for each PDSCH and / or PDCCH, and uses the selected PUCCH resources to It is possible to transmit to the device 100.
  • it is possible to reduce detection errors of the two PUCCH resources.
  • the number of combinations that are limited is the same as the number of PDSCHs that mobile station apparatus 200 receives in the same subframe (or more than the number of PDSCHs). This is the same as in the first embodiment because one PUCCH resource is allocated to each PDSCH, and when one PUCCH resource is selected and transmitted, there are the same number of candidates as the number of PDSCHs. In addition, when two PUCCH resources are selected, combination candidates according to the number of PDSCHs are prepared. Further, in the second embodiment, the base station apparatus 100 significantly increases the number of mobile station apparatuses 200 that can be multiplexed by allocating PUCCH resources that are less than twice the number of PDSCHs allocated to the mobile station apparatus 200.
  • Two PUCCH resources can be selected from a plurality of PUCCH resources without being reduced. Furthermore, when the base station apparatus 100 allocates PUCCH resources twice the number of PDSCHs to the mobile station apparatus 200, the allocated PUCCH resources are included in only one restricted candidate, and detection of two PUCCH resources is performed. It is possible to reduce errors. In this embodiment, the mobile station apparatus 200 transmits HARQ control information by transmission diversity using two selected PUCCH resources (transmits the same HARQ control information using two PUCCH resources).
  • the base station apparatus 100 allocates one PUCCH resource for each PDSCH, and the mobile station apparatus 200 multiplexes or bundles the control signals in HARQ using the allocated PUCCH to the base station apparatus. To 100. At this time, mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by base station apparatus 100, selects the selected PUCCH resources, and transmits control information in HARQ to base station apparatus 100. To do.
  • At least one PDSCH is arranged for each of five component carriers in the downlink transport block signal, and the mobile station apparatus 200 transmits at least 1 for each PDSCH in order to transmit control information in HARQ corresponding thereto.
  • two PUCCH resources are allocated, two of the allocated PUCCH resources are selected, and two PUCCH resources selected and transmitted by the mobile station apparatus 200 are detected in the base station apparatus 100. 5 selection candidates of PUCCH resources are shown.
  • the number of selection candidates is set as follows: By limiting the number (five) of PDSCHs received (transmitted) in the same subframe from the base station apparatus 100, it becomes possible to reduce processing when the mobile station apparatus 200 selects PUCCH resources, Control information in efficient HARQ can be transmitted. In addition, the reception quality of control information in HARQ transmitted from mobile station apparatus 200 can be improved.
  • the number of selection candidates of two PUCCH resources selected from among the PUCCH resources allocated by the base station apparatus 100 is the same from the base station apparatus 100. It may be more than the number of PDSCHs received in the subframe.
  • each PDSCH at least one PUCCH resource is allocated.
  • For a PDSCH in a certain downlink component carrier two PUCCH resources are allocated, and for a PDSCH in a certain downlink component carrier. Indicates that one PUCCH resource is allocated, and is configured with five downlink component carriers.
  • When one PDSCH is allocated in each component carrier at least five PUCCH resources are allocated.
  • the PUCCH resource selection candidates (corresponding to selection candidate numbers 1 to 5 respectively) described in FIG. 6 can be applied in the first embodiment.
  • FIG. 8 is a diagram illustrating PUCCH resource selection candidates when two PUCCH resources are selected when six PUCCH resources are allocated in the second embodiment of the present invention.
  • numbers 0 to 5 indicate PUCCH resources (n (1) PUCCH X ).
  • FIG. 8 shows that, as an example, the number of PUCCH resource selection candidates that can be selected by the mobile station apparatus 200 is limited to five (selection candidate numbers 1 to 5 respectively) out of 15 possible combinations. . That is, in FIG.
  • the combination of two specific PUCCH resource numbers is the first Selection candidate (resource number 0, resource number 1), second selection candidate (resource number 0, resource number 2), third selection candidate (resource number 0, resource number 3), fourth selection candidate (resource number) 0, resource number 4), and 5th selection candidate (resource number 0, resource number 5).
  • the first selection candidate (resource number 0, resource number 1) and the second selection candidate (resource number 0, (Resource number 2), the third selection candidate (resource number 0, resource number 3), the fourth selection candidate (resource number 0, resource number 4), and the fifth selection candidate (resource number 0, resource number) 5).
  • the base station apparatus 100 since the mobile station apparatus 200 always uses the resource number 0 for transmission, the base station apparatus 100 only needs to be able to detect the remaining PUCCH resource (in this example, any one of the PUCCH resource numbers 1 to 5). Since it is not necessary to compare all combinations of two PUCCH resources, it is possible to reduce the amount of calculation required to detect two PUCCH resources.
  • FIG. 9 is a diagram illustrating an example of a selection candidate different from FIG. 8 of the PUCCH resource when using two PUCCH resources in the second embodiment of the present invention.
  • numbers 0 to 5 indicate PUCCH resources (n (1) PUCCH X ).
  • the combination of two specific PUCCH resource numbers (selection candidate numbers 1 to 5 respectively) for transmitting control information in HARQ is used as the first selection candidate (resource number 0, resource number 1).
  • 2nd selection candidate (resource number 1, resource number 2), 3rd selection candidate (resource number 2, resource number 3), 4th selection candidate (resource number 3, resource number 4), 5
  • the second selection candidate is (resource number 4, resource number 5).
  • the combination selection method can be limited to two combinations in which PUCCH resource numbers are consecutive.
  • this selection candidate using the property (diversity effect) that both of the two PUCCH resources used for transmission are less likely to be erroneous, one of the PUCCH resources previously limited from one detected PUCCH resource in the base station apparatus.
  • PUCCH resource candidates can be narrowed down, and detection errors of PUCCH resources can be reduced.
  • FIG. 10 is a diagram illustrating two examples of PUCCH resource selection candidates when seven PUCCH resources are allocated in the second embodiment of the present invention.
  • numbers 0 to 6 indicate PUCCH resources (n (1) PUCCH X ).
  • the combination of two specific PUCCH resource numbers is used as the first selection candidate (resource number 0, resource number 1) and the second selection candidate ( (Resource number 2, resource number 3), the third selection candidate (resource number 3, resource number 4), the fourth selection candidate (resource number 4, resource number 5), and the fifth selection candidate (resource number 5 and resource number 6).
  • the combination selection method is limited to two combinations in which PUCCH resource numbers are consecutive.
  • a solid line indicates a PUCCH resource candidate that does not share the same resource as another PUCCH resource selection candidate
  • a dotted line indicates the same PUCCH resource as another PUCCH resource candidate.
  • the case where only one is shared is shown.
  • There are two PUCCH resource candidates to be selected selection candidate numbers 2 and 5
  • the remaining two PUCCH resource selection candidates (selection candidate numbers 3 and 4) share two PUCCH resources with other selection candidates.
  • the configuration is a selection candidate of existing PUCCH resources.
  • the base station apparatus 100 detects a selection candidate for the PUCCH resource selected by the mobile station apparatus 200, only one resource is shared with another PUCCH resource selection candidate indicated by a dotted line. If a resource that does not share a PUCCH resource with another selection candidate can be detected, it is possible to detect a selection candidate of two used PUCCH resources. Also, detection errors of PUCCH resources selected by the mobile station apparatus 200 can be reduced as compared with selection candidates of other PUCCH resources and PUCCH resource selection candidates in which two PUCCH resources are shared. Furthermore, the selection candidate indicated by the solid line can detect the selection candidate of the PUCCH resource used for transmission if any of the PUCCH resources constituting the selection candidate of the PUCCH resource can be detected. PUCCH resource detection errors can be reduced more than (selection candidate numbers 2 to 5 in Example 1).
  • the first selection candidate is expressed as a combination of specific two PUCCH resource numbers (selection candidate numbers 1 to 5 respectively) ( (Resource number 0, resource number 1), the second selection candidate (resource number 1, resource number 2), the third selection candidate (resource number 3, resource number 4), and the fourth selection candidate (resource number 4, resource number 5) and the fifth selection candidate is (resource number 5, resource number 6).
  • selection candidate numbers 1 to 5 respectively
  • the combination selection method is limited to two combinations in which PUCCH resource numbers are consecutive.
  • Example 2 there is no selection candidate for a PUCCH resource that does not share a PUCCH resource with another selection candidate indicated by a solid line, but there is only one shared PUCCH resource and a selection candidate for another PUCCH resource indicated by a dotted line. Since there are four PUCCH resource selection candidates and there is only one PUCCH resource selection candidate in which two PUCCH resource selection candidates and two PUCCH resource sharings exist, the mobile station apparatus 200 is more than in Example 1. When there is no bias in the selection candidates of the selected PUCCH resource, it is possible to reduce detection errors of the PUCCH resource.
  • FIG. 11 is a diagram illustrating PUCCH resource selection candidates when two PUCCH resources are selected when 8 PUCCH resources are allocated from the base station apparatus 100 in the second embodiment of the present invention.
  • numbers 0 to 7 indicate PUCCH resources (n (1) PUCCH X ).
  • FIG. 11 shows two examples representing five selection candidates for selecting two PUCCH resources from eight PUCCH resources.
  • the first selection candidate (resource number 0, resource number 1) and the second selection candidate ( (Resource number 2, resource number 3), the third selection candidate (resource number 3, resource number 4), the fourth selection candidate (resource number 4, resource number 5), and the fifth selection candidate (resource number 6, resource number 7).
  • the combination selection method is limited to two combinations in which PUCCH resource numbers are consecutive.
  • Example 1 in FIG. 11 there are two PUCCH resource selection candidates that do not share the PUCCH resource with other PUCCH resource selection candidates indicated by solid lines, and other PUCCH resource selection candidates and PUCCH resource selection candidates indicated by dotted lines. There are two PUCCH resource selection candidates for which only one share exists, and the remaining one PUCCH resource selection candidate is composed of other PUCCH resource selection candidates and PUCCH resource selection candidates for which two PUCCH resource shares exist. Yes.
  • Example 1 Compared to Example 1 in which there are seven PUCCH resources allocated from base station apparatus 100 shown in FIG. 10, the number of PUCCH resource selection candidates that do not share the PUCCH resource is increased by one, and the other. The number of PUCCH resource selection candidates and PUCCH resource selection candidates that share two PUCCH resources is reduced by one, and detection errors of PUCCH resources can be reduced. Compared to Example 2 in FIG. 10, the number of PUCCH resource selection candidates that do not share the PUCCH resource with other PUCCH resource selection candidates is increased by two, and the other PUCCH resource selection candidate and the PUCCH resource share only one PUCCH resource. Since the number of selection candidates is reduced by 2, it is possible to reduce detection errors of PUCCH resources.
  • the first selection candidate (resource number 0, resource number 1) is selected as the combination of two specific PUCCH resource numbers, and the second selection is performed.
  • the candidates are (resource number 1, resource number 2), the third selection candidate is (resource number 3, resource number 4), the fourth selection candidate is (resource number 4, resource number 5), and the fifth selection candidate is (Resource number 6, resource number 7).
  • the combination selection method is limited to two combinations in which PUCCH resource numbers are consecutive.
  • Example 2 in FIG. 11 there is one PUCCH resource selection candidate that does not share the PUCCH resource with another PUCCH resource selection candidate indicated by a solid line, and only one PUCCH resource is shared with another PUCCH resource selection candidate indicated by a dotted line. There are four PUCCH resource selection candidates.
  • Example 2 in FIG. 10 Compared to Example 2 in FIG. 10, another PUCCH resource selection candidate that does not share the PUCCH resource with another PUCCH resource selection candidate indicated by a solid line is increased by one, and the other PUCCH resource selection candidate and PUCCH resource sharing are two. Since the number of PUCCH resource selection candidates existing by one is reduced, it is possible to reduce detection errors of two PUCCH resources.
  • Example 2 in FIG. 11 there is one PUCCH resource selection candidate that does not share a PUCCH resource with another PUCCH resource selection candidate indicated by a solid line, and one sharing of a PUCCH resource with another PUCCH resource selection candidate indicated by a dotted line.
  • There are four PUCCH resource selection candidates and there is no PUCCH resource selection candidate in which two PUCCH resource selection candidates and two PUCCH resource sharings exist. Therefore, the PUCCH resource selection candidate selected from Example 1 is biased. If not, detection errors of two PUCCH resources can be reduced.
  • FIG. 12 is a diagram illustrating selection candidates for PUCCH resources when selecting two PUCCH resources when nine PUCCH resources are allocated in the second embodiment of the present invention.
  • numbers 0 to 8 indicate PUCCH resources (n (1) PUCCH X ).
  • FIG. 12 shows an example of a combination of two specific PUCCH resource numbers when nine PUCCH resources are allocated.
  • the combination of two specific PUCCH resource numbers for transmitting control information in HARQ is the first selection candidate (resource number 0, resource number 1), and the second selection candidate is (resource (Number 2, resource number 3), the third selection candidate (resource number 3, resource number 4), the fourth selection candidate (resource number 5, resource number 6), and the fifth selection candidate (resource number 7 , Resource number 8).
  • the combination selection method is limited to two combinations in which PUCCH resource numbers are consecutive.
  • Example 1 Compared to Example 1 in the case where there are eight PUCCH resources illustrated in FIG. 11, another PUCCH resource selection candidate that does not share the PUCCH resource with another PUCCH resource selection candidate indicated by a solid line is increased by one, and another PUCCH resource selection candidate Since the number of PUCCH resource selection candidates that share two PUCCH resources is reduced by 1, it is possible to reduce detection errors of PUCCH resource selection candidates.
  • PUCCH resource selection candidates that share two other PUCCH resource selection candidates and PUCCH resource share the other PUCCH resource selection candidates and PUCCH resource selection candidates indicated by solid lines. PUCCH resource selection candidates not to be increased by two, and PUCCH resource selection candidates sharing only one PUCCH resource with other PUCCH resource selection candidates are reduced by two, thereby reducing detection errors of two PUCCH resources Is possible.
  • the PUCCH resource selection candidates shown in FIGS. 8 to 12 are mobile stations that can be multiplexed by allocating PUCCH resources less than twice the number of PDSCHs allocated to the mobile station apparatus 200 in the base station apparatus 100. Two PUCCH resources can be selected from a plurality of PUCCH resources without significantly reducing the number of devices 200.
  • FIG. 13 is a diagram illustrating a combination of two specific PUCCH resource numbers when two PUCCH resources are selected when 10 PUCCH resources are allocated in the second embodiment of the present invention.
  • numbers 0 to 9 indicate PUCCH resources (n (1) PUCCH X ).
  • FIG. 13 is an example showing five PUCCH resource selection candidates when a total of 10 PUCCH resources are allocated.
  • the first selection candidate (resource number 0, resource number 1) and the second selection candidate (resource number 2, (Resource number 3), the third selection candidate (resource number 4, resource number 5), the fourth selection candidate (resource number 6, resource number 7), and the fifth selection candidate (resource number 8, resource number) 9).
  • the combination selection method is limited to two combinations in which PUCCH resource numbers are consecutive.
  • the selected PUCCH resource shown in FIG. 13 is only one limited candidate. It is possible to reduce detection errors of two PUCCH resources.
  • the number of selection candidates is received from base station apparatus 100 in the same subframe.
  • the number of selection candidates for the two PUCCH resources to be selected may be greater than or equal to the number of PDSCHs received in the same subframe.
  • the base station apparatus 100 receives two PUCCH resources transmitted from the mobile station apparatus 200, and selects the mobile station apparatus 200 from among the assigned PUCCH resources.
  • bundling or multiplexed HARQ control information is demodulated based on the detected PUCCH resource and information (information bits) included in the PUCCH resource.
  • the PUCCH resource for the mobile station apparatus 200 to transmit control information in HARQ is supplied by the base station apparatus 100, and the mobile station apparatus 200 is used for the allocated resource.
  • a state in which control information in HARQ is transmitted will be described.
  • FIG. 14 shows a sequence chart in which PUCCH resources for transmission of control information in HARQ are supplied to mobile station apparatus 200 in the second embodiment of the present invention, and control information in HARQ based on the resources is transmitted.
  • the base station apparatus 100 allocates at least one PUCCH resource for each PDSCH so that the mobile station apparatus 200 transmits control information in HARQ (step S101).
  • the base station apparatus 100 allocates a PUCCH resource to the mobile station apparatus 200 in association with a PDCCH to which a PDSCH to be transmitted on each downlink component carrier is allocated.
  • one PUCCH resource may be allocated to a certain PDCCH according to the position of the PDCCH, and two PUCCH resources may be allocated to a certain PDCCH.
  • the number of PUCCH resources allocated according to the position of the PDCCH does not have to be one or two, and may be two or more.
  • the PUCCH resource is associated with the smallest CCE index
  • one PUCCH resource is allocated
  • the PUCCH resource is allocated
  • the other PUCCH resource is allocated.
  • one PUCCH resource can be allocated in association with the smallest CCE index
  • the PUCCH resource with the allocated PUCCH resource number + 1 can be allocated as another PUCCH resource.
  • mobile station apparatus 200 applies transmission diversity to control information in HARQ, one PUCCH resource is transmitted by the first antenna, and another PUCCH resource is transmitted by the second antenna.
  • the base station apparatus 100 transmits the downlink transport block to the mobile station apparatus 200 using PDSCH (step S102). For example, the base station apparatus 100 transmits a plurality of downlink transport blocks to the mobile station apparatus 200 in the same subframe using a plurality of PDSCHs in each downlink component carrier.
  • the mobile station apparatus 200 that has received the downlink transport block signal using the PDSCH from the base station apparatus 100 generates control information in HARQ based on the reception state of the downlink transport block, and sets the PUCCH resource.
  • Select step S103.
  • the mobile station apparatus 200 generates control information in HARQ for (multiple) PDCCH and / or (multiple) PDSCH transmitted from the base station apparatus 100 as control information in HARQ, and uses the control information in HARQ.
  • the corresponding PUCCH resource is selected. That is, the mobile station apparatus 200 selects two PUCCH resources according to the control information in HARQ from the (plural) PUCCH resources allocated by the base station apparatus 100.
  • the mobile station apparatus 200 selects the two PUCCH resources from among the (plural) PUCCH resources allocated by the base station apparatus 100.
  • the selection method as in the second embodiment described above is used. use.
  • the mobile station apparatus 200 arranges bits (information bits) corresponding to the control information in HARQ (selected according to the control information in HARQ) on the two selected PUCCH resources, and sends the selected information to the base station apparatus 100. Transmit (step S104). That is, mobile station apparatus 200 transmits (selected) bits to base station apparatus 100 using two (selected) PUCCH resources.
  • the base station apparatus 100 that has received two PUCCH resources from the mobile station apparatus 200 extracts (detects) control information in HARQ (step S105).
  • the extraction method used when the base station apparatus 100 extracts (detects) HARQ control information from two PUCCH resources transmitted from the mobile station apparatus 200 uses the extraction (detection) method as described above. That is, for example, in order to extract (detect) two PUCCH resources selected by the mobile station apparatus 200, the base station apparatus 100 uses a selection candidate of a combination of PUCCH resources that the mobile station apparatus 200 may select. Then, a combination of PUCCH resources that showed the largest power as a result of despreading is detected. That is, base station apparatus 100 determines the combination of PUCCH resources that showed the largest power as a result of despreading as the two PUCCH resources selected by mobile station apparatus 200, and extracts (detects) control information in HARQ. .
  • the transmission / reception of control information in HARQ by the base station apparatus 100 and the mobile station apparatus 200 described above is performed when the mobile station apparatus 200 transmits control information in HARQ to the base station apparatus 100 by applying transmission diversity. Also apply. That is, transmission / reception of control information in HARQ by the base station apparatus 100 and the mobile station apparatus 200 described above is performed not only for the mobile station apparatus 200 having a single antenna but also for a mobile station apparatus having a plurality of antennas. This also applies to 200.
  • the mobile station apparatus 200 having a plurality of antennas selects two PUCCH resources from among the (plurality) of PUCCH resources allocated by the base station apparatus 100 using the method described above, Control information in HARQ for each of (a plurality of) PDCCHs and / or (a plurality of) PDSCHs is transmitted to base station apparatus 100 by applying transmission diversity using the selected PUCCH resource.
  • the mobile station apparatus 200 applies transmission diversity and transmits two PUCCH resources to the base station apparatus 100
  • the information transmitted in each of the two PUCCH resources is the same information (the same symbol, Modulation symbol or coding symbol).
  • the mobile station apparatus 200 transmits each of the two PUCCH resources in which the same information is arranged to the base station apparatus 100 using different antennas.
  • different antennas are antennas that are logically identified.
  • the base station apparatus 100 allocates one PDSCH for each of the plurality of downlink component carriers, and allocates at least one PUCCH resource for each allocated PDSCH. Also, the mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources, and uses HARQ control information for each of the PDSCH and / or PDCCH using the selected PUCCH resources with a plurality of antennas. It transmits to the base station apparatus 100 (for example, applying transmission diversity).
  • base station apparatus 100 allocates one PDSCH for each of a plurality of downlink component carriers, and allocates at least one PUCCH resource for each allocated PDSCH. Also, the mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources, bundles HARQ control information for each PDSCH and / or PDCCH, and uses the selected PUCCH resources to Are transmitted to the base station apparatus 100 (for example, applying transmission diversity).
  • the mobile station apparatus 200 uses two PUCCH resources allocated from the base station apparatus 100. Select PUCCH resources, calculate (generate) control information in one HARQ from control information in HARQ for each of (plural) PDCCH and / or (multiple) PDSCH, and calculate control information in one calculated HARQ, Transmit with the two selected PUCCH resources.
  • mobile station apparatus 200 multiplexes control information in HARQ and applies transmission diversity to base station apparatus 100
  • two PUCCH resources among the PUCCH resources allocated from base station apparatus 100 are used.
  • a plurality of control information expressing all combinations of control information in HARQ for each of the (multiple) PDCCH and / or (multiple) PDSCH is transmitted using the two selected PUCCH resources.
  • the selection candidates for the combination of the two PUCCH resources to be selected are limited as described above. To do. That is, for example, when the mobile station apparatus 200 selects two PUCCH resources from among the PUCCH resources allocated by the base station apparatus 100, the combination selection candidates are selected as combinations of PUCCH resources having adjacent PUCCH resource numbers. Restrict to. Furthermore, when the mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by the base station apparatus 100, the number of selection candidates for the two PUCCH resources to be selected is limited as described above. To do.
  • the mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by the base station apparatus 100, the number of selection candidates is received from the base station apparatus 100 in the same subframe. Limit the number to (or more than) the number of PDSCHs that have been (transmitted).
  • the mobile station apparatus 200 selects two PUCCH resources from the (multiple) PUCCH resources allocated by the base station apparatus 100, and transmits control information in HARQ using the selected PUCCH resources, whereby control information in HARQ Can be transmitted to the base station apparatus 100 while maintaining high quality. That is, the mobile station apparatus 200 uses two PUCCH resources to transmit control information in HARQ, so that even if the characteristics for one PUCCH resource are degraded, the PUCCH resource is in a good propagation path in another state. Can be gained (diversity effect can be obtained), and the quality of control information in HARQ transmitted to base station apparatus 100 can be kept high.
  • the mobile station apparatus 200 selects two PUCCH resources from among a plurality of PUCCH resources allocated by the base station apparatus 100, and transmits control information in HARQ using the selected PUCCH resources.
  • the transmission power when the station apparatus 200 transmits control information in HARQ can be suppressed low. That is, the mobile station device 200 does not need to transmit HARQ control information using all of the plurality of PUCCH resources allocated by the base station device 100, and the PUCCH resource used when transmitting the HARQ control information is eliminated.
  • the transmission power in the mobile station apparatus 200 can be kept low.
  • base station apparatus 100 transmits a signal to allocate PUCCH resources by allocating PUCCH resources for mobile station apparatus 200 to transmit control information in HARQ for each PDSCH (in association with PDCCH to which PDSCH is allocated). There is no need, and PUCCH resources can be allocated efficiently.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 in each of a plurality of downlink component carriers, and allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH.
  • the mobile station apparatus 200 selects two PUCCH resources from the allocated PUCCH resources and one or more PUCCH resources allocated by the base station apparatus 100, and performs HARQ for each of the PDSCH and / or PDCCH. Control information can be transmitted to base station apparatus 100 using the selected PUCCH resource.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of the plurality of downlink component carriers, allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH, and the mobile station apparatus 200 Selects two PUCCH resources from the allocated PUCCH resources and a plurality of PUCCH resources allocated by the base station apparatus 100, and bundles and selects HARQ control information for each PDSCH and / or PDCCH. It transmits to the base station apparatus 100 using the made PUCCH resource.
  • the number of combination candidates to be limited is the same as the number of PDSCHs received by mobile station apparatus 200 in the same subframe (or more than the number of PDSCHs). This is because, when one PUCCH resource is allocated to each PDSCH and one PUCCH resource is selected and transmitted, there are the same number of candidates as the number of PDSCHs.
  • combinations of candidates corresponding to the number of PDSCHs are prepared.
  • the base station apparatus 100 allocates a plurality of PUCCH resources that are less than twice the number of PDSCHs allocated to the mobile station apparatus 200, without significantly reducing the number of mobile station apparatuses 200 that can be multiplexed. Two PUCCH resources can be selected from the PUCCH resources. Furthermore, when the base station apparatus 100 allocates PUCCH resources twice the number of PDSCHs to the mobile station apparatus 200, the allocated PUCCH resources are included in only one restricted candidate, and detection of two PUCCH resources is performed. It is possible to reduce errors.
  • the mobile station apparatus 200 transmits HARQ control information by transmission diversity using the two selected PUCCH resources (transmits the same HARQ control information using two PUCCH resources). Further, when only one PDSCH is received, the mobile station apparatus 200 transmits using the PUCCH resource allocated in advance by the base station apparatus 100 and the PUCCH resource allocated to the PDSCH.
  • the example of the mobile communication system shown in FIG. 5 can be similarly applied to the third embodiment.
  • FIG. 15 shows a sequence chart in which PUCCH resources for transmission of control information in HARQ are supplied to mobile station apparatus 200 in the third embodiment of the present invention, and control information in HARQ based on the resources is transmitted.
  • the base station apparatus 100 allocates one PUCCH resource semi-statically by RRC signaling as the first PUCCH resource allocation in order for the mobile station apparatus 200 to transmit control information in HARQ (step S201).
  • the first PUCCH resource allocated here does not need to be one, and may be two or more.
  • the base station apparatus 100 dynamically allocates at least one PUCCH resource for each PDSCH as the second PUCCH resource allocation to the mobile station apparatus 200 (step S202). For example, the base station apparatus 100 allocates a PUCCH resource to the mobile station apparatus 200 in association with a PDCCH to which a PDSCH to be transmitted on each downlink component carrier is allocated.
  • the base station apparatus 100 allocates a PUCCH resource to the mobile station apparatus 200 in association with a PDCCH to which a PDSCH to be transmitted on each downlink component carrier is allocated.
  • the allocation of the second PUCCH resource for example, one PUCCH resource may be allocated to a certain PDCCH according to the position of the PDCCH, and two PUCCH resources may be allocated to a certain PDCCH.
  • the number of PUCCH resources allocated according to the position of the PDCCH does not have to be one or two, and may be two or more.
  • the base station apparatus 100 transmits the downlink transport block to the mobile station apparatus 200 using PDSCH (step S203).
  • the base station apparatus 100 transmits a plurality of downlink transport blocks to the mobile station apparatus 200 in the same subframe using a plurality of PDSCHs in each downlink component carrier.
  • the mobile station apparatus 200 that has received the downlink transport block from the base station apparatus 100 generates control information in HARQ based on the reception state of PDSCH (downlink transport block), and PUCCH resources according to the control information in HARQ Is selected (step S204).
  • the PUCCH resource selection candidates shown in the second embodiment are applied according to the number of PUCCH resources allocated to the mobile station apparatus 200.
  • the PUCCH resource selection candidates in FIG. 8 and FIG. 9 shown in the second embodiment are assigned PUCCH resources in FIG.
  • the PUCCH resource selection candidates (respectively corresponding to selection candidate numbers 1 to 5) in FIG. 11 are 8 PUCCH resources.
  • the mobile station apparatus 200 transmits to the base station apparatus 100 using the PUCCH resource allocated in advance by the base station apparatus 100 and the PUCCH resource allocated to the PDSCH.
  • the mobile station apparatus 200 selects a PUCCH resource from the PUCCH resource assignment from the base station apparatus 100, selects a bit (information) to be transmitted using the selected PUCCH resource, Bits (information) selected using the two selected PUCCH resources are transmitted to base station apparatus 100 (step S205).
  • the base station apparatus 100 that has received two PUCCH resources from the mobile station apparatus 200 extracts (detects) control information in HARQ (step S206).
  • an extraction (detection) method as described in the first embodiment is used. Is used. That is, for example, in order to extract (detect) two PUCCH resources selected by the mobile station apparatus 200, the base station apparatus 100 uses a selection candidate of a combination of PUCCH resources that the mobile station apparatus 200 may select. Then, a combination of PUCCH resources that showed the largest power as a result of despreading is detected. That is, base station apparatus 100 determines the combination of PUCCH resources that showed the largest power as a result of despreading as the two PUCCH resources selected by mobile station apparatus 200, and extracts (detects) control information in HARQ. .
  • the transmission / reception of control information in HARQ by the base station apparatus 100 and the mobile station apparatus 200 described above is performed when the mobile station apparatus 200 transmits control information in HARQ to the base station apparatus 100 by applying transmission diversity. Also apply. That is, transmission / reception of control information in HARQ by the base station apparatus 100 and the mobile station apparatus 200 described above is performed not only for the mobile station apparatus 200 having a single antenna but also for a mobile station apparatus having a plurality of antennas. 200 applies.
  • the mobile station apparatus 200 having a plurality of antennas selects two PUCCH resources from among the (plurality) of PUCCH resources allocated by the base station apparatus 100 using the method described above, Control information in HARQ for each of (a plurality of) PDCCHs and / or (a plurality of) PDSCHs is transmitted to base station apparatus 100 by applying transmission diversity using the selected PUCCH resource.
  • the mobile station apparatus 200 applies transmission diversity and transmits two PUCCH resources to the base station apparatus 100
  • the information transmitted in each of the two PUCCH resources is the same information (the same symbol, Modulation symbol or coding symbol).
  • the mobile station apparatus 200 transmits each of the two PUCCH resources in which the same information is arranged to the base station apparatus 100 using different antennas.
  • different antennas are antennas that are logically identified.
  • the base station apparatus 100 allocates one PDSCH for each of the plurality of downlink component carriers, and allocates at least one PUCCH resource for each allocated PDSCH. Also, the mobile station apparatus 200 selects two PUCCH resources from among the PUCCH resources allocated for each PDSCH and one or more PUCCH resources allocated by the base station apparatus 100, and the PDSCH and / or PDCCH HARQ control information for each is transmitted to base station apparatus 100 using a plurality of antennas (for example, applying transmission diversity) using the selected PUCCH resource.
  • base station apparatus 100 allocates one PDSCH for each of a plurality of downlink component carriers, and allocates one PUCCH resource for each allocated PDSCH. Also, the mobile station apparatus 200 selects two PUCCH resources from among the PUCCH resources allocated for each PDSCH and one or more PUCCH resources allocated by the base station apparatus 100, and the PDSCH and / or PDCCH HARQ control information for each is bundled and transmitted to base station apparatus 100 using a plurality of antennas (for example, applying transmission diversity) using the selected PUCCH resource.
  • the mobile station apparatus 200 uses two PUCCH resources allocated from the base station apparatus 100. Select PUCCH resources, calculate (generate) control information in one HARQ from control information in HARQ for each of (plural) PDCCH and / or (multiple) PDSCH, and calculate control information in one calculated HARQ, Transmit with the two selected PUCCH resources.
  • mobile station apparatus 200 multiplexes control information in HARQ and applies transmission diversity to base station apparatus 100
  • two PUCCH resources among the PUCCH resources allocated from base station apparatus 100 are used.
  • a plurality of control information expressing all combinations of control information in HARQ for each of the (multiple) PDCCH and / or (multiple) PDSCH is transmitted using the two selected PUCCH resources.
  • the selection candidates of combinations of the two PUCCH resources to be selected are limited as described above. To do. That is, for example, when the mobile station apparatus 200 selects two PUCCH resources from among the PUCCH resources allocated by the base station apparatus 100, the combination selection candidates are selected as combinations of PUCCH resources having adjacent PUCCH resource numbers. Restrict to. Furthermore, when the mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by the base station apparatus 100, the number of selection candidates for the two PUCCH resources to be selected is limited as described above. To do.
  • the mobile station apparatus 200 selects two PUCCH resources from the PUCCH resources allocated by the base station apparatus 100, the number of selection candidates is received from the base station apparatus 100 in the same subframe. Limit the number to (or more than) the number of PDSCHs that have been (transmitted).
  • the mobile station apparatus 200 selects two PUCCH resources from the (multiple) PUCCH resources allocated by the base station apparatus 100, and transmits control information in HARQ using the selected PUCCH resources, whereby control information in HARQ Can be transmitted to the base station apparatus 100 while maintaining high quality. That is, the mobile station apparatus 200 uses two PUCCH resources to transmit control information in HARQ, so that even if the characteristics for one PUCCH resource are degraded, the PUCCH resource is in a good propagation path in another state. Can be gained (diversity effect can be obtained), and the quality of control information in HARQ transmitted to base station apparatus 100 can be kept high.
  • the mobile station apparatus 200 selects two PUCCH resources from among a plurality of PUCCH resources allocated by the base station apparatus 100, and transmits control information in HARQ using the selected PUCCH resources.
  • the transmission power when the station apparatus 200 transmits control information in HARQ can be suppressed low. That is, the mobile station device 200 does not need to transmit HARQ control information using all of the plurality of PUCCH resources allocated by the base station device 100, and the PUCCH resource used when transmitting the HARQ control information is eliminated.
  • the transmission power in the mobile station apparatus 200 can be kept low.
  • base station apparatus 100 transmits a signal to allocate PUCCH resources by allocating PUCCH resources for mobile station apparatus 200 to transmit control information in HARQ for each PDSCH (in association with PDCCH to which PDSCH is allocated). There is no need, and PUCCH resources can be allocated efficiently.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 in each of a plurality of downlink component carriers, and allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH.
  • Mobile station apparatus 200 selects two of the allocated PUCCH resources, and transmits HARQ control information for each of PDSCH and / or PDCCH to base station apparatus 100 using the selected PUCCH resource. It is possible.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of the plurality of downlink component carriers, allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH, and the mobile station apparatus 200 Selects two of the assigned PUCCH resources, bundles HARQ control information for each of the PDSCH and / or PDCCH, and transmits the HARQ control information to the base station apparatus 100 using the selected PUCCH resource. Is possible.
  • base station apparatus 100 allocates one PDSCH to mobile station apparatus 200 for each of a plurality of downlink component carriers, allocates at least one PUCCH resource to mobile station apparatus 200 for each allocated PDSCH, and mobile station apparatus 200 Selects two PUCCH resources from the allocated PUCCH resources and a plurality of PUCCH resources allocated by the base station apparatus 100, and selects HARQ control information for each of the PDSCH and / or PDCCH. Can be transmitted to the base station apparatus 100.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of the plurality of downlink component carriers, allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH, and the mobile station apparatus 200 Selects two PUCCH resources from the allocated PUCCH resources and a plurality of PUCCH resources allocated by the base station apparatus 100, and bundles and selects HARQ control information for each PDSCH and / or PDCCH. It transmits to the base station apparatus 100 using the made PUCCH resource.
  • the number of combination candidates to be limited is the same as the number of PDSCHs received by mobile station apparatus 200 in the same subframe (or more than the number of PDSCHs). This is because one PUCCH resource is allocated to each PDSCH, and when one PUCCH resource is selected and transmitted, there are as many candidates as the number of PDSCHs, which is the first embodiment. , Combinations of candidates corresponding to the number of PDSCHs are prepared when two PUCCH resources are selected.
  • the base station apparatus 100 allocates a plurality of PUCCH resources that are less than twice the number of PDSCHs allocated to the mobile station apparatus 200, without significantly reducing the number of mobile station apparatuses 200 that can be multiplexed.
  • Two PUCCH resources can be selected from the PUCCH resources.
  • the base station apparatus 100 allocates PUCCH resources twice the number of PDSCHs to the mobile station apparatus 200, the allocated PUCCH resources are included in only one restricted candidate, and detection of two PUCCH resources is performed. It is possible to reduce errors.
  • the mobile station apparatus 200 transmits HARQ control information by transmission diversity using the two selected PUCCH resources (transmits the same HARQ control information using two PUCCH resources).
  • one or two PUCCH resources are selected when transmitting from the mobile station apparatus 200 to the base station apparatus 100.
  • the number of HARQ control information for the PDSCH is X
  • the base station apparatus 100 allocates (X + Y) PUCCH resources to the mobile station apparatus 200
  • the mobile station apparatus 200 selects 2
  • the number of candidates for one PUCCH resource is Y
  • the number of candidates for one PUCCH resource selected by the mobile station apparatus 200 is (XY).
  • the example of the mobile communication system shown in FIG. 5 can be similarly applied to the fourth embodiment.
  • the difference from the first to third embodiments lies in switching between transmission using only one PUCCH resource or transmission using two PUCCH resources in order to transmit control information in HARQ.
  • two PUCCH resources are always selected and used for transmission for control information transmission in HARQ.
  • the mobile station apparatus 200 selects one or two PUCCH resources. Then, bundling or multiplexing within one uplink component carrier is used for transmission to the base station apparatus 100.
  • PVS Precoder Vector Switching
  • selection candidates for one or two PUCCH resources will be described.
  • one PDSCH is arranged in each of five component carriers for transmission of a downlink transport block signal, and one PUCCH resource assigned with five selection candidates is assigned to transmit control information in the corresponding HARQ. This is expressed by selecting one or two, and it is assumed that one or two PUCCH resources selected and transmitted by the base station apparatus 100 at the mobile station apparatus 200 are detected, and PUCCH resource selection candidates are shown. .
  • FIG. 16 is a selection candidate example of specific one or two PUCCH resource numbers when selecting one or two PUCCH resources when six PUCCH resources are allocated in the fourth embodiment of the present invention.
  • FIG. 5 is a diagram showing (respectively corresponding to selection candidate numbers 1 to 5).
  • the numbers from 0 to 5 indicate PUCCH resources (n (1) PUCCH X ).
  • the first selection candidate is resource number (0, 1)
  • the second selection candidate is resource number (2)
  • the third selection candidate is resource number (3)
  • the fourth selection candidate is assigned resource number (4)
  • the fifth selection candidate is assigned resource number (5).
  • this selection candidate when the first selection candidate is selected, two PUCCH resources can be used.
  • the base station apparatus 100 detects the PUCCH resource. The accuracy can be increased. Further, if the same detection accuracy as that when one PUCCH resource is selected, transmission power can be reduced when the first selection candidate is selected.
  • FIG. 17 is a selection candidate example of specific one or two PUCCH resource numbers when selecting one or two PUCCH resources when seven PUCCH resources are allocated in the fourth embodiment of the present invention.
  • FIG. 5 is a diagram showing (respectively corresponding to selection candidate numbers 1 to 5).
  • numbers 0 to 6 indicate PUCCH resources (n (1) PUCCH X ).
  • the first selection candidate is resource number (0, 1)
  • the second selection candidate is resource number (2, 3)
  • the third selection candidate is resource number (4 )
  • Resource number (5) is assigned to the fourth selection candidate
  • resource number (6) is assigned to the fifth selection candidate.
  • this selection candidate when the first or second selection candidate is selected, two PUCCH resources can be used, and when the first or second selection candidate is selected, the base station apparatus 100 , It is possible to improve the detection accuracy of PUCCH resources. In addition, if the same detection accuracy as that when one PUCCH resource is selected, the transmission power can be reduced when the first or second selection candidate is selected.
  • FIG. 18 is a selection candidate example of specific one or two PUCCH resource numbers when selecting one or two PUCCH resources when eight PUCCH resources are allocated in the fourth embodiment of the present invention.
  • FIG. 5 is a diagram showing (respectively corresponding to selection candidate numbers 1 to 5).
  • numbers 0 to 7 indicate PUCCH resources (n (1) PUCCH X ).
  • the first selection candidate is resource number (0, 1)
  • the second selection candidate is resource number (2, 3)
  • the third selection candidate is resource number (4 5)
  • the fourth selection candidate is assigned a resource number (6)
  • the fifth selection candidate is assigned a resource number (7).
  • this selection candidate when the first, second or third selection candidate is selected, two PUCCH resources can be used, and when the first, second or third selection candidate is selected Furthermore, in the base station apparatus 100, it is possible to improve the detection accuracy of PUCCH resources. Further, if the same detection accuracy as that when one PUCCH resource is selected is sufficient, transmission power can be reduced when the first, second, or third selection candidate is selected.
  • FIG. 19 is a selection example of specific one or two PUCCH resource numbers when selecting one or two PUCCH resources when nine PUCCH resources are allocated in the fourth embodiment of the present invention.
  • FIG. 5 is a diagram showing (respectively corresponding to selection candidate numbers 1 to 5).
  • numbers 0 to 8 indicate PUCCH resources (n (1) PUCCH X ).
  • the first selection candidate is resource number (0, 1)
  • the second selection candidate is resource number (2, 3)
  • the third selection candidate is resource number (4 5)
  • the fourth selection candidate is assigned resource number (6, 7)
  • the fifth selection candidate is assigned resource number (8).
  • this selection candidate when the first, second, third, or fourth selection candidate is selected, two PUCCH resources can be used, and the first, second, third, or fourth selection When a candidate is selected, in the base station apparatus 100, it is possible to improve the detection accuracy of a PUCCH resource. Also, if the same detection accuracy as when one PUCCH resource is selected, transmission power can be reduced when the first, second, third, or fourth selection candidate is selected. It is.
  • the PUCCH resource selection candidates shown in FIGS. 16 to 19 are mobile stations that can be multiplexed by allocating fewer PUCCH resources than twice the number of PDSCHs allocated to the mobile station apparatus 200 in the base station apparatus 100. Two PUCCH resources can be selected from a plurality of PUCCH resources without significantly reducing the number of devices 200. Further, when 10 PUCCH resources are allocated, FIG. 13 shown in the second embodiment is similarly applied to a combination of two specific PUCCH resource numbers (corresponding to selection numbers 1 to 5 respectively). Is possible. In this case, one PUCCH resource is not selected, and two PUCCH resources are selected for each of the five selection candidates. FIG. 14 and FIG. 15 can be used for the specific procedure, and the selection of the PUCCH resource may be performed according to the number of assigned PUCCH resources.
  • base station apparatus 100 allocates one PDSCH to mobile station apparatus 200 for each of a plurality of downlink component carriers, allocates at least one PUCCH resource to mobile station apparatus 200 for each allocated PDSCH, and moves The station apparatus 200 selects two of the allocated PUCCH resources, and transmits HARQ control information for each PDSCH and / or PDCCH to the base station apparatus 100 using the selected PUCCH resource. Is possible.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of a plurality of downlink component carriers, allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH,
  • the mobile station apparatus 200 selects two of the assigned PUCCH resources, bundles HARQ control information for each of the PDSCH and / or PDCCH, and uses the selected PUCCH resource to the base station apparatus 100. It is possible to send.
  • base station apparatus 100 allocates one PDSCH to mobile station apparatus 200 for each of a plurality of downlink component carriers, allocates at least one PUCCH resource to mobile station apparatus 200 for each allocated PDSCH, and mobile station apparatus 200 Selects two of the assigned PUCCH resources, and transmits the HARQ control information for each of the PDSCH and / or PDCCH to the base station apparatus 100 using the selected PUCCH resource. Two of the PUCCH resources allocated for each component carrier and one or more allocated PUCCH resources can be selected and transmitted.
  • the base station apparatus 100 allocates one PDSCH to the mobile station apparatus 200 for each of the plurality of downlink component carriers, allocates at least one PUCCH resource to the mobile station apparatus 200 for each allocated PDSCH, and the mobile station apparatus 200 When selecting two of the assigned PUCCH resources, bundling HARQ control information for each of the PDSCH and / or PDCCH, and transmitting to the base station apparatus 100 using the selected PUCCH resource Two of the PUCCH resources allocated for each downlink component carrier and one or more allocated PUCCH resources can be selected and transmitted.
  • the two PUCCH resources that can be selected by the mobile station apparatus 200 are candidates that can be selected instead of selecting all the combinations from among the combinations that select two of the assigned PUCCH resources. Restrict. Furthermore, the number of combinations of the two PUCCH resources selected when transmitting from the mobile station apparatus 200 to the base station apparatus 100 is the same as the number of downlink component carriers.
  • the number of PUCCH resources selected when transmitting from the mobile station apparatus 200 to the base station apparatus 100 in the present embodiment is one or two. Further, the number of selection candidates that can select two PUCCH resources to be selected when transmitting from the mobile station apparatus 200 to the base station apparatus 100 in the present embodiment is all the ones that select one and two PUCCH resources from the allocated PUCCH resources. This is the number obtained by subtracting the number of selection candidates.
  • the base station apparatus and the mobile station apparatus when the base station apparatus and the mobile station apparatus perform communication using a wide frequency band composed of a plurality of component carriers, the base station apparatus and the mobile station apparatus efficiently transmit and receive control information in HARQ.
  • the PUCCH resource in the mobile station apparatus can improve the signal quality of each control information in a plurality of HARQ, and further reduce the transmission power when transmitting the control information in a plurality of HARQ It is possible to provide a mobile communication system and a mobile communication method in consideration of the selection method.
  • the present invention is not limited to control information in HARQ, but can be similarly applied to any communication system that performs CDMA in a predetermined frequency and time domain, and transmits other information signals. May be.
  • the radio communication system according to the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers, and the base station apparatus includes a plurality of downlink component carriers.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the PDSCH and / or HARQ control information for each PDCCH is generated, any two PUCCH resources are selected from the allocated PUCCH resources, and the generated HARQ control information is selected using the selected PUCCH resources. It transmits to the said base station apparatus, It is characterized by the above-mentioned.
  • the mobile station apparatus selects any two PUCCH resources from the allocated PUCCH resources, and transmits the generated HARQ control information to the base station apparatus using the selected PUCCH resources. Even if the characteristics for one PUCCH resource are deteriorated, a gain can be obtained by transmitting the PUCCH resource through a propagation path in another good state (a diversity effect can be obtained) and transmitted to the base station apparatus. The quality of control information in HARQ can be kept high. In addition, the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the radio communication system of the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers.
  • the base station apparatus includes a plurality of downlinks.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the mobile station apparatus receives the downlink transport block from the base station apparatus, and the downlink transport block Based on the reception state of the PDSCH And / or generating and bundling HARQ control information for each of the PDCCHs, selecting any two PUCCH resources from the allocated PUCCH resources, and using the selected PUCCH resources, The bundled HARQ control information is transmitted to the base station apparatus.
  • the mobile station apparatus generates HARQ control information for each of the PDSCH and / or PDCCH based on the reception state of the downlink transport block, performs bundling, and selects any of the allocated PUCCH resources. Since two PUCCH resources are selected and bundled HARQ control information is transmitted to the base station apparatus using the selected PUCCH resources, the base station apparatus and the mobile station apparatus can control the HARQ control information and / or Information indicating which PDCCH has been received (detected) by the mobile station apparatus can be transmitted and received.
  • the mobile station apparatus can obtain a gain by transmitting a PUCCH resource through a propagation path in another good state (a diversity effect can be obtained).
  • the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the radio communication system of the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers, and the base station apparatus includes a plurality of downlinks.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • HARQ control information for each of the PDSCH and / or the PDCCH, select any two PUCCH resources from the allocated PUCCH resources, and use the selected PUCCH resources to generate the generated HARQ
  • the control information is transmitted to the base station apparatus.
  • the mobile station apparatus generates HARQ control information for each of the PDSCH and / or PDCCH based on the reception state of the downlink transport block, and any two PUCCHs from among the assigned PUCCH resources. Since resources are selected and the generated HARQ control information is transmitted to the base station apparatus using the selected PUCCH resources, even if the characteristics for one PUCCH resource are deteriorated, the propagation path in another state is good. A gain can be obtained by transmitting the PUCCH resource (a diversity effect can be obtained), and the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the radio communication system of the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers.
  • the base station apparatus includes a plurality of downlinks.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the bundled HARQ control information is transmitted to the base station apparatus.
  • the mobile station apparatus generates HARQ control information for each of the PDSCH and / or PDCCH based on the reception state of the downlink transport block, performs bundling, and selects any of the allocated PUCCH resources. Since two PUCCH resources are selected and bundled HARQ control information is transmitted to the base station apparatus using the selected PUCCH resources, the base station apparatus and the mobile station apparatus can control the HARQ control information and / or Information indicating which PDCCH has been received (detected) by the mobile station apparatus can be transmitted and received.
  • the mobile station apparatus can obtain a gain by transmitting a PUCCH resource through a propagation path in another good state (a diversity effect can be obtained).
  • the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the radio communication system of the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers, and the base station apparatus includes a plurality of downlinks.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the previous HARQ control information for each of the PDSCH and / or the PDCCH is generated, and any two PUCCH resources are selected from among the PUCCH resources allocated for each PDSCH and the plurality of allocated PUCCH resources, and the selection is performed.
  • the generated HARQ control information is transmitted to the base station apparatus using the generated PUCCH resource.
  • the mobile station apparatus generates HARQ control information for each of the PDSCH and / or PDCCH based on the reception state of the downlink transport block, and the PUCCH resource allocated for each PDSCH and a plurality of allocated Since any two PUCCH resources are selected from the PUCCH resources and the generated HARQ control information is transmitted to the base station apparatus using the selected PUCCH resources, it is necessary to transmit a signal to allocate the PUCCH resources. And PUCCH resources can be allocated efficiently. Moreover, even if the characteristic with respect to one PUCCH resource deteriorates, the mobile station apparatus can obtain a gain by transmitting a PUCCH resource through a propagation path in another good state (a diversity effect can be obtained).
  • the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the radio communication system of the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers.
  • the base station apparatus includes a plurality of downlinks.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the previous HARQ control information for each of the PDSCH and / or the PDCCH is generated and bundled, and any two PUCCH resources are selected from the PUCCH resource allocated for each PDSCH and the plurality of allocated PUCCH resources Then, the bundled HARQ control information is transmitted to the base station apparatus using the selected PUCCH resource.
  • the mobile station apparatus generates HARQ control information for each of the PDSCH and / or PDCCH based on the reception state of the downlink transport block, performs bundling, and assigns the PUCCH resource assigned to each PDSCH and Since any two PUCCH resources are selected from a plurality of allocated PUCCH resources, and bundled HARQ control information is transmitted to the base station apparatus using the selected PUCCH resources, a signal for assigning the PUCCH resources Need not be transmitted, and PUCCH resources can be allocated efficiently. Further, the base station apparatus and the mobile station apparatus can transmit and receive control information in HARQ and / or information indicating which PDCCH the mobile station apparatus has received (detected).
  • the mobile station apparatus can obtain a gain by transmitting a PUCCH resource through a propagation path in another good state (a diversity effect can be obtained).
  • the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the mobile station apparatus selects any two PUCCH resources from some of the limited candidates among all the combinations of two PUCCH resources. It is characterized by doing.
  • the mobile station apparatus selects any two PUCCH resources from some of the limited candidates among all the candidates for the combination of the two PUCCH resources. It is no longer necessary to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the apparatus, and it becomes possible to reduce PUCCH resources used when transmitting control information in HARQ. Transmission power can be kept low.
  • the limited number of candidates is equal to or greater than the number of PDSCHs received by the mobile station apparatus in the same subframe.
  • the limited number of candidates is equal to or more than the number of PDSCHs received by the mobile station apparatus in the same subframe.
  • Control information in HARQ can be transmitted using the two PUCCH resources selected from the above, and detection errors of the two PUCCH resources in the base station apparatus can be reduced.
  • the base station apparatus allocates a PUCCH resource smaller than twice the number of allocated PDSCHs to the mobile station apparatus.
  • the base station apparatus allocates a PUCCH resource that is less than twice the number of allocated PDSCHs to the mobile station apparatus.
  • Two PUCCH resources can be selected from the PUCCH resources.
  • the base station apparatus allocates PUCCH resources twice as many as the PDSCH to the mobile station apparatus, and the allocated PUCCH resources are Only one of the limited candidates is included.
  • the base station apparatus allocates PUCCH resources twice as many as the PDSCH to the mobile station apparatus, and the allocated PUCCH resources are included only in any one of the limited candidates. Therefore, detection errors of two PUCCH resources can be reduced, and reception quality of control information in HARQ can be improved.
  • the mobile station apparatus can transmit efficient control information in HARQ.
  • the mobile station apparatus transmits the same HARQ control information using any two of the selected PUCCH resources.
  • the mobile station apparatus transmits the same HARQ control information using any two selected PUCCH resources, even if the characteristics for one PUCCH resource are deteriorated, the propagation in the other state is good.
  • Gain can be obtained by transmitting PUCCH resources on the road (diversity effect can be obtained), and the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus when only one PDSCH is received, the mobile station apparatus is allocated to the PUCCH resource allocated in advance by the base station apparatus and the received PDSCH. HARQ control information is transmitted to the base station apparatus using the PUCCH resource.
  • the mobile station apparatus uses HARQ control information using the PUCCH resource allocated in advance by the base station apparatus and the PUCCH resource allocated to the received PDSCH. Is transmitted to the base station apparatus, the PUCCH selection process in the mobile station apparatus can be reduced.
  • the radio communication system of the present invention is a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers.
  • the base station apparatus includes a plurality of downlinks.
  • One PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the mobile station apparatus receives the downlink transport block from the base station apparatus, and the downlink transport block Based on the reception state of the PDSCH And / or generating HARQ control information for each of the PDCCHs, selecting any one or two PUCCH resources among all the PUCCH resource candidates from the allocated PUCCH resources, and selecting the selected PUCCH resources.
  • the generated HARQ control information is transmitted to the base station apparatus using the generated PUCCH resource.
  • the mobile station apparatus generates HARQ control information for each of the PDSCH and / or PDCCH based on the reception state of the downlink transport block, and selects all of the PUCCH resources from the allocated PUCCH resources. Since one or two PUCCH resources are selected from among the candidates, and the generated HARQ control information is transmitted to the base station apparatus using the selected PUCCH resources, the number of mobile station apparatuses that can be multiplexed is It is possible to select two PUCCH resources from a plurality of PUCCH resources without significantly reducing. In addition, the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the number of HARQ control information for the PDSCH is (X), and the number of any two PUCCH resource candidates selected by the mobile station apparatus is (Y).
  • the base station apparatus allocates (X + Y) PUCCH resources to the mobile station apparatus, and the number of PUCCH resource candidates selected by the mobile station apparatus is (XY).
  • the number of HARQ control information for the PDSCH is (X), and the number of any two PUCCH resource candidates selected by the mobile station device is (Y).
  • X + Y) PUCCH resources are allocated, while the number of candidates for any one PUCCH resource selected by the mobile station apparatus is (XY), so that the mobile station apparatus transmits control information in HARQ, It is possible to switch between transmission using only one PUCCH resource or transmission using two PUCCH resources.
  • the mobile station apparatus of the present invention is a mobile station apparatus in a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers, and the base station apparatus Based on the reception state of the downlink transport block and the reception state of the downlink transport block, HARQ control information for each of the PDSCH and / or the PDCCH is generated, and the allocated PUCCH A schedule information management unit that selects any two PUCCH resources from among the resources, and a transmission unit that transmits the generated HARQ control information to the base station apparatus using the selected PUCCH resources. It is characterized by that.
  • the mobile station apparatus selects any two PUCCH resources from the allocated PUCCH resources, and transmits the generated HARQ control information to the base station apparatus using the selected PUCCH resources. Even if the characteristics for one PUCCH resource are deteriorated, a gain can be obtained by transmitting the PUCCH resource through a propagation path in another good state (a diversity effect can be obtained) and transmitted to the base station apparatus. The quality of control information in HARQ can be kept high. In addition, the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the communication method of the present invention is a communication method in a radio communication system in which a base station apparatus and a mobile station apparatus perform radio communication using a plurality of component carriers, and in the base station apparatus, Assigning one PDSCH (Physical Downlink Shared Channel) to each mobile station apparatus using each of a plurality of downlink component carriers using PDCCH (Physical Downlink Control Channel), and one PUCCH (Physical) for each assigned PDSCH (Uplink Control Channel) resources are allocated to the mobile station device, a downlink transport block is transmitted to the mobile station device, and the mobile station device receives the downlink transport block from the base station device.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the mobile station apparatus selects any two PUCCH resources from the allocated PUCCH resources, and transmits the generated HARQ control information to the base station apparatus using the selected PUCCH resources. Even if the characteristics for one PUCCH resource are deteriorated, a gain can be obtained by transmitting the PUCCH resource through a propagation path in another good state (a diversity effect can be obtained) and transmitted to the base station apparatus. The quality of control information in HARQ can be kept high. In addition, the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • An integrated circuit is an integrated circuit that is mounted on a base station device to cause the base station device to perform a plurality of functions, and uses a mobile station device and a plurality of component carriers.
  • a wireless communication function a function of allocating one PDSCH (Physical Downlink Shared Channel) to each of the plurality of downlink component carriers using the PDCCH (Physical Downlink Control Channel), and the allocation
  • PUCCH Physical-Uplink-Control-Channel
  • the base station apparatus allocates one PUCCH (Physical-Uplink-Control-Channel) resource to the mobile station apparatus for each allocated PDSCH, so there is no need to transmit a signal to allocate the PUCCH resource, and the PUCCH resource is efficiently allocated. Can be assigned.
  • PUCCH Physical-Uplink-Control-Channel
  • the integrated circuit of the present invention is an integrated circuit that is mounted on a mobile station device to cause the mobile station device to perform a plurality of functions, and uses a base station device and a plurality of component carriers.
  • the function of receiving a downlink transport block from the base station apparatus and measuring the reception state of the downlink transport block, and the reception state of the downlink transport block A function for generating HARQ control information for each of PDSCH (Physical Downlink Shared Channel) and / or PDCCH (Physical Downlink Control Channel) and PUCCH (Physical Uplink Control Channel) resources allocated by the base station apparatus.
  • a function of selecting two PUCCH resources, Use-option was PUCCH resource, and a function of transmitting the control information of the HARQ that the generated to the base station apparatus, wherein the exerting on the mobile station apparatus.
  • the mobile station apparatus selects any two PUCCH resources from PUCCH (Physical Uplink Control Channel) resources allocated by the base station device, and uses the selected PUCCH resources to control the generated HARQ. Since information is transmitted to the base station apparatus, even if the characteristics for one PUCCH resource are deteriorated, a gain can be obtained by transmitting the PUCCH resource through a propagation path in another good state (to obtain a diversity effect). The quality of control information in HARQ transmitted to the base station apparatus can be kept high. In addition, the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • PUCCH Physical Uplink Control Channel
  • An integrated circuit is an integrated circuit that is mounted on a mobile station device to cause the mobile station device to perform a plurality of functions, and uses a base station device and a plurality of component carriers. Based on the function of performing wireless communication, the function of receiving a downlink transport block from the base station apparatus and measuring the reception state of the downlink transport block, and the reception state of the downlink transport block, A function of generating and bundling HARQ control information for each of PDSCH (Physical Downlink Shared Channel) and / or PDCCH (Physical Downlink Control Channel), and a PUCCH (Physical Uplink Control Channel) resource allocated by the base station apparatus Select any two PUCCH resources from A function that, using said selected PUCCH resource, and a function of transmitting the control information of the HARQ that the bundling to the base station apparatus, wherein the exerting on the mobile station apparatus.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the mobile station apparatus generates HARQ control information for each of PDSCH (Physical Downlink Shared Channel) and / or PDCCH (Physical Downlink Control Channel) based on the reception state of the downlink transport block. And select any two PUCCH resources from the PUCCH (Physical Uplink Control Channel) resources allocated by the base station apparatus, and further use the selected PUCCH resources to base the bundled HARQ control information on the base Send to station device. Thereby, the base station apparatus and the mobile station apparatus can transmit and receive control information in HARQ and / or information indicating which PDCCH the mobile station apparatus has received (detected).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the mobile station apparatus can obtain a gain by transmitting a PUCCH resource through a propagation path in another good state (a diversity effect can be obtained).
  • the quality of control information in HARQ transmitted to the base station apparatus can be kept high.
  • the mobile station apparatus does not need to transmit control information in HARQ using all the plurality of PUCCH resources allocated by the base station apparatus, and reduces PUCCH resources used when transmitting control information in HARQ. And transmission power in the mobile station apparatus can be kept low.
  • the program that operates in the base station apparatus 100 and the mobile station apparatus 200 related to the present invention is a program (computer function) that controls a CPU (Central Processing Unit) and the like so as to realize the functions of the above-described embodiments related to the present invention.
  • Program Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the “computer system” is a computer system built in the mobile station apparatus 200 or the base station apparatus 100, and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • part or all of the mobile station apparatus 200 and the base station apparatus 100 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the mobile station apparatus 200 and the base station apparatus 100 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • Base station apparatus 200 200-1, 200-2, 200-3
  • Mobile station apparatus 310 Transmitting section 311 Information multiplexing section 312 Modulating section 313 Mapping section 314 Radio transmitting section 320 Scheduling section 321 Time / frequency resource control section 322 Orthogonal resource Control unit 330 Reception unit 331 Radio reception unit 332 Information extraction unit 333 Channel compensation / despreading unit 334 Combining / demodulation unit 340 Antenna 410 Reception unit 411 Radio reception unit 412 Channel compensation unit 413 Decoding processing unit 420 Schedule information management unit 421 Downlink scheduling management unit 422 Orthogonal resource management unit 423 Control information management unit 424 Uplink scheduling management unit 430 Transmission unit 431 Information multiplexing unit 432 Modulation / spreading unit 433 Mapping unit 434 Radio transmission units 440, 440-1, 440-2, 40-M antenna 4131 error correction and detection unit 4133 demodulation unit 4135 information extraction and separation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局装置と移動局装置が、HARQにおける制御情報を高品質に送受信する。基地局装置と通信する移動局装置の通信方法であって、複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信する。

Description

通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路
 本発明は、基地局装置および移動局装置から構成される移動通信システムおよび移動通信方法について、特に複数の周波数帯域を用いて送受信を行なう際の、制御情報の送受信方法に関する。
 次世代セルラー移動通信の一方式として、国際的な標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、W-CDMA(Wideband-Code Division Multiple Access)とGSM(Global System for Mobile Communications)を発展させたネットワークの仕様に関して検討が行なわれている。3GPPでは、以前からセルラー移動通信方式について検討されており、第3世代セルラー移動通信方式として、W-CDMA方式が標準化された。また、通信速度を更に向上したHSDPA(High-Speed Downlink Packet Access)も標準化され、サービスが運用されている。現在、3GPPでは、第3世代無線アクセス技術の進化(Long Term Evolution:以下、「LTE」と呼ぶ)や、さらなる通信速度の高速化へ向けたLTE Advanced(以下、「LTE-A」と呼ぶ)についても検討が行なわれている。
 LTEにおける通信方式としては、互いに直交するサブキャリアを用いてユーザ多重化を行なうOFDMA(Orthogonal Frequency Division Multiple Access)方式、および、SC-FDMA(Single Carrier-Frequency Division Multiple Access)方式が検討されている。すなわち、下りリンクでは、マルチキャリア通信方式であるOFDMA方式が、上りリンクでは、シングルキャリア通信方式であるSC-FDMA方式が提案されている。一方、LTE-Aにおける通信方式としては、下りリンクでは、OFDMA方式が、上りリンクでは、SC-FDMA方式に加えて、Clustered-SC-FDMA(Clustered-Single Carrier-Frequency Division Multiple Access、DFT-s-OFDM with Spectrum Division Control、DFT-precoded OFDMとも呼称される。)方式を導入することが検討されている。ここで、LTEおよびLTE-Aにおいて、上りリンクの通信方式として提案されているSC-FDMA方式、Clustered-SC-FDMA方式は、データ(情報)を送信する際のPAPR(Peak to Average Power Ratio:ピーク電力対平均電力比)を低く抑えることができるという特徴を持っている。
 また、LTE-Aでは、一般的な移動通信システムで使用する周波数帯域は連続であるのに対し、連続/不連続な複数の周波数帯域(以下、「キャリア要素、キャリアコンポーネント(CC:Carrier Component)」、もしくは、「要素キャリア、コンポーネントキャリア(CC:Component Carrier)」と呼称する。)を複合的に使用して、1つの周波数帯域(広帯域な周波数帯域)として運用する(周波数帯域集約:Spectrum aggregation、Carrier aggregation、Frequency aggregationなどとも呼称される。)ことが検討されている。さらに、基地局装置および移動局装置が、広帯域な周波数帯域をより柔軟に使用して通信を行なうために、下りリンクの通信に使用する周波数帯域と上りリンクの通信に使用する周波数帯域を異なる周波数帯域幅とする(非対称周波数帯域集約:Asymmetric carrier aggregation)ことも提案されている(非特許文献1)。
 図20は、従来の技術における周波数帯域集約を説明する図である。ここで、図20に示されるような下りリンク(DL:Down Link)の通信に使用する周波数帯域と上りリンク(UL:Up Link)の通信に使用する周波数帯域を同じ帯域幅とすることは、対称周波数帯域集約(Symmetric carrier aggregation)とも呼称される。図20に示すように、基地局装置と移動局装置は、連続/不連続な周波数帯域である複数のコンポーネントキャリアを複合的に使用することによって、複数のコンポーネントキャリアから構成される広帯域な周波数帯域で通信を行なうことができる。
 ここでは、例として、100MHzの帯域幅を持った下りリンクの通信に使用する周波数帯域(以下、DLシステム帯域、DLシステム帯域幅とも呼称する)が、20MHzの帯域幅を持った5つのコンポーネントキャリア(DCC#1:Downlink Component Carrier#1、DCC#2、DCC#3、DCC#4、DCC#5)によって構成されていることを示している。また、例として、100MHzの帯域幅を持った上りリンクの通信に使用する周波数帯域(以下、ULシステム帯域、ULシステム帯域幅とも呼称する)が、20MHzの帯域幅を持った5つのコンポーネントキャリア(UCC#1:Uplink Component Carrier#1、UCC#2、UCC#3、UCC#4、UCC#5)によって構成されていることを示している。
 図20において、下りリンクコンポーネントキャリアそれぞれには、物理下りリンク制御チャネル(以下、PDCCH:Physical Downlink Control Channel)、物理下りリンク共用チャネル(以下、PDSCH:Physical Downlink Shared Channel)等の下りリンクのチャネルが配置され、基地局装置は、下りリンクコンポーネントキャリアそれぞれに配置されたPDSCHを使用して送信される下りリンクトランスポートブロックを送信するための制御情報(リソース割り当て情報、MCS(Modulation and Coding Scheme、変調符号化方式)情報、HARQ(Hybrid Automatic Repeat Request、ハイブリッド自動再送要求)処理情報など)を、PDCCHを使用して移動局装置に送信し(PDCCHを使用して移動局装置にPDSCHを割り当て)、PDSCHを使用して下りリンクトランスポートブロックを移動局装置へ送信する。
 また、上りリンクコンポーネントキャリアそれぞれには、物理上りリンク制御チャネル(以下、PUCCH:Physical Uplink Control Channel)、物理上りリンク共用チャネル(以下、PUSCH:Physical Uplink Shared Channel)等の上りリンクのチャネルが配置され、移動局装置は、上りリンクのコンポーネントキャリアそれぞれに配置されたPUCCHおよび/またはPUSCHを使用して、PDCCHおよび/または下りリンクトランスポートブロックに対するHARQにおける制御情報を基地局装置へ送信する。
 ここで、HARQにおける制御情報とは、PDCCHおよび/または下りリンクトランスポートブロックに対するACK/NACK(肯定応答:Positive Acknowledgement/否定応答:Negative Acknowledgement、ACK信号またはNACK信号)を示す信号(情報)および/またはDTX(Discontinuous Transmission)を示す信号(情報)のことである。DTXとは、移動局装置が基地局装置からのPDCCHを検出できなかったことを示す信号(情報)である。ここで、図20において、PDCCH、PDSCH、PUCCH、PUSCH等の下りリンク/上りリンクのチャネルのいずれかが配置されない下りリンク/上りリンクのコンポーネントキャリアが存在してもよい。
 図21は、従来の技術における非対称周波数帯域集約を説明する図である。図21に示すように、基地局装置と移動局装置は、下りリンクの通信に使用する周波数帯域と上りリンクの通信に使用する周波数帯域を異なる帯域幅とし、これらの周波数帯域を構成するコンポーネントキャリアを複合的に使用して広帯域な周波数帯域で通信を行なうことができる。ここでは、例として、100MHzの帯域幅を持った下りリンクの通信に使用する周波数帯域が、20MHzの帯域幅を持った5つの下りリンクコンポーネントキャリア(DCC#1、DCC#2、DCC#3、DCC#4、DCC#5)によって構成され、また、40MHzの帯域幅を持った上りリンクの通信に使用する周波数帯域が、20MHzの帯域幅を持った2つのコンポーネントキャリア(UCC#1、UCC#2)によって構成されていることを示している。
 図21において、下りリンク/上りリンクのコンポーネントキャリアのそれぞれには下りリンク/上りリンクのチャネルが配置され、基地局装置は、PDCCHで割り当てたPDSCHを使用して下りリンクトランスポートブロックを移動局装置へ送信し、移動局装置は、PUCCHおよび/またはPUSCHを使用して、HARQにおける制御情報を基地局装置へ送信する。
 さらに、下記非特許文献2において、LTE-Aにおける移動局装置では、複数の増幅器と送信アンテナを利用した送信ダイバーシチ(PVS(Precoding Vector Switching)、STBC(Space Time Block Coding)、ORD(Orthogonal Resource Diversity)など)の採用が検討されている。これら送信ダイバーシチを用いると、一つの伝搬路の特性が劣化していても、他の状態の良い伝搬路を利用することによるゲインを得ることができ、結果として受信特性を向上することができる。上記の送信ダイバーシチ技術は、複数の送信アンテナを用いた技術であり、フェージング環境における伝送品質の向上に有効である。上記送信ダイバーシチ方式は送信アンテナ毎に直交符号を割り当てて信号を送信する。受信機では、割り当てた直交符号を利用して信号を処理することにより、受信品質の向上に効果的である。
"Carrier aggregation in LTE-Advance"、3GPP TSG RAN WG1 #53bis、R1-082468 "Tx Diversity for LTE-Advanced PUCCH"、3GPP TSG RAN WG1 #57bis、R1-092578
 しかしながら、従来の技術では、基地局装置と移動局装置が、下りリンク信号を送受信し、それに対するHARQにおける制御情報を送受信する際に、どのようなやり取りをするのかが明確にされていなかった。基地局装置と移動局装置が、HARQにおける制御情報を送受信する場合、移動局装置は、HARQにおける制御情報に対する品質を高く確保して基地局装置へ送信しなければならない。例えば、移動局装置が、基地局装置からの下りリンク信号に対してNACKを送信した際に、その品質が低く、基地局装置においてACKと判断した場合(移動局装置側でNACKを送信し、基地局装置側でACKと判断した場合)、基地局装置によって、下りリンク信号の再送が行なわれない。すなわち、移動局装置から送信されるHARQにおける制御情報に対する品質が低くなると、結果として、無線通信システムにおけるスループットが低下してしまう。
 すなわち、従来の技術では、基地局装置と移動局装置が、下りリンク信号を送受信し、それに対するHARQにおける制御情報を送受信する際に、具体的にどのようなやり取りをしてHARQにおける制御情報を送受信するのかが明確にされていないために、移動局装置から送信されるHARQにおける制御情報に対する品質が低くなり、結果として、無線通信システムにおけるスループットが低下してしまうという問題があった。
 本発明は、このような事情に鑑みてなされたものであり、基地局装置と移動局装置が、HARQにおける制御情報を高品質に送受信することができる通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の通信方法は、基地局装置と通信する移動局装置の通信方法であって、複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (2)また、本発明の通信方法において、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (3)また、本発明の通信方法は、移動局装置と通信する基地局装置の通信方法であって、複数の物理上りリンク制御チャネルリソースを前記移動局装置へ割り当て、前記割り当てた複数の物理上りリンク制御チャネルリソースの中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴としている。
 (4)また、本発明の通信方法において、前記割り当てた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴としている。
 (5)また、本発明の移動局装置は、基地局装置と通信する移動局装置であって、複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (6)また、本発明の移動局装置において、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (7)また、本発明の基地局装置は、移動局装置と通信する基地局装置であって、複数の物理上りリンク制御チャネルリソースを前記移動局装置へ割り当て、前記割り当てた複数の物理上りリンク制御チャネルリソースの中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴としている。
 (8)また、本発明の基地局装置において、前記割り当てた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴としている。
 (9)また、本発明の移動通信システムは、基地局装置と移動局装置が通信する移動通信システムであって、前記基地局装置は、複数の物理上りリンク制御チャネルリソースを前記移動局装置へ割り当て、前記移動局装置は、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (10)また、本発明の移動通信システムにおいて、前記移動局装置は、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (11)また、本発明の集積回路は、移動局装置に実装される集積回路であって、複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 (12)また、本発明の集積回路において、前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴としている。
 本発明により、基地局装置と移動局装置が、HARQにおける制御情報を高品質に送受信することができ、基地局装置、移動局装置間で送受信されるPDSCHおよび/またはPDCCH、HARQのやりとりを円滑に行なうことができる。
本発明の実施形態におけるチャネルの一構成例を示す図である。 本発明における上りリンク無線フレーム(上りリンク無線リソース)の概略構成の一例を示す図である。 本発明の基地局装置100の一構成例を示す機能ブロック図である。 本発明の移動局装置200の一構成例を示す機能ブロック図である。 本発明の第1の実施形態が適用可能な移動通信システムの例を示す図である。 本発明の第1の実施形態に係る移動局装置200が、HARQにおける制御情報を基地局装置100へ送信する際に、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際の選択候補の一例を説明する図である。 本発明の第1の実施形態に係る基地局装置100と移動局装置200がHARQにおける制御情報を送受信する際のシーケンスチャートである。 本発明の第2の実施形態において、6つのPUCCHリソースが割り当てられた場合における2つのPUCCHリソースを選択する際のPUCCHリソースの選択候補を示す図である。 本発明の第2の実施形態において、2個のPUCCHリソースを利用する際のPUCCHリソースの図8とは別の選択候補の例について示す図である。 本発明の第2の実施形態において、PUCCHリソースが7個割り当てられた場合におけるPUCCHリソースの選択候補の2つの例を示す図である。 本発明の第2の実施形態において、基地局装置100から8個のPUCCHリソースが割り当てられた場合における2つのPUCCHリソースを選択する際のPUCCHリソースの選択候補について示す図である。 本発明の第2の実施形態において、9個のPUCCHリソースが割り当てられた場合における2つのPUCCHリソース選択する際のPUCCHリソースの選択候補について示す図である。 本発明の第2の実施形態において、10個のPUCCHリソースが割り当てられた場合における2つのPUCCHリソースを選択する際の特定の2つのPUCCHリソース番号の組み合わせについて示す図である。 本発明の第2の実施形態において、移動局装置200へHARQにおける制御情報送信のためのPUCCHリソースが供給され、そのリソースに基づくHARQにおける制御情報を送信するシーケンスチャートを示す。 本発明の第3の実施形態において、移動局装置200へHARQにおける制御情報送信のためのPUCCHリソースが供給され、そのリソースに基づくHARQにおける制御情報を送信するシーケンスチャートを示す。 本発明の第4の実施形態において、6つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。 本発明の第4の実施形態において、7つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。 本発明の第4の実施形態において、8つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。 本発明の第4の実施形態において、9つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。 従来の技術における周波数帯域集約を説明する図である。 従来の技術における非対称周波数帯域集約を説明する図である。
 次に、本発明に係る実施形態について、図面を参照しながら説明する。図1は、本発明の実施形態におけるチャネルの一構成例を示す図である。下りリンクの物理チャネルは、物理報知チャネル(PBCH:Physical Broadcast Channel)、PDCCH、PDSCH、物理ハイブリッド自動再送要求指示チャネル(PHICH:Physical Hybrid ARQ Indicator Channel)によって構成される。上りリンクの物理チャネルは、PUSCH、PUCCHによって構成される。PBCHは、40ミリ秒間隔で報知チャネル(BCH)をマッピングする。40ミリ秒のタイミングは、ブラインド検出(blind detection)される。すなわち、タイミング提示のために、明示的なシグナリングを行なわない。また、PBCHを含むサブフレームは、そのサブフレームだけで復号できる(自己復号可能:self-decodable)。
 PDCCHは、PDSCHのリソース割り当て、下りリンクデータに対するHARQ情報、および、PUSCHのリソース割り当てである上りリンク送信許可を移動局装置200に通知するために使用されるチャネルである。PDCCHは、複数のCCE(Control Channel Element)によって構成され、移動局装置200は、このCCEで構成されるPDCCHを検出することによって、基地局装置100からPDCCHを受信する。
 CCEは、周波数、時間領域において分散している複数のリソースエレメントグループ(REG:Resource Element Group、mini-CCEとも呼ばれる)によって構成される。ここで、リソースエレメントとは、1OFDMシンボル(時間成分)、1サブキャリア(周波数成分)で構成される単位リソースであり、例えば、REGは、同一OFDMシンボル内の周波数領域において、下りリンクパイロットチャネルを除いて、周波数領域で連続する4個の下りリンクのリソースエレメントによって構成される。また、例えば、1つのPDCCHは、CCEを識別する番号(CCEインデックス)が連続する1個、2個、4個、8個のCCEによって構成される。
 PDCCHは、移動局装置200ごと、種別ごとに別々に符号化(Separate Coding)される。すなわち、移動局装置200は、複数のPDCCHを検出して、下りリンクまたは上りリンクのリソース割り当てや、その他の制御情報を示す情報を取得する。各PDCCHにはCRC(巡回冗長検査)の値が付与されており、移動局装置200は、PDCCHが構成されうるCCEのセットのそれぞれに対してCRCを行ない、CRCが成功したPDCCHを取得する。これは、ブラインドデコーディング(blind decoding)と呼ばれ、移動局装置200が、このブラインドデコーディングを行なうPDCCHが構成されうるCCEのセットの範囲は、検索領域(Search Space)と呼ばれる。移動局装置200は、検索領域内のCCEに対して、ブラインドデコーディングを行ない、PDCCHの検出を行なう。
 移動局装置200は、PDCCHにPDSCHのリソース割り当てが含まれる場合、基地局装置100からのPDCCHによって指示されたリソース割り当てに応じて、PDSCHを使用して下りリンク信号(データ)(下りリンクデータ(下りリンク共用チャネル(DL-SCH))、および/または、下りリンク制御データを受信する。すなわち、このPDCCHは、下りリンクに対するリソース割り当てを行なう信号(以下、「下りリンク送信許可信号」または「下りリンクグラント」と呼称する。)である。また、移動局装置200は、PDCCHにPUSCHのリソース割り当てが含まれる場合、基地局装置100からのPDCCHによって指示されたリソース割り当てに応じて、PUSCHを使用して上りリンク信号(データ)(上りリンクデータ(上りリンク共用チャネル(UL-SCH))、および/または、上りリンク制御データ)を送信する。すなわち、このPDCCHは、上りリンクに対するデータ送信を許可する信号(以下、「上りリンク送信許可信号」または「上りリンクグラント」と呼称する。)である。
 PDSCHは、主に、下りリンクデータ(下りリンク共用チャネル(DL-SCH))またはページング情報(ページングチャネル(PCH))を送信するために使用されるチャネルである。ここで、下りリンクデータ(下りリンク共用チャネル(DL-SCH))とは、例えば、ユーザーデータの送信を示しており、DL-SCHは、トランスポートチャネルである。DL-SCHでは、HARQ、動的適応無線リンク制御がサポートされる。また、DL-SCHは、動的なリソース割り当て、および、準静的なリソース割り当てがサポートされる。
 PUSCHは、主に、上りリンクデータ(上りリンク共用チャネル:UL-SCH)を送信するために使用されるチャネルである。また、基地局装置100が、移動局装置200をスケジューリングした場合には、上りリンク制御データもPUSCHを使用して送信される。
 この上りリンク制御データには、チャネル状態情報CSI(Channel State information、もしくは、Channel statistical information)や、下りリンクのチャネル品質識別子CQI(Channel Quality Indicator)や、プレコーディングマトリックス識別子PMI(Precoding Matrix Indicator)や、ランク識別子RI(Rank Indicator)や、下りリンク信号(下りリンクトランスポートブロック)の送信に対するHARQにおける制御情報などが含まれる。ここで、下りリンク信号の送信に対するHARQにおける制御情報とは、PDCCHおよび/または下りリンクトランスポートブロックに対するACK/NACKを示す情報および/またはDTX(Discontinuous Transmission)を示す情報が含まれる。DTXとは、移動局装置200が基地局装置100からのPDCCHを検出できなかったことを示す情報である。PUSCHでは、PUSCHで送信するデータ(上りリンクトランスポートブロック)から、予め決められた生成多項式を用いて生成する24bitのCRC符号をデータに付加をしてから、基地局装置100に送信する。
 ここで、上りリンクデータ(UL-SCH)とは、例えば、ユーザーデータの送信を示しており、UL-SCHは、トランスポートチャネルである。UL-SCHでは、HARQ、動的適応無線リンク制御がサポートされる。また、UL-SCHは、動的なリソース割り当て、および、準静的なリソース割り当てがサポートされる。また、上りリンクデータ(UL-SCH)および下りリンクデータ(DL-SCH)には、基地局装置100と移動局装置200の間でやり取りされる無線資源制御信号(以下、「RRCシグナリング:Radio Resource Control Signaling」と呼称する。)や、MAC(Medium Access Control)コントロールエレメントなどが含まれていても良い。ここで、RRCシグナリングとは、基地局装置100と移動局装置200において、上位層(無線リソース制御(Radio Resource Control)層)でやり取りされる信号である。
 PUCCHは、上りリンク制御データを送信するために使用されるチャネルである。ここで上りリンク制御データとは、上記のように、例えば、移動局装置200から基地局装置100へ送信(フィードバック)されるチャネル状態情報CSIや、下りリンクのチャネル品質識別子CQIや、プレコーディングマトリックス識別子PMIや、ランク識別子RIが含まれる。また、移動局装置200が、上りリンクデータを送信するためのリソースの割り当てを要求するスケジューリング要求(SR: Scheduling Request)や、上記のように、下りリンクの信号(下りリンクトランスポートブロック)に対するHARQにおける制御情報などが含まれる。ここで、ACKおよびNACKは、HARQのために用いられる。
 HARQは、自動再送(Automatic Repeat reQuest;ARQ)と、ターボ符号化等の誤り訂正符号と、を組み合わせて誤り制御を行なう。チェイス合成(Chase Combining;CC)を用いるHARQは、受信パケットに誤りが検出されると、全く同一のパケットの再送を要求する。これらの2つの受信パケットを合成することにより、受信品質を高めている。増加冗長(Incremental Redundancy;IR)を用いるHARQは、冗長ビットを分割し、分割したビットに分けて少しずつ順次再送するため、再送回数が増えるに従って符号化率を低下させることにより、誤り訂正能力を強化している。
 図2は、本発明における上りリンク無線フレーム(上りリンク無線リソース)の概略構成の一例を示す図である。図2において、横軸は時間領域、縦軸は周波数領域である。上りリンク無線フレームは、複数のPRBペアから構成されている。このPRBペアは、無線リソース割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅)および時間帯(2スロット=1サブフレーム)からなる。基本的に1PRBペアは時間領域で連続する2個のPRB(PRB帯域幅×スロット)から構成される。ここで、PUCCHでは、システム帯域幅の両端の数リソースブロックに配置され(図2において斜線で示される。)、周波数ダイバーシチ獲得のためにスロット毎にホッピングして配置される。
 1個のPRBは周波数領域において12個のサブキャリアから構成され、時間領域において7個のSC-FDMAシンボルから構成される。システム帯域幅は、基地局装置100の通信帯域幅であり、複数のPRBから構成される。時間領域上においては、7個のSC-FDMAシンボルから構成されるスロット、2個のスロットから構成されるサブフレーム、10個のサブフレームから構成される無線フレームが定義されている。尚、1個のサブキャリアと1個のSC-FDMAシンボルから構成されるユニットを、リソースエレメントと呼ぶ。また、上りリンク無線フレームには、システム帯域幅に応じて複数のPRBが配置される。
 上りリンクの各サブフレームには、PUCCHおよび、PUSCHが配置され、PUCCHおよびPUSCHには、伝搬路推定に用いる上りリンクパイロットチャネルが配置される。尚、PUCCHはシステム帯域幅の両端の物理リソースブロックPRBペアから配置され、PUSCHは残りの物理リソースブロックPRBペアに配置される。上りリンクパイロットチャネルについては、説明の簡略化のため図2においては図示を省略しているが、上りリンクパイロットチャネルは、PUSCHおよびPUCCHと時間多重されている。
 例えば、PUCCHでは、一つのスケジュール単位(2リソースブロック)に対して周波数方向(12サブキャリア)と、時間方向(伝搬路推定のための)、系列長が12であるCAZAC(Constant Amplitude and Zero Auto-Correlation)系列を利用した周波数方向に対する符号拡散が行なわれる。CAZAC系列とは、時間領域および周波数領域において一定振幅かつ自己相関特性に優れた系列のことである。時間領域で一定振幅であることからPAPR(Peak to Average Power Ratio)を低く抑えることが可能である。例えば、PUCCHでは、長さ12のCAZAC系列に対して、サイクリックシフト(Cyclic Shift:巡回遅延)を与えることにより、ユーザ間の多重を実現することができる。また、HARQにおける制御情報を送信する際には、ブロック符号により時間領域における符号拡散を利用することができ、具体的には系列長が4であるWalsh符号を用いることができる。このように、HARQにおける制御情報を送信する際のPUCCHリソースは、同じ時間、周波数リソースで、符号によりユーザ多重を実現することができる。
 [基地局装置の構成]
 図3は、本発明の基地局装置100の一構成例を示す機能ブロック図である。本発明の基地局装置100は、1本以上のアンテナを備えている。図3に示すように、本発明の基地局装置100は、送信部310、スケジューリング部320、受信部330、およびアンテナ340を備えている。送信部310は、情報多重部311、変調部312、マッピング部313、無線送信部314、を備えている。また、スケジューリング部320は、時間・周波数リソース制御部321および直交リソース制御部322を備えており、受信部330は無線受信部331、情報抽出部332、伝搬路補償・逆拡散部333、合成・復調部334、を備えている。アンテナ340は、下りリンク信号の送信および上りリンク信号の受信に必要な数だけ備えられている。
 基地局装置100において生成された、各移動局装置200に送信する下りリンク信号と、スケジューリング部320から出力されるHARQにおける制御情報送信のためのPUCCHリソースの情報は、情報多重部311に入力され、各移動局装置200に送信する下りリンク信号が生成される。但し、PUCCHリソースの情報の形式はここでは問わず、明示的に、数ビット~数十ビットを用いて送信されてもよく、他の情報から一意に決定される形としてもよい。また、下りリンク信号には各レイヤでの制御情報が含まれていても良い。情報多重部311から出力された信号は、スケジューリング部320の指定のもとに変調部312において変調され、送信される信号形態に変換される。具体的には、ビット列がQAM、QPSKなどの信号に変調されることであり、後述するスケジューリング部320からの制御情報によって変調方式を変えることもある。
 変調部312により変調された信号はマッピング部313に供給され、スケジューリング部320の指定に従ったリソースにマッピングする。具体的には、OFDMAであれば、移動局装置200ごとに指定された周波数、時間リソースにマッピングされ、全移動局装置200に報知される情報なども所定の周波数、時間リソースにマッピングされる。マッピング部313の出力は無線送信部314に供給され、送信方式にあった形態に変換される。具体的にOFDMAベースの通信方式であれば、周波数領域の信号に対してIFFT(Inverse Fast Fourier Transformation)が施されることにより、時間領域の信号が生成される。また、MIMO(Multiple Input Multiple Output)による空間多重が採用されていれば、この処理がこのブロックにおいて行なわれる。
 無線送信部314の出力信号はアンテナ340に供給され、ここから各移動局装置200へ送信される。スケジューリング部320は、上位レイヤからの制御情報を受け取り、各移動局装置200へのリソース割り振りや変調方式、符号化率の決定などを行なっている。特に、時間・周波数リソース制御部321は、上り、下りを含めてどの情報(制御情報、各移動局装置200への信号)をどの時間、周波数リソースに配置するかを制御する機能であり、下りリンク信号のマッピングや上りリンク信号の制御信号の出力管理を行なう。直交リソース制御部322は、CDMAを行なう上りリンク信号において、各移動局装置200が利用する直交符号の割り当てと管理を行なうものである。
 また、本発明では、同一サブフレーム(同一時間)において、時間・周波数リソース制御部321で管理される周波数リソースと直交リソース制御部322で管理される直交リソースの組み合わせを割り当て、この周波数リソースと直交リソースの組み合わせをPUCCHリソースとすることができる。例えば、基地局装置100は、一つの下りリンクコンポーネントキャリアに対して、少なくとも1個のPUCCHリソースを移動局装置200に割り当てることができる。続いて、移動局装置200から送信された信号は、アンテナ340で受信された後、無線受信部331に入力される。無線受信部331はデータや制御信号を受け取り、送信方式に応じたディジタル信号を生成して出力する。具体的には、OFDMベースの通信方式であれば、受信信号をアナログ・ディジタル変換した後、処理時間単位でFFT処理を施した信号が出力される。
 無線受信部331の出力は情報抽出部332に入力され、情報の種類ごとに切り分けが行なわれる。具体的には、受信した信号を、各移動局装置200からのデータ毎の切り分けが行なわれ、その中でも制御情報と上位レイヤへの信号に分けられる。本発明では、情報抽出部332では特に対象となるHARQにおける制御情報が含まれた時間、周波数リソースが切り分けられ出力されるものとする。情報抽出部332の出力は伝搬路補償・逆拡散部333に入力される。伝搬路補償・逆拡散部333では、入力信号に含まれた参照信号から伝搬路の推定を行ない、受信信号の補償を行なうと同時に、スケジューリング部320で管理されている直交符号を用いて入力信号の逆拡散を行なう。もし、参照信号も拡散されている場合は、スケジューリング部320から入力される拡散符号の情報を基に逆拡散を行なってから伝搬路が算出される。ここで、伝搬路補償と逆拡散とを行なう順序は問わない。伝搬路補償・逆拡散部333はそれぞれの拡散符号に対する出力を行なう。
 伝搬路補償・逆拡散部333の出力は合成・復調部334に入力され、送信されたビットを再生する復調処理が行なわれる。ここで、送信ダイバーシチ(SORTD)が適用されている場合には、2個の入力系列を合成すると同時に送信されたビットを再生する復調処理が行なわれる。合成とは、伝搬路の状況に応じた重み付け加算を行なうことにより、受信品質を高めるための処理である。送信された信号がHARQにおける制御情報である場合、そのビットが上位レイヤに渡され、再送処理などの処理に利用される。ここで、伝搬路補償・逆拡散部333および合成・復調部334についても、その処理順序は問わない。さらに、受信品質を高めるためにMMSE(Minimum Mean Square Error:最小二乗平均誤差法)を用いることで、これらの処理を同時に行なうことも可能である。
 [移動局装置の構成]
 図4は、本発明の移動局装置200の一構成例を示す機能ブロック図である。本発明の移動局装置200は、例えば、2本以上のアンテナを備えている。移動局装置200は、図4に示すように、受信部410、スケジュール情報管理部420、送信部430、および、アンテナ440-1~440-M(以下、アンテナ440-1~440-Mを合わせてアンテナ440と表す)を備えている。受信部410は無線受信部411、伝搬路補償部412、復号処理部413を備えている。復号処理部413は、誤り訂正・検出部4131、復調部4133、情報抽出・分離部4135を備えている。また、スケジュール情報管理部420は、下りリンクスケジューリング管理部421、直交リソース管理部422、制御情報管理部423、上りリンクスケジューリング管理部424を備えており、送信部430は、情報多重部431、変調・拡散部432、マッピング部433、無線送信部434を備えている。アンテナ440は2本以上の上りリンク信号の送信および下りリンク信号の受信に必要な数だけ備えられている。
 基地局装置100から送信される下りリンク信号をアンテナ440で受信すると、この受信信号は無線受信部411へ入力される。無線受信部411では、アナログ・ディジタル(A/D)変換などの他に、通信方式に応じた処理が施され、出力される。具体的にOFDMAであれば、A/D変換後の時系列の信号はFFT処理され、時間・周波数領域の信号に変換され出力される。無線受信部411の出力信号は伝搬路補償部412へ入力され、この入力信号に付与されている参照信号などを利用して伝搬路推定を行ない、これを基に伝搬路補償を行なって出力する。伝搬路補償部412の出力は復号処理部413に入力され、これをスケジュール情報管理部420の出力を基にして復調し、必要であれば誤り訂正・検出が行なわれた後、その種類毎に分類され、スケジューリング利用される第一の出力と、上位レイヤで処理される第二の出力とされる。
 具体的には、自局宛の下りおよび上りリンクのスケジュール情報が記された制御情報が受信された場合に、復調および誤り訂正を行った後に、自局宛のスケジューリング情報を抽出して第一の出力としてスケジュール情報管理部420に出力する。また、下りリンクデータが受信された場合、下りリンクスケジューリング管理部421で管理する情報(たとえば、どの周波数、時間で自局宛のデータが送信されるか)を利用してデータを抽出した後、復調、誤り検出を行ない、第二の出力として出力する。さらに、誤り検出の結果の有無は、スケジュール情報管理部420に出力され制御情報管理部423において管理される。ここで、復号処理部413における情報抽出・分離部4135と誤り訂正・検出部4131、復調部4133について、その処理順序は問わない。例えば、送信された情報の種類に応じてこれらの処理が前後してもよく、また、システムによってこれらの処理が前後してもよい。
 送信部430は、上りリンクデータやHARQにおける制御情報などの上りリンク制御情報の送信を行なう。ここでは、簡単のためHARQにおける制御情報のみを送信する場合を例にして、その動作について説明する。下りリンクデータおよび制御情報管理部423で管理されるHARQにおける制御情報は、その送信タイミングにおいて情報多重部431へ供給される。ここでは、入力された情報を同時に送信するための処理が行なわれるが、ここでは基地局装置100から送信されたPUCCHリソースを用いてHARQにおける制御情報のみを送信することを想定する。情報多重部431へ入力されたHARQにおける制御情報は変調・拡散部432に供給される。
 変調・拡散部432では、スケジュール情報管理部420から供給される変調方式情報、拡散符号を利用して変調、拡散処理がなされる。ここで、例えば、提供されるPUCCHリソース(周波数リソースと拡散符号の組み合わせ)は基地局装置100から割り当てられたPUCCHリソースのうち2個であり、2個の出力系列が生成される。この際には、利用するPUCCHリソースにおける符号拡散は2段階で行なわれてもよく、この場合は2種類の符号が対となる。例えば、周波数方向に系列長12のCAZAC系列を用いた拡散を行ない、時間方向に系列長4のWalsh系列による拡散を行なう場合には、具体的には、CAZAC系列とWalsh系列が2個ずつ、一つの移動局装置200に与えられることになる。
 変調・拡散部432の2個の出力はマッピング部433に出力され、上りリンクスケジューリング管理部424により管理されている基地局装置100によって割り当てられたリソース情報に基づきマッピングされる。例えば、リソース情報とは、OFDMAにおいては時間、周波数リソースのことを示す。マッピング部433の出力は、変調・拡散部432の出力の数と同数になり、例えば、変調・拡散部432の出力の数が2個の場合には、2個が出力される。マッピング部433により、マッピングされた信号は、無線送信部434に入力され、送信する信号形態に変換される。OFDMAの場合は、周波数領域の信号をIFFTにより変換し、ガードインターバルを付与する動作などがこれに相当する。無線送信部434の出力はアンテナ本数分の系列を持ち、アンテナ440に供給される。ここで、3アンテナ以上の場合には、基地局装置100において、2つの出力であるように振舞うことができれば良く、例えば、4アンテナの場合には、2つの出力に対して、それぞれ巡回遅延を与え、合計4つの出力としても良い。
 (第1の実施形態)
 次に、基地局装置100および移動局装置200を用いた移動通信システムにおける第1の実施形態を説明する。第1の実施形態では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 また、第1の実施形態では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 ここで、移動局装置200が、基地局装置100から割り当てられたPUCCHリソースの中から選択する2つのPUCCHリソースの組み合わせの候補の数は制限することができる。すなわち、移動局装置200が、基地局装置100から割り当てられたPUCCHリソースの中から選択する2つのPUCCHリソースの組み合わせの候補の数を制限することによって、2つのPUCCHリソースの検出誤りを減少させることが可能である。例えば、移動局装置200が、基地局装置100から割り当てられたPUCCHリソースの中から選択する2つのPUCCHリソースの組み合わせの候補の数は、移動局装置200が同一サブフレームで受信するPDSCHの数と同じに(または、PDSCHの数よりも多く)制限することができる。
 また、基地局装置100は、割り当てられたPDSCHの数の2倍よりも少ないPUCCHリソースを割り当てることにより、多重可能な移動局装置200の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。さらに、第1の実施形態では、移動局装置200は、選択した2つのPUCCHリソースを使い、2つのPUCCHリソースはともに同じHARQの制御情報を送信することによって、送信ダイバーシチを行ない、受信品質の向上を図っている。
 以下、第1の実施形態では、周波数帯域は、帯域幅(Hz)で定義されているが、周波数と時間で構成されるリソースブロック(RB)の数で定義されても良い。本実施形態におけるコンポーネントキャリア(以下、「キャリアコンポーネント」、「要素キャリア」、「キャリア要素」とも呼称される。)とは、基地局装置100と移動局装置200が、広帯域な周波数帯域(システム帯域でも良い)を使用して通信を行なう際に集約される(狭帯域な)周波数帯域を示している。基地局装置100と移動局装置200は、複数のコンポーネントキャリアを集約することによって広帯域な周波数帯域を構成し、これら複数のコンポーネントキャリアを複合的に使用することによって、高速なデータ通信(情報の送受信)を実現することができる(上述した周波数帯域集約)。例えば、基地局装置100と移動局装置200は、20MHzの帯域幅を持った5つのコンポーネントキャリアを集約して、広帯域な100MHzの帯域幅を持った周波数帯域を構成し、これら5つのコンポーネントキャリアを複合的に使用して通信を行なうことができる。
 コンポーネントキャリアとは、この広帯域な周波数帯域(例えば、100MHzの帯域幅を持った周波数帯域)を構成する(狭帯域な)周波数帯域(例えば、20MHzの帯域幅を持った周波数帯域)それぞれのことを示している。また、コンポーネントキャリアとは、この広帯域な周波数帯域を構成する(狭帯域な)周波数帯域それぞれの(中心)キャリア周波数のことを示している。すなわち、下りリンクコンポーネントキャリアは、基地局装置100と移動局装置200が、下りリンク信号を送受信する際に使用可能な周波数帯域の中の一部の帯域(幅)を有し、上りリンクコンポーネントキャリアは、基地局装置100と移動局装置200が、上りリンク信号を送受信する際に使用可能な周波数帯域の中の一部の帯域(幅)を有している。また、コンポーネントキャリアは、ある特定の物理チャネル(例えば、PDCCH、PDSCH、PUCCH、PUSCHなど)が構成される単位として定義されてもよい。
 ここで、コンポーネントキャリアは、連続な周波数帯域に配置されていても、不連続な周波数帯域に配置されていてもよく、連続および/または不連続な周波数帯域である複数のコンポーネントキャリアを集約することによって、広帯域な周波数帯域を構成する。さらに、下りリンクコンポーネントキャリアによって構成される下りリンクの通信に使用される周波数帯域(下りリンクシステム帯域、下りリンクシステム帯域幅でも良い)と、上りリンクコンポーネントキャリアによって構成される上りリンクの通信に使用される周波数帯域(上りリンクシステム帯域、上りリンクシステム帯域幅でも良い)は、同じ帯域幅である必要はない。基地局装置100と移動局装置200は、下りリンクの通信に使用される周波数帯域と上りリンクの通信に使用される周波数帯域が、異なる帯域幅であったとしても、コンポーネントキャリアを複合的に使用して通信を行なうことができる(上述した非対称周波数帯域集約)。
 図5は、本発明の第1の実施形態が適用可能な移動通信システムの例を示す図である。図5では、100MHzの帯域幅を持った下りリンクの通信に使用される周波数帯域が、それぞれ20MHzの帯域幅を持った5つの下りリンクのコンポーネントキャリア(DCC#1、DCC#2、DCC#3、DCC#4、DCC#5)によって構成され、100MHzの帯域幅を持った上りリンクの通信に使用される周波数帯域が、それぞれ20MHzの帯域幅を持った5つの上りリンクのコンポーネントキャリア(UCC#1、UCC#2、UCC#3、UCC#4、UCC#5)によって構成されていることを示している。図5において、下りリンク/上りリンクのコンポーネントキャリアのそれぞれには下りリンク/上りリンクのチャネルが配置される。ここで、図5において、PDCCH、PDSCH、PUCCH、PUSCH等の下りリンク/上りリンクのチャネルのいずれかが配置されない下りリンク/上りリンクのコンポーネントキャリアが存在してもよい。
 図5において、基地局装置100は、下りリンクのコンポーネントキャリア内に配置されたPDCCHを使用して、PDSCHを割り当てることができる。図5では、例として、基地局装置100が、DCC#1に配置されたPDCCH(斜線で示されるPDCCH)を使用して、DCC#1に配置されるPDSCHを割り当てていることを示している(DCC#1における斜線で示されるPDCCHでDCC#1に配置されるPDSCHを割り当てている)。
 また、図5において、基地局装置100は、下りリンクの1つのコンポーネントキャリア内に配置された複数のPDCCHを使用して、複数のPDSCHを同一サブフレームで割り当てることができる。例えば、基地局装置100は、下りリンクの1つのコンポーネントキャリア内に配置された複数のPDCCHそれぞれに、コンポーネントキャリア指示(Component Carrier Indicator)を表す情報を含めて移動局装置200へ送信することによって、複数のPDCCHを使用して、複数のPDSCHを同一サブフレームで割り当てることである。すなわち、図5において、基地局装置100は、DCC#3における格子線で示されるPDCCHにDCC#3のPDSCHを割り当てていることを示すコンポーネントキャリア指示を表す情報を、DCC#3における網線で示されるPDCCHにDCC#4のPDSCHを割り当てていることを示すコンポーネントキャリア指示を表す情報を含めて、移動局装置200へ送信する。ここで、基地局装置100は、DCC#1における斜線で示されるPDCCHにDCC#1のPDSCHを割り当てていることを示すコンポーネントキャリア指示を表す情報を含めて、移動局装置200へ送信しても良い。
 図5では、例として、基地局装置100が、DCC#3に配置された2つのPDCCH(それぞれ格子線、網線で示されるPDCCH)を使用して、DCC#3、DCC#4に配置されるPDSCHを割り当てていることを示している(DCC#3における格子線で示されるPDCCHでDCC#3に配置されるPDSCHを、DCC#3における網線で示されるPDCCHでDCC#4に配置されるPDSCHを割り当てている)。基地局装置100は、DCC#1、DCC#3、DCC#4に配置されたPDSCHを使用して、(最大3つまでの)下りリンクトランスポートブロックを同一サブフレームで移動局装置200へ送信することができる。
 また、図5において、移動局装置200は、上りリンクのコンポーネントキャリアそれぞれのPUSCHを使用して、複数の上りリンクトランスポートブロックを、同一サブフレームで基地局装置100へ送信する。例えば、移動局装置200は、UCC#1、UCC#2、UCC#3、UCC#4、UCC#5の5つのPUSCHを使用して、(最大5つまでの)上りリンクトランスポートブロックを、同一サブフレームで基地局装置100へ送信する。
 さらに、図5において、移動局装置200は、基地局装置100から送信される(複数の)PDCCHおよび/または(複数の)下りリンクトランスポートブロックに対するHARQにおける制御情報を、基地局装置100へ送信する。例えば、移動局装置200は、基地局装置100から同一サブフレームで送信される5つのPDCCHおよび/または5つの下りリンクトランスポートブロックに対するHARQにおける制御情報を、基地局装置100へ送信する。ここで、移動局装置200は、基地局装置100から送信される(複数の)PDCCHおよび/または(複数の)下りリンクトランスポートブロックに対するHARQにおける制御情報を、バンドリング(塊にして、束にして)、または、多重して(複数ビットを使用して、multiplexingして)、基地局装置100に送信する。
 図5において、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを移動局装置200へ割り当てる。例えば、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、下りリンクコンポーネントキャリアそれぞれで送信されるPDSCH毎に割り当てる。すなわち、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、下りリンクコンポーネントキャリアそれぞれで送信されるPDSCHを割り当てるPDCCHに関連付けて割り当てる。また、後述するように、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、RRCシグナリングによって準静的に割り当ててもよい。
 ここで、基地局装置100は、下りリンクのコンポーネントキャリアと、上りリンクのコンポーネントキャリアの対応付けを、下りリンクのコンポーネントキャリアそれぞれで報知する報知情報によって(報知チャネル(PBCH)を使用して)、セル固有に設定する。また、基地局装置100は、下りリンクのコンポーネントキャリアと、上りリンクのコンポーネントキャリアの対応付けを、移動局装置200毎に送信するRRCシグナリングによって、移動局装置200固有に設定する。さらに、基地局装置100は、移動局装置200がHARQにおける制御情報を送信する上りリンクのコンポーネントキャリアを、報知チャネル、もしくは、RRCシグナリングを使用して、セル固有、もしくは、移動局装置200固有に設定する。
 また、基地局装置100は、下りリンクのコンポーネントキャリアそれぞれで報知する報知情報によって(報知チャネル(PBCH)を使用して)、移動局装置200がHARQにおける制御情報を送信するためのPUCCHのリソース(PUCCHリソース領域)を割り当てる(確保する)。また、基地局装置100は、移動局装置200毎に送信するRRCシグナリングによって、移動局装置200がHARQにおける制御情報を送信するためのPUCCHのリソース(PUCCHリソース領域)を割り当てる(確保する)。
 さらに、基地局装置100は、下りリンクのコンポーネントキャリア内に配置したPDCCHのPDCCHリソース(PDCCHリソース領域)における位置によって、移動局装置200がPUCCHリソース領域のどの領域にHARQにおける制御情報を配置して送信するのか(PUCCHリソース領域内のどの領域を使用してHARQにおける制御情報を送信するのか)を指定する。すなわち、移動局装置200は、下りリンクのコンポーネントキャリアに配置されたPDCCHが、PDCCHリソース(PDCCHリソース領域)にどのように配置されているのかに応じて、報知チャネル、もしくは、RRCシグナリングで設定された(PUCCHリソース領域内の)PUCCHに、HARQにおける制御情報を配置して基地局装置100へ送信する。ここで、下りリンクのコンポーネントキャリアに配置されたPDCCHとそれぞれのPUCCHの対応は、例えば、それぞれのPDCCHを構成するCCEの先頭のCCEインデックスとそれぞれのPUCCHリソースのインデックスを対応付けることによって規定される。
 図5では、例として、斜線で示されるPDCCHを構成するCCEの先頭のCCEインデックスと実線で囲まれた斜線で示されるPUCCHリソースのインデックス、格子線で示されるPDCCHを構成するCCEの先頭のCCEインデックスと格子線で示されるPUCCHのインデックス、網線で示されるPDCCHを構成するCCEの先頭のCCEインデックスと網線で示されるPUCCHのインデックスが対応していることを示している。すなわち、図5では、例として、基地局装置100が、報知チャネル、もしくは、RRCシグナリングを使用して、PDCCHが配置される下りリンクのコンポーネントキャリア(DCC#1)と上りリンクのコンポーネントキャリア(UCC#1)を対応させていることを示している。また、基地局装置100が、報知チャネル、もしくは、RRCシグナリングを使用して、PDCCHが配置される下りリンクのコンポーネントキャリア(DCC#3)と、上りリンクのコンポーネントキャリア(UCC#3)を対応させていることを示している。
 また、移動局装置200は、いずれか1つの上りリンクコンポーネントキャリアにおいて、HARQにおける制御情報を送信する。例えば、移動局装置200が1つの上りリンクコンポーネントキャリア内のPUCCHリソースでHARQの制御情報を送信することができるように、基地局装置100において、1つの上りリンクコンポーネントキャリア内に設定可能なPUCCHリソースの領域が割り当てられ(確保され)、移動局装置200は、その領域内のPUCCHリソースを使用して、HARQの制御情報を基地局装置100へ送信することが可能である。図5において、UCC#1における実線で囲まれた斜線で示されるPUCCHリソースからUCC#3における点線で囲まれた斜線で示されるPUCCHリソースへの矢印は、基地局装置100が、報知チャネル、もしくは、RRCシグナリングを使用して、移動局装置200がHARQにおける制御情報を送信するために、UCC#3内に設定可能なPUCCHリソース(PUCCHリソース領域)を割り当てている(確保している)ことを示している。
 また、図5において、移動局装置200は、基地局装置100からの(複数の)PDCCHおよび/または(複数の)下りリンクトランスポートブロックに対するHARQにおける制御情報を、バンドリング、もしくは、多重して基地局装置100へ送信する。例えば、移動局装置200は、基地局装置100からDCC#1、DCC#3を使用して送信されたPDCCHおよび/またはDCC#1、DCC#3、DCC#4を使用して送信されたPDSCHに対するHARQにおける制御情報を、バンドリング、もしくは、多重して基地局装置100へ送信する。
 ここで、移動局装置200が、HARQにおける制御情報をバンドリングして基地局装置100へ送信する場合、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報から、1つのHARQにおける制御情報を算出(生成)し、算出した1つのHARQにおける制御情報を基地局装置100へ送信する。例えば、移動局装置200は、複数のPDSCH(下りリンクトランスポートブロックでも良い)それぞれに対するACK/NACKを示す情報の論理積や論理和を算出することによって、1つのACK/NACKを示す情報(HARQにおける制御情報)を基地局装置100へ送信する。例えば、図5では、移動局装置200は、基地局装置100からDCC#1、DCC#3、DCC#4のPDSCHを使用して同一サブフレームで送信されたPDSCHそれぞれに対するACK/NACKを示す情報(HARQにおける制御情報)の論理積を算出し、1つのACK/NACKを示す情報(HARQにおける制御情報)として基地局装置100へ送信する。
 移動局装置200は、HARQにおける制御情報をバンドリングして基地局装置100へ送信する場合、基地局装置100から送信された複数のPDCCH(複数のPDCCHのPDCCHリソース領域における位置)によって指定された複数のPUCCHのいずれかのPUCCHリソースを使用して、例えば、1ビットの情報(例えば、ACKもしくはNACKを示す情報)として基地局装置100へ送信する(MIMO送信時には、2ビットの情報を送信する)。この際、移動局装置200は、検出した複数のPDCCHの位置およびPDCCHの個数に応じて指定されるPUCCHの配置可能な領域の中で、どのPUCCHの領域を使用したかによって、さらに数ビットの情報を含めて基地局装置100へ送信する。例えば、図5では、移動局装置200は、基地局装置100によって送信された3つのPDCCHに対応した3つのPUCCHの領域を使用し、さらに、それら3つのPUCCHの領域の選択を行なうことによって、合計6種類の情報を基地局装置100へ送信してもよい。
 移動局装置200が、バンドルしたHARQにおける制御情報を、このように送信することによって、基地局装置100と移動局装置200は、HARQにおける制御情報および/または移動局装置200がどのPDCCHまで受信(検出)できたのかを示す、例えば、(ACK、斜線のPDCCHまで受信)、(NACK、斜線のPDCCHまで受信)、(ACK、格子線のPDCCHまで受信)、(NACK、格子線のPDCCHまで受信)、(ACK、網線のPDCCHまで受信)、(NACK、網線のPDCCHまで受信)のような情報を送受信する。ここで、移動局装置200は、複数のPDCCHのうち少なくとも1つのPDCCHに対してDTXを検出した際には、基地局装置100に対してNACKを示す信号を送信する。
 また、移動局装置200が、HARQにおける制御情報を多重(multiplexing)して基地局装置100へ送信する場合、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報のすべての組み合わせを表現する複数の制御情報を、基地局装置100へ送信する(すべての組み合わせを表現するために必要な情報である、以下の複数の制御情報を基地局装置100へ送信しても良い)。例えば、移動局装置200は、(複数の)PDCCHおよび/または(複数の)PDSCH(下りリンクトランスポートブロックでも良い)それぞれに対するDTXおよび/またはACK/NACKを示す情報の組み合わせを、複数ビットを用いて表現し、基地局装置100へ送信する。さらに、図5では、移動局装置200は、基地局装置100からDCC#1、DCC#3、DCC#4で送信されるPDCCHおよび/またはPDSCHそれぞれに対するDTXおよび/またはACK/NACKを示す情報の組み合わせを、複数ビットを用いて表現し、基地局装置100へ送信する。
 移動局装置200は、HARQにおける制御情報を多重して基地局装置100へ送信する場合、予め設定されたフォーマットに応じて、1つのPUCCHで、例えば、1ビットまたは2ビットの情報を基地局装置100へ送信する。この際、移動局装置200は、検出した複数のPDCCHの位置およびPDCCHの個数に応じて指定されるPUCCHの配置可能な領域の中で、どのPUCCHの領域を使用したかによって、さらに数ビットの情報を含めて基地局装置100へ送信する。例えば、図5では、移動局装置200は、基地局装置100から送信された3つのPDCCHに対応した3つのPUCCHそれぞれで2ビットの情報を送信することが可能な場合、さらに、それら3つのPUCCHの選択を行なうことによって、合計12種類の情報を基地局装置100へ送信する。
 移動局装置200が、多重したHARQにおける制御情報を、このように送信することによって、基地局装置100と移動局装置200は、HARQにおける制御情報として、例えば、(ACK、ACK、ACK)、(ACK、ACK、NACK)、(ACK、ACK、DTX)、(ACK、NACK、ACK)、(ACK、NACK、NACK)、(ACK、NACK、DTX)、(NACK、NACK、ACK)、(NACK、NACK、NACK)、(NACK、NACK、DTX)、(ACK、DTX、ACK)、(ACK、DTX、NACK)、(ACK、DTX、DTX)のような、予めマッピングした情報(仕様により、HARQにおける制御情報と、PUCCHリソースおよび情報ビットの関係がテーブル等で規定されたもの)を送受信する。ここで、移動局装置200は、複数のPUCCHを利用して送信できる情報量よりも、ACK/NACK/DTXの組み合わせが大きくなる場合には(例えば、複数のPUCCHを利用して送信できる情報量が12種類に対して、ACK/NACK/DTXを組み合わせると27種類の情報量になるような場合には)、NACKとDTXを組み合わせて送信する。(例えば、基地局装置100と移動局装置200が、(ACK、ACK、NACK/DTX)のような情報を送受信する)。
 上記までに説明したように、図5において、基地局装置100はPDSCH毎に1つのPUCCHリソースを割り当て、移動局装置200は、割り当てられたPUCCHを使用してHARQにおける制御信号を、多重またはバンドリングして基地局装置100へ送信する。この際、移動局装置200は、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、HARQにおける制御情報を基地局装置100へ送信する。例えば、移動局装置200によって選択される2個のPUCCHリソースは、移動局装置200がコンポーネントキャリアそれぞれで受信した複数のPDSCHのうち最も周波数の高い(または低い)コンポーネントキャリアに配置されるPDSCHに対応する2個のPUCCHリソースを利用しても良い。
 図6は、本発明の第1の実施形態に係る移動局装置200が、HARQにおける制御情報を基地局装置100へ送信する際に、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際の選択候補の一例を説明する図である。図6では、例として、移動局装置200が、基地局装置100によって割り当てられた5つのPUCCHリソースの中から2つのPUCCHリソースを選択している際の選択候補の一例を示している。図6において、0から4の番号は、PUCCHリソース(n(1) PUCCH X)を示している。n(1) PUCCH Xとは、基地局装置100によって割り当てられた時間リソースおよび/または周波数リソースおよび/または符号リソースを示し、n(1) PUCCH XにおけるXは、n(1) PUCCH XのPUCCHリソース番号を示している。すなわち、n(1) PUCCH XにおけるXは、基地局装置100がPDSCH毎に割り当てたPUCCHリソースのPUCCHリソース番号(PUCCHリソースインデックス、以下、リソース番号とも呼称する。)を示している。
 例えば、PUCCHリソース番号は、基地局装置100がPDSCHを割り当てるために使用したPDCCHの周波数位置によって規定することができる。例えば、周波数の低い(高い)位置から順番に配置されるPDCCHに対応して、PUCCHリソース番号を周波数の低い(高い)位置から順番に付与することができる。また、例えば、周波数の低い(高い)位置から順番に配置されるPDSCHに対応して、PUCCHリソース番号を周波数の低い(高い)位置から順番に付与することができる。
 すなわち、図6では、例として、基地局装置100が、5つのPDCCHそれぞれで割り当てた5つのPDSCHを使用して、5つの下りリンクトランスポートブロックを移動局装置200に同一サブフレームで送信した際に、移動局装置200が、5つのPDSCHおよび/または5つのPDCCHそれぞれに対するHARQにおける制御情報を基地局装置100へ送信する際の選択候補の一例を示している。この際、移動局装置200は、基地局装置100によって割り当てられた5つのPUCCHリソースの中から2つのPUCCHリソースを選択し、(5つの)PDSCHおよび/または(5つの)PDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信する。また、移動局装置200は、基地局装置100によって割り当てられた5つのPUCCHリソースの中から2つのPUCCHリソースを選択し、(5つの)PDSCHおよび/または(5つの)PDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信する。
 ここで、図6において、移動局装置200が5つのPUCCHリソースの中から2つのPUCCHリソースを選択する際に、2つのPUCCHリソースの組み合わせの選択候補を制限し、制限した選択候補の中から2つのPUCCHリソースを選択する。
 すなわち、移動局装置200が、基地局装置100から割り当てられた5個のPUCCHリソースの中から2個のPUCCHリソースを選択する場合、その選択候補の数は、図6の全ての組み合わせ501に示されるように、全部で10個の組み合わせを考慮する。図6では、例として、考慮できる10個の組み合わせのうち、移動局装置200が選択できるPUCCHリソースの選択候補の数を5個に制限している(それぞれ選択候補番号1~5)ことを示している。すなわち、図6では、移動局装置200が、基地局装置100から割り当てられた5つのPUCCHリソースの中から2つのPUCCHリソースを選択する際のPUCCHリソースの選択候補を、1番目の選択候補(リソース番号0、リソース番号1)、2番目の選択候補(リソース番号1、リソース番号2)、3番目の選択候補(リソース番号2、リソース番号3)、4番目の選択候補(リソース番号3、リソース番号4)、5番目の選択候補(リソース番号4、リソース番号0)に制限していることを示している。
 すなわち、図6において、移動局装置200は、基地局装置100によって割り当てられた5つのPUCCHリソースの中から、特定の2つのPUCCHリソース番号の組み合わせのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、HARQにおける制御情報を基地局装置100へ送信する。例えば、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択する際に、組み合せの選択候補を、特定の2つのPUCCHリソース番号の組み合わせ(例えば、1番目の選択候補(リソース番号0、リソース番号1)、2番目の選択候補(リソース番号1、リソース番号2)、3番目の選択候補(リソース番号2、リソース番号3)、4番目の選択候補(リソース番号3、リソース番号4)、5番目の選択候補(リソース番号4、リソース番号0)に制限する。すなわち、移動局装置200がHARQにおける制御情報を送信する際に使用可能なPUCCHリソースの組み合わせを、予め定められた組み合わせに制限することができる。例えば、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限することもできる。
 このように、移動局装置200が、制限された選択候補の中から選択した2個のPUCCHリソースを使用してHARQにおける制御情報を送信することによって、基地局装置100における2個のPUCCHリソースの検出誤りを減少させることが可能となる。すなわち、図6の全ての組み合わせ501に示されるPUCCHリソースの全ての組み合わせ10個の中から、移動局装置200が選択する2つのPUCCHリソースの選択候補を5個に制限することによって、PUCCHリソースの全ての組み合わせが選択候補である場合と比べて、基地局装置100における2個のPUCCHリソースの検出誤りを減少させることができる。つまり、2個のPUCCHリソースの検出誤りを減少させることによって、HARQにおける制御情報を正しく復調することが可能となり、基地局装置100、移動局装置200間で送受信されるPDSCHおよび/またはPDCCH、HARQの制御情報のやりとりを円滑に行なうことができる。
 また、移動局装置200が、基地局装置100から割り当てられた複数のPUCCHリソースの中から、特定の2つのPUCCHリソース番号の組み合わせのPUCCHリソースを選択する際に、各選択候補として利用されるそれぞれのPUCCHリソースの利用を最小限にとどめ、選択候補を制限することができる。すなわち、図6では、選択候補に含めるPUCCHリソースを、1番目の選択候補(リソース番号0、リソース番号1)、2番目の選択候補(リソース番号1、リソース番号2)、3番目の選択候補(リソース番号2、リソース番号3)、4番目の選択候補(リソース番号3、リソース番号4)、5番目の選択候補(リソース番号4、リソース番号0)に選択候補を制限していることを示している。
 すなわち、図6において、移動局装置200は、基地局装置100によって割り当てられた5つのPUCCHリソースの中から2つのPUCCHリソースを選択する際に、選択候補に含まれるPUCCHリソースを最小限にとどめることによって、選択したPUCCHリソースを使用して、HARQにおける制御情報を基地局装置100へ送信する。
 このように、移動局装置200が、基地局装置100から割り当てられた複数のPUCCHリソースから2個のPUCCHリソースを選択する際に、選択候補に含めるPUCCHリソースを最小限に制限することによって、移動局装置200が2個のPUCCHリソースを使用してHARQにおける制御情報を送信する際の、基地局装置100における2個のPUCCHリソースの抽出誤りを減少させることが可能となる。すなわち、図6の全ての組み合わせ501に示されるPUCCHリソースの全ての組み合わせ10個の中から、移動局装置200が選択する2つのPUCCHリソースの組み合わせの選択候補を制限することによって、PUCCHリソースの全ての組み合わせが選択候補である場合と比べて、基地局装置100における2個のPUCCHリソースの抽出誤りを減少させることができる。
 また、図6では、基地局装置100によって割り当てられたPUCCHリソースそれぞれを、2つの選択候補のみで利用するよう制限することによって、移動局装置200によって、全てのPUCCHリソースの選択候補が偏りなく選択される場合には、2個のPUCCHリソースを正確に検出する必要がなくなる。例えば、一方のPUCCHリソースが正しく検出できていれば、残り一方のPUCCHリソースはあらかじめ制限された選択候補の中から選択されるため、2個のPUCCHリソースの検出誤りを減少させることが可能となる。
 また、図6において、移動局装置200が5つのPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その選択候補の数を制限し、移動局装置200は、制限した選択候補の中から2つのPUCCHリソースを選択する。すなわち、移動局装置200が、基地局装置100から割り当てられた複数のPUCCHリソースの中から2個のPUCCHリソースを選択する際に、その選択候補の数を、基地局装置100から同一サブフレームで受信する(送信される)PDSCHの数と同じに(または、PDSCHの数よりも多く)制限する。つまり、図6では、移動局装置200が、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択する際の選択候補の数を、基地局装置100から同一サブフレームで受信するPDSCHの数と同じ5つに制限していることを示している。例えば、図6において、基地局装置100から同一サブフレームで受信するPDSCHの数が3つの場合、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択する際の選択候補の数は、3つに制限する。
 このように、移動局装置200が、基地局装置100から割り当てられた複数のPUCCHリソースから2個のPUCCHリソースを選択する際に、選択候補の数を、基地局装置100から同一サブフレームで受信する(送信される)PDSCHの数に制限することによって、移動局装置200がPUCCHリソースを選択する際の処理を軽減することが可能となり、効率的なHARQにおける制御情報を送信することができる。また、移動局装置200から送信されるHARQにおける制御情報の受信品質を高めることが可能となる。ここで、移動局装置200によって送信可能な情報量を増やすために、基地局装置100によって割り当てられたPUCCHリソースの中から選択する2個のPUCCHリソースの選択候補数を、基地局装置100から同一サブフレームで受信するPDSCHの数以上とすることもできる。
 一方、基地局装置100においては、移動局装置200から送信された2個のPUCCHリソースを受信し、割り当てた複数のPUCCHリソースの中から移動局装置200によって選択された2個のPUCCHリソースを検出することによって、検出したPUCCHリソースとPUCCHリソースに含まれる情報(情報ビット)に基づいて、バンドリング、もしくは、多重されたHARQにおける制御情報を復調する。
 すなわち、移動局装置200によって送信された2個のPUCCHリソース(周波数リソースおよび符号リソース(時間はそれぞれのリソースと同じ))を受信した基地局装置100は、割り当てた複数のPUCCHリソースの中から、移動局装置200がどの2個のPUCCHリソースを選択したのかの検出を行なう。例えば、基地局装置100は、移動局装置200が選択した2つのPUCCHリソースを検出するために、PUCCHリソースの選択候補(異なる2個のPUCCHリソースで構成される)それぞれにおける周波数リソースにおいて、符号リソースを基に、HARQにおける制御情報に含まれる参照信号に対して逆拡散を行なう。さらに、基地局装置100は、逆拡散を行った結果として、最も電力が大きいPUCCHリソースと2番目に電力が大きいPUCCHリソースを、移動局装置200が選択した2つのPUCCHリソースと判断(検出)する。
 ここで、基地局装置100は、検出されたPUCCHリソースが、移動局装置200が選択すべき選択候補の中に含まれないPUCCHリソースであった場合には、選択候補の中の組み合わせで最も電力が大きいPUCCHリソースを、移動局装置200が選択したPUCCHリソースと判断する。例えば、図6において、移動局装置200から送信された2つのPUCCHリソースを受信した基地局装置100が、最も電力が大きいPUCCHリソースとしてリソース番号3のPUCCHリソースを検出し、2番目に電力が大きいPUCCHリソースとしてリソース番号0のPUCCHリソースを検出した場合(移動局装置200によって選択されるべき選択候補の中に含まれないPUCCHリソースであった場合)、選択候補の中の組み合わせ(すなわち、リソース番号2またはリソース番号4)で最も電力が大きいPUCCHリソースを、移動局装置200が選択したPUCCHリソースと判断する。
 例えば、基地局装置100は、リソース番号2のPUCCHリソースの電力とリソース番号4のPUCCHリソースの電力を比較し、リソース番号2のPUCCHリソースの電力の方が大きかった場合には、移動局装置200が、リソース番号3のPUCCHリソースとリソース番号2のPUCCHリソースを選択し、基地局装置100に送信したと判断する。
 ここで、基地局装置100は、移動局装置200から送信される(参照信号を含まない)HARQにおける制御情報に逆拡散を施すことによって、移動局装置200が選択した2つのPUCCHリソースを検出することもできる。また、基地局装置100は、移動局装置200から送信される(参照信号を含まない)HARQにおける制御情報に逆拡散を施した結果と、参照信号に逆拡散を施した結果を組み合わせることによって、移動局装置200が選択した2つのPUCCHリソースを検出しても良い。具体的には、HARQにおける制御情報に逆拡散を施した結果として得られた電力と、参照信号に逆拡散を施した結果として得られた電力の和や積を算出し、算出した電力から移動局装置200が選択した2つのPUCCHリソースを検出しても良い。または、HARQにおける制御情報に逆拡散を施した結果として得られた電力と参照信号に逆拡散を施した結果として得られた電力の中から、最も大きな電力を算出(検出)し、移動局装置200が選択した2つのPUCCHリソースを検出する。
 図7は、本発明の第1の実施形態に係る基地局装置100と移動局装置200がHARQにおける制御情報を送受信する際のシーケンスチャートである。まず、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するために、PDSCH毎に1つのPUCCHリソースを割り当てる(ステップS1)。例えば、基地局装置100は、下りリンクコンポーネントキャリアそれぞれで送信するPDSCHを割り当てるPDCCHに関連付けて、PUCCHリソースを移動局装置200へ割り当てることができる。ここで、基地局装置100が、PDSCH毎に(PDSCHを割り当てるPDCCHに関連付けて)、移動局装置200へPUCCHリソースを割り当てることを、移動局装置200に対して、動的(ダイナミック)にPUCCHリソースを割り当てるとも呼称する。基地局装置100が、動的(ダイナミック)にPUCCHリソースを割り当てるとは、例えば、基地局装置100が、PUCCHリソースを1ms毎に、移動局装置200に割り当てることをいう。
 一方、後述するように、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、RRCシグナリング(上位層における信号)を使用して移動局装置200へ割り当ててもよい。ここで、基地局装置100が、RRCシグナリングを使用して、PUCCHリソースを割り当てることを、移動局装置200に対して、準静的(セミスタティック)にPUCCHリソースを割り当てるとも呼称する。基地局装置100が、準静的にPUCCHリソースを割り当てるとは、例えば、基地局装置100が、PUCCHリソースを100ms程度の間隔で、移動局装置200に割り当てることをいう。基地局装置100によって準静的にPUCCHリソースを割り当てられた移動局装置200は、割り当てられたPUCCHリソースを長期的(永続的)に保持し、例えば、HARQにおける制御情報を送信すべきタイミングで(HARQにおける制御情報を送信する必要となった場合に)、PUCCHリソースを使用して、HARQにおける制御情報を基地局装置100へ送信する。
 続いて、基地局装置100は、PDSCHを使用して、下りリンクトランスポートブロックを移動局装置200へ送信する(ステップS2)。例えば、基地局装置100は、下りリンクコンポーネントキャリアそれぞれで、複数のPDSCHを使用して、複数の下りリンクトランスポートブロックを、同一サブフレームで移動局装置200へ送信する。
 基地局装置100からPDSCHを使用して下りリンクトランスポートブロックを受信した移動局装置200は、PDSCH(下りリンクトランスポートブロック)の受信状態に基づき、HARQにおける制御情報を生成し、HARQにおける制御情報に応じたPUCCHリソースを選択する(ステップS3)。ここで、移動局装置200は、HARQにおける制御情報として、基地局装置100から送信された(複数の)PDCCHおよび/または(複数の)PDSCHに対するHARQにおける制御情報を生成し、HARQにおける制御情報に応じたPUCCHリソースを選択する。すなわち、移動局装置200は、基地局装置100によって割り当てられた(複数)のPUCCHリソースの中から、HARQにおける制御情報に応じて、2つのPUCCHリソースを選択する。移動局装置200は、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から、2つのPUCCHリソースを選択する際の選択方法は、上述したような選択方法を使用する。
 続いて、移動局装置200は、選択した2つのPUCCHリソースに、HARQにおける制御情報に応じた(HARQにおける制御情報に応じて選択された)ビット(情報ビット)を配置し、基地局装置100へ送信する(ステップS4)。すなわち、移動局装置200は、(選択した)2つのPUCCHリソースを使用して、(選択した)ビットを基地局装置100へ送信する。
 移動局装置200から2つのPUCCHリソースを受信した基地局装置100は、HARQにおける制御情報の抽出(検出)を行なう(ステップS5)。基地局装置100が、移動局装置200から送信される2つのPUCCHリソースからHARQにおける制御情報を抽出(検出)する際の抽出方法は、上述したような抽出(検出)方法を使用する。すなわち、例えば、基地局装置100は、移動局装置200が選択した2つのPUCCHリソースを抽出(検出)するために、移動局装置200が選択する可能性があるPUCCHリソースの組み合わせの選択候補を利用し、逆拡散の結果として最も大きな電力を示したPUCCHリソースの組み合わせを検出する。つまり、基地局装置100は、逆拡散の結果として最も大きな電力を示したPUCCHリソースの組み合わせを、移動局装置200が選択した2つのPUCCHリソースと判断し、HARQにおける制御情報を抽出(検出)する。
 上記までに記載した基地局装置100と移動局装置200によるHARQにおける制御情報の送受信は、移動局装置200が、HARQにおける制御情報を、送信ダイバーシチを適用して基地局装置100へ送信する際にも適用する。すなわち、上記までに記載した基地局装置100と移動局装置200によるHARQにおける制御情報の送受信は、単一のアンテナを持つ移動局装置200に対してだけでなく、複数のアンテナを持つ移動局装置200に対して適用する。
 すなわち、複数のアンテナを持つ移動局装置200が、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から、上述したような方法を使用して、2つのPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報を、選択したPUCCHリソースを使用して、送信ダイバーシチを適用して基地局装置100へ送信する。ここで、移動局装置200が、送信ダイバーシチを適用して、2つのPUCCHリソースを基地局装置100へ送信する場合、2つのPUCCHリソースそれぞれで送信される情報は、同一の情報(同一のシンボル、変調シンボルまたは符号化シンボル)となる。移動局装置200は、同一の情報が配置された2つのPUCCHリソースそれぞれを、異なるアンテナを使用して基地局装置100へ送信する。ここで、異なるアンテナとは論理的に識別されるアンテナのことである。
 複数のアンテナを持つ移動局装置200に対して、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを割り当て、割り当てられたPDSCH毎に1つのPUCCHリソースを割り当てる。また、移動局装置200は、割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、複数のアンテナで(例えば、送信ダイバーシチを適用して)基地局装置100へ送信する。
 また、複数のアンテナを持つ移動局装置200に対して、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを割り当て、割り当てられたPDSCH毎に1つのPUCCHリソースを割り当てる。また、移動局装置200は、割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、複数のアンテナで(例えば、送信ダイバーシチを適用して)基地局装置100へ送信する。
 ここで、移動局装置200が、HARQにおける制御情報をバンドリングして、送信ダイバーシチを適用して基地局装置100へ送信する場合、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報から、1つのHARQにおける制御情報を算出(生成)し、算出した1つのHARQにおける制御情報を、選択した2個のPUCCHリソースで送信する。
 また、移動局装置200が、HARQにおける制御情報を多重して、送信ダイバーシチを適用して基地局装置100へ送信する場合、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報のすべての組み合わせを表現する複数の制御情報を、選択した2個のPUCCHリソースで送信する。
 さらに、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際には、選択する2つのPUCCHリソースの組み合わせの選択候補を、上述したように制限する。すなわち、例えば、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その組み合わせの選択候補を、PUCCHリソース番号が隣接するPUCCHリソースの組み合わせに制限する。さらに、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際には、選択する2つのPUCCHリソースの選択候補の数を、上述したように制限する。すなわち、例えば、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その選択候補の数を、基地局装置100から同一サブフレームで受信した(送信された)PDSCHの数と同じに(または、PDSCHの数よりも多く)制限する。
 上記までに示した通り、複数のコンポーネントキャリアによって構成される広帯域な周波数帯域を使用して通信を行なう基地局装置100と移動局装置200が、HARQにおける制御情報を送受信する際に、移動局装置200が、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用してHARQにおける制御情報を送信することによって、HARQにおける制御情報に対する品質を高く保って基地局装置100へ送信することができる。すなわち、移動局装置200が、2つのPUCCHリソースを使用して、HARQにおける制御情報を送信することによって、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置100へ送信するHARQにおける制御情報の品質を高く保つことができる。
 また、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用してHARQにおける制御情報を送信することによって、移動局装置200がHARQにおける制御情報を送信する際の送信電力を低く抑えることができる。すなわち、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置200における送信電力を低く抑えることができる。
 さらに、基地局装置100が、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、PDSCH毎(PDSCHを割り当てるPDCCHに関連付けて)に割り当てることによって、PUCCHリソースを割り当てる信号を送信する必要がなく、効率的にPUCCHリソースを割り当てることができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。第2の実施形態では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 また、第2の実施形態では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。ここで、移動局装置200が選択する2つのPUCCHリソースの組み合わせの候補は制限されることによって、2つのPUCCHリソースの検出誤りを減少させることが可能である。
 さらに、制限される組み合わせの候補の数は、移動局装置200が同一サブフレームで受信するPDSCHの数と同じ(またはPDSCHの数よりも多い)である。これは、各PDSCHに対して、1つのPUCCHリソースが割り当てられ、1つのPUCCHリソースを選択し、送信する場合には、PDSCHの数と同数の候補が存在するため、第1の実施形態と同様に、2個のPUCCHリソースを選択する際に、PDSCHの数に応じた組み合わせの候補を用意している。また、第2の実施形態では、基地局装置100は、移動局装置200へ割り当てられたPDSCHの数の2倍よりも少ないPUCCHリソースを割り当てることにより、多重可能な移動局装置200の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。さらに、基地局装置100が移動局装置200へPDSCHの数の2倍のPUCCHリソースを割り当てた場合、割り当てられたPUCCHリソースは、1つの制限された候補のみに含まれ、2つのPUCCHリソースの検出誤りを減少させることが可能である。本実施形態では、移動局装置200は、選択した2つのPUCCHリソースを使って、HARQの制御情報を送信ダイバーシチにより送信する(2つのPUCCHリソースを使って同じHARQの制御情報を送信する)。
 図5に示す移動通信システムの例は、第2の実施形態においても同様に適用可能である。第2の実施形態では、基地局装置100はPDSCH毎に1つのPUCCHリソース割り当て、移動局装置200は、割り当てられたPUCCHを使用してHARQにおける制御信号を、多重またはバンドリングして基地局装置100へ送信する。この際、移動局装置200は、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを選択して、HARQにおける制御情報を基地局装置100へ送信する。
 以下では、下りリンクトランスポートブロック信号が5つのコンポーネントキャリアにおいてそれぞれ1つのPDSCHが配置され、移動局装置200が、それに対応するHARQにおける制御情報を送信するために、各PDSCHに対して、少なくとも1つのPUCCHリソースが割り当てられ、割り当てられたPUCCHリソースから2つを選択し、基地局装置100において、移動局装置200で選択され送信された2個のPUCCHリソースを検出することを想定した場合の、PUCCHリソースの5つの選択候補について示す。
 ここで、第1の実施形態でも示したように、移動局装置200が、基地局装置100から割り当てられた複数のPUCCHリソースから2個のPUCCHリソースを選択する際に、選択候補の数を、基地局装置100から同一サブフレームで受信する(送信される)PDSCHの数(5つ)に制限することによって、移動局装置200がPUCCHリソースを選択する際の処理を軽減することが可能となり、効率的なHARQにおける制御情報を送信することができる。また、移動局装置200から送信されるHARQにおける制御情報の受信品質を高めることが可能となる。ここで、移動局装置200によって送信可能な情報量を増やすために、基地局装置100によって割り当てられたPUCCHリソースの中から選択する2個のPUCCHリソースの選択候補数を、基地局装置100から同一サブフレームで受信するPDSCHの数以上としてもよい。
 ここで、各PDSCHに対して、少なくとも1つのPUCCHリソースが割り当てられるとは、ある下りリンクコンポーネントキャリアにおけるPDSCHに対しては、2個のPUCCHリソースが割り当てられ、ある下りリンクコンポーネントキャリアにおけるPDSCHに対しては、1つのPUCCHリソースが割り当てられることを示し、5個の下りリンクコンポーネントキャリアで構成され、各コンポーネントキャリアにおいて1つのPDSCHが割り当てられた場合には、少なくとも5つのPUCCHリソースが割り当てられる。5つのPUCCHリソースが割り当てられた場合には、第1の実施形態において、図6で説明したPUCCHリソースの選択候補(それぞれ選択候補番号1~5に対応)を適用可能である。
 図8は、本発明の第2の実施形態において、6つのPUCCHリソースが割り当てられた場合における2つのPUCCHリソースを選択する際のPUCCHリソースの選択候補を示す図である。図8において、0から5の番号は、PUCCHリソース(n(1) PUCCH X)を示している。ここで、6個のPUCCHリソースから2個のPUCCHリソースを選択する場合、図8の全ての組み合わせ601に示すように、全部で15の組み合わせを考慮する。図8では、例として、考慮できる15の組み合わせのうち、移動局装置200が選択できるPUCCHリソースの選択候補数を5個(それぞれ選択候補番号1~5)に制限していることを示している。すなわち、図8では、移動局装置200が、基地局装置100から割り当てられた6つのPUCCHリソースの中から2つのPUCCHリソースを選択する際の特定の2つのPUCCHリソース番号の組み合わせを、1番目の選択候補(リソース番号0、リソース番号1)、2番目の選択候補(リソース番号0、リソース番号2)、3番目の選択候補(リソース番号0、リソース番号3)、4番目の選択候補(リソース番号0、リソース番号4)、5番目の選択候補(リソース番号0、リソース番号5)に制限していることを示している。
 図8のPUCCHリソースの選択候補の例では、特定の2つのPUCCHリソース番号の組み合わせとして、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号0、リソース番号2)、3番目の選択候補を(リソース番号0、リソース番号3)、4番目の選択候補を(リソース番号0、リソース番号4)、5番目の選択候補を(リソース番号0、リソース番号5)としている。この方法では、移動局装置200がリソース番号0を必ず送信に利用するため、基地局装置100は、残り一方のPUCCHリソース(この例では、PUCCHリソース番号1~5のいずれか)を検出できれば良く、2個のPUCCHリソースの組み合わせ全てに対して比較しなくても良いため、2個のPUCCHリソースを検出するために必要な演算量を低減することが可能である。
 図9は、本発明の第2の実施形態において、2個のPUCCHリソースを利用する際のPUCCHリソースの図8とは別の選択候補の例について示す図である。図9において、0から5の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図9の例では、HARQにおける制御情報を送信するために特定の2つのPUCCHリソース番号の組み合わせ(それぞれ選択候補番号1~5)として、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号1、リソース番号2)、3番目の選択候補を(リソース番号2、リソース番号3)、4番目の選択候補を(リソース番号3、リソース番号4)、5番目の選択候補を(リソース番号4、リソース番号5)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限することもできる。この選択候補では、送信に利用された2個のPUCCHリソースの両方が誤ることは少ないという性質(ダイバーシチ効果)を利用し、基地局装置において、検出した一方のPUCCHリソースからあらかじめ制限された一方のPUCCHリソースの候補を絞ることができ、PUCCHリソースの検出誤りを減少させることが可能である。次に、PUCCHリソースが7個割り当てられた場合における2つのPUCCHリソースを選択する際のPUCCHリソースの選択候補について示す。
 図10は、本発明の第2の実施形態において、PUCCHリソースが7個割り当てられた場合におけるPUCCHリソースの選択候補の2つの例を示す図である。図10において、0から6の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図10における例1では、特定の2つのPUCCHリソース番号の組み合わせ(それぞれ選択候補番号1~5)として、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号2、リソース番号3)、3番目の選択候補を(リソース番号3、リソース番号4)、4番目の選択候補を(リソース番号4、リソース番号5)、5番目の選択候補を(リソース番号5、リソース番号6)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限している。
 ここで、それぞれの選択候補に引かれたアンダーラインは、それぞれ、実線は他のPUCCHリソースの選択候補と同じリソースを共用しないPUCCHリソース候補を示し、点線は他のPUCCHリソース候補と同じPUCCHリソースを1つだけ共用する場合を示している。図10における例1では、実線で示される他のPUCCHリソース候補とPUCCHリソースを共用しないPUCCHリソース選択候補が1つ(選択候補番号1)、他の選択候補とPUCCHリソースの共用が1個のみ存在するPUCCHリソース候補は2つ(選択候補番号2、5)となっており、残りの2つのPUCCHリソースの選択候補(選択候補番号3、4)は他の選択候補とPUCCHリソースの共用が2個存在するPUCCHリソースの選択候補という構成となっている。
 ここで、基地局装置100において、移動局装置200が選択したPUCCHリソースの選択候補を検出する場合には、点線で示される他のPUCCHリソースの選択候補とリソースの共用が1個のみである場合には、他の選択候補とPUCCHリソースの共用していないリソースを検出できれば、利用された2個のPUCCHリソースの選択候補を検出可能である。また、他のPUCCHリソースの選択候補とPUCCHリソースの共用が2個存在するPUCCHリソースの選択候補と比べ、移動局装置200が選択したPUCCHリソースの検出誤りを減らすことが可能である。さらに、実線で示される選択候補はそのPUCCHリソースの選択候補を構成するPUCCHリソースのいずれかが検出できれば、送信に利用されたPUCCHリソースの選択候補を検出することが可能であり、他の選択候補(例1の選択候補番号2~5)よりもPUCCHリソースの検出誤りを減らすことが可能である。
 さらに、PUCCHリソースが7個割り当てられた場合における選択候補を表すもう一つの例2では、特定の2つのPUCCHリソース番号の組み合わせ(それぞれ選択候補番号1~5)として、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号1、リソース番号2)、3番目の選択候補を(リソース番号3、リソース番号4)、4番目の選択候補を(リソース番号4、リソース番号5)、5番目の選択候補を(リソース番号5、リソース番号6)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限している。
 例2では、実線で示される他の選択候補とPUCCHリソースを共用しないPUCCHリソースの選択候補は存在しないが、点線で示される、他のPUCCHリソースの選択候補とPUCCHリソースの共用が1個のみのPUCCHリソース選択候補は4つあり、他のPUCCHリソースの選択候補とPUCCHリソースの共用が2個存在するPUCCHリソース選択候補は1つのみで構成されることから、例1よりも移動局装置200において、選択されるPUCCHリソースの選択候補に偏りがない場合には、PUCCHリソースの検出誤りを減らすことが可能である。
 図11は、本発明の第2の実施形態において、基地局装置100から8個のPUCCHリソースが割り当てられた場合における2つのPUCCHリソースを選択する際のPUCCHリソースの選択候補について示す図である。図11において、0から7の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図11では、8個のPUCCHリソースから2個のPUCCHリソースを選択するための5個の選択候補を表す例を2つ示す。
 図11における例1では、HARQにおける制御情報を送信するために特定の2つのPUCCHリソース番号の組み合わせとして、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号2、リソース番号3)、3番目の選択候補を(リソース番号3、リソース番号4)、4番目の選択候補を(リソース番号4、リソース番号5)、5番目の選択候補を(リソース番号6、リソース番号7)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限している。
 図11における例1では、実線で示される他のPUCCHリソースの選択候補とPUCCHリソースを共用しないPUCCHリソースの選択候補が2つあり、点線で示される他のPUCCHリソース選択候補とPUCCHリソース選択候補の共用が1つのみ存在するPUCCHリソースの選択候補は2つあり、残り1つのPUCCHリソース選択候補は他のPUCCHリソースの選択候補とPUCCHリソースの共用が2つ存在するPUCCHリソース選択候補で構成されている。
 図10で示した基地局装置100から割り当てられるPUCCHリソースが7つの場合における例1と比較して、他のPUCCHリソースの選択候補とPUCCHリソースを共用しないPUCCHリソースの選択候補が1つ増え、他のPUCCHリソース選択候補とPUCCHリソースの共用が2つ存在するPUCCHリソース選択候補が1つ減っており、PUCCHリソースの検出誤りを減らすことが可能である。また、図10における例2と比較すると、他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補が2つ増え、他のPUCCHリソース選択候補とPUCCHリソースの共用が1つのみのPUCCHリソース選択候補が2つ減っていることから、PUCCHリソースの検出誤りを減らすことが可能である。
 また、図11における例2では、HARQにおける制御情報を送信するために、特定の2つのPUCCHリソース番号の組み合わせとして、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号1、リソース番号2)、3番目の選択候補を(リソース番号3、リソース番号4)、4番目の選択候補を(リソース番号4、リソース番号5)、5番目の選択候補を(リソース番号6、リソース番号7)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限している。
 図11における例2では、実線で示される他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補が1つ、点線で示される他のPUCCHリソース選択候補とPUCCHリソースの共用が1個のみのPUCCHリソース選択候補は4つで構成されている。
 図10で示したPUCCHリソースが7個の場合における例1と比較して、他のPUCCHリソース選択候補とPUCCHリソースの共用が2個存在するPUCCHリソース選択候補が2つ減っており、他のPUCCHリソース選択候補とPUCCHリソースの共用が1個のみ存在するPUCCHリソース選択候補が2つ増えていることから、2個のPUCCHリソースの検出誤りを減らすことが可能である。また、図10における例2と比較すると、実線で示される他のPUCCHリソースの選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補が1つ増え、他のPUCCHリソース選択候補とPUCCHリソースの共用が2個存在するPUCCHリソース選択候補が1つ減っていることから、2個のPUCCHリソースの検出誤りを減らすことが可能である。
 図11における例2では、実線で示される他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補は1つで、点線で示される他のPUCCHリソース選択候補とPUCCHリソースの共用が1個のみのPUCCHリソース選択候補は4つあり、他のPUCCHリソース選択候補とPUCCHリソースの共用が2個存在するPUCCHリソース選択候補がないことから、例1よりも選択されるPUCCHリソース選択候補に偏りがない場合には、2個のPUCCHリソースの検出誤りを減らすことが可能である。
 図12は、本発明の第2の実施形態において、9個のPUCCHリソースが割り当てられた場合における2つのPUCCHリソース選択する際のPUCCHリソースの選択候補について示す図である。図12において、0から8の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図12では、9個のPUCCHリソースが割り当てられた場合における特定の2つのPUCCHリソース番号の組み合わせの一例を示す。
 図12における例では、HARQにおける制御情報を送信するために特定の2つのPUCCHリソース番号の組み合わせとして、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号2、リソース番号3)、3番目の選択候補を(リソース番号3、リソース番号4)、4番目の選択候補を(リソース番号5、リソース番号6)、5番目の選択候補を(リソース番号7、リソース番号8)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限している。
 図12における例では、実線で示される他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース候補が3つ、点線で示される他のPUCCHリソース選択候補とPUCCHリソースの共用が1個のみ存在するPUCCHリソース選択候補は2つで構成されている。
 図11で示したPUCCHリソースが8つの場合における例1と比較して、実線で示される他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補が1つ増え、他のPUCCHリソース選択候補とPUCCHリソースの共用が2つあるPUCCHリソース選択候補が1つ減っていることから、PUCCHリソース選択候補の検出誤りを減らすことが可能である。また、図11における例2と比較すると、他のPUCCHリソース選択候補とPUCCHリソースの共用が2個存在するPUCCHリソース選択候補が、実線で示される他のPUCCHリソース選択候補とPUCCHリソース選択候補を共用しないPUCCHリソース選択候補が2つ増え、他のPUCCHリソース選択候補とPUCCHリソースの共用が1個のみのPUCCHリソース選択候補が2つ減っていることから、2個のPUCCHリソースの検出誤りを減らすことが可能である。
 上記、図8~12で示したPUCCHリソースの選択候補は、基地局装置100において、移動局装置200へ割り当てたPDSCHの数の2倍よりも少ないPUCCHリソースを割り当てることにより、多重可能な移動局装置200の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。
 図13は、本発明の第2の実施形態において、10個のPUCCHリソースが割り当てられた場合における2つのPUCCHリソースを選択する際の特定の2つのPUCCHリソース番号の組み合わせについて示す図である。図13において、0から9の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図13では、PUCCHリソースが全部で10個割り当てられた場合における5つのPUCCHリソース選択候補を示す一例である。
 図13における例では、HARQにおける制御情報を送信するために必要な5つの選択候補として、1番目の選択候補を(リソース番号0、リソース番号1)、2番目の選択候補を(リソース番号2、リソース番号3)、3番目の選択候補を(リソース番号4、リソース番号5)、4番目の選択候補を(リソース番号6、リソース番号7)、5番目の選択候補を(リソース番号8、リソース番号9)としている。このように、組み合わせの選択方法を、PUCCHリソース番号が連続した2つの組み合わせに制限している。
 図13における例では、他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補が5つで構成されている。図12で示した割り当てられたPUCCHリソースが9個の場合における例と比較して、他のPUCCHリソース選択候補とPUCCHリソースを共用しないPUCCHリソース選択候補が2つ増え、他のPUCCHリソース選択候補とPUCCHリソースの共用が1個のみであるPUCCHリソース選択候補が2つ減っていることから、2個のPUCCHリソースの検出誤りを減らすことが可能である。
 図13で示したPUCCHリソースの選択候補は、基地局装置100が移動局装置200へPDSCHの数の2倍のPUCCHリソースを割り当てた場合、割り当てられたPUCCHリソースは、1つの制限された候補のみに含まれており、2つのPUCCHリソースの検出誤りを減少させることが可能である。
 このように、移動局装置200が、基地局装置100から割り当てられた複数のPUCCHリソースから2個のPUCCHリソースを選択する際に、選択候補の数を、基地局装置100から同一サブフレームで受信するPDSCHの数に制限することによって、効率的なHARQにおける制御情報を送信することができ、また、HARQにおける制御情報の受信品質を高めることが可能となる。ここで、移動局装置200によって送信可能な情報量を増やすために、選択する2個のPUCCHリソースの選択候補数を、同一サブフレームで受信するPDSCHの数以上としても良い。
 一方、基地局装置100においては、第1の実施形態で示したように、移動局装置200から送信された2個のPUCCHリソースを受信し、割り当てた複数のPUCCHリソースの中から移動局装置200によって選択された2個のPUCCHリソースを検出することによって、検出したPUCCHリソースとPUCCHリソースに含まれる情報(情報ビット)に基づいて、バンドリング、もしくは、多重されたHARQにおける制御情報を復調する。
 具体的な手順について、図14を用いて、基地局装置100によって移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースが供給され、移動局装置200が割り当てられたリソースを使用してHARQにおける制御情報を送信する様子を説明する。
 図14は、本発明の第2の実施形態において、移動局装置200へHARQにおける制御情報送信のためのPUCCHリソースが供給され、そのリソースに基づくHARQにおける制御情報を送信するシーケンスチャートを示す。まず、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するために、PDSCH毎に少なくとも1つのPUCCHリソースを割り当てる(ステップS101)。例えば、基地局装置100は、下りリンクコンポーネントキャリアそれぞれで送信するPDSCHを割り当てるPDCCHに関連付けて、PUCCHリソースを移動局装置200へ割り当てる。例えば、あるPDCCHに対して、PDCCHの位置に応じて、1個のPUCCHリソースを割り当て、またあるPDCCHに対しては、2個のPUCCHリソース割り当てても良い。ここで、PDCCHの位置に応じて割り当てられるPUCCHリソースは1個または2個である必要はなく、2個以上でも良い。
 ここで、2個のPUCCHリソースを割り当てる方法として、例えば、まず、最も小さいCCEインデックスに関連付けし、1つのPUCCHリソースを割り当て、その割り当てられた1つのPUCCHリソースに関連付け、もう1つのPUCCHリソースを割り当てても良い。例えば、最も小さいCCEインデックスに関連付けして、1つのPUCCHリソースを割り当て、割り当てられたPUCCHリソース番号+1のPUCCHリソースをもう1つのPUCCHリソースとして割り当てることができる。ここで、移動局装置200がHARQにおける制御情報に送信ダイバーシチを適用する場合、第1のアンテナで1つのPUCCHリソースを送信し、第2のアンテナでもう1つのPUCCHリソースを送信する。
 基地局装置100は、PDSCHを使用して、下りリンクトランスポートブロックを移動局装置200へ送信する(ステップS102)。例えば、基地局装置100は、下りリンクコンポーネントキャリアそれぞれで、複数のPDSCHを使用して、複数の下りリンクトランスポートブロックを、同一サブフレームで移動局装置200へ送信する。
 次に、基地局装置100からPDSCHを使用して下りリンクトランスポートブロック信号を受信した移動局装置200は、下りリンクトランスポートブロックの受信状態に基づき、HARQにおける制御情報を生成し、PUCCHリソースを選択する(ステップS103)。ここで、移動局装置200は、HARQにおける制御情報として、基地局装置100から送信された(複数の)PDCCHおよび/または(複数の)PDSCHに対するHARQにおける制御情報を生成し、HARQにおける制御情報に応じたPUCCHリソースを選択する。すなわち、移動局装置200は、基地局装置100によって割り当てられた(複数)のPUCCHリソースの中から、HARQにおける制御情報に応じて、2つのPUCCHリソースを選択する。移動局装置200は、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から、2つのPUCCHリソースを選択する際の選択方法は、上述した第2の実施形態のような選択方法を使用する。
 続いて、移動局装置200は、選択した2つのPUCCHリソースに、HARQにおける制御情報に応じた(HARQにおける制御情報に応じて選択された)ビット(情報ビット)を配置し、基地局装置100へ送信する(ステップS104)。すなわち、移動局装置200は、(選択した)2つのPUCCHリソースを使用して、(選択した)ビットを基地局装置100へ送信する。
 移動局装置200から2つのPUCCHリソースを受信した基地局装置100は、HARQにおける制御情報の抽出(検出)を行なう(ステップS105)。基地局装置100が、移動局装置200から送信される2つのPUCCHリソースからHARQ制御情報を抽出(検出)する際の抽出方法は、上述したような抽出(検出)方法を使用する。すなわち、例えば、基地局装置100は、移動局装置200が選択した2つのPUCCHリソースを抽出(検出)するために、移動局装置200が選択する可能性があるPUCCHリソースの組み合わせの選択候補を利用し、逆拡散の結果として最も大きな電力を示したPUCCHリソースの組み合わせを検出する。つまり、基地局装置100は、逆拡散の結果として最も大きな電力を示したPUCCHリソースの組み合わせを、移動局装置200が選択した2つのPUCCHリソースと判断し、HARQにおける制御情報を抽出(検出)する。
 上記までに記載した基地局装置100と移動局装置200によるHARQにおける制御情報の送受信は、移動局装置200が、HARQにおける制御情報を、送信ダイバーシチを適用して基地局装置100へ送信する際にも適用する。すなわち、上記までに記載した基地局装置100と移動局装置200によるHARQにおける制御情報の送受信は、単一のアンテナを持つ移動局装置200に対してだけでなく、複数のアンテナを持つ移動局装置200に対しても適用する。
 すなわち、複数のアンテナを持つ移動局装置200が、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から、上述したような方法を使用して、2つのPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報を、選択したPUCCHリソースを使用して、送信ダイバーシチを適用して基地局装置100へ送信する。ここで、移動局装置200が、送信ダイバーシチを適用して、2つのPUCCHリソースを基地局装置100へ送信する場合、2つのPUCCHリソースそれぞれで送信される情報は、同一の情報(同一のシンボル、変調シンボルまたは符号化シンボル)となる。移動局装置200は、同一の情報が配置された2つのPUCCHリソースそれぞれを、異なるアンテナを使用して基地局装置100へ送信する。ここで、異なるアンテナとは論理的に識別されるアンテナのことである。
 複数のアンテナを持つ移動局装置200に対して、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを割り当てる。また、移動局装置200は、割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、複数のアンテナで(例えば、送信ダイバーシチを適用して)基地局装置100へ送信する。
 また、複数のアンテナを持つ移動局装置200に対して、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを割り当てる。また、移動局装置200は、割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、複数のアンテナで(例えば、送信ダイバーシチを適用して)基地局装置100へ送信する。
 ここで、移動局装置200が、HARQにおける制御情報をバンドリングして、送信ダイバーシチを適用して基地局装置100へ送信する場合、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報から、1つのHARQにおける制御情報を算出(生成)し、算出した1つのHARQにおける制御情報を、選択した2個のPUCCHリソースで送信する。
 また、移動局装置200が、HARQにおける制御情報を多重して、送信ダイバーシチを適用して基地局装置100へ送信する場合、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報のすべての組み合わせを表現する複数の制御情報を、選択した2個のPUCCHリソースで送信する。
 さらに、移動局装置200が、基地局装置100よって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際には、選択する2つのPUCCHリソースの組み合わせの選択候補を、上述したように制限する。すなわち、例えば、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その組み合わせの選択候補を、PUCCHリソース番号が隣接するPUCCHリソースの組み合わせに制限する。さらに、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際には、選択する2つのPUCCHリソースの選択候補の数を、上述したように制限する。すなわち、例えば、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その選択候補の数を、基地局装置100から同一サブフレームで受信した(送信された)PDSCHの数と同じに(または、PDSCHの数よりも多く)制限する。
 上記までに示した通り、複数のコンポーネントキャリアによって構成される広帯域な周波数帯域を使用して通信を行なう基地局装置100と移動局装置200が、HARQにおける制御情報を送受信する際に、移動局装置200が、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用してHARQにおける制御情報を送信することによって、HARQにおける制御情報に対する品質を高く保って基地局装置100へ送信することができる。すなわち、移動局装置200が、2つのPUCCHリソースを使用して、HARQにおける制御情報を送信することによって、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置100へ送信するHARQにおける制御情報の品質を高く保つことができる。
 また、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用してHARQにおける制御情報を送信することによって、移動局装置200がHARQにおける制御情報を送信する際の送信電力を低く抑えることができる。すなわち、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置200における送信電力を低く抑えることができる。
 さらに、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、PDSCH毎(PDSCHを割り当てるPDCCHに関連付けて)に割り当てることによって、PUCCHリソースを割り当てる信号を送信する必要がなく、効率的にPUCCHリソースを割り当てることができる。
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。第3の実施形態では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースおよび、さらに基地局装置100によって割り当てられた1つまたは複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 また、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースおよび、さらに基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信する。
 ここで、移動局装置200が選択する2つのPUCCHリソースの組み合わせの候補は制限されることによって、2つのPUCCHリソースの検出誤りを減少させることが可能である。さらに、制限される組み合わせの候補の数は、移動局装置200が同一サブフレームで受信するPDSCHの数と同じ(または、PDSCHの数よりも多い)である。これは、各PDSCHに対して、1つのPUCCHリソースが割り当てられ、1つのPUCCHリソースを選択し、送信する場合には、PDSCHの数と同数の候補が存在するため、第1の実施形態において、2個のPUCCHリソースを選択する際に、PDSCHの数に応じた組み合わせの候補を用意している。
 また、基地局装置100は、移動局装置200へ割り当てられたPDSCHの数の2倍よりも少ないPUCCHリソースを割り当てることにより、多重可能な移動局装置200の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。さらに、基地局装置100が移動局装置200へPDSCHの数の2倍のPUCCHリソースを割り当てた場合、割り当てられたPUCCHリソースは、1つの制限された候補のみに含まれ、2つのPUCCHリソースの検出誤りを減少させることが可能である。
 本実施形態では、移動局装置200は、選択した2つのPUCCHリソースを使って、HARQの制御情報を送信ダイバーシチにより送信する(2つのPUCCHリソースを使って同じHARQの制御情報を送信する)。また、移動局装置200は、PDSCHを1つだけ受信した場合には、基地局装置100によって予め割り当てられたPUCCHリソースとPDSCHに対して割り当てられたPUCCHリソースを用いて送信する。図5に示す移動通信システムの例は、第3の実施形態においても同様に適用可能である。
 図15は、本発明の第3の実施形態において、移動局装置200へHARQにおける制御情報送信のためのPUCCHリソースが供給され、そのリソースに基づくHARQにおける制御情報を送信するシーケンスチャートを示す。まず、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するために、第1のPUCCHリソースの割り当てとして、RRCシグナリングにより、準静的にPUCCHリソースを1個割り当てる(ステップS201)。ただし、ここで割り当てられる第1のPUCCHリソースは1個である必要はなく、2個以上でも良い。
 次に、基地局装置100は、移動局装置200へ第2のPUCCHリソースの割り当てとして、PDSCH毎に少なくとも1つのPUCCHリソースの動的な割り当てを行なう(ステップS202)。例えば、基地局装置100は、下りリンクコンポーネントキャリアそれぞれで送信するPDSCHを割り当てるPDCCHに関連付けて、PUCCHリソースを移動局装置200へ割り当てる。第2のPUCCHリソースの割り当ては、例えば、あるPDCCHに対して、PDCCHの位置に応じて、1個のPUCCHリソースを割り当て、またあるPDCCHに対しては、2個のPUCCHリソースを割り当てて良い。ここで、PDCCHの位置に応じて割り当てられるPUCCHリソースは1個または2個である必要はなく、2個以上でも良い。
 続いて、基地局装置100は、PDSCHを使用して、下りリンクトランスポートブロックを移動局装置200へ送信する(ステップS203)。例えば、基地局装置100は、下りリンクコンポーネントキャリアそれぞれで、複数のPDSCHを使用して、複数の下りリンクトランスポートブロックを、同一サブフレームで移動局装置200へ送信する。基地局装置100から下りリンクトランスポートブロックを受信した移動局装置200は、PDSCH(下りリンクトランスポートブロック)の受信状態に基づき、HARQにおける制御情報を生成し、HARQにおける制御情報に応じたPUCCHリソースを選択する(ステップS204)。このとき、PUCCHリソースの選択候補は、移動局装置200へ割り当てられたPUCCHリソース数に応じて、第2の実施形態において示したものが適用される。
 つまり、第2の実施形態で示した図8、図9におけるPUCCHリソースの選択候補(それぞれ選択候補番号1~5に対応)は6個のPUCCHリソースが割り当てられた場合、図10におけるPUCCHリソースの選択候補(それぞれ選択候補番号1~5に対応)は7個のPUCCHリソースが割り当てられた場合、図11におけるPUCCHリソースの選択候補(それぞれ選択候補番号1~5に対応)は8個のPUCCHリソースが割り当てられた場合、図12におけるPUCCHリソースの選択候補(それぞれ選択候補番号1~5に対応)は9個のPUCCHリソースが割り当てられた場合、図13におけるPUCCHリソースの選択候補(それぞれ選択候補番号1~5に対応)は、10個のPUCCHリソースが基地局装置100から割り当てられた場合に、それぞれ適用可能である。
 ただし、移動局装置200がPDSCHを1つだけ受信した場合には、基地局装置100によって予め割り当てられたPUCCHリソースとPDSCHに対して割り当てられたPUCCHリソースを用い、基地局装置100へ送信する。
 続いて、移動局装置200は、HARQにおける制御情報を送信するために、基地局装置100からのPUCCHリソース割り当てからPUCCHリソースを選択し、選択したPUCCHリソースで送信するビット(情報)を選択し、選択した2個のPUCCHリソースを使用して選択したビット(情報)を基地局装置100へ送信する(ステップS205)。
 移動局装置200から2つのPUCCHリソースを受信した基地局装置100は、HARQにおける制御情報を抽出(検出)を行なう(ステップS206)。基地局装置100は、移動局装置200から送信された2つのPUCCHリソースからHARQにおける制御情報を抽出(検出)する際の抽出方法は、第1の実施形態で示したような抽出(検出)方法を使用する。すなわち、例えば、基地局装置100は、移動局装置200が選択した2つのPUCCHリソースを抽出(検出)するために、移動局装置200が選択する可能性があるPUCCHリソースの組み合わせの選択候補を利用し、逆拡散の結果として最も大きな電力を示したPUCCHリソースの組み合わせを検出する。つまり、基地局装置100は、逆拡散の結果として最も大きな電力を示したPUCCHリソースの組み合わせを、移動局装置200が選択した2つのPUCCHリソースと判断し、HARQにおける制御情報を抽出(検出)する。
 上記までに記載した基地局装置100と移動局装置200によるHARQにおける制御情報の送受信は、移動局装置200が、HARQにおける制御情報を、送信ダイバーシチを適用して基地局装置100へ送信する際にも適用する。すなわち、上記までに記載した基地局装置100と移動局装置200によるHARQにおける制御情報の送受信は、単一のアンテナを持つ移動局装置200に対してだけでなく、複数のアンテナを持つ移動局装置200に対して適用する。
 すなわち、複数のアンテナを持つ移動局装置200が、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から、上述したような方法を使用して、2つのPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報を、選択したPUCCHリソースを使用して、送信ダイバーシチを適用して基地局装置100へ送信する。ここで、移動局装置200が、送信ダイバーシチを適用して、2つのPUCCHリソースを基地局装置100へ送信する場合、2つのPUCCHリソースそれぞれで送信される情報は、同一の情報(同一のシンボル、変調シンボルまたは符号化シンボル)となる。移動局装置200は、同一の情報が配置された2つのPUCCHリソースそれぞれを、異なるアンテナを使用して基地局装置100へ送信する。ここで、異なるアンテナとは論理的に識別されるアンテナのことである。
 複数のアンテナを持つ移動局装置200に対して、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを割り当てる。また、移動局装置200は、PDSCH毎に割り当てられたPUCCHリソースおよび、さらに基地局装置100によって割り当てられた1つまたは複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、複数のアンテナで(例えば、送信ダイバーシチを適用して)基地局装置100へ送信する。
 また、複数のアンテナを持つ移動局装置200に対して、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを割り当て、割り当てられたPDSCH毎に1つのPUCCHリソースを割り当てる。また、移動局装置200は、PDSCH毎に割り当てられたPUCCHリソースおよび、さらに基地局装置100によって割り当てられた1つまたは複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、複数のアンテナで(例えば、送信ダイバーシチを適用して)基地局装置100へ送信する。
 ここで、移動局装置200が、HARQにおける制御情報をバンドリングして、送信ダイバーシチを適用して基地局装置100へ送信する場合、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報から、1つのHARQにおける制御情報を算出(生成)し、算出した1つのHARQにおける制御情報を、選択した2個のPUCCHリソースで送信する。
 また、移動局装置200が、HARQにおける制御情報を多重して、送信ダイバーシチを適用して基地局装置100へ送信する場合、基地局装置100から割り当てられたPUCCHリソースの中から2個のPUCCHリソースを選択し、(複数の)PDCCHおよび/または(複数の)PDSCHそれぞれに対するHARQにおける制御情報のすべての組み合わせを表現する複数の制御情報を、選択した2個のPUCCHリソースで送信する。
 さらに、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際には、選択する2つのPUCCHリソースの組み合わせの選択候補を、上述したように制限する。すなわち、例えば、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その組み合わせの選択候補を、PUCCHリソース番号が隣接するPUCCHリソースの組み合わせに制限する。さらに、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際には、選択する2つのPUCCHリソースの選択候補の数を、上述したように制限する。すなわち、例えば、移動局装置200が、基地局装置100によって割り当てられたPUCCHリソースの中から2つのPUCCHリソースを選択する際に、その選択候補の数を、基地局装置100から同一サブフレームで受信した(送信された)PDSCHの数と同じに(または、PDSCHの数よりも多く)制限する。
 上記までに示した通り、複数のコンポーネントキャリアによって構成される広帯域な周波数帯域を使用して通信を行なう基地局装置100と移動局装置200が、HARQにおける制御情報を送受信する際に、移動局装置200が、基地局装置100によって割り当てられた(複数の)PUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用してHARQにおける制御情報を送信することによって、HARQにおける制御情報に対する品質を高く保って基地局装置100へ送信することができる。すなわち、移動局装置200が、2つのPUCCHリソースを使用して、HARQにおける制御情報を送信することによって、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置100へ送信するHARQにおける制御情報の品質を高く保つことができる。
 また、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用してHARQにおける制御情報を送信することによって、移動局装置200がHARQにおける制御情報を送信する際の送信電力を低く抑えることができる。すなわち、移動局装置200が、基地局装置100によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置200における送信電力を低く抑えることができる。
 さらに、基地局装置100は、移動局装置200がHARQにおける制御情報を送信するためのPUCCHリソースを、PDSCH毎(PDSCHを割り当てるPDCCHに関連付けて)に割り当てることによって、PUCCHリソースを割り当てる信号を送信する必要がなく、効率的にPUCCHリソースを割り当てることができる。
 (第4の実施形態)
 次に、本発明の第4の実施形態について説明する。第4の実施形態では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 また、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 さらに、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースおよび、さらに基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 また、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースおよび、さらに基地局装置100によって割り当てられた複数のPUCCHリソースの中から2つのPUCCHリソースを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信する。
 ここで、移動局装置200が選択する2つのPUCCHリソースの組み合わせの候補が制限されることによって、2つのPUCCHリソースの検出誤りを減少させることが可能である。さらに、制限される組み合わせの候補の数は、移動局装置200が同一サブフレームで受信するPDSCHの数と同じ(または、PDSCHの数よりも多い)である。これは、各PDSCHに対して、1つのPUCCHリソースが割り当てられ、1つのPUCCHリソースを選択し、送信する場合には、PDSCHの数と同数の候補が存在するためであり、第1の実施形態において、2個のPUCCHリソースを選択する際に、PDSCHの数に応じた組み合わせの候補を用意している。
 また、基地局装置100は、移動局装置200へ割り当てられたPDSCHの数の2倍よりも少ないPUCCHリソースを割り当てることにより、多重可能な移動局装置200の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。さらに、基地局装置100が移動局装置200へPDSCHの数の2倍のPUCCHリソースを割り当てた場合、割り当てられたPUCCHリソースは、1つの制限された候補のみに含まれ、2つのPUCCHリソースの検出誤りを減少させることが可能である。移動局装置200は、選択した2つのPUCCHリソースを使って、HARQの制御情報を送信ダイバーシチにより送信する(2つのPUCCHリソースを使って同じHARQの制御情報を送信する)。
 第4の実施形態では、移動局装置200から基地局装置100へ送信する際に選択するPUCCHリソースは1つまたは2つである。また、第4の実施形態では、PDSCHに対するHARQの制御情報の数はXであって、基地局装置100が移動局装置200へ(X+Y)のPUCCHリソースを割り当て、移動局装置200が選択する2つのPUCCHリソースの候補数はYであり、移動局装置200が選択する1つのPUCCHリソースの候補数は(X-Y)である。
 図5に示す移動通信システムの例は、第4の実施形態においても同様に適用可能である。第1~3の実施形態との違いは、HARQにおける制御情報を送信するために、1つのPUCCHリソースのみで送信するまたは、2つのPUCCHリソースで送信することを切り替えることにある。第1の実施形態では、HARQにおける制御情報送信のためにPUCCHリソースは必ず2つ選択し、送信に利用したが、本実施形態では、移動局装置200は、PUCCHリソースを1つまたは2つ選択し、上りリンクの1つのコンポーネントキャリア内でバンドリング、もしくは、多重して基地局装置100へ送信に利用する。
 第4の実施形態では、HARQの制御信号に適用可能な送信方式(送信ダイバーシチ)として、PUCCHリソース(周波数、直交符号の組み合わせ)1つ利用する場合にはPVS(Precoder Vector Switching)を適用し、PUCCHリソース2つ利用する場合にはSORTDを適用するものとして説明する。PVSは、変調信号に信号処理を加えることにより、複数のアンテナにおいて、1つのPUCCHリソースで適用可能な送信方式である。ここで、PUCCHリソース1つ利用して送信する送信方式はPVSである必要はなく、1つのPUCCHリソースを利用して送信する送信方式であれば良い。また、PUCCHリソース2つ利用する送信方式について、SORTDである必要はなく、2つのPUCCHリソースを利用する送信方式であれば良い。
 続いて、1つまたは、2つのPUCCHリソースの選択候補について示す。以下では、下りリンクトランスポートブロック信号の送信が5つのコンポーネントキャリアにおいてそれぞれ1つのPDSCHが配置され、それに対応するHARQにおける制御情報を送信するために、5つの選択候補を割り当てられたPUCCHリソースから1つまたは2つを選択することで表現し、基地局装置100で移動局装置200において選択され、送信された1つまたは2つのPUCCHリソースを検出することを想定し、PUCCHリソースの選択候補について示す。
 図16は、本発明の第4の実施形態において、6つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。図16において、0から5の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図16のPUCCHリソースの選択候補の例では、1番目の選択候補はリソース番号(0、1)、2番目の選択候補はリソース番号(2)、3番目の選択候補はリソース番号(3)、4番目の選択候補はリソース番号(4)、5番目の選択候補はリソース番号(5)と割り当てる。
 この選択候補では、1番目の選択候補が選択された場合には、2つのPUCCHリソースを利用可能であり、1番目の選択候補が選択された場合に、基地局装置100において、PUCCHリソースの検出精度を高めることが可能である。また、1つのPUCCHリソースが選択された場合と同じ検出精度で良いのであれば、1番目の選択候補が選択された場合に、送信電力を減少させることが可能である。
 図17は、本発明の第4の実施形態において、7つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。図17において、0から6の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図17のPUCCHリソースの選択候補の例では、1番目の選択候補はリソース番号(0、1)、2番目の選択候補はリソース番号(2、3)、3番目の選択候補はリソース番号(4)、4番目の選択候補はリソース番号(5)、5番目の選択候補はリソース番号(6)を割り当てる。
 この選択候補では、1番目または2番目の選択候補が選択された場合には、2つのPUCCHリソースを利用可能であり、1番目または2番目の選択候補が選択された場合に、基地局装置100において、PUCCHリソースの検出精度を高めることが可能である。また、1つのPUCCHリソースが選択された場合と同じ検出精度で良いのであれば、1番目または2番目の選択候補が選択された場合に、送信電力を減少させることが可能である。
 図18は、本発明の第4の実施形態において、8つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。図18において、0から7の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図18のPUCCHリソースの選択候補の例では、1番目の選択候補はリソース番号(0、1)、2番目の選択候補はリソース番号(2、3)、3番目の選択候補はリソース番号(4、5)、4番目の選択候補はリソース番号(6)、5番目の選択候補はリソース番号(7)と割り当てる。
 この選択候補では、1番目、2番目または3番目の選択候補が選択された場合には、2つのPUCCHリソースを利用可能であり、1番目、2番目または3番目の選択候補が選択された場合に、基地局装置100において、PUCCHリソースの検出精度を高めることが可能である。また、1つのPUCCHリソースが選択された場合と同じ検出精度で良いのであれば、1番目、2番目または3番目の選択候補が選択された場合に、送信電力を減少させることが可能である。
 図19は、本発明の第4の実施形態において、9つのPUCCHリソースが割り当てられた場合における1つまたは2つのPUCCHリソースを選択する際の特定の1つまたは2つのPUCCHリソース番号の選択候補例(それぞれ選択候補番号1~5に対応)について示す図である。図19において、0から8の番号は、PUCCHリソース(n(1) PUCCH X)を示している。図19のPUCCHリソースの選択候補の例では、1番目の選択候補はリソース番号(0、1)、2番目の選択候補はリソース番号(2、3)、3番目の選択候補はリソース番号(4、5)、4番目の選択候補はリソース番号(6、7)、5番目の選択候補はリソース番号(8)と割り当てる。
 この選択候補では、1番目、2番目、3番目または4番目の選択候補が選択された場合には、2つのPUCCHリソースを利用可能であり、1番目、2番目、3番目または4番目の選択候補が選択された場合に、基地局装置100において、PUCCHリソースの検出精度を高めることが可能である。また、1つのPUCCHリソースが選択された場合と同じ検出精度で良いのであれば、1番目、2番目、3番目または4番目の選択候補が選択された場合に、送信電力を減少させることが可能である。
 上記、図16~19で示したPUCCHリソースの選択候補は、基地局装置100において、移動局装置200へ割り当てたPDSCHの数の2倍よりも少ないPUCCHリソースを割り当てることにより、多重可能な移動局装置200の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。また、10個のPUCCHリソースが割り当てられた場合には、特定の2つのPUCCHリソース番号の組み合わせ(それぞれ選択番号1~5に対応)について、第2の実施形態で示した図13を同様に適用可能である。この場合、1つのPUCCHリソースが選択される場合はなく、5つの選択候補それぞれにおいて、2つのPUCCHリソースが選択される。具体的な手順について、図14および、図15を利用することが可能であり、割り当てられたPUCCHリソースの数に応じて上記、PUCCHリソースの選択を行なえば良い。
 以上の手順により、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 また、本発明では、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信することが可能である。
 さらに、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報を、選択したPUCCHリソースを使用して、基地局装置100へ送信する際に、前記下りコンポーネントキャリア毎に割り当てられたPUCCHリソースおよびさらに割り当てられた1つまたは複数のPUCCHリソースの中から2つを選択して、送信することが可能である。
 また、基地局装置100は、複数の下りリンクコンポーネントキャリアそれぞれで1つのPDSCHを移動局装置200へ割り当て、割り当てられたPDSCH毎に少なくとも1つのPUCCHリソースを移動局装置200へ割り当て、移動局装置200は、割り当てられたPUCCHリソースの中から2つを選択し、PDSCHおよび/またはPDCCHそれぞれに対するHARQの制御情報をバンドリングし、選択したPUCCHリソースを使用して、基地局装置100へ送信する際に、下りコンポーネントキャリア毎に割り当てられたPUCCHリソースおよびさらに割り当てられた1つまたは複数のPUCCHリソースの中から2つを選択して、送信することができる。
 ここで、移動局装置200が選択できる2つのPUCCHリソースは、割り当てられたPUCCHリソースの中から2つを選ぶ組み合わせのうち、その全ての組み合わせを選択の候補とするのではなく、選択できる候補を制限する。さらに、移動局装置200から前記基地局装置100へ送信する際に選択する前記2つのPUCCHリソースの組み合わせの数は、下りコンポーネントキャリア数と同じである。
 本実施形態における移動局装置200から基地局装置100へ送信する際に選択するPUCCHリソースは1つまたは2つである。また、本実施形態における移動局装置200から基地局装置100へ送信する際に選択する2つのPUCCHリソースを選択できる選択候補数は割り当てられたPUCCHリソースから、1および2つのPUCCHリソースを選ぶ全ての選択候補数を減じた数である。
 以上により、基地局装置と移動局装置が、複数のコンポーネントキャリアによって構成される広帯域な周波数帯域を使用して通信を行なう際に、HARQにおける制御情報の送受信を効率的に行ない、また、複数のHARQにおける制御情報を送信する場合に、複数のHARQにおける制御情報それぞれの信号品質を向上し、さらに、複数のHARQにおける制御情報を送信する際の送信電力を低減可能となる移動局装置におけるPUCCHリソースの選択方法を考慮した移動通信システムおよび移動通信方法を提供することが可能となる。
 最後に、本発明は、HARQにおける制御情報に限定されるものでなく、決められた周波数、時間領域においてCDMAを行なう通信方式であれば、同様に適用可能であり、他の情報信号を送信してもよい。
 (a)以上説明したように、本実施形態では、次のような構成をとることができる。本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成し、前記割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置は、割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (b)また、本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成してバンドリングし、前記割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記バンドリングしたHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置が、下りリンクトランスポートブロックの受信状態に基づいて、PDSCHおよび/またはPDCCHのそれぞれに対するHARQの制御情報を生成してバンドリングし、割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、バンドリングしたHARQの制御情報を基地局装置へ送信するので、基地局装置と移動局装置は、HARQにおける制御情報および/または移動局装置がどのPDCCHまで受信(検出)できたのかを示す情報を送受信することができる。また、移動局装置は、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (c)また、本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に、少なくとも1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成し、前記割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置は、下りリンクトランスポートブロックの受信状態に基づいて、PDSCHおよび/またはPDCCHのそれぞれに対するHARQの制御情報を生成し、割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (d)また、本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に、少なくとも1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成してバンドリングし、前記割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記バンドリングしたHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置は、下りリンクトランスポートブロックの受信状態に基づいて、PDSCHおよび/またはPDCCHのそれぞれに対するHARQの制御情報を生成してバンドリングし、割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、バンドリングしたHARQの制御情報を基地局装置へ送信するので、基地局装置と移動局装置は、HARQにおける制御情報および/または移動局装置がどのPDCCHまで受信(検出)できたのかを示す情報を送受信することができる。また、移動局装置は、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (e)また、本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に、少なくとも1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成し、前記PDSCH毎に割り当てられたPUCCHリソースおよび前記割り当てられた複数のPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置は、下りリンクトランスポートブロックの受信状態に基づいて、PDSCHおよび/またはPDCCHのそれぞれに対するHARQの制御情報を生成し、PDSCH毎に割り当てられたPUCCHリソースおよび割り当てられた複数のPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、PUCCHリソースを割り当てる信号を送信する必要がなく、効率的にPUCCHリソースを割り当てることができる。また、移動局装置は、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (f)また、本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に、少なくとも1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成してバンドリングし、前記PDSCH毎に割り当てられたPUCCHリソースおよび前記割り当てられた複数のPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記バンドリングしたHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置は、下りリンクトランスポートブロックの受信状態に基づいて、PDSCHおよび/またはPDCCHのそれぞれに対するHARQの制御情報を生成してバンドリングし、PDSCH毎に割り当てられたPUCCHリソースおよび割り当てられた複数のPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、バンドリングしたHARQの制御情報を基地局装置へ送信するので、PUCCHリソースを割り当てる信号を送信する必要がなく、効率的にPUCCHリソースを割り当てることができる。また、基地局装置と移動局装置は、HARQにおける制御情報および/または移動局装置がどのPDCCHまで受信(検出)できたのかを示す情報を送受信することができる。また、移動局装置は、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (g)また、本発明の無線通信システムにおいて、前記移動局装置は、2つのPUCCHリソースの組み合わせのすべての候補のうち、制限された一部の候補の中からいずれか2つのPUCCHリソースを選択することを特徴とする。
 このように、移動局装置は、2つのPUCCHリソースの組み合わせのすべての候補のうち、制限された一部の候補の中からいずれか2つのPUCCHリソースを選択するので、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。 
 (h)また、本発明の無線通信システムにおいて、前記制限された一部の候補数は、前記移動局装置が同一サブフレームで受信するPDSCHの数と同一またはPDSCHの数以上であることを特徴とする。
 このように、制限された一部の候補数は、移動局装置が同一サブフレームで受信するPDSCHの数と同一またはPDSCHの数以上であるので、移動局装置が、制限された選択候補の中から選択した2個のPUCCHリソースを使用してHARQにおける制御情報を送信することができ、基地局装置における2個のPUCCHリソースの検出誤りを減少させることが可能となる。
 (i)また、本発明の無線通信システムにおいて、前記基地局装置は、前記割り当てたPDSCHの数の2倍よりも少ない数のPUCCHリソースを前記移動局装置に対して割り当てることを特徴とする。
 このように、基地局装置は、割り当てたPDSCHの数の2倍よりも少ない数のPUCCHリソースを移動局装置に対して割り当てるので、多重可能な移動局装置の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。
 (j)また、本発明の無線通信システムにおいて、前記基地局装置は、前記移動局装置に対して、前記PDSCHの数の2倍の数のPUCCHリソースを割り当て、前記割り当てたPUCCHリソースは、いずれか1つの前記制限された一部の候補のみに含まれることを特徴とする。
 このように、基地局装置は、移動局装置に対して、PDSCHの数の2倍の数のPUCCHリソースを割り当て、割り当てたPUCCHリソースは、いずれか1つの制限された一部の候補のみに含まれるので、2つのPUCCHリソースの検出誤りを減少させることができ、また、HARQにおける制御情報の受信品質を高めることが可能となる。また、移動局装置は、効率的なHARQにおける制御情報を送信することができる。
 (k)また、本発明の無線通信システムにおいて、前記移動局装置は、前記選択したいずれか2つのPUCCHリソースを使って、同じHARQの制御情報を送信することを特徴とする。
 このように、移動局装置は、選択したいずれか2つのPUCCHリソースを使って、同じHARQの制御情報を送信するので、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。
 (l)また、本発明の無線通信システムにおいて、前記移動局装置は、PDSCHを1つだけ受信した場合には、基地局装置によって予め割り当てられたPUCCHリソースと前記受信したPDSCHに対して割り当てられたPUCCHリソースとを用いてHARQの制御情報を前記基地局装置に対して送信することを特徴とする。
 このように、移動局装置は、PDSCHを1つだけ受信した場合には、基地局装置によって予め割り当てられたPUCCHリソースと受信したPDSCHに対して割り当てられたPUCCHリソースとを用いてHARQの制御情報を基地局装置に対して送信するので、移動局装置におけるPUCCH選択処理の軽減を図ることができる。
 (m)また、本発明の無線通信システムは、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおいて、前記基地局装置は、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てると共に、前記割り当てたPDSCH毎に1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信し、前記移動局装置は、前記基地局装置から前記下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成し、前記割り当てられたPUCCHリソースの中から、PUCCHリソースのすべての候補のうち、いずれか1つまたは2つのPUCCHリソースを選択し、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信することを特徴とする。
 このように、移動局装置は、下りリンクトランスポートブロックの受信状態に基づいて、PDSCHおよび/またはPDCCHのそれぞれに対するHARQの制御情報を生成し、割り当てられたPUCCHリソースの中から、PUCCHリソースのすべての候補のうち、いずれか1つまたは2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、多重可能な移動局装置の数を著しく減少させることなく、複数のPUCCHリソースから2つのPUCCHリソースを選択可能となる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (n)また、本発明の無線通信システムにおいて、前記PDSCHに対するHARQの制御情報の数を(X)とし、前記移動局装置が選択するいずれか2つのPUCCHリソースの候補の数を(Y)として、前記基地局装置が、前記移動局装置へ(X+Y)のPUCCHリソースを割り当てる一方、前記移動局装置が選択するいずれか1つのPUCCHリソースの候補の数が(X-Y)であることを特徴とする。
 このように、PDSCHに対するHARQの制御情報の数を(X)とし、移動局装置が選択するいずれか2つのPUCCHリソースの候補の数を(Y)として、基地局装置が、移動局装置へ(X+Y)のPUCCHリソースを割り当てる一方、移動局装置が選択するいずれか1つのPUCCHリソースの候補の数が(X-Y)であるので、移動局装置は、HARQにおける制御情報を送信するために、1つのPUCCHリソースのみで送信するか、または、2つのPUCCHリソースで送信するか、を切り替えることができる。
 (o)また、本発明の移動局装置は、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおける移動局装置であって、前記基地局装置から前記下りリンクトランスポートブロックを受信する受信部と、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成し、前記割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択するスケジュール情報管理部と、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信する送信部と、を備えることを特徴とする。
 このように、移動局装置は、割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (p)また、本発明の通信方法は、基地局装置と移動局装置とが、複数のコンポーネントキャリアを使用して無線通信を行なう無線通信システムにおける通信方法であって、前記基地局装置において、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てるステップと、前記割り当てたPDSCH毎に1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てるステップと、下りリンクトランスポートブロックを前記移動局装置へ送信するステップと、前記移動局装置において、前記基地局装置から前記下りリンクトランスポートブロックを受信するステップと、前記下りリンクトランスポートブロックの受信状態に基づいて、前記PDSCHおよび/または前記PDCCHのそれぞれに対するHARQの制御情報を生成するステップと、前記割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択するステップと、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信するステップと、を少なくとも含むことを特徴とする。
 このように、移動局装置は、割り当てられたPUCCHリソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (q)また、本発明の集積回路は、基地局装置に実装されることにより、前記基地局装置に複数の機能を発揮させる集積回路であって、移動局装置と複数のコンポーネントキャリアを使用して無線通信を行なう機能と、複数の下りリンクコンポーネントキャリアのそれぞれで1つのPDSCH(Physical Downlink Shared Channel)を、PDCCH(Physical Downlink Control Channel)を用いて前記移動局装置へ割り当てる機能と、前記割り当てたPDSCH毎に1つのPUCCH(Physical Uplink Control Channel)リソースを前記移動局装置へ割り当てて、下りリンクトランスポートブロックを前記移動局装置へ送信する機能とを、前記基地局装置に発揮させることを特徴とする。
 このように、基地局装置は、割り当てたPDSCH毎に1つのPUCCH(Physical Uplink Control Channel)リソースを移動局装置へ割り当てるので、PUCCHリソースを割り当てる信号を送信する必要がなく、効率的にPUCCHリソースを割り当てることができる。
 (r)また、本発明の集積回路は、移動局装置に実装されることにより、前記移動局装置に複数の機能を発揮させる集積回路であって、基地局装置と複数のコンポーネントキャリアを使用して無線通信を行なう機能と、前記基地局装置から下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態を測定する機能と、前記下りリンクトランスポートブロックの受信状態に基づいて、PDSCH(Physical Downlink Shared Channel)および/またはPDCCH(Physical Downlink Control Channel)のそれぞれに対するHARQの制御情報を生成する機能と、前記基地局装置によって割り当てられたPUCCH(Physical Uplink Control Channel)リソースの中からいずれか2つのPUCCHリソースを選択する機能と、前記選択したPUCCHリソースを使用して、前記生成したHARQの制御情報を前記基地局装置へ送信する機能とを、前記移動局装置に発揮させることを特徴とする。
 このように、移動局装置は、基地局装置によって割り当てられたPUCCH(PhysicalUplink Control Channel)リソースの中からいずれか2つのPUCCHリソースを選択し、選択したPUCCHリソースを使用して、生成したHARQの制御情報を基地局装置へ送信するので、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 (s)また、本発明の集積回路は、移動局装置に実装されることにより、前記移動局装置に複数の機能を発揮させる集積回路であって、基地局装置と複数のコンポーネントキャリアを使用して無線通信を行なう機能と、前記基地局装置から下りリンクトランスポートブロックを受信し、前記下りリンクトランスポートブロックの受信状態を測定する機能と、前記下りリンクトランスポートブロックの受信状態に基づいて、PDSCH(Physical Downlink Shared Channel)および/またはPDCCH(Physical Downlink Control Channel)のそれぞれに対するHARQの制御情報を生成してバンドリングする機能と、前記基地局装置によって割り当てられたPUCCH(Physical Uplink Control Channel)リソースの中からいずれか2つのPUCCHリソースを選択する機能と、前記選択したPUCCHリソースを使用して、前記バンドリングしたHARQの制御情報を前記基地局装置へ送信する機能とを、前記移動局装置に発揮させることを特徴とする。
 このように、移動局装置は、下りリンクトランスポートブロックの受信状態に基づいて、PDSCH(Physical Downlink Shared Channel)および/またはPDCCH(Physical Downlink Control Channel)のそれぞれに対するHARQの制御情報を生成してバンドリングし、基地局装置によって割り当てられたPUCCH(Physical Uplink Control Channel)リソースの中からいずれか2つのPUCCHリソースを選択し、さらに選択したPUCCHリソースを使用して、バンドリングしたHARQの制御情報を基地局装置へ送信する。これにより、基地局装置と移動局装置は、HARQにおける制御情報および/または移動局装置がどのPDCCHまで受信(検出)できたのかを示す情報を送受信することができる。また、移動局装置は、一つのPUCCHリソースに対する特性が劣化していても、他の状態の良い伝搬路でPUCCHリソースを送信することによってゲインを得ることができ(ダイバーシチ効果を得ることができ)、基地局装置へ送信するHARQにおける制御情報の品質を高く保つことができる。また、移動局装置が、基地局装置によって割り当てられた複数のPUCCHリソースを全て使用してHARQにおける制御情報を送信する必要がなくなり、HARQにおける制御情報を送信する際に使用するPUCCHリソースを少なくすることが可能となり、移動局装置における送信電力を低く抑えることができる。
 本発明に関わる基地局装置100、および移動局装置200で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 なお、上述した実施形態における移動局装置200、基地局装置100の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、移動局装置200、または基地局装置100に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における移動局装置200、基地局装置100の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置200、基地局装置100の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
100 基地局装置
200、200-1、200-2、200-3 移動局装置
310 送信部
311 情報多重部
312 変調部
313 マッピング部
314 無線送信部
320 スケジューリング部
321 時間・周波数リソース制御部
322 直交リソース制御部
330 受信部
331 無線受信部
332 情報抽出部
333 伝搬路補償・逆拡散部
334 合成・復調部
340 アンテナ
410 受信部
411 無線受信部
412 伝搬路補償部
413 復号処理部
420 スケジュール情報管理部
421 下りリンクスケジューリング管理部
422 直交リソース管理部
423 制御情報管理部
424 上りリンクスケジューリング管理部
430 送信部
431 情報多重部
432 変調・拡散部
433 マッピング部
434 無線送信部
440、440-1、440-2、440-M アンテナ
4131 誤り訂正・検出部
4133 復調部
4135 情報抽出・分離部

Claims (12)

  1.  基地局装置と通信する移動局装置の通信方法であって、
     複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、
     前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする通信方法。
  2.  前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする請求項1に記載の通信方法。
  3.  移動局装置と通信する基地局装置の通信方法であって、
     複数の物理上りリンク制御チャネルリソースを前記移動局装置へ割り当て、
     前記割り当てた複数の物理上りリンク制御チャネルリソースの中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴とする通信方法。
  4.  前記割り当てた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴とする請求項3に記載の通信方法。
  5.  基地局装置と通信する移動局装置であって、
     複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、
     前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする移動局装置。
  6.  前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする請求項5に記載の移動局装置。
  7.  移動局装置と通信する基地局装置であって、
     複数の物理上りリンク制御チャネルリソースを前記移動局装置へ割り当て、
     前記割り当てた複数の物理上りリンク制御チャネルリソースの中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴とする基地局装置。
  8.  前記割り当てた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中から、前記移動局装置によって選択されたいずれか2つの物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記移動局装置から受信することを特徴とする請求項7に記載の基地局装置。
  9.  基地局装置と移動局装置が通信する移動通信システムであって、
     前記基地局装置は、
     複数の物理上りリンク制御チャネルリソースを前記移動局装置へ割り当て、
     前記移動局装置は、
     前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする移動通信システム。
  10.  前記移動局装置は、
     前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする請求項9に記載の移動通信システム。
  11.  移動局装置に実装される集積回路であって、
     複数の物理上りリンク制御チャネルリソースを前記基地局装置によって割り当てられ、
     前記割り当てられた複数の物理上りリンク制御チャネルリソースの中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする集積回路。
  12.  前記割り当てられた複数の物理上りリンク制御チャネルリソースの中から2つの物理上りリンク制御チャネルリソースを選択するすべての候補のうち、制限された一部の候補の中からいずれか2つの物理上りリンク制御チャネルリソースを選択し、
     前記選択した物理上りリンク制御チャネルリソースを使用して、HARQにおける制御情報を前記基地局装置へ送信することを特徴とする請求項11に記載の集積回路。
PCT/JP2011/051638 2010-02-10 2011-01-27 通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路 WO2011099373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-027880 2010-02-10
JP2010027880 2010-02-10

Publications (1)

Publication Number Publication Date
WO2011099373A1 true WO2011099373A1 (ja) 2011-08-18

Family

ID=44367654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051638 WO2011099373A1 (ja) 2010-02-10 2011-01-27 通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路

Country Status (1)

Country Link
WO (1) WO2011099373A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "ACK/NACK Design for LTE-Advanced", 3GPP TSG-RAN WG1 #58BIS R1-093821, 12 October 2009 (2009-10-12), XP050388332 *

Similar Documents

Publication Publication Date Title
US9917681B2 (en) Method and apparatus for allocating ACKCH resources in a wireless communication system
US9883519B2 (en) Wireless communication system, communication device and communication method
JP6106880B2 (ja) 移動局装置、基地局装置、集積回路および通信方法
JP4878651B1 (ja) 移動局装置、通信システム、通信方法および集積回路
JP5725668B2 (ja) 基地局装置、移動局装置および集積回路
JP5899603B2 (ja) 基地局装置、移動局装置、通信方法および集積回路
WO2016182039A1 (ja) 端末装置、基地局装置および通信方法
JP5490773B2 (ja) 基地局装置および通信方法
WO2011099373A1 (ja) 通信方法、移動局装置、基地局装置、移動通信システムおよび集積回路
WO2011016391A1 (ja) 移動通信システム、移動局装置、および、通信方法
WO2016182040A1 (ja) 端末装置、基地局装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP