WO2010122152A1 - Transporteinrichtung mit einem auslenkbaren dichtrahmen - Google Patents

Transporteinrichtung mit einem auslenkbaren dichtrahmen Download PDF

Info

Publication number
WO2010122152A1
WO2010122152A1 PCT/EP2010/055454 EP2010055454W WO2010122152A1 WO 2010122152 A1 WO2010122152 A1 WO 2010122152A1 EP 2010055454 W EP2010055454 W EP 2010055454W WO 2010122152 A1 WO2010122152 A1 WO 2010122152A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing frame
sealing
chamber
plane
transport
Prior art date
Application number
PCT/EP2010/055454
Other languages
English (en)
French (fr)
Inventor
Michael Reising
Stefan Kempf
Georg Roth
Original Assignee
Singulus Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singulus Technologies Ag filed Critical Singulus Technologies Ag
Priority to EP10720280.6A priority Critical patent/EP2422362B1/de
Priority to US13/138,714 priority patent/US8740537B2/en
Publication of WO2010122152A1 publication Critical patent/WO2010122152A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the present invention relates to a transport device and a method in which a substrate is transported into a region of a plant, which can be vacuum-tightly separated from the rest of the plant.
  • the present invention describes a device that enables short cycle times when processing substrates in a plant.
  • the substrates When processing substrates in production plants or machines, the substrates go through several process steps.
  • Existing machines work in a continuous process or in batch mode. In the continuous process, the substrates are driven one after the other through the plant. In batch mode, the substrates are transported in packages or in batches in processing areas of the plant. After that, the substrates arrive in packets or in stacks to the next process area. Many process steps must take place in a vacuum.
  • large volumes have to be pumped out for this purpose. As a result, the separation times of individual areas within the system can not be implemented quickly with these methods. Fast cycle times can not be achieved with these methods.
  • a closure device presses on a first sealing surface of the deflectable sealing frame and deflects it in the Z direction perpendicular to the XY plane of the transport direction until a second sealing surface of the deflectable sealing frame rests against a chamber wall. Due to the contact of the opposing sealing surfaces with the closure device and with the chamber wall, the area within the sealing frame and against the transfer area is sealed in a vacuum-tight manner.
  • the transport device transports a substrate in an XY plane to a subarea of a machine or installation.
  • the transport device has the deflectable supported sealing frame for receiving the substrate.
  • the sealing frame is deflected in the Z direction by an external force perpendicular to the XY plane.
  • the deflected sealing frame separates a portion of the transfer area of the plant or machine vacuum-tight, by sealing with its sealing surfaces against a closure device on the side facing away from the processing station and a chamber wall on the side of the processing station.
  • the transport device transports the substrates within the chamber in the transport plane (XY plane), ie perpendicular to the possible deflection of the sealing frame.
  • the transport device is connected directly via projections with the first end of the springs.
  • the springs are fastened with their second end to a first end of a connecting element.
  • the second end of the connecting element is connected to the sealing frame.
  • the springs are arranged opposite each other so that the forces of the springs act on the connecting element in opposite directions perpendicular to the transport plane.
  • the sealing frame is held by the forces of the various springs in the central position with respect to the transport device. To deflect the sealing frame, these spring forces must be overcome.
  • the springs are arranged side by side.
  • the springs whose forces act in opposite directions, are thus no longer on a line in the direction perpendicular to the transport plane.
  • the springs are arranged parallel to each other and perpendicular to the transport plane and connected within the transport device with the projections and with the connecting element.
  • two springs whose forces act in the same direction, arranged symmetrically to the spring whose force acts in the opposite direction.
  • leaf springs are used advantageously.
  • the leaf springs are arranged between the transport device and the sealing frame.
  • the transport device can be designed as a turntable.
  • the turntable rotates about an axis A to transport the substrates from one processing area to the next.
  • the transport device may have a movement device which transports the substrates linearly in the XY plane from one processing region to the next.
  • the deflectable sealing frame has a closed geometry, ie it is suitable for sealing this subarea with two closure elements without further elements around a subarea.
  • the sealing frame has a first and a second sealing surface, which may be opposite in the Z direction. By contact of the sealing surfaces with the closure device or a chamber wall, the portion is sealed.
  • O-rings can be used for better sealing between the closure device or the chamber wall and the sealing surfaces of the deflectable sealing frame O-rings can be used.
  • the sealing frame can be deflected in the Z direction in both directions in order to seal different sections around processing stations located on different sides of the system.
  • the processing stations of the individual areas to be sealed can be arranged one after the other as desired above or below the transport plane.
  • the closure device By a lifting device, the closure device is deflected.
  • the shutter may be moved in the Z direction at variable speed.
  • the closure device can be hood-shaped.
  • the substrates can be applied to substrate carriers, which in turn can be attached via suspension on the deflectable sealing frame.
  • suitable gas lines may be provided, wherein the gas flow through the respective gas lines is controlled by one or more valves.
  • the space of the movable processing area can be connected to a gas inflow or gas discharge via a bellows with a stationary vacuum arrangement, pump arrangement and / or a gas supply arrangement.
  • the closure device which covers the space of the processing area remains movable.
  • the stationary vacuum arrangement ensures very fast extraction of the gases from the area of the processing area.
  • the sealing of a processing area between the closure device and the chamber wall can also be done via a bellows.
  • the substrates are introduced and removed via a lock opening in the chamber wall with a movable lock cover.
  • a processing area is sealed, e.g. using a plasma source within the processing area, the coating of the substrates.
  • 1 is a plan view of a transport device
  • FIG. 2 is a sectional view along the broken line II-II in Fig. 1,
  • FIG. 3a is a sectional view taken along the broken line III-III in Fig. 2
  • Fig. 3b shows an alternative to the spring arrangement shown in Fig. 3a
  • Fig. 4 is a schematic representation of the transport device with a deflectable sealing frame in a further processing area.
  • FIG. 1 shows a plan view of a transport device 4 of a system or machine for substrates 5.
  • the transport device 4 has deflectable sealing frames 6 and substrate carriers 7.
  • the substrate carriers 7 are fastened via suspension devices 8 to the deflectable sealing frame 6.
  • a substrate 5 is located on the substrate carriers 7, but in principle also a plurality of substrates 5 may be located on a substrate carrier 7.
  • the transport device 4 can, as shown in Fig. 1, be designed as a turntable.
  • the turntable 4 can rotate about the axis A perpendicular to the plane of the drawing.
  • a specific processing area for example, lock area, heating area, process area, etc.
  • the substrates 5 are transported by the transport device 4 in an XY plane (corresponding to the plane of the drawing in FIG. 1).
  • a transport device is also possible, which transports a substrate 5 linearly in the XY plane.
  • Fig. 2 is a sectional view taken along the broken line in Fig. 1.
  • the vertical direction of Fig. 2 corresponds to the Z direction.
  • a process area 3 is shown.
  • a lock area 2 is shown.
  • the transport device 4 can rotate about its axis A within a chamber 1 of a plant or machine.
  • different sealing frames 6 can be transported with substrate carriers 7 and substrates 5 in different processing areas 2, 3 of the system. Both the process area 3 and the lock area 2 can be sealed off from the chamber 1 in a vacuum-tight manner.
  • the substrate carrier 7 with the substrate 5 is connected via suspension devices 8 with the deflectable sealing frame 6.
  • the deflectable sealing frame 6 has two sealing surfaces 10, 11 in the Z direction.
  • the sealing surfaces 10, 11 may be exactly opposite to each other with respect to the Z-direction or offset from each other in the XY-direction.
  • a plurality of springs 12 are provided within the transport device 4.
  • the transport device At the inner edge surfaces of the transport device 4, which point to the sealing frame 6, the transport device has projections 4a, 4b.
  • the two projections 4a, 4b of the transport device 4 springs 12 are attached.
  • the springs 12 are secured at their other end to a first end of a connecting element 13.
  • the second end of the connecting element 13 is rigidly connected to the sealing frame 6.
  • the sealing frame 6 is held via the connecting elements 13 without the action of an external force in the Z direction with respect to the thickness of the transport device 4 measured in the Z direction in a central position.
  • an external force of the sealing frame 6 can be deflected in the Z direction.
  • Fig. 3a shows a section through Fig. 2 along the dashed line III-III. Shown is a narrow section in the X direction around a spring arrangement. Within the upper and lower chamber wall 31, 32, the two projections 4a and 4b of the transport device 4 are shown. The springs 12 are respectively fixed to the upper 4a and the lower 4b projection of the transport device 4 and the connecting element 13. About the connecting element 13 of the deflectable sealing frame 6 is held in a central position with respect to the transport device 4. As shown in Fig. 3a, the total thickness of this spring arrangement is dl.
  • Fig. 3b shows an alternative to the spring arrangement shown in Fig. 3a.
  • the spring F 1 connects the projection 4a of the conveyor 4 with the connecting element 13a and exerts a force on the connecting element 13a in the direction of chamber bottom 32.
  • the springs F 2 connect the projection 4b of the transport device 4 with the connecting element 13a and exert a force on the connecting element 13a in the direction of the chamber ceiling 31.
  • the deflectable sealing frame 6 is held via the connecting element 13a connected to it in a central position with respect to the transport device.
  • the spring F 1 and the springs F 2 are arranged side by side.
  • the total thickness d2 of the alternative spring arrangement is less than that Total thickness dl of the spring arrangement shown in Fig. 3a.
  • the transport device in FIG. 3b can have a smaller thickness than the transport device in FIG. 3a.
  • a small thickness of the transport device also allows a small thickness of the sealing frame.
  • the volume of the chamber 1 can be kept small with the process chamber 35 or the lock chamber 36, so that short Abpump surveys and thus short cycle times of the system can be realized.
  • the elastic connection between the sealing frame 6 and the transport device 4 can also be effected by leaf springs.
  • a plurality of leaf springs in the XY plane may be incorporated as a guide to prevent a displacement in the XY plane relative to the transport device 4 when deflecting the sealing frame 6.
  • Fig. 2 shows a process area 3 of the plant or machine.
  • One possible machining process relates e.g. to apply an antireflective layer (AR layer) on the substrates 5.
  • AR layer antireflective layer
  • a plurality of gases or a gas mixture for example NH3 / S.H4 are introduced into a vacuum region and a plasma is ignited.
  • the process space 35 is separated from the chamber 1 in order to avoid contamination of the chamber 1.
  • the process chamber 35 of the process area 3 is sealed against the chamber 1, so that no process gases enter the chamber 1 and pollute them.
  • a substrate carrier 7 with a substrate 5 is transported into the process area 3.
  • a lifting device 17 in the chamber ceiling 31 a closure device 16 is lowered.
  • the lifting device 17 is guided with a vacuum feedthrough 33 vacuum-tight through the chamber ceiling 31.
  • a bellows as described below for the closure device 24 may be used.
  • the closure device 16, eg in the form of a plate, makes contact during the stroke movement. Move down the O-ring 14, which is in an annular groove on the first sealing surface
  • an O-ring 14 is preferably provided between the sealing surfaces 10, 11 of the sealing frame 6 and the closure device 16 or the inner wall of the chamber bottom 32.
  • the O-ring 14 is closed and has a similar shape as the sealing frame 6.
  • the O-rings 14 are preferably attached to the sealing surfaces 10 and 11 of the sealing frame 6, e.g. arranged in an annular groove (see Fig. 2).
  • the O-rings can also be arranged on the corresponding sealing surfaces of the closure device 16 and the inner wall of the chamber bottom 32.
  • the separated vacuum space is e.g. suitable for a coating process using a PECVD source 15.
  • Process gases can enter the process space 35 of the process area 3 via a valve 38.
  • the process gases can be pumped out directly from the process space 35 of the process area 3 via a valve 9 with a pump P.
  • the coated area of the chamber 1 is minimized.
  • the transporting device 4 then transports the processed substrate 5 by rotating about the axis A to the next processing area (e.g., heating area, further process area, lock area, etc.). At the same time, the next substrates 5 are transported around the axis A into the process area 3 by rotating the transport device 4.
  • the next processing area e.g., heating area, further process area, lock area, etc.
  • the closure device 16 seals the process space of the process area 3 from above.
  • the PECVD source could also located above the substrate 5.
  • a closure device could seal the process space of the process area 3 from below.
  • Fig. 2 shows the lock area 2 of the plant or machine.
  • the lock chamber 36 of the lock area 2 must be sealed for discharging the substrates 5 against the vacuum chamber 1 of the plant or machine so that it can be flooded.
  • a substrate carrier 7 with substrate 5 is transported into the lock area 2.
  • a lifting device 20 in the chamber bottom 32 a closure device 21, e.g. in the form of a plate, raised.
  • the lifting device 20 and the closure device 21 are constructed similar to the lifting device 17 and the closure device 16.
  • the sealing of the lock chamber 36 of the lock area 2 takes place analogously to the previously described sealing of the process space 35 of the process area 3.
  • the separated lock chamber 36 of the chamber 1 can be flooded via a valve 39 or be evacuated via a valve 19 by means of a pump P.
  • the exchange of the substrates 5 can take place via a lock opening with the lock cover 18 removed.
  • the lock opening is closed again with the aid of the lock cover 18 and the lock chamber 36 of the lock area 2 is evacuated.
  • the transport device 4 then transports the infiltrated substrate 5 by rotating about the axis A to the next processing area (e.g., heating area, process area, etc.).
  • the next substrates 5 are transported by rotation of the transport device 4 about the axis A in the lock area 2.
  • the closure device 21 seals the lock chamber 36 of the lock area 2 from below.
  • the lock opening with the lock lid can also be arranged below the substrate 5, ie in the chamber floor 32.
  • a closing device seals the lock space of the lock area 2 from above, and the subsystem Stratisme 7 is constructed so that a removal of the substrate carrier 7 with the substrate 5 down is possible.
  • a partial volume of the chamber 1 For discharging a substrate 5 or for processing a substrate 5, a partial volume of the chamber 1 must be defined in a vacuum-tight manner. With the help of the deflectable sealing frame 6 of the transport device 4, the delimitation can be realized very quickly, since the travel times (stroke) of the sealing frame 6 are very short. In addition, a small volume of the area to be separated ensures rapid flooding and evacuation of the partial volume during discharge or for rapid pumping out of the process gases. This results in short cycle times of the system. In each process area of the plant, the processing step provided in the respective area takes place in the available cycle time.
  • the closure device 24 is designed like a hood here. This results in a larger process space, which may be appropriate for certain steps.
  • a bellows 25 may be arranged between the closure device 24 and the chamber ceiling 31. With the help of the bellows 25, the chamber 1 is sealed vacuum-tight.
  • the hood-shaped closure device 24 remains flexible in the Z direction movable. Via a lifting device 23, the closure device 24 is moved in the Z direction. In this case, the variable-speed movement can be carried out, e.g.
  • a relatively large process chamber 37 sealed in a vacuum-tight manner is formed around a plasma source 30.
  • a stationary vacuum arrangement with a vacuum space 27, a pump 28 and a valve 29 is connected to the process space 37 of the process area 22 via a bellows 26 through an opening in the hood-shaped closure device 24.
  • the closure device 24 is movable by the bellows 26 relative to the stationary vacuum arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Es wird eine Vorrichtung zum Transport eines Substrats (5) in einen Bearbeitungsbereich (2, 3, 22), der sich temporär vakuumdicht Abtrennen lässt, und ein Verfahren hierzu beschrieben. Eine Transporteinrichtung (4) transportiert ein Substrat (5) in der Ebene (XY) zu einem bestimmten Bearbeitungsbereich (2, 3, 22) einer Kammer (1). Die Transporteinrichtung (4) weist einen auslenkbaren Dichtrahmen (6) auf, der sich in einer Z-Richtung senkrecht zur XY-Ebene bewegen lässt. Der Dichtrahmen (6) weist in Z-Richtung zwei gegenüberliegende Dichtflächen (10, 11) auf. Durch Drücken einer Verschlusseinrichtung (16, 21, 24) auf eine erste Dichtfläche (10, 11) und dadurch Drücken der zweiten Dichtfläche (11, 10) auf eine Kammerwand (32, 31) lässt sich der Raum des Bearbeitungsbereichs (2, 3, 22) der Kammer (1) abdichten.

Description

Transporteinrichtung mit einem auslenkbaren Dichtrahmen
Die vorliegende Erfindung betrifft eine Transporteinrichtung und ein Verfahren, bei denen ein Substrat in einen Bereich einer Anlage transportiert wird, der vakuumdicht vom Rest der Anlage abgetrennt werden kann. Insbesondere beschreibt die vorliegende Erfindung eine Vorrichtung, die bei der Bearbeitung von Substraten in einer Anlage kurze Taktzeiten ermöglicht.
Bei der Bearbeitung von Substraten in Produktionsanlagen oder Maschinen durchlaufen die Substrate mehrere Prozessschritte. Vorhandene Maschinen arbeiten im Durchlaufverfahren oder im Batchbetrieb. Beim Durchlaufverfahren werden die Substrate nacheinander durch die Anlage gefahren. Beim Batchbetrieb werden die Substrate paket- oder stapelweise in Bearbeitungsbereiche der Anlage transportiert. Danach gelangen die Substrate paket- oder stapelweise zum nächsten Prozessbereich. Viele Prozessschritte müssen im Vakuum stattfinden. Beim Durchlaufverfahren sowie beim Batchbetrieb des Stands der Technik müssen dazu große Volumina abgepumpt werden. Dadurch können die Abtrennzeiten einzelner Bereiche innerhalb der Anlage mit diesen Verfahren nicht schnell realisiert werden. Schnelle Taktzeiten sind mit diesen Verfahren damit nicht zu erzielen.
Zum Stand der Technik wird auf die US 2006/0060259 Al verwiesen.
Im Hinblick auf die vorstehend erwähnten Probleme des Stands der Technik ist es Aufgabe der vorliegenden Erfindung eine Vorrichtung und ein Verfahren bereitzustellen, mit denen ein Substrat zu einem bestimmten Bearbeitungsbereich einer Anlage transportiert wird und dieser Bearbeitungsbereich im Anschluss daran in kurzer Zeit vakuumdicht abgetrennt werden kann. Weiter ist es Aufgabe der vorliegenden Erfindung, kurze Taktzeiten innerhalb der Anlage zu realisieren. Außerdem sollen die Prozessstationen und die Schleusen auf gegenüberliegenden Seiten der Anlage oder Maschine angebracht werden können, um eine große Verfahrensvielfalt zu ermöglichen. Diese und weitere Aufgaben der Erfindung werden durch die Merkmale der Patentansprüche gelöst. Dabei geht die Erfindung von folgendem Grundgedanken aus: Mit Hilfe eines auslenkbaren Dichtrahmens einer Transporteinrichtung können kleine Teilvolumina einer Kammer temporär abgedichtet werden. Dabei drückt eine Verschlusseinrichtung auf eine erste Dichtfläche des auslenkbaren Dichtrahmens und lenkt diesen in Z- Richtung senkrecht zur XY-Ebene der Transportrichtung aus bis eine zweite Dichtfläche des auslenkbaren Dichtrahmens an einer Kammerwand anliegt. Durch den Kontakt der gegenüberliegenden Dichtflächen mit der Verschlusseinrichtung sowie mit der Kammerwand wird der Bereich innerhalb des Dichtrahmens und gegenüber dem Transferbereich vakuumdicht abgedichtet.
Mit der Transporteinrichtung wird ein Substrat in einer XY-Ebene zu einem Teilbereich einer Maschine oder Anlage transportiert. Die Transporteinrichtung weist den auslenkbar gehalterten Dichtrahmen zur Aufnahme des Substrats auf. Der Dichtrahmen wird in Z-Richtung durch eine äußere Kraft senkrecht zur XY-Ebene ausgelenkt. Der ausgelenkte Dichtrahmen trennt einen Teilbereich vom Transferbereich der Anlage oder Maschine vakuumdicht ab, indem er mit seinen Dichtflächen gegen eine Verschlusseinrichtung auf der der Bearbeitungsstation abgewandten Seite und eine Kammerwand auf der Seite der Bearbeitungsstation abdichtet.
Ohne Einwirkung einer äußeren Kraft wird der auslenkbare Dichtrahmen durch Federn in einer Mittellage in Z-Richtung bezüglich der Transporteinrichtung gehalten.
Die Transporteinrichtung transportiert die Substrate innerhalb der Kammer in der Transportebene (XY-Ebene), d.h. senkrecht zur möglichen Auslenkung des Dichtrahmens. Die Transporteinrichtung ist direkt über Vorsprünge mit dem ersten Ende der Federn verbunden. Die Federn sind mit ihrem zweiten Ende an einem ersten Ende eines Verbindungselements befestigt. Das zweite Ende des Verbindungselements ist mit dem Dichtrahmen verbunden. Die Federn sind einander gegenüber angeordnet, so dass die Kräfte der Federn auf das Verbindungselement in entgegengesetzte Richtungen senkrecht zur Transportebene wirken. Damit wird der Dichtrahmen durch die Kräfte der verschiedenen Federn in der Mittellage in Bezug auf die Transporteinrichtung gehalten. Zum Auslenken des Dichtrahmens müssen diese Federkräfte überwunden werden. Bei einer alternativen Federanordnung in der Transporteinrichtung werden die Federn nebeneinander angeordnet. Die Federn, deren Kräfte in entgegengesetzte Richtungen wirken, befinden sich damit nicht mehr auf einer Linie in der Richtung senkrecht zur Transportebene. Die Federn sind parallel zueinander und senkrecht zur Transportebene angeordnet und innerhalb der Transporteinrichtung mit den Vorsprüngen sowie mit dem Verbindungselement verbunden. Um bei der Verwendung von zwei nebeneinander angeordneten Federn das Kippen der Federanordnung zu vermeiden, werden z.B. zwei Federn, deren Kräfte in die gleiche Richtung wirken, symmetrisch zu der Feder angeordnet, deren Kraft in die entgegengesetzte Richtung wirkt..
Um eine Verschiebung des in Z-Richtung auslenkbaren Dichtrahmens in der XY- Ebene zu verhindern, werden vorteilhaft Blattfedern eingesetzt. Die Blattfedern sind dabei zwischen der Transporteinrichtung und dem Dichtrahmen angeordnet.
Die Transporteinrichtung kann als Drehteller ausgebildet sein. Der Drehteller dreht sich um eine Achse A, um die Substrate von einem Bearbeitungsbereich in den nächsten zu transportieren. Alternativ kann die Transporteinrichtung eine Bewegungseinrichtung aufweisen, die die Substrate linear in der XY-Ebene von einem Bearbeitungsbereich zum nächsten transportiert.
Der auslenkbare Dichtrahmen weist eine geschlossene Geometrie auf, d.h. er ist dazu geeignet, ohne weitere Elemente um einen Teilbereich herum diesen Teilbereich mit zwei Verschlusselementen abzudichten. Der Dichtrahmen weist eine erste und eine zweite Dichtfläche auf, die sich in Z-Richtung gegenüberliegen können. Durch Kontakt der Dichtflächen mit der Verschlusseinrichtung bzw. einer Kammerwand wird der Teilbereich abgedichtet. Zur besseren Abdichtung zwischen der Verschlusseinrichtung bzw. der Kammerwand und den Dichtflächen des auslenkbaren Dichtrahmens können O-Ringe verwendet werden. Der Dichtrahmen kann in Z-Richtung in beide Richtungen ausgelenkt werden, um unterschiedliche Teilbereiche um Bearbeitungsstationen, die sich auf verschiedenen Seiten der Anlage befinden, abzudichten. Durch die sich dadurch ergebende Flexibilität können die Bearbeitungsstationen der einzelnen abzudichtenden Bereiche (z.B. Schleusenbereiche, Prozessbereiche, usw.) beliebig oberhalb oder unterhalb der Transportebene nacheinander angeordnet wer- den. Durch eine Hubeinrichtung wird die Verschlusseinrichtung ausgelenkt. Die Verschlusseinrichtung kann in Z-Richtung mit variabler Geschwindigkeit bewegt werden. Zudem kann die Verschlusseinrichtung haubenförmig sein.
Die Substrate können auf Substratträgern aufgebracht werden, die ihrerseits über Aufhängeeinrichtungen am auslenkbaren Dichtrahmen befestigt werden können.
Zur Zufuhr von Gas zu bzw. zur Ableitung von Gas von den Bearbeitungsbereichen können geeignete Gasleitungen vorgesehen sein, wobei der Gasdurchfluss durch die jeweiligen Gasleitungen durch ein oder mehrere Ventile gesteuert wird. Dabei kann der Raum des beweglichen Bearbeitungsbereichs mit einem Gaszufluss bzw. Gasab- fluss über einen Faltenbalg mit einer stationären Vakuumanordnung, Pumpanordnung und/oder einer Gaszufuhranordnung verbunden werden. Durch die Verwendung des Faltenbalgs bleibt die Verschlusseinrichtung, die den Raum des Bearbeitungsbereichs abdeckt, beweglich. Die stationäre Vakuumanordnung sorgt für ein sehr schnelles absaugen der Gase aus dem Raum des Bearbeitungsbereichs. Die Abdichtung eines Bearbeitungsbereichs zwischen der Verschlusseinrichtung und der Kammerwand kann ebenfalls über einen Faltenbalg erfolgen.
Über eine Schleusenöffnung in der Kammerwand mit einem bewegbaren Schleusendeckel werden die Substrate ein- und ausgeschleust.
Nachdem ein Bearbeitungsbereich abgedichtet ist, kann z.B. mit Hilfe einer Plasmaquelle innerhalb des Bearbeitungsbereichs die Beschichtung der Substrate erfolgen.
Die Erfindung wird nachstehend mit Bezug auf die Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine Draufsicht einer Transport einrichtung,
Fig. 2 eine Schnittansicht entlang der gestrichelten Linie II-II in Fig. 1 ,
Fig. 3a eine Schnittansicht entlang der gestrichelten Linie III-III in Fig. 2, Fig. 3b eine Alternative zu der in Fig. 3a gezeigten Federanordnung, und
Fig. 4 eine schematische Darstellung der Transporteinrichtung mit einem auslenkbaren Dichtrahmen in einem weiteren Bearbeitungsbereich.
Fig. 1 zeigt eine Draufsicht einer Transporteinrichtung 4 einer Anlage oder Maschine für Substrate 5. Die Transporteinrichtung 4 weist auslenkbare Dichtrahmen 6 und Substratträger 7 auf. Die Substratträger 7 sind über Aufhängeeinrichtungen 8 an den auslenkbaren Dichtrahmen 6 befestigt. Auf den Substratträgern 7 befindet sich jeweils ein Substrat 5, wobei sich prinzipiell jedoch auch mehrere Substrate 5 auf einem Substratträger 7 befinden können. Die Transporteinrichtung 4 kann, wie in Fig. 1 dargestellt, als Drehteller ausgebildet sein. Der Drehteller 4 kann sich um die zur Zeichenebene senkrechte Achse A drehen. Dadurch gelangt nach einer gewissen Drehung (hier 90°) ein anderer Dichtrahmen 6 mit Substratträger 7 und Substrat 5 in einen bestimmten Bearbeitungsbereich (z.B. Schleusenbereich, Aufheizbereich, Prozessbereich, usw.) einer Anlage oder Maschine. Die Substrate 5 werden mit der Transporteinrichtung 4 in einer XY-Ebene (entspricht der Zeichenebene in Fig. 1) transportiert. Alternativ ist jedoch auch eine Transporteinrichtung möglich, die ein Substrat 5 in der XY-Ebene linear transportiert.
Fig. 2 zeigt eine Schnittansicht entlang der gestrichelten Linie in Fig. 1. Die vertikale Richtung von Fig. 2 entspricht der Z-Richtung. Links von der Achse A wird ein Prozessbereich 3 gezeigt. Rechts von der Achse A ist ein Schleusenbereich 2 dargestellt. Die Transporteinrichtung 4 kann sich innerhalb einer Kammer 1 einer Anlage oder Maschine um ihre Achse A drehen. So lassen sich unterschiedliche Dichtrahmen 6 mit Substratträgern 7 und Substraten 5 in unterschiedliche Bearbeitungsbereiche 2, 3 der Anlage transportieren. Sowohl der Prozessbereich 3 als auch der Schleusenbereich 2 können von der Kammer 1 getrennt vakuumdicht abgedichtet werden.
Der Substratträger 7 mit dem Substrat 5 ist über Aufhängeeinrichtungen 8 mit dem auslenkbaren Dichtrahmen 6 verbunden. Der auslenkbare Dichtrahmen 6 weist in Z- Richtung zwei Dichtflächen 10, 11 auf. Die Dichtflächen 10, 11 können sich bezüglich der Z-Richtung genau gegenüberliegen oder in XY-Richtung zueinander versetzt sein. Gemäß Fig. 2 sind innerhalb der Transporteinrichtung 4 mehrere Federn 12 vorgesehen. An den inneren Randflächen der Transporteinrichtung 4, die zum Dichtrahmen 6 hinweisen, weist die Transporteinrichtung Vorsprünge 4a, 4b auf. An den beiden Vorsprüngen 4a, 4b der Transporteinrichtung 4 sind Federn 12 befestigt. Die Federn 12 sind an ihrem anderen Ende an einem ersten Ende eines Verbindungselements 13 befestigt. Das zweite Ende des Verbindungselements 13 ist mit dem Dichtrahmen 6 starr verbunden. Durch die Federn 12 wird der Dichtrahmen 6 über die Verbindungselemente 13 ohne Einwirkung einer äußeren Kraft in Z-Richtung bezüglich der in Z- Richtung gemessenen Dicke der Transporteinrichtung 4 in einer Mittellage gehalten. Durch eine äußere Kraft kann der Dichtrahmen 6 in Z-Richtung ausgelenkt werden.
Fig. 3a zeigt einen Schnitt durch Fig. 2 entlang der gestrichelten Linie III-III. Gezeigt wird ein schmaler Ausschnitt in X-Richtung um eine Federanordnung. Innerhalb der oberen und unteren Kammerwand 31, 32 sind die beiden Vorsprünge 4a und 4b der Transporteinrichtung 4 dargestellt. Die Federn 12 sind jeweils an dem oberen 4a bzw. dem unteren 4b Vorsprung der Transporteinrichtung 4 sowie am Verbindungselement 13 befestigt. Über das Verbindungselement 13 wird der auslenkbare Dichtrahmen 6 in einer Mittellage in Bezug auf die Transporteinrichtung 4 gehalten. Wie in Fig. 3a dargestellt, beträgt die Gesamtdicke dieser Federanordnung dl .
Fig. 3b zeigt eine Alternative zu der in Fig. 3a dargestellten Federanordnung. In Fig. 3b ist der obere Vorsprung 4a und der untere Vorsprung 4b der Transporteinrichtung 4 innerhalb der Kammerwände 31, 32 dargestellt. Die Feder F1 verbindet den Vorsprung 4a der Transporteinrichtung 4 mit dem Verbindungselement 13a und übt eine Kraft auf das Verbindungselement 13a in Richtung Kammerboden 32 aus. Die Federn F2 verbinden den Vorsprung 4b der Transporteinrichtung 4 mit dem Verbindungselement 13a und üben eine Kraft auf das Verbindungselement 13a in Richtung Kammerdecke 31 aus. Dadurch wird der auslenkbare Dichtrahmen 6 über das mit ihm verbundene Verbindungselement 13a in einer Mittellage in Bezug auf die Transporteinrichtung gehalten.
Wie Fig. 3b zeigt, sind die Feder F1 und die Federn F2 nebeneinander angeordnet. Dadurch ist die Gesamtdicke d2 der alternativen Federanordnung geringer als die Gesamtdicke dl der in Fig. 3 a dargestellten Federanordnung. Dadurch kann die Transporteinrichtung in Fig. 3b eine geringere Dicke als die Transporteinrichtung in Fig. 3 a aufweisen. Eine geringe Dicke der Transporteinrichtung ermöglicht ebenfalls eine geringe Dicke des Dichtrahmens. Dadurch kann das Volumen der Kammer 1 mit dem Prozessraum 35 oder dem Schleusenraum 36 klein gehalten werden, so dass kurze Abpumpzeiten und damit kurze Taktzeiten der Anlage realisiert werden können.
Durch die Einwirkung einer äußeren Kraft auf eine der Dichtflächen 10, 11 des auslenkbaren Dichtrahmens 6 lässt sich dieser in Z-Richtung um eine definierte Strecke auslenken. Die elastische Verbindung zwischen dem Dichtrahmen 6 und der Transporteinrichtung 4 kann auch durch Blattfedern erfolgen. Insbesondere können mehrere Blattfedern in der XY-Ebene als Führung eingebaut sein, um beim Auslenken des Dichtrahmens 6 eine Verschiebung in der XY-Ebene relativ zur Transporteinrichtung 4 zu verhindern.
Der linke Teil von Fig. 2 zeigt einen Prozessbereich 3 der Anlage oder Maschine. Ein möglicher Bearbeitungsprozess bezieht sich z.B. auf das Aufbringen einer Antirefle- xionsschicht (AR-Schicht) auf den Substraten 5. Zum Aufbringen einer AR-Schicht werden in einen Vakuumbereich mehrere Gase bzw. ein Gasgemisch (z.B. NH3/S.H4) eingelassen und ein Plasma gezündet. Dabei wird erfindungsgemäß der Prozessraum 35 von der Kammer 1 getrennt, um eine Kontamination der Kammer 1 zu vermeiden. Der Prozessraum 35 des Prozessbereichs 3 wird dabei gegen die Kammer 1 abgedichtet, damit keine Prozessgase in die Kammer 1 gelangen und diese verschmutzen.
Durch Drehen der Transporteinrichtung 4 um die Achse A wird ein Substratträger 7 mit einem Substrat 5 in den Prozessbereich 3 transportiert. Durch eine Hubeinrichtung 17 in der Kammerdecke 31 wird eine Verschlusseinrichtung 16 abgesenkt. Die Hubeinrichtung 17 wird mit einer Vakuumdurchführung 33 vakuumdicht durch die Kammerdecke 31 geführt. Alternativ kann ein Faltenbalg, wie weiter unten für die Verschlusseinrichtung 24 beschrieben (siehe Fig. 4), verwendet werden. Die Verschlusseinrichtung 16, z.B. in Form einer Platte, kontaktiert während der Hubbewe- gung nach unten den O-Ring 14, der sich in einer Ringnut auf der ersten Dichtfläche
10 des Dichtrahmens 6 befindet. Durch die fortgesetzte Hubbewegung wird der auslenkbare Dichtrahmen 6 in Z-Richtung senkrecht zur XY-Ebene nach unten in Fig. 2 so weit ausgelenkt, bis der O-Ring 14, der sich in einer Ringnut auf der Dichtfläche
11 des Dichtrahmens 6 befindet, gegen den Kammerboden 32 abdichtet. Dadurch wird ein abgetrennter Vakuumraum in der Kammer 1 gebildet.
Zur besseren Abdichtung des Vakuumraums in der Kammer 1 ist zwischen den Dichtflächen 10, 11 des Dichtrahmens 6 und der Verschlusseinrichtung 16 bzw. der Innenwand des Kammerbodens 32 vorzugsweise jeweils ein O-Ring 14 vorgesehen. In der XY-Ebene ist der O-Ring 14 geschlossen und weist eine ähnliche Form wie der Dichtrahmen 6 auf. Die O-Ringe 14 sind vorzugsweise an den Dichtflächen 10 und 11 des Dichtrahmens 6 z.B. in einer Ringnut angeordnet (siehe Fig. 2). Alternativ können die O-Ringe auch an den entsprechenden Dichtflächen der Verschlusseinrichtung 16 und der Innenwand des Kammerbodens 32 angeordnet sein.
Der abgetrennte Vakuumraum ist z.B. für einen Beschichtungsprozess mit Hilfe einer PECVD-Quelle 15 geeignet. Über ein Ventil 38 können Prozessgase in den Prozessraum 35 des Prozessbereichs 3 gelangen. Die Prozessgase können über ein Ventil 9 mit einer Pumpe P direkt aus dem Prozessraum 35 des Prozessbereichs 3 abgepumpt werden. Durch eine Minimierung der Prozessrauminnenfläche wird die beschichtete Fläche der Kammer 1 minimiert. Nach dem Ende des Bearbeitungsprozesses und dem Abpumpen der Prozessgase aus dem Prozessraum 35 kehrt der auslenkbare Dichtrahmen 6 durch Anheben der Hubeinrichtung 17 in seine Mittellage zurück, und die Verschlusseinrichtung 16 gibt den Dichtrahmen 6 wieder frei. Der Prozessraum 35 des Prozessbereichs 3 und der Rest der Kammer 1 sind nun wieder miteinander verbunden. Die Transporteinrichtung 4 transportiert dann das bearbeitete Substrat 5 durch Drehen um die Achse A zum nächsten Bearbeitungsbereich (z.B. Aufheizbereich, weiterer Prozessbereich, Schleusenbereich, usw.). Gleichzeitig werden die nächsten Substrate 5 durch Drehen der Transporteinrichtung 4 um die Achse A in den Prozessbereich 3 transportiert.
Auf der linken Seite in Fig. 2 dichtet die Verschlusseinrichtung 16 den Prozessraum des Prozessbereichs 3 von oben ab. Prinzipiell könnte sich die PECVD-Quelle auch oberhalb des Substrats 5 befinden. In diesem Fall könnte eine Verschlusseinrichtung den Prozessraum des Prozessbereichs 3 von unten abdichten.
Der rechte Teil von Fig. 2 zeigt den Schleusenbereich 2 der Anlage oder Maschine. Der Schleusenraum 36 des Schleusenbereichs 2 muss zum Ausschleusen der Substrate 5 gegen die unter Vakuum stehende Kammer 1 der Anlage oder Maschine abgedichtet werden, damit er geflutet werden kann. Durch Drehen der Transporteinrichtung 4 um die Achse A wird ein Substratträger 7 mit Substrat 5 in den Schleusenbereich 2 transportiert. Durch eine Hubeinrichtung 20 im Kammerboden 32 wird eine Verschlusseinrichtung 21, z.B. in Form einer Platte, angehoben. Die Hubeinrichtung 20 und die Verschlusseinrichtung 21 sind ähnlich der Hubeinrichtung 17 bzw. der Verschlusseinrichtung 16 aufgebaut. Die Abdichtung des Schleusenraums 36 des Schleusenbereichs 2 erfolgt analog zur vorher beschriebenen Abdichtung des Prozessraums 35 des Prozessbereichs 3.
Der abgetrennte Schleusenraum 36 der Kammer 1 kann über ein Ventil 39 geflutet bzw. über ein Ventil 19 mit Hilfe einer Pumpe P evakuiert werden. Über eine Schleusenöffnung kann der Austausch der Substrate 5 bei abgenommenem Schleusendeckel 18 erfolgen. Nach dem Austausch der Substrate 5 wird die Schleusenöffnung mit Hilfe des Schleusendeckels 18 wieder verschlossen und der Schleusenraum 36 des Schleusenbereichs 2 evakuiert. Durch Absenken der Hubeinrichtung 20 wird der auslenkbare Dichtrahmen 6 zurück in seine Mittellage gebracht (wie in Fig. 2 dargestellt). Der Schleusenraum 36 des Schleusenbereichs 2 und der Rest der Kammer 1 sind nun wieder miteinander verbunden. Die Transporteinrichtung 4 transportiert dann das eingeschleuste Substrat 5 durch Drehen um die Achse A zum nächsten Bearbeitungsbereich (z.B. Aufheizbereich, Prozessbereich, usw.). Gleichzeitig werden die nächsten Substrate 5 durch Drehen der Transporteinrichtung 4 um die Achse A in den Schleusenbereich 2 transportiert.
Auf der rechten Seite in Fig. 2 dichtet die Verschlusseinrichtung 21 den Schleusenraum 36 des Schleusenbereichs 2 von unten ab. Prinzipiell kann die Schleusenöffnung mit dem Schleusendeckel auch unterhalb des Substrats 5, d.h. im Kammerboden 32, angeordnet sein. In diesem Fall dichtet wie im Prozessbereich 3 eine Verschlusseinrichtung den Schleusenraum des Schleusenbereichs 2 von oben ab, und der Sub- stratträger 7 ist so konstruiert, dass eine Entnahme des Substratträgers 7 mit dem Substrat 5 nach unten möglich ist.
Zum Ausschleusen eines Substrats 5 bzw. zum Bearbeiten eines Substrats 5 muss ein Teilvolumen der Kammer 1 vakuumdicht abgegrenzt werden. Mit Hilfe des auslenkbaren Dichtrahmens 6 der Transporteinrichtung 4 kann die Abgrenzung sehr schnell realisiert werden, da die Verfahrzeiten (Hub) des Dichtrahmens 6 sehr kurz sind. Außerdem sorgt ein kleines Volumen des abzutrennenden Bereichs für ein schnelles Fluten und Evakuieren des Teilvolumens beim Ausschleusen bzw. für ein schnelles Abpumpen der Prozessgase. Damit ergeben sich kurze Taktzeiten der Anlage. Dabei findet in jedem Prozessbereich der Anlage der in dem jeweiligen Bereich vorgesehene Bearbeitungsschritt in der zur Verfügung stehenden Taktzeit statt.
Fig. 4 zeigt einen weiteren möglichen Prozessbereich 22. Im Folgenden werden nur die Abwandlungen gegenüber dem bereits oben beschriebenen Prozessbereich 3 erläutert. Die Verschlusseinrichtung 24 ist hier haubenförmig ausgebildet. Dadurch ergibt sich ein größerer Prozessraum, der für bestimmte Arbeitsschritte zweckmäßig sein kann. Zwischen der Verschlusseinrichtung 24 und der Kammerdecke 31 kann ein Faltenbalg 25 angeordnet sein. Mit Hilfe des Faltenbalgs 25 wird die Kammer 1 vakuumdicht verschlossen. Zudem bleibt die haubenförmige Verschlusseinrichtung 24 flexibel in Z-Richtung bewegbar. Über eine Hubeinrichtung 23 wird die Verschlusseinrichtung 24 in Z-Richtung bewegt. Dabei kann die Bewegung mit variabler Geschwindigkeit erfolgen, um z.B. die Geschwindigkeit der Verschlusseinrichtung 24 kurz vor dem Kontakt der Verschlusseinrichtung 24 mit dem auslenkbaren Dichtrahmen 6 zu verringern, um einen starken Aufprall zu vermeiden. Ein starker Aufprall der Verschlusseinrichtung 24 auf dem Dichtrahmen 6 könnte das Substrat 5 beschädigen. Mit Hilfe des auslenkbaren Dichtrahmens 6 wird ein vakuumdicht verschlossener relativ großer Prozessraum 37 um eine Plasmaquelle 30 gebildet.
Eine stationäre Vakuumanordnung mit einem Vakuumraum 27, einer Pumpe 28 und einem Ventil 29 ist über einen Faltenbalg 26 durch eine Öffnung in der haubenförmi- gen Verschlusseinrichtung 24 mit dem Prozessraum 37 des Prozessbereichs 22 verbunden. Dabei ist die Verschlusseinrichtung 24 durch den Faltenbalg 26 relativ zur stationären Vakuumanordnung bewegbar.

Claims

Patentansprüche
1. Vorrichtung zum Transportieren eines Substrats (5) in einer XY-Ebene zwischen Bearbeitungsbereichen (2, 3, 22) in einer Kammer (1), mit
(a) einer in der XY-Ebene zwischen den Bearbeitungsbereichen (2, 3, 22) bewegbaren Transporteinrichtung (4),
(b) mindestens einem in der Transporteinrichtung (4) in einer Z- Richtung senkrecht zur XY-Ebene auslenkbar gehalterten Dichtrahmen (6), wobei der Dichtrahmen (6) eine erste und eine zweite Dichtfläche (10, 11), die vorzugsweise in Z-Richtung gegenüberliegen, zum Abdichten eines Raums eines Bearbeitungsbereichs (2, 3, 22) mit einer Bearbeitungsstation (15, 18, 30) aufweist, und wobei der Dichtrahmen (6) einen Substratträger (7) zur Aufnahme des Substrats (5) aufweist, und
(c) einer Verschlusseinrichtung (16, 21 , 24), die derart ausgebildet ist, dass sie durch Drücken auf die erste Dichtfläche des auslenkbaren Dichtrahmens (6) diesen in Z-Richtung senkrecht zur XY-Ebene der Transportrichtung auslenkt, bis die zweite Dichtfläche des auslenkbaren Dichtrahmens (6) an der der Bearbeitungsstation (15, 18, 30) benachbarten Kammerwand (32, 31) anliegt, so dass durch den Kontakt der gegenüberliegenden Dichtflächen (10, 11) mit der Verschlusseinrichtung (16, 21, 24) sowie mit der Kammerwand (32, 31) der Bereich innerhalb des Dichtrahmens (6) vakuumdicht abgedichtet ist, um so einen Raum um eine Bearbeitungsstation (15, 18, 30) abzudichten.
2. Vorrichtung nach Anspruch 1, mit einer Einrichtung mit Federn (12) zum Halten des auslenkbaren Dichtrahmens (6) ohne äußere Krafteinwirkung in einer Mittellage in Z-Richtung in Bezug auf die Transporteinrichtung (4) und zum Auslenken des Dichtrahmens aus der Mittellage in Z-Richtung.
3. Vorrichtung nach Anspruch 2, wobei die Federn (12) in Z-Richtung wirkend zwischen einem Halteelement (4a, 4b) an der Transporteinrichtung (4) und einem Halteelement (13; 13a) an dem Dichtrahmen (6) angeordnet sind.
4. Vorrichtung nach einem der Anspruch 2 oder 3, wobei die Federn (12; F1, F2) als Blattfedern ausgebildet sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei die Transporteinrichtung (4) einen Drehteller zum Transport der Substrate (5) innerhalb der Kammer (1) auf einer Kreisbahn um eine Achse (A) aufweist.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei die Transporteinrichtung (4) eine Bewegungseinrichtung zum linearen Transportieren der Substrate (5) innerhalb der Kammer in der XY-Ebene aufweist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, mit jeweils einem O-Ring (14) zwischen dem Dichtrahmen (6) und der Verschlusseinrichtung (16, 21, 24) und zwischen dem Dichtrahmen (6) und der Kammerwand (32, 31).
8. Vorrichtung nach einem der Ansprüche 1 bis 7, wobei der Dichtrahmen (6) zum Aufnehmen des Substratträgers (7) Aufhängeeinrichtungen (8) aufweist.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, mit einem Ventil (9, 19, 29) zum Verschließen oder Öffnen einer Leitung zum Abpumpen oder Einlassen von Gasen aus dem oder in den abgeschlossenen Raum eines Bearbeitungsbereichs (2, 3, 22).
10. Vorrichtung nach einem der Ansprüche 1 bis 9, wobei die Verschlusseinrichtung (24) haubenförmig ist.
11. Vorrichtung nach einem der Ansprüche 1 bis 10 mit einem Faltenbalg (26) zum Verbinden des Prozessraums (37) des Bearbeitungsbereichs (22) mit einer stationären Vakuumanordnung.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, mit einem Faltenbalg (25) zum Abdichten der Kammer (1) zwischen der Verschlusseinrichtung (24) und der Kammerwand (31).
13. Vorrichtung nach einem der Ansprüche 1 bis 12, wobei der Bearbeitungsbereich (2) als Schleuse mit einer Schleusenöffnung in der Kammerwand (31) und einem Schleusendeckel (18) zum Ein- und Ausschleusen der Substrate (5) ausgebildet ist.
14. Vorrichtung nach einem der Ansprüche 1 bis 12, wobei der Bearbeitungsbereich (3, 22) eine Plasmaquelle (15, 30) aufweist.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, mit einer Hubeinrichtung (17, 20, 23) zum Anheben oder Absenken der Verschlusseinrichtung (16, 21, 24).
16. Verfahren zum Transportieren eines Substrats (5) mit einer Vorrichtung nach einem der Ansprüche 1 bis 15 in der XY-Ebene und zum temporären Abdichten eines Raums des Bearbeitungsbereichs (2, 3, 22) in der Kammer (1), mit den Schritten:
Transportieren des Substrats (5) mit der Transporteinrichtung (4) in der XY-Ebene in den Bearbeitungsbereich (2, 3, 22) der Kammer (1),
Auslenken des Dichtrahmens (6) der Transporteinrichtung (4) in Z- Richtung senkrecht zur XY-Ebene durch Andrücken der Verschlusseinrichtung (16, 21 , 24) auf den auslenkbaren Dichtrahmen (6), und
Abdichten des Raums des Bearbeitungsbereichs (2, 3, 22) der Kammer (1) durch Kontakt der Verschlusseinrichtung (16, 21, 24) mit einer ersten Dichtfläche (10, 11) des Dichtrahmens (6) und Kontakt einer zweiten Dichtfläche (11, 10) des Dichtrahmens (6) mit der Kammerwand (31, 32).
17. Verfahren nach Anspruch 16, wobei die Verschlusseinrichtung (16, 21 , 24) in Z-Richtung senkrecht zur XY-Ebene mit variabler Geschwindigkeit gesteuert bewegt wird.
PCT/EP2010/055454 2009-04-24 2010-04-23 Transporteinrichtung mit einem auslenkbaren dichtrahmen WO2010122152A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10720280.6A EP2422362B1 (de) 2009-04-24 2010-04-23 Transporteinrichtung mit einem auslenkbaren dichtrahmen
US13/138,714 US8740537B2 (en) 2009-04-24 2010-04-23 Transport device having a deflectable sealing frame

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009018776 2009-04-24
DE102009018776.6 2009-04-24
DE102009037290A DE102009037290A1 (de) 2009-04-24 2009-08-12 Transporteinrichtung mit einem auslenkbaren Dichtrahmen
DE102009037290.3 2009-08-12

Publications (1)

Publication Number Publication Date
WO2010122152A1 true WO2010122152A1 (de) 2010-10-28

Family

ID=42932571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055454 WO2010122152A1 (de) 2009-04-24 2010-04-23 Transporteinrichtung mit einem auslenkbaren dichtrahmen

Country Status (4)

Country Link
US (1) US8740537B2 (de)
EP (1) EP2422362B1 (de)
DE (1) DE102009037290A1 (de)
WO (1) WO2010122152A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086711A1 (en) * 2010-12-29 2014-03-27 Oc Oerlikon Balzers Ag Vacuum treatment apparatus
CN110993550A (zh) * 2019-12-25 2020-04-10 北京北方华创微电子装备有限公司 半导体热处理设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998553B2 (en) * 2011-12-07 2015-04-07 Intevac, Inc. High throughput load lock for solar wafers
US9520312B2 (en) * 2014-12-19 2016-12-13 Varian Semiconductor Equipment Associates, Inc. System and method for moving workpieces between multiple vacuum environments
KR102443320B1 (ko) * 2016-01-05 2022-09-15 엘지전자 주식회사 식기 세척기 및 식기 세척기의 제어방법
DE102018109934A1 (de) * 2018-04-25 2019-10-31 Eisenmann Se Behandlungsanlage zum Behandeln von Werkstücken
KR20200095082A (ko) * 2019-01-31 2020-08-10 주식회사 엘지화학 원자층 증착 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591706A1 (de) * 1992-10-06 1994-04-13 Balzers Aktiengesellschaft Kammer für den Transport von Werkstücken
US5820329A (en) * 1997-04-10 1998-10-13 Tokyo Electron Limited Vacuum processing apparatus with low particle generating wafer clamp
JPH11182699A (ja) * 1997-12-22 1999-07-06 Toshiba Corp ゲートバルブ
DE10042123A1 (de) * 2000-08-28 2002-03-21 Nanophotonics Ag Vorrichtung zur Durchführung von Messungen im Vakuum

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH573985A5 (de) * 1973-11-22 1976-03-31 Balzers Patent Beteilig Ag
CH691377A5 (de) * 1992-10-06 2001-07-13 Unaxis Balzers Ag Kammeranordnung für den Transport von Werkstücken und deren Verwendung.
DE19514037C2 (de) * 1995-04-13 1997-09-04 Leybold Ag Transportvorrichtung
US5855465A (en) * 1996-04-16 1999-01-05 Gasonics International Semiconductor wafer processing carousel
US5882413A (en) * 1997-07-11 1999-03-16 Brooks Automation, Inc. Substrate processing apparatus having a substrate transport with a front end extension and an internal substrate buffer
JP3674864B2 (ja) * 2003-03-25 2005-07-27 忠素 玉井 真空処理装置
US7394076B2 (en) * 2004-08-18 2008-07-01 New Way Machine Components, Inc. Moving vacuum chamber stage with air bearing and differentially pumped grooves
EP2659507B1 (de) * 2010-12-29 2022-09-14 Evatec AG Vakuumbehandlungsgerät

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591706A1 (de) * 1992-10-06 1994-04-13 Balzers Aktiengesellschaft Kammer für den Transport von Werkstücken
US5820329A (en) * 1997-04-10 1998-10-13 Tokyo Electron Limited Vacuum processing apparatus with low particle generating wafer clamp
JPH11182699A (ja) * 1997-12-22 1999-07-06 Toshiba Corp ゲートバルブ
DE10042123A1 (de) * 2000-08-28 2002-03-21 Nanophotonics Ag Vorrichtung zur Durchführung von Messungen im Vakuum

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086711A1 (en) * 2010-12-29 2014-03-27 Oc Oerlikon Balzers Ag Vacuum treatment apparatus
US9396981B2 (en) * 2010-12-29 2016-07-19 Evatec Ag Vacuum treatment apparatus
US10138553B2 (en) 2010-12-29 2018-11-27 Evatec Ag Vacuum treatment apparatus
US10590538B2 (en) 2010-12-29 2020-03-17 Evatec Ag Vacuum treatment apparatus
CN110993550A (zh) * 2019-12-25 2020-04-10 北京北方华创微电子装备有限公司 半导体热处理设备
CN110993550B (zh) * 2019-12-25 2022-12-09 北京北方华创微电子装备有限公司 半导体热处理设备

Also Published As

Publication number Publication date
US20120027952A1 (en) 2012-02-02
DE102009037290A1 (de) 2010-11-11
US8740537B2 (en) 2014-06-03
EP2422362A1 (de) 2012-02-29
EP2422362B1 (de) 2019-06-26

Similar Documents

Publication Publication Date Title
EP2422362B1 (de) Transporteinrichtung mit einem auslenkbaren dichtrahmen
DE4210110C2 (de) Halbleitereinrichtung-Herstellungsvorrichtung und Verfahren zum Herstellen einer Halbleitereinrichtung
EP0555764B1 (de) Vakuumbearbeitungsanlage
CH691376A5 (de) Vakuumanlage zur Oberflächenbearbeitung von Werkstücken.
EP0326838A1 (de) Vorrichtung zur Halterung von Werkstücken
DE3735284A1 (de) Vorrichtung nach dem karussell-prinzip zum beschichten von substraten
EP1571234B1 (de) Verfahren für den Betrieb einer Inline-Beschichtungsanlage
EP2870625B1 (de) Anlage und verfahren zum prozessieren von substraten
WO2007059749A1 (de) Trenneinrichtung für prozesskammern von vakuumbeschichtungsanlagen und vakuumbeschichtungsanlage
DE202004005216U1 (de) Umsetzbares Wartungsventil
WO2012153232A2 (de) Substrattransportmodul, belade- und entladesystem und transportverfahren für substrate in einer substratbearbeitungsanlage
WO2010115917A1 (de) Vakuumventil und vakuumkammersystem
DE102013106026A1 (de) Vakuumanordnung und Verfahren zum Betreiben einer Vakuumanordnung
WO2013050805A1 (de) Substratwendeeinrichtung
DE10348281B4 (de) Vakuum-Behandlungsanlage für ebene rechteckige oder quadratische Substrate
DE3214256C2 (de)
DE102008026314B4 (de) Vakuumanlage mit mindestens zwei Vakuumkammern und einer Schleusenkammer zwischen den Vakuumkammern
EP1875468B1 (de) Vorrichtung und verfahren zum beschichten von scheibenförmigen substraten für optische datenträger
EP2984204B1 (de) Vorrichtung zum bearbeiten von flexiblen substraten
EP1536456B1 (de) Trägeranordnung
DE102010016325A1 (de) Substratwendeeinrichtung
DE102012000397B4 (de) Vorrichtung mit einem Befestigungsmittel in einer Vakuumbehandlungsanlage
EP3186819B1 (de) Teilchenstrahlbearbeitungsvorrichtung
DD267515A1 (de) Einrichtung zur bearbeitung von substraten im vakuum in mehreren prozessstationen
DE102010045411A1 (de) Vorrichtung zur Behandlung und/oder Bearbeitung von Substraten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010720280

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13138714

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4030/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE