WO2010120127A2 - 보일러 열교환기의 유로캡 접합방법 - Google Patents

보일러 열교환기의 유로캡 접합방법 Download PDF

Info

Publication number
WO2010120127A2
WO2010120127A2 PCT/KR2010/002328 KR2010002328W WO2010120127A2 WO 2010120127 A2 WO2010120127 A2 WO 2010120127A2 KR 2010002328 W KR2010002328 W KR 2010002328W WO 2010120127 A2 WO2010120127 A2 WO 2010120127A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flow path
cap
body housing
welding
Prior art date
Application number
PCT/KR2010/002328
Other languages
English (en)
French (fr)
Other versions
WO2010120127A3 (ko
Inventor
김두식
안태원
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Publication of WO2010120127A2 publication Critical patent/WO2010120127A2/ko
Publication of WO2010120127A3 publication Critical patent/WO2010120127A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/41Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes in serpentine form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/146Connecting elements of a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/148Arrangements of boiler components on a frame or within a casing to build the fluid heater, e.g. boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/067Fastening; Joining by welding by laser welding

Definitions

  • the present invention relates to a method for joining a flow path cap of a boiler heat exchanger, and more particularly, to prevent deformation of a product with respect to heat generated in the process of welding the flow path cap to a body housing of the heat exchanger.
  • the present invention relates to a method of joining a flow path cap of a boiler heat exchanger capable of improving the quality and performance of a gas.
  • the gas boiler is for indoor heating and hot water using high temperature heat generated by the burner, and the heating water or hot water is heated using a heat exchanger.
  • FIG. 1 is a cross-sectional view showing the internal configuration of a general heat exchanger
  • Figure 2 is a partial detailed view showing the flow path capping portion of the conventional heat exchanger.
  • a heat exchanger 1 made of stainless steel which is generally used in a gas boiler, is a device that absorbs combustion heat generated during combustion of a burner 3 and transmits it to a fluid flowing in a pipe. It consists of a sensible heat exchanger (11) provided in the upper side of the inner, and a latent heat exchanger (13) provided in the inner lower side.
  • the sensible heat exchanger 11 is to absorb the sensible combustion heat generated from the burner (3), which transfers the heat absorbed by the heat exchange pipe 12 arranged up and down to the fluid flowing therein, the lower latent heat exchanger ( 13) absorbs the latent heat of the sensible heat that has been heat exchanged in the sensible heat exchanger 11 and the latent heat of condensation generated by the condensation of water vapor, which absorbs the latent heat from the heat exchange pipes 14 arranged up and down. Will be delivered to
  • the fluid pumped from the circulation pump 30 enters the inside of the heat exchanger 1 through the hot water pipe 31 at one side of the main body housing 10, and the end of the hot water pipe 31 has a flow path cap ( Thermally formed by 20) to form a flow path through which the fluid enters the latent heat exchanger 13.
  • the flow path cap 20 is joined to the main body housing 10 by welding, and the brazing welding is mainly used for the joining method of the heat exchanger 10.
  • the brazing welding uses a capillary phenomenon, in which a molten solvent is absorbed by capillary with a suitable gap (t) (0.025 to 0.127 mm) at the joint surface of the body housing 10 and the flow path cap 20. to be. At this time, the brazing welding may be performed only in a state in which the bonding surface spacing t is appropriately maintained to obtain a desired strength (70 kg / cm 2).
  • the present invention has been made to solve the above-mentioned problems, in the process of bonding the flow cap to the body housing of the heat exchanger can prevent the thermal deformation of the product compared to the bonding method using brazing welding or TIG welding, and a solid bonding is made It is an object of the present invention to provide a method of joining a flow path cap of a boiler heat exchanger.
  • the flow path cap joining method of the boiler heat exchanger of the present invention for realizing the object as described above, in the flow path cap joining method of the heat exchanger provided inside the boiler, the stainless steel body housing constituting the heat exchanger on one side A flow path is formed by butt-welding the flow path cap, but the main body housing and the flow path cap are characterized in that the weld bead is narrowly and deeply formed by laser welding.
  • the laser welding is automatically performed by a three-dimensional transfer robot, but the three-dimensional transfer robot is a control unit that receives data from a three-dimensional measuring device in which the three-dimensional coordinates of the horizontal, vertical, and height of the euro cap are digitally displayed. It is characterized by being controlled by.
  • the flow path cap of the boiler heat exchanger is joined to one side of the main body housing of the heat exchanger through laser welding, whereby welding bead is narrow and deep welding is possible. Compared to this, it is possible to prevent the deformation of the product against heat, and to limit the flatness of the joint surface where the body housing and the flow cap come into contact with each other during welding. There is an advantage that can be improved.
  • FIG. 1 is a cross-sectional view showing the internal configuration of a general heat exchanger
  • FIG. 2 is a detailed view of portion 'A' of FIG. 1;
  • FIG. 3 is a block diagram showing a flow path capping method of the boiler heat exchanger according to the present invention
  • FIG. 4 is a block diagram of a three-dimensional transport robot according to the present invention.
  • heat exchanger 10 main body housing
  • FIG. 3 is a block diagram showing the flow path bonding method of the boiler heat exchanger according to the present invention
  • Figure 4 is a detailed view 'A' part of FIG.
  • the present invention includes a sensible heat exchanger 11 provided at an upper side of a main body housing 10, and a latent heat exchanger 13 (see FIG. 1) provided at an inner lower side of the main housing 10.
  • a sensible heat exchanger 11 provided at an upper side of a main body housing 10
  • a latent heat exchanger 13 provided at an inner lower side of the main housing 10.
  • one end of the hot water pipe 31 is heat-connected by the flow cap 20 in a structure in which the fluid pumped from the circulation pump 30 enters the heat exchanger 1 through the hot water pipe 31.
  • the fluid forms a flow path into the latent heat exchanger (13).
  • the base material constituting the heat exchanger 1 such as the main body housing 10 and the flow path cap 20 is made of a stainless material having excellent workability, weldability, mechanical properties, and the like.
  • the body housing 10 constituting the heat exchanger (1) of the boiler, but welded to the side face of the main body housing 10 to the flow cap 20 but the main body housing 10 And the flow path cap 20 is welded bead narrow and deep through the laser welding is joined.
  • the laser welding is made automatically by the three-dimensional transfer robot 50, the three-dimensional measuring unit 53, the three-dimensional coordinates of the horizontal, vertical, height of the flow path cap 20 is displayed digitally It is operated by the control unit 60 receives data from. That is, the three-dimensional transfer robot 50 is automatically welded along the shape of the flow path cap 20 which is opposed to one side of the main body housing 10 by the control unit 60.
  • the flow path cap 20 When the flow path cap 20 is welded to the main body housing 10 through laser welding using the three-dimensional transfer robot 50 as described above, as shown in FIG. 5, the welding bead 51 is narrow and deeply welded. As this becomes possible, a firm and reliable bonding of the flow path cap 20 is achieved.
  • the laser welding can improve the quality, performance and productivity of the heat exchanger (1) because of less heat deformation of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

본 발명은 열교환기의 본체하우징에 유로캡을 용접하는 과정에서 발생하는 열에 대한 제품의 변형을 막을 수 있으며, 견고한 접합이 가능하여 열교환기의 품질 및 성능을 향상시킬 수 있는 보일러 열교환기의 유로캡 접합방법에 관한 것이다. 이를 실현하기 위한 본 발명은 보일러 내부에 구비되는 열교환기의 유로캡 접합방법에 있어서, 상기 열교환기를 구성하는 스테인리스 재질의 본체하우징 일측면에 유로캡을 맞댐 용접하여 유로를 형성하되 상기 본체하우징과 유로캡은 레이저 용접을 통해 용접비드가 좁고 깊게 형성되어 접합되는 것을 특징으로 한다.

Description

보일러 열교환기의 유로캡 접합방법
본 발명은 보일러 열교환기의 유로캡 접합방법에 관한 것으로, 보다 상세하게는 열교환기의 본체하우징에 유로캡을 용접하는 과정에서 발생하는 열에 대한 제품의 변형을 막을 수 있으며, 견고한 접합이 가능하여 열교환기의 품질 및 성능을 향상시킬 수 있는 보일러 열교환기의 유로캡 접합방법에 관한 것이다.
일반적으로 가스보일러는 버너에서 생성된 고온의 열을 이용하여 실내난방 및 온수사용을 위한 것으로, 열교환기를 사용하여 난방수 또는 온수를 승온시키게 된다.
도 1은 일반적인 열교환기의 내부구성을 보여주는 단면도이고, 도 2는 종래 열교환기의 유로캡 접합부위를 나타내는 부분상세도이다.
도 1을 참조하면, 일반적으로 가스보일러에 사용되는 스테인리스 재질의 열교환기(1)는 버너(3) 연소시 발생하는 연소열을 흡수하여 파이프 내부에 흐르는 유체에 전달하는 장치로서, 본체하우징(10)의 내부 상측에 구비되는 현열교환기(11)와, 내부 하측에 구비되는 잠열교환기(13)로 구성된다.
상기 현열교환기(11)는 버너(3)에서 발생한 연소 현열을 흡수하게 되는 바, 이는 상하 배열된 열교환파이프(12)가 흡수한 열을 그 내부를 흐르는 유체에 전달하게 되고, 하부의 잠열교환기(13)는 상기 현열교환기(11)에서 열교환을 마친 현열의 잔열 및 연소에 의해 발생한 수증기가 응축시 발생하는 응축 잠열을 흡수하게 되는 바, 이는 상하 배열된 열교환파이프(14)로부터 잠열을 흡수하여 유체에 전달하게 된다.
이 경우 상기 본체하우징(10)의 일측에는 순환펌프(30)로부터 압송된 유체가 온수파이프(31)를 통해 열교환기(1) 내부로 들어가게 되는데, 상기 온수파이프(31)의 끝단은 유로캡(20)에 의해 열결되어 유체가 상기 잠열교환기(13) 내로 들어가는 유로를 형성해주게 된다.
이 경우 상기 유로캡(20)은 본체하우징(10)에 용접을 통해 접합되는데, 이러한 열교환기(10)의 접합방법에는 브레이징(Brazing) 용접을 주로 사용하게 된다.
상기 브레이징 용접은 모세관현상을 이용한 것으로 본체하우징(10)과 유로캡(20)의 접합면에 적당한 이음부 간격(t)(0.025 ~ 0.127㎜)을 두어 용융된 용제가 모세관현상에 의해 흡수되는 방법이다. 이때, 상기 브레이징 용접은 접합면 간격(t)을 적당하게 유지한 상태에서 실시하여야만 원하는 강도(70㎏/㎠)를 얻을 수 있다.
그러나 프레스에서 타발 성형한 유로캡의 평탄도를 0.1㎜이하로 유지시키는 것이 쉽지 않다. 더군다나 본체하우징(10)과 유로캡(20)이 서로 맞닿을 경우 접합면의 간격(t)이 더욱 커지게 됨에 따라 원활한 용접이 이루어지기 힘든 문제점이 있다.
또한, 본체하우징(10)의 일측면에 유로캡(20)을 수직으로 맞대어 브레이징 용접을 하는 경우 용융된 용제가 중력에 의해 하측 방향으로 흘러내리게 되고, 이에 따라 견고한 접합이 이루어지기 어려운 문제점이 있다.
또한, 티그(Tig) 용접의 경우에도 용접시 발생하는 높은 열에 의해 제품을 변형시킬 수 있는 문제점이 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로, 열교환기의 본체하우징에 유로캡을 접합하는 과정에서 브레이징 용접 또는 티그 용접을 이용한 접합 방식에 비해 제품의 열변형을 막을 수 있고, 견고한 접합이 이루어질 수 있도록 한 보일러 열교환기의 유로캡 접합방법을 제공하는데 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 보일러 열교환기의 유로캡 접합방법은, 보일러 내부에 구비되는 열교환기의 유로캡 접합방법에 있어서, 상기 열교환기를 구성하는 스테인리스 재질의 본체하우징 일측면에 유로캡을 맞댐 용접하여 유로를 형성하되 상기 본체하우징과 유로캡은 레이저 용접을 통해 용접비드가 좁고 깊게 형성되어 접합되는 것을 특징으로 한다.
이 경우 상기 레이저 용접은 3차원 이송로봇에 의해 자동으로 이루어지되 상기 3차원 이송로봇은 상기 유로캡의 가로, 세로, 높이의 3차원 좌표가 디지털로 표시되는 3차원 측정기로부터 데이터를 전달받은 제어부에 의해 제어되는 것을 특징으로 한다.
이상과 같은 구성의 본 발명에 따른 보일러 열교환기의 유로캡 접합방법은, 열교환기를 이루는 본체하우징의 일측면에 유로캡을 레이저 용접을 통해 접합시켜 용접비드가 좁고 깊은 용접이 가능해짐으로써 다른 용접방식에 비해 열에 대한 제품의 변형을 막을 수 있고, 용접시 본체하우징과 유로캡이 맞닿게 되는 접합면의 평탄도에 대한 제약이 덜하며, 견고하고 확실한 접합이 이루어짐에 따라 열교환기의 품질 및 성능을 향상시킬 수 있는 장점이 있다.
도 1은 일반적인 열교환기의 내부구성을 보여주는 단면도,
도 2는 도 1의 'A'부분 상세도,
도 3은 본 발명에 따른 보일러 열교환기의 유로캡 접합방법을 나타내는 구성도,
도 4는 본 발명에 따른 3차원 이송로봇의 구성도,
도 5는 도 3의 'B'부분 상세도이다.
<도면의 주요부분에 대한 부호의 설명>
1 : 열교환기 10 : 본체하우징
20 : 유로캡 50 : 3차원 이송로봇
51 : 용접비드 53 : 3차원 계측기
60 : 제어부
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
여기서, 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어서 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.
도 3은 본 발명에 따른 보일러 열교환기의 유로캡 접합방법을 나타내는 구성도이고, 도 4는 도 3의 'A'부분 상세도이다.
도 3을 참조하면, 본 발명은 본체하우징(10)의 내부 상측에 구비되는 현열교환기(11)와, 내부 하측에 구비되는 잠열교환기(13)(도 1 참조)로 구성되며, 상기 본체하우징(10)의 일측에는 순환펌프(30)로부터 압송된 유체가 온수파이프(31)를 통해 열교환기(1) 내부로 들어가는 구조에서 상기 온수파이프(31)의 끝단이 유로캡(20)에 의해 열결되어 유체가 상기 잠열교환기(13)로 들어가는 유로를 형성해주는 구성이다.
이 경우 상기 본체하우징(10)과 유로캡(20) 등 열교환기(1)를 이루는 모재는 가공성·용접성·기계적 성질 등이 우수함과 아울러 보온성이 뛰어난 스테인리스 재질로 이루어진다.
여기서, 상기 본체하우징(10)과 유로캡(20)를 접합하는 과정에서 이를 견고하게 용접할 수 있는 방법이 마련되어야 한다.
이를 구현하기 위한 본 발명은, 상기 보일러의 열교환기(1)를 이루는 본체하우징(10)과, 상기 본체하우징(10)의 일측면에 유로캡(20)을 맞대어 용접하되 상기 본체하우징(10)과 유로캡(20)은 레이저 용접을 통해 용접비드가 좁고 깊게 형성되어 접합된다.
도 4를 참조하면, 상기 레이저 용접은 3차원 이송로봇(50)에 의해 자동으로 이루어지되 상기 유로캡(20)의 가로, 세로, 높이의 3차원 좌표가 디지털로 표시되는 3차원 측정기(53)로부터 데이터를 전달받은 제어부(60)에 의해 작동된다. 즉, 상기 3차원 이송로봇(50)은 제어부(60)에 의해 본체하우징(10)의 일측면에 맞대진 유로캡(20)의 형상을 따라 자동으로 용접이 이루어지게 된다.
이상과 같이 3차원 이송로봇(50)을 이용한 레이저용접을 통해 유로캡(20)을 본체하우징(10)에 용접하게 되면, 도 5에 도시된 바와 같이 용접비드(51)가 좁고 깊게 형성되는 용접이 가능해짐에 따라 상기 유로캡(20)의 견고하고 확실한 접합이 이루어지게 된다.
또한, 상기 레이저 용접은 제품의 열변형이 적기 때문에 열교환기(1)의 품질, 성능 및 생산성을 향상시킬 수 있게 된다.
이상에서는 본 발명을 특정의 바람직한 실시 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 않으며 본 발명의 기술사상을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능함은 물론이다.

Claims (2)

  1. 보일러 내부에 구비되는 열교환기의 유로캡 접합방법에 있어서,
    상기 열교환기를 구성하는 스테인리스 재질의 본체하우징 일측면에 유로캡을 맞댐 용접하여 유로를 형성하되 상기 본체하우징과 유로캡은 레이저 용접을 통해 용접비드가 좁고 깊게 형성되어 접합되는 것을 특징으로 하는 보일러 열교환기의 유로캡 접합방법.
  2. 제 1항에 있어서,
    상기 레이저 용접은 3차원 이송로봇에 의해 자동으로 이루어지되 상기 3차원 이송로봇은 상기 유로캡의 가로, 세로, 높이의 3차원 좌표가 디지털로 표시되는 3차원 측정기로부터 데이터를 전달받은 제어부에 의해 제어되는 것을 특징으로 하는 보일러 열교환기의 유로캡 접합방법.
PCT/KR2010/002328 2009-04-15 2010-04-15 보일러 열교환기의 유로캡 접합방법 WO2010120127A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090032888A KR101046784B1 (ko) 2009-04-15 2009-04-15 보일러 열교환기의 유로캡 접합방법
KR10-2009-0032888 2009-04-15

Publications (2)

Publication Number Publication Date
WO2010120127A2 true WO2010120127A2 (ko) 2010-10-21
WO2010120127A3 WO2010120127A3 (ko) 2011-03-10

Family

ID=42983007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002328 WO2010120127A2 (ko) 2009-04-15 2010-04-15 보일러 열교환기의 유로캡 접합방법

Country Status (2)

Country Link
KR (1) KR101046784B1 (ko)
WO (1) WO2010120127A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474792A3 (de) * 2011-01-10 2012-09-05 HET - Heiz- und Energietechnik Entwicklungs GmbH Wasserführender Heizkessel, Pufferspeicher und Verfahren zur Herstellung eines wasserführenden Wandelements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101985250B1 (ko) 2017-10-24 2019-06-04 롯데알미늄 주식회사 보일러용 스테인리스 열교환기의 측판 구조

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228283A (ja) * 1990-04-12 1992-08-18 Armco Inc 被加工物を突合せ溶接する溶接装置を自動的に位置合わせする装置および方法
JP2003136262A (ja) * 2001-10-25 2003-05-14 Hitachi Constr Mach Co Ltd 差厚材のレーザ溶接方法
KR200362832Y1 (ko) * 2004-06-24 2004-09-23 주식회사 경동보일러 콘덴싱보일러의 열교환기
KR20050069708A (ko) * 2003-12-31 2005-07-05 삼성중공업 주식회사 로봇의 용접 위빙 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310882B2 (ja) 2000-04-12 2009-08-12 株式会社デンソー 熱交換器およびこれを用いた排気ガス浄化装置
DE10085159B4 (de) * 2000-05-19 2008-09-11 Mitsubishi Denki K.K. Steuervorrichtung für eine dreidimensionale Laserbearbeitungsmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228283A (ja) * 1990-04-12 1992-08-18 Armco Inc 被加工物を突合せ溶接する溶接装置を自動的に位置合わせする装置および方法
JP2003136262A (ja) * 2001-10-25 2003-05-14 Hitachi Constr Mach Co Ltd 差厚材のレーザ溶接方法
KR20050069708A (ko) * 2003-12-31 2005-07-05 삼성중공업 주식회사 로봇의 용접 위빙 방법
KR200362832Y1 (ko) * 2004-06-24 2004-09-23 주식회사 경동보일러 콘덴싱보일러의 열교환기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474792A3 (de) * 2011-01-10 2012-09-05 HET - Heiz- und Energietechnik Entwicklungs GmbH Wasserführender Heizkessel, Pufferspeicher und Verfahren zur Herstellung eines wasserführenden Wandelements

Also Published As

Publication number Publication date
KR101046784B1 (ko) 2011-07-05
KR20100114384A (ko) 2010-10-25
WO2010120127A3 (ko) 2011-03-10

Similar Documents

Publication Publication Date Title
KR101298703B1 (ko) 쉘앤튜브 열교환기의 튜브시트와 튜브의 접합방법 및 쉘앤튜브 열교환기
JP2013142535A (ja) シェルアンドチューブ型熱交換器のチューブシートとチューブの接合方法及びシェルアンドチューブ型熱交換器
WO2010120127A2 (ko) 보일러 열교환기의 유로캡 접합방법
CN105711078A (zh) 一种氟塑料换热管与管板的焊接装置及方法
KR101477636B1 (ko) 쉘앤튜브 열교환기의 튜브시트와 튜브의 접합방법 및 쉘앤튜브 열교환기
WO2011052903A2 (ko) 스테인리스 스틸 접합방법
US20150196886A1 (en) Tube heat exchange assembly and apparatus, in particular a reactor for the production of melamine, comprising such a heat exchange assembly
US9649710B2 (en) Method for braze-welding a fixing plate and a flow channel cap in a heat exchanger, and heat exchanger produced by same
CN104457332A (zh) 耐高温换热器
CN102149499A (zh) 使用熔深增强化合物的不对称热沉焊接
CN115388683A (zh) 一种板翅式反应器的焊接结构
CN205615004U (zh) 一种氟塑料换热管与管板的焊接装置
CN104359333B (zh) 一种气‑气换热器
CN204421718U (zh) 换热器支座及换热器组件
CN106735998A (zh) 一种废热锅炉挠性管板嵌入式深孔焊结构
CN104654588B (zh) 燃气式热水器或壁挂炉的不锈钢换热器
KR101447102B1 (ko) 스팀 컨벡션 오븐 열교환기의 열교환관 이음 구조
KR101576192B1 (ko) 잠열 열교환기의 제조방법
CN104457384A (zh) 换热器支座及换热器组件
EP1772224A2 (en) Method for manufacturing heat exchangers and heat exchangers thus obtained
KR102513677B1 (ko) 열교환용 연관 및 연관형 열교환기 제조방법
KR102139943B1 (ko) 용접식 판형 열교환기
CN209355754U (zh) 一种无管板扁管散热器
CN106440911A (zh) 翅片管的结构
CN106895736B (zh) 一种ptfe换热器的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764666

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764666

Country of ref document: EP

Kind code of ref document: A2