WO2010119819A1 - ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法 - Google Patents

ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法 Download PDF

Info

Publication number
WO2010119819A1
WO2010119819A1 PCT/JP2010/056447 JP2010056447W WO2010119819A1 WO 2010119819 A1 WO2010119819 A1 WO 2010119819A1 JP 2010056447 W JP2010056447 W JP 2010056447W WO 2010119819 A1 WO2010119819 A1 WO 2010119819A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
human
lung tissue
alveolar epithelial
human lung
Prior art date
Application number
PCT/JP2010/056447
Other languages
English (en)
French (fr)
Inventor
久保 裕司
直也 藤野
隆哉 鈴木
山谷 睦雄
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US13/264,694 priority Critical patent/US20120094304A1/en
Priority to JP2011509275A priority patent/JPWO2010119819A1/ja
Priority to EP10764403.1A priority patent/EP2420566A4/en
Publication of WO2010119819A1 publication Critical patent/WO2010119819A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/42Respiratory system, e.g. lungs, bronchi or lung cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0688Cells from the lungs or the respiratory tract
    • C12N5/0689Stem cells; Progenitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a method for preparing human lung tissue stem cells, a method for inducing differentiation into human alveolar epithelial cells, and the like.
  • iPS cells Induced Pluripotent Stem Cell
  • iPS cells have been developed, and it has become possible to establish stem cells having patient-specific genetic information (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 There are great expectations that the use of these iPS cells will lead to the elucidation of new disease states and drug discovery for intractable diseases.
  • iPS cells have been established from cases of intractable diseases such as muscular dystrophy, and research for elucidating the disease state is being promoted worldwide.
  • iPS cells are very effective in elucidating diseases in which genes are the main factor.
  • tissue stem cells hold an important key to fill the parts that cannot be covered by iPS cells.
  • type II alveolar epithelial cell functions as a progenitor cell of type I alveolar epithelial cell (type I cell). That is, it is considered that type II cells that have proliferated after lung injury cover the damaged epithelium by differentiating into type I cells (Non-Patent Documents 1 to 6). However, type II cells are not considered stem cells having self-renewal ability and pluripotency.
  • Non-patent Document 7 Stemcells ⁇ (Bronchioalveolar Stem Cells, BASCs) ⁇ ⁇ having self-renewal ability and differentiation ability into bronchiolar Clara cells, type I and type II cells have been identified in the mouse lung.
  • Non-patent Document 7 the present inventors have reported that a stem cell group expressing a lung tissue stem cell marker proliferates after injury and participates in the repair process to the alveolar epithelium (Non-Patent Documents 8 and 9). ).
  • Non-patent Document 10 fibroblast-like mesenchymal stem cells have been reported as stem cells derived from human lung tissue (Non-patent Document 10), and stem cells that can differentiate from human lung tissue to alveolar epithelial cells. There is no report.
  • Lama VN, Smith, L., Badri, L., Flint, A., Andrei, A., Murray, S., Wang, Z., Liao, H., Toews, GB, Krebsbach, PH, Peters-Golden , M., Pinsky, DJ, Martinez, FJ, and Thannickal, VJ 2007.
  • Stem cells that can differentiate into the alveolar epithelial system are cells that are involved in tissue repair after lung injury, and are therefore very important in clinical practice such as regenerative medicine. Furthermore, such cells are useful as a material for discovering new markers for identifying human lung tissue stem cells, and it is considered that these cells can be connected to new drug discovery by analyzing differentiation signals of these cells.
  • the present inventor found for the first time that stem cells showing differentiation into alveolar epithelial system exist in human adult peripheral lung tissue. Isolation and identification of such human lung stem cells, culture method, differentiation into alveolar epithelium The induction method was successfully established and the present invention was completed.
  • the present invention relates to the following aspects.
  • a type II alveolar epithelial cell marker and a stem cell marker comprising the steps of isolating and extracting constituent cells from human lung tissue and separating and culturing lung tissue stem cells from the obtained isolated cells simultaneously A method for preparing cells to be expressed.
  • Aspect 2 Human lung tissue stem cells that can be differentiated into human alveolar epithelial cells obtained by the above preparation method, or human lung tissue stem cells obtained by subculturing the cells.
  • Aspect 3) A method for inducing differentiation into human lung epithelial cells, comprising culturing the above human lung tissue stem cells.
  • the present invention relates to cells that simultaneously express a type II alveolar epithelial cell marker and a stem cell marker that show differentiation into the alveolar epithelial system in human adult peripheral lung tissue, for example, human lungs that are SP-C + / CD90 + cells
  • the present invention provides a preparation method including isolation and culture of stem cells, and a method for inducing differentiation from the human lung tissue stem cells to alveolar epithelium.
  • a first aspect of the present invention is a type II alveolar epithelial cell marker comprising a step of isolating and extracting constituent cells from human lung tissue and a step of separating and culturing lung tissue stem cells from the obtained isolated cells And a method for preparing cells that simultaneously express a stem cell marker, such as SP-C + / CD90 + cells.
  • a stem cell marker such as SP-C + / CD90 + cells.
  • SP-C + / CD90 + cells in addition to self-replicating ability, are classified into type I alveolar epithelial cells and type II alveolar cells by the differentiation induction method according to the present invention. It is a human lung tissue stem cell having the differentiation ability to differentiate into epithelial cells.
  • Dispase II As a suitable method in the isolation and extraction process, after removing the pleura from human lung tissue, it is then released into the lung tissue, for example, Dispase II or Dispase I (registered), which is an enzyme derived from Bacillus polymyxa (EC 3.4.24.4) Trademark: Roche ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Applied Science, Mannheim, Germany) or DISPASE (registered trademark: Godo Sakesei Co., Ltd.) or other suitable neutral protease solution, followed by collagenase, the neutral protease, and deoxyribonuclease I and Mention may be made of a method comprising incubating in a solution containing a suitable deoxyribonuclease such as an endonuclease such as deoxyribonuclease II.
  • a suitable deoxyribonuclease such as an endonuclease such as deoxyribonuclease II.
  • Dispase II is preferably used as a neutral protease to be injected into lung tissue
  • DISPASE is used as a neutral protease for lysing cells
  • Deoxyribonuclease I is preferably used as a deoxyribonuclease.
  • the cells can be cultured using feeder cells prepared by any method known to those skilled in the art, particularly feeder cells composed of C57BL / 6 mouse fetal fibroblasts. preferable. Suitable feeder cells that are commercially available can also be used.
  • a feeder cell conditioned medium can be used without using feeder cells.
  • Human lung tissue can be obtained from a part of the tissue excised at the time of surgery after obtaining prior consent from the patient.
  • the human lung tissue stem cells prepared by the method of the present invention maintain pluripotency by subculture using any method known to those skilled in the art as described in the examples of the present specification. However, it is possible to self-replicate (proliferate). Therefore, the second aspect of the present invention is a human lung tissue stem cell that can be differentiated into alveolar epithelial cells obtained by such a preparation method and has self-replicating ability, such as SP-C + / CD90. + Cells or human lung tissue stem cells obtained by subculturing the cells for an appropriate period.
  • a third aspect of the present invention relates to a method for inducing differentiation into human lung epithelial cells, comprising culturing the above human lung tissue stem cells.
  • type I alveolar epithelial cells can be obtained inside the reconstituted basement membrane composition
  • type II alveolar epithelial cells can be obtained from the bottom of the reconstituted basement membrane composition .
  • the “reconstituted basement membrane composition” refers to proteins and glycoproteins such as laminin, collagen IV, heparan sulfate proteoglycan, and the like, contained in a thin membrane-like extracellular matrix existing in vivo under the cell layer, and These are obtained by extraction and preparation from appropriate cell tissues including various cell growth factors, activation factors, and the like.
  • soluble basement membrane preparations extracted from mouse sarcomas such as Matrigel® (Matrigel, BD Biosciences) can be mentioned.
  • Matrigel® Matrigel, BD Biosciences
  • the fourth aspect of the present invention is a type I alveolar epithelial cell or a type II alveolar epithelial cell obtained by such a differentiation induction method.
  • the human lung epithelial cells induced to differentiate by the method of the present invention can be subcultured for an appropriate period by any method known to those skilled in the art. Therefore, the present invention also relates to human alveolar epithelial cells obtained by subculture as described above.
  • preparation method differentiation induction method, and other conditions / means for subculture in the present invention can be appropriately selected from those known to those skilled in the art.
  • the fifth aspect of the present invention relates to various screening methods characterized by using such human lung tissue stem cells or human alveolar epithelial cells.
  • it can be advantageously used in a screening method for a substance that promotes or inhibits differentiation induction of human lung tissue stem cells.
  • the screening of the present invention can be performed by any method known to those skilled in the art.
  • the screening method of the present invention can be carried out, for example, by the following steps. (a) contacting a test substance with human lung tissue stem cells or human alveolar epithelial cells; (b) observing or measuring differentiation induction in the cell, and (c) selecting a substance that promotes or inhibits the differentiation induction.
  • the lung tissue is dissected to approximately 1 cm x 1 cm x 1 cm and Dispase II (final concentration 2.0 U / ml, Roche Applied Science, Mannheim, Germany) using a syringe and a 27 gauge needle.
  • the cell suspension was centrifuged at 1500 rpm for 5 minutes at 4 ° C., and the supernatant was discarded. Then, 3 ml of erythrocyte hemolysis buffer (Roche Applied Science) was added and reacted at room temperature for 3 minutes. After adding 10 ml of basic medium supplemented with amphotericin B, the mixture was centrifuged at 1500 rpm for 5 minutes at 4 ° C., the supernatant was discarded, and a similar hemolysis reaction was performed again.
  • CD45-positive cells were removed from whole lung cells by magnetic cell sorting system using microbeads coated with anti-CD45 antibody (Miltenyi Biotec, Bergisch Gladbach, Germany).
  • mice Female mice (C57BL / 6) on day 13 or 14 were sacrificed by cervical dislocation and washed with 70% ethanol. Phosphate buffer (PBS, Wako Pure Chemicals, Osaka) containing penicillin (final concentration 100 units / ml), streptomycin (final concentration 100 ⁇ g / ml), amphotericin B (final concentration 0.25 ⁇ g / ml, Invitrogen, Carlsbad, CA) The uterus was transferred to a Petri dish containing 5 ml of Japan.
  • PBS Phosphate buffer
  • penicillin final concentration 100 units / ml
  • streptomycin final concentration 100 ⁇ g / ml
  • amphotericin B final concentration 0.25 ⁇ g / ml, Invitrogen, Carlsbad, CA
  • the fetus was placed in a 50 ml conical tube, 2 ml of 0.25% trypsin / EDTA (Sigma-Aldrich) was added, and the mixture was shaken at 37 ° C. for 30 minutes.
  • trypsin add 10 ml of basic medium, chop it with a scissors, pass 18 and 20 gauge needles with a syringe three times each, and pass through a 100 ⁇ m cell strainer (BD Biosciences). A suspension was created. The cell suspension was centrifuged at 1500 rpm for 5 minutes at 4 ° C., and the supernatant was discarded.
  • erythrocyte hemolysis buffer (Roche Applied Science) was added and reacted at room temperature for 3 minutes. After adding 10 ml of basic medium and centrifuging at 4 ° C. and 1500 rpm for 5 minutes and discarding the supernatant, the same hemolysis reaction was performed again. Add 10 ml of basic medium, centrifuge at 1500 rpm for 5 minutes at 4 ° C, discard the supernatant, add 10 ml of basic medium, and pass through a 40 ⁇ m cell strainer (BD Biosciences) to create a single cell suspension did. 1-2 ⁇ 10 6 cells were seeded and cultured in 10 cm culture dishes coated with 0. 1% (w / v) gelatin. Cells from passage 1-3 were stored frozen in liquid nitrogen.
  • Feeder cells are mouse fetal fibroblasts whose growth has been stopped with mitomycin C. 10 ug / ml mitomycin C (Sigma-Aldrich) diluted with basal medium was added to confluent mouse fetal fibroblasts at passage 2-4, and cultured at 37 ° C. for 2 hours to prepare feeder cells. Feeder cells were stored frozen in liquid nitrogen.
  • Lung tissue stem cell culture Feeder cells were seeded in a 6-well plate (BD Falcon) at a density of 1 ⁇ 10 4 cells / cm 2 , cultured for 24 hours, and allowed to adhere to the bottom of the well. Lung cells 1-5 ⁇ 10 5 cells / cm 2 from which hematopoietic cells were removed were seeded on a plate coated with feeder cells, and cultured in basal medium at 5% CO 2 and 37 ° C. During the first 7 days, 0.25 ⁇ g / ml amphotericin B was added.
  • the feeder cell conditioned medium is prepared by mixing a supernatant obtained by culturing feeder cells in a basic medium for 3 days with a 0.45 ⁇ m filter and a basic medium mixed 1: 1. It was stored frozen at -80 ° C.
  • Flow cytometry Cell surface or intracellular antigens were analyzed with a FACSCalibur flow cytometer (BD Biosciences) for the 4th to 5th passage cells.
  • the following antibodies were used.
  • Fluorescent immunostaining Cells from the 5th to 6th passages were cultured on a culture slide glass bottle (BD Falcon). Human lung tissue was embedded in OCT compound and frozen sections were prepared. It was sliced with a cryostat to a thickness of 3 mm. In either case, 100% acetone was used and fixed at ⁇ 20 ° C. for 10 minutes, followed by blocking with 5% rabbit goat serum for 30 minutes at room temperature.
  • rabbit anti-human pro SP-C polyclonal antibody (1: 1000, Millipore Corporation), mouse anti-human CD90 antibody (1:50, Serotec) reacted at 4 ° C overnight, and FITC-goat anti as a secondary antibody -rabbit IgG (1: 100, Vector), Alexa Fluora 647-goat anti-mouse IgG (1: 100, Molecular Probe) reacted at room temperature for 30 minutes.
  • Limiting dilution method 1, 10 or 100 cells (5th passage) per well were seeded in a 96-well plate (Corning Incorporated, Corning, NY) and cultured in a basic medium for 14 days. The number of cells seeded per well was plotted on the X axis, and the percentage of wells in which no colonies were formed was plotted on the Y axis. A regression line was drawn and the number of cells containing one colony forming cell was determined from the X-axis value corresponding to 37% of the Y-axis (11). Colonies obtained from wells seeded as 1 cell per well were passaged and continued to be cultured in feeder conditioned medium. The cell surface and intracellular protein phenotypes were determined for the seventh passage cells and cryopreserved.
  • the cells in Matrigel were crushed with a cooled PBS solution, washed with PBS and collected. In this operation, since the cells under Matrigel were not released, the cells under Matrigel were then suspended in EDTA / Trypsin solution and collected.
  • Result 1 In the human lung, there are mesenchymal stem cell-like cells with alveolar epithelial phenotype. When human lung constituent cells from which hematopoietic cells were removed were cultured on a feeder, spindle-shaped cells proliferated and formed colonies after about 7 days (Fig. 1a). These cells could be passaged and reached confluence after 2-3 weeks. The expression of these cell surface markers was analyzed by flow cytometry (Fig. 1b). Many cells expressed CD73, CD90, and CD105, known as human mesenchymal stem cell markers (12). Expression of CD45, CD34, CD31 and VEGF receptor type 2, which are markers for blood cells and vascular endothelium, was not observed.
  • tissue stem cell markers c-kit (13) and CD133 (14) were not observed. From the above, the obtained cell group had a mesenchymal stem cell-like surface marker.
  • CD90 also called Thy-1, is a GPI-binding membrane protein, and is known not only as a marker for mesenchymal stem cells but also for hematopoietic stem cells (15) and liver stem cells (16) that express CD34.
  • Surfactant protein-C SP-C
  • SP-C is known to be specifically expressed in type II alveolar epithelial cells (17). Therefore, in order to examine whether the obtained cell population has an alveolar epithelial phenotype, double staining of SP-C and CD90 was performed by the immunofluorescent antibody method (Fig. 1c).
  • SP-C + / CD90 + cells show self-replication in vitro.
  • Tissue stem cells are defined as cells that are isolated from the tissue and exhibit self-renewal ability and differentiation ability into more mature cells (18).
  • SP-C + / CD90 + cells as candidates for human lung tissue stem cells, and first examined their ability to self-renew. As shown in Fig. 2a, colony formation was observed 10 days after single cells obtained by limiting dilution. Next, a limiting dilution method was performed to determine the frequency of cells having colony-forming ability with respect to the cell group containing many SP-C + / CD90 + cells (Fig. 2b).
  • Fig. 2 shows the expression of SP-C and CD90 by flow cytometry on secondary colonies made from wells seeded with 1 cell per well. As shown in 2c, it showed the same expression pattern as the original cell group. From the above, it was shown that SP-C + / CD90 + cells showed self-replication ability in vitro.
  • SP-C + / CD90 + cells show differentiation into alveolar epithelial cells in vitro.
  • a group of cells rich in SP-C + / CD90 + cells was cultured in Matrigel for 7 days, and each cell in Matrigel and under Matrigel RNA was extracted and the change of mRNA expression was examined by RT-PCR.
  • Fig. As shown in 3a, expression of AQP5, a marker for type I cells, was enhanced in Matrigel, and expression of SP-C, a marker for type II cells, was enhanced under Matigel. From the above, induction into type I cells was observed within Matrigel, and type II cells were observed under Matrigel.
  • SP-C + / CD90 + cells are present in the alveolar wall.
  • frozen sections of human lung tissue were prepared and fluorescent immunostaining was performed.
  • Fig 4a SP-C + / CD90 + cells were present in the alveolar wall.
  • Observation with a confocal laser microscope revealed that SP-C was stained intracellularly, CD90 was partially observed on the cell surface, and showed the same staining pattern as SP-C + / CD90 + cells isolated from human lung (Fig. .4b).
  • lung cells after removal of blood cells were analyzed by flow cytometry. As shown in Fig.
  • SP-C + / CD90 + cells were found to contain 0.45% ⁇ 0.34% (mean ⁇ SD) and showed a significant inverse correlation with age (Fig. 4d). From the above examination, it became clear that SP-C + / CD90 + cells were present in the alveolar wall and decreased in number with age.
  • human lung tissue has SP-C + / CD90 + cells, and is a human tissue stem cell exhibiting self-renewal ability and differentiation ability into alveolar epithelial cells.
  • the number of SP-C + / CD90 + cells decreased with age. Since such stem cells that can differentiate into the alveolar epithelial system are cells involved in tissue repair after lung injury, they are also very important cells in clinical practice such as regenerative medicine. Furthermore, such cells are useful as a material for discovering new markers for identifying human lung tissue stem cells. By analyzing the differentiation signals of human tissue stem cells obtained in the present invention, new drugs can be discovered. It becomes possible to provide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

ヒトの肺組織より構成細胞を単離抽出する工程、及び、得られた単離細胞より肺組織幹細胞を分離培養する工程を含む、II型肺胞上皮細胞マーカー及び幹細胞マーカーを同時に発現する細胞の調製方法、該調製方法によって得られた、肺胞上皮細胞に分化することが出来るヒト肺組織幹細胞、該ヒト肺組織幹細胞を培養することから成る、ヒト肺上皮細胞への分化誘導方法、該分化誘導方法によって調製されたヒト肺胞上皮細胞、該ヒト肺組織幹細胞又はヒト肺胞上皮細胞を用いることを特徴とする、スクリーニング方法。

Description

ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法
本発明は、ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法等に関する。
近年、人工多能性幹細胞(Induced Pluripotent Stem Cell)、即ち、iPS細胞が開発され、患者固有の遺伝情報を持つ幹細胞樹立が可能となった(特許文献1及び2)。このiPS細胞を用いることにより、難治性疾患に対する新たな病態解明・創薬につなげることが出来るのではないかと大きな期待が持たれている。実際に、筋ジストロフィーなど難治性疾患症例よりiPS細胞が樹立され、病態解明へ向けた研究が世界的に進められている。iPS細胞は遺伝子が主たる要因となる疾患の解明には大きな力を発揮する。
しかしながら、多くの疾患の発症には「遺伝」的因子の他に、「環境」及び「加齢」の因子が大きくかかわっている。 iPS細胞の樹立には所謂「山中因子」導入による細胞の初期化を必要とするために「環境」又は「加齢」によって生じたエピジェネティックな情報は失われてしまう。そのため、各臓器より組織固有の幹細胞を抽出し、このエピジェネティックな情報を残したまま解析することは、高齢者疾患に多い「環境」「加齢」因子による疾患に対する病態解明・創薬に極めて重要である。つまり、このような組織幹細胞はiPS細胞でカバーできない部分を埋める重要な鍵を握るものである。
 ところで、組織の修復・再生には、組織固有の幹細胞・前駆細胞の適切な増殖と分化が必要である。肺胞上皮の修復過程では、II型肺胞上皮細胞 (II型細胞) はI型肺胞上皮細胞 (I型細胞) の前駆細胞として機能する。すなわち,肺損傷後,増殖したII型細胞は,I型細胞へと分化することによって、損傷をうけた上皮を覆っていくと考えられている(非特許文献1~6)。しかしながら、II型細胞は自己複製能と多分化能を有する幹細胞とは考えられていない。
近年,マウス肺では自己複製能と細気管支のクララ細胞、I型及びII型細胞への分化能をもつ幹細胞 (Bronchioalveolar Stem Cells, BASCs) が同定された(非特許文献7)。また、本発明者等は、マウス肺損傷モデルにおいて、肺組織幹細胞マーカーを発現する幹細胞群が損傷後に増殖し,肺胞上皮への修復過程に関与することを報告した(非特許文献8及び9)。
更に、これまでに、ヒト肺組織由来の幹細胞としては線維芽細胞様の間葉系幹細胞が報告されている(非特許文献10)のみであり、ヒト肺組織から肺胞上皮細胞に分化できる幹細胞の報告はない。
特許第4183742号明細書 特開2008-307007号公報
Adamson, I.Y., and Bowden, D.H. 1974. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 30:35-42. Evans, M.J., Cabral, L.J., Stephens, R.J., and Freeman, G. 1975. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22:142-150. Aso, Y., Yoneda, K., and Kikkawa, Y. 1976. Morphologic and biochemical study of pulmonary changes induced by bleomycin in mice. Lab Invest 35:558-568. Anderson, W.R., and Thielen, K. 1992. Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy. Ultrastruct Pathol 16:615-628. Ware, L.B., and Matthay, M.A. 2000. The acute respiratory distress syndrome. N Engl J Med 342:1334-1349. Kawanami, O., Ferrans, V.J., and Crystal, R.G.  1982. Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest 46:39-53. Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823-835. Kubo, H., Hegab, A.E., He, M., Ishizawa, K., and Yamada, M. 2008. Endogenous lung stem cells increased after lung injury. Proc Am Thorac Soc 5:362-363. Hegab, A.E., Kubo, H., Yamaya, M., Asada, M., He, M., Fujino, N., Mizuno, S., and Nakamura, T. 2008. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther 16:1417-1426. Lama, V.N., Smith, L., Badri, L., Flint, A., Andrei, A., Murray, S., Wang, Z., Liao, H., Toews, G.B., Krebsbach, P.H., Peters-Golden, M., Pinsky, D.J., Martinez, F.J., and Thannickal, V.J. 2007. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117:989-996
肺胞上皮系に分化できる幹細胞は肺傷害後の組織修復に関与する細胞であるので、再生医療等の臨床上も非常に重要な細胞である。更に、このような細胞はヒト肺組織幹細胞を同定する新たなマーカー発見の材料としても有用であり、この細胞の分化シグナル等を解析することによって、新たな創薬につなげられると考える。
今回、本発明者は、ヒトの成人末梢肺組織中に肺胞上皮系への分化を示す幹細胞が存在することを初めて見出し、かかるヒト肺幹細胞の分離同定,培養法,肺胞上皮への分化誘導法を確立することに成功し、本発明を完成した。
  即ち、本発明は以下の各態様に係るものである。
(態様1)ヒトの肺組織より構成細胞を単離抽出する工程、及び、得られた単離細胞より肺組織幹細胞を分離培養する工程を含む、II型肺胞上皮細胞マーカー及び幹細胞マーカーを同時に発現する細胞の調製方法。
(態様2)上記の調製方法によって得られた、ヒト肺胞上皮細胞に分化することが出来るヒト肺組織幹細胞、又は、該細胞を継代培養して得られるヒト肺組織幹細胞。
(態様3)上記のヒト肺組織幹細胞を培養することから成る、ヒト肺上皮細胞への分化誘導方法。
(態様4)上記の分化誘導方法によって調製されたヒト肺胞上皮細胞、又は、該ヒト肺胞上皮細胞を継代培養して得られるヒト肺胞上皮細胞。
(態様5)上記のヒト肺組織幹細胞又はヒト肺胞上皮細胞を用いることを特徴とする、スクリーニング方法。
本発明は、ヒトの成人末梢肺組織中に肺胞上皮系への分化を示す、II型肺胞上皮細胞マーカー及び幹細胞マーカーを同時に発現する細胞、例えば、SP-C+/CD90+細胞であるヒト肺幹細胞の分離同定・培養等を含む調製方法、及び、該ヒト肺組織幹細胞から肺胞上皮への分化誘導方法を提供するものである。
ヒト肺における肺胞上皮の表現型をもつ間葉系幹細胞様の細胞群の存在を示すグラフ及び写真。 SP-C+/CD90+細胞はin vitroで自己複製能を有することを示すグラフ及び写真。 SP-C+/CD90+細胞がin vitroで肺胞上皮細胞への分化能を有することを示すグラフ及び写真。 SP-C+/CD90+細胞が肺胞壁に存在することを示すグラフ及び写真。
本発明の第一の態様は、ヒトの肺組織より構成細胞を単離抽出する工程、及び、得られた単離細胞より肺組織幹細胞を分離培養する工程を含む、II型肺胞上皮細胞マーカー及び幹細胞マーカーを同時に発現する細胞、例えば、SP-C+/CD90+細胞の調製方法に係る。本願明細書の実施例で示されるように、このようなSP-C+/CD90+細胞は、自己複製能に加えて、本発明による分化誘導方法によってI型肺胞上皮細胞及びII型肺胞上皮細胞に分化する分化能を有する、ヒト肺組織幹細胞である。
単離抽出する工程における好適な方法として、ヒトの肺組織から胸膜を剥離除去した後、肺組織内へ、例えば、Bacillus polymyxa由来の酵素(EC 3.4.24.4)であるDispase II又は Dispase I(登録商標:Roche Applied Science,Mannheim,Germany)又はDISPASE(登録商標:合同酒精(株))等の適当な中性プロテアーゼの溶液を注入し、その後、コラゲナーゼ、該中性プロテアーゼ、及び、デオキシリボヌクレアーゼI及びデオキシリボヌクレアーゼII等のエンドヌクレアーゼのような適当なデオキシリボヌクレアーゼを含む溶液中でインキュベートすることを含む方法を挙げることが出来る。特に、肺組織内へ注入する中性プロテアーゼとしてDispase II、細胞を溶解するための中性プロテアーゼとしてはDISPASE, デオキシリボヌクレアーゼとしてはデオキシリボヌクレアーゼIを使用することが好ましい。
更に、肺組織幹細胞を分離培養する工程において、例えば、当業者に公知の任意の方法で調製されるフィーダー細胞、特に、C57BL/6マウス胎児線維芽細胞から成るフィーダー細胞を用いて培養することが好ましい。市販されている適当なフィーダー細胞を使用することも出来る。又、2継代目以降の培養に際しては、フィーダー細胞を用いずに、フィーダー細胞馴化培地を使用することができる。尚、上記分離培養工程の前に、得られた単離細胞から当業者に公知の任意の方法で血球系細胞(例えば、CD45陽性細胞)を除去することが好ましい。ヒトの肺組織は、患者への事前承諾等を得た上で、手術の際に切除した組織の一部等から入手することが出来る。
本発明方法によって調製して得られたヒト肺組織幹細胞は、本明細書の実施例に記載のような、当業者に公知の任意の方法で継代培養することによって、多分化能を維持しつつ、自己複製(増殖)させることが可能である。従って、本発明の第二の態様は、かかる調製方法によって得られた、肺胞上皮細胞に分化することが出来、且つ、自己複製能を有するヒト肺組織幹細胞、例えば、SP-C+/CD90+細胞、又は、該細胞を適当な期間、継代培養して得られるヒト肺組織幹細胞に係る。
本発明の第三の態様としては、上記のヒト肺組織幹細胞を培養することから成る、ヒト肺上皮細胞への分化誘導方法に係る。再構成基底膜組成物を用いて培養することによって、I型肺胞上皮細胞が再構成基底膜組成物内部に、II型肺胞上皮細胞が再構成基底膜組成物下部から得られることができる。
ここで、「再構成基底膜組成物」とは、in vivoで細胞層下に存在する薄い膜状の細胞外マトリックスに含まれる、ラミニン、コラーゲンIV、ヘパラン硫酸プロテオグリカン等のタンパク質及び糖タンパク質、及び、各種細胞増殖因子、活性化因子等を含む、適当な細胞組織から抽出・調製して得られるものである。例えば、マトリゲル(登録商標)(Matrigel, BD Biosciences)のようなマウス肉腫から抽出した可溶性基底膜調製品を挙げることができる。このような再構成基底膜組成物としては、当業者に公知の物質を使用することが出来る。
本発明の第四の態様は、かかる分化誘導方法によって得られた、I型肺胞上皮細胞又はII型肺胞上皮細胞である。尚、本発明方法によって分化誘導されたヒト肺上皮細胞は、当業者に公知の任意の方法で適当な期間、継代培養することができる。従って、本発明は、このように継代培養して得られるヒト肺胞上皮細胞にも係る。
 尚、本発明の調製方法、分化誘導方法、及び、継代培養におけるその他の条件・手段等は当業者に公知の任意のものを適宜選択することが出来る。
本発明の第五の態様は、かかるヒト肺組織幹細胞又はヒト肺胞上皮細胞を用いることを特徴とする、各種のスクリーニング方法に係る。例えば、ヒト肺組織幹細胞の分化誘導を促進・阻害する物質のスクリーニング方法に有利に使用することが出来る。
本発明のスクリーニングは当業者に公知の任意の方法で行うことが出来る。
 本発明のスクリーニング方法は、例えば、以下の工程で実施することが出来る。
 (a)ヒト肺組織幹細胞又はヒト肺胞上皮細胞に被検物質を接触させる工程、
 (b)該細胞における分化誘導を観察又は測定する工程、及び
 (c)該分化誘導を促進又は阻害する物質を選択する工程、を含む前記方法。
以下、本発明を実施例によって詳細に説明するが、本発明の技術的範囲は以下の実施例の記載によって何ら限定して解釈されるものではない。又、特に記載のない場合には、以下の実施例は、当該技術分野における常法及び当業者に公知の標準的な方法に従い実施した。又、本明細書中に参考文献などとして引用された文献の記載内容は本明細書の開示内容の一部を構成するものである。
[方法]
ヒト肺細胞の分離:ヒト肺細胞は過去の報告(10)に従い、いくらかの改良を加え分離した。本操作はクリーンベンチ内で行い、使用される器具は事前にオートクレーブにて滅菌処理した。提供された肺組織をペニシリン (最終濃度100 単位/ml)、ストレプトマイシン (最終濃度100 μg/ml)、アンホテリシンB (最終濃度0.25 ug/ml、Invitrogen、Carlsbad、CA) を含むリン酸緩衝液 (PBS, 和光純薬、大阪、日本) にて洗浄した。胸膜を鈍的に剥離した後、肺組織を約1 cm x 1 cm x 1 cmに切離し、シリンジと27ゲージの針を用いてDispase II (最終濃度 2.0 U/ml、Roche Applied Science, Mannheim, Germany) 2 mlを注入し、8 mlのDispase II、1 mlのCollagenase/Dispase (最終濃度1 mg/ml、Roche Applied Science)、1 mlのDeoxyribonuclease I (最終濃度0.1 mg/ml、Sigma-Aldrich, St. Luis, MO) をあらかじめ加えた50 mlのコニカルチューブへ移し、37℃で60分間振盪した。酵素処理した肺組織を剪刀にて鋭的に細切した後、18、20ゲージの針を各々3回通し、アンホテリシンB (最終濃度2.5 μg/ml) を添加した基本培地を10 ml加え、100 μmのセルストレイナー (BD Biosciences, San Jose, CA) を通し細胞懸濁液を作成した。基本培地はDulbecco’s Modified Eagle Medium、DMEM (Invitrogen)、10% ウシ胎児血清、FBS (Invitrogen)、1% アミノ酸 (Invitrogen)、ペニシリン (最終濃度100 単位/ml)、ストレプトマイシン (最終濃度 100 μg/ml、Sigma-Aldrich) より構成される。この細胞懸濁液を4℃、1500 rpmで5分遠心分離した後、上清を棄て、赤血球溶血緩衝液 (Roche Applied Science) 3 ml加え、室温で3分間反応させた。アンホテリシンBを添加した基本培地を10 ml加え、4℃、1500 rpmで5分遠心分離し、上清を棄てた後、再度同様の溶血反応を行った。 アンホテリシンB添加基本培地を10 ml加え、4℃、1500 rpmで5分遠心分離し上清を棄て、アンホテリシン添加基本培地10 mlを加え、40 umのセルストレイナー (BD Biosciences) を通し、単一細胞懸濁液を作成した。
全肺細胞からの血球系細胞の除去:抗CD45抗体でコートされたマイクロビーズを用い、Magnetic Cell Sorting Systemにて全肺細胞からCD45陽性細胞を除去した (Miltenyi Biotec、Bergisch Gladbach、Germany)。
マウス胎児線維芽細胞の分離:妊娠13または14日の雌マウス (C57BL/6) を頸椎脱臼にて犠牲死させ70%エタノールにて洗浄した。ペニシリン (最終濃度100 単位/ml)、ストレプトマイシン (最終濃度100 μg/ml)、アンホテリシンB (最終濃度0.25 μg/ml、Invitrogen、Carlsbad、CA) を含むリン酸緩衝液 (PBS、和光純薬、大阪、日本) を5 ml入れたペトリ皿に、摘出した子宮を移した。胎児を胎盤より分離し、脳と心臓を切離した後、50 mlのコニカルチューブにいれ、0.25% トリプシン/EDTA (Sigma-Aldrich) 2 mlを加え、37℃で30分振盪した。トリプシンを不活化するため10 mlの基本培地を加え、剪刀にて細切した後、18、20ゲージの針をシリンジにて各々3回通し、100 μmのセルストレイナー (BD Biosciences) を通し細胞懸濁液を作成した。この細胞懸濁液を4℃、1500 rpmで5分遠心分離した後、上清を棄て、赤血球溶血緩衝液 (Roche Applied Science) 3 ml加え、室温で3分間反応させた。基本培地を10 ml加え、4℃、1500 rpmで5分遠心分離し、上清を棄てた後、再度同様の溶血反応を行った。基本培地を10 ml加え、4℃、1500 rpmで5分遠心分離し上清を棄て、基本培地10 mlを加え、40 μmのセルストレイナー (BD Biosciences) に通し、単一細胞懸濁液を作成した。1-2 x 106個の細胞を0。1% (w/v) のゼラチンでコートした10 cmの培養皿に播種し培養した。1-3継代の細胞を液体窒素に凍結保存した。
フィーダー細胞の作成:フィーダー細胞はマイトマイシンCにて増殖を停止させたマウス胎児線維芽細胞である。2-4継代目のコンフルエントなマウス胎児線維芽細胞に基本培地で希釈した10 ug/mlのマイトマイシンC (Sigma-Aldrich) を加え、37℃で2時間培養しフィーダー細胞を作成した。フィーダー細胞は液体窒素に凍結保存した。
肺組織幹細胞培養:フィーダー細胞を6ウエルプレート (BD Falcon) に、1 x 104 個/cm2 の密度で播種し24時間培養し、ウエルの底面に接着させた。血球系細胞を除去した肺細胞1-5 x 105 個/cm2 をフィーダー細胞でコートしたプレートに播種し、基本培地にて5% CO2、37℃にて培養した。はじめの7日間は0.25 μg/mlのアンホテリシンBを添加した。紡錘形の細胞がコンフルエントになった後、0.25 %トリプシン/EDTA (Sigma-Aldrich) にて細胞を剥離し、フィーダー細胞でコートした10 cmの培養皿へ継代した。また、コロニーをピックアップして継代する場合は、0.01%トリプシン/EDTAを加え、紡錘形の細胞よりなるコロニーを27ゲージの針にて周囲から剥離しピペットにて吸引し、フィーダー細胞でコートした6ウエルプレートへ播種した。2継代目以降は、培養皿をフィーダー細胞でコートせず、培地としてフィーダー細胞馴化培地を使用した。フィーダー細胞馴化培地は、フィーダー細胞を基本培地で3日間培養した上清を0.45 μmのフィルターで濾過したものと基本培地を1:1で混合したものである。-80℃で凍結保存した。
フローサイトメトリー:4~5継代目の細胞について細胞表面または細胞内抗原をFACSCalibur flow cytometer (BD Biosciences) にて解析した。抗体は以下のものを使用した。 FITC-labeled anti-human CD45, FITC-labeled anti-human CD105 (Biolegend, San Diego, CA), FITC-labeled anti-human CD31, PE-labeled anti-human CD73, APC-labeled anti-human CD90, PE-labeled anti-human c-kit  (BD Biosciences, San Jose, CA)、PE-labeled anti-human CD133/1 (Miltenyi Biotec、 Bergisch Gladbach、 Germany)、 rabbit anti-human pro SP-C polyclonal antibody  (Millipore Corporation, Billerica, MA) 、及び、 FITC-labeled goat anti-rabbit IgG as second antibody (Vector, Burlingame, CA)。細胞内蛋白を染色する場合は、fixation and permeabilization kitを使用した (Immunotech sas, Marseille Cesex 9, France)。正常ウサギIgG (1 μg/ul, Dako, Glostrup, Denmark) をSP-C染色のisotype controlとして用いた。
蛍光免疫染色:5~6継代目の細胞をカルチャースライドグラス (BD Falcon) 上にて培養した。ヒト肺組織はOCTコンパウンドに包埋し、凍結切片を作成した。3 μmの厚さでクライオスタットにて薄切した。いずれも、100% アセトンを用い-20℃で10分間固定した後、室温で30分間、5% ヤギ血清でブロッキングを行った。 rabbit anti-human pro SP-C polyclonal antibody (1:1000、Millipore Corporation)、mouse anti-human CD90 antibody (1:50、Serotec) を4℃で一晩反応させ、2次抗体として、FITC-goat anti-rabbit IgG (1:100、Vector)、Alexa Fluora 647-goat anti-mouse IgG (1:100、Molecular Probe) を室温で30分反応させた。
限界希釈法:1ウエルあたり、1、10または100個の細胞 (5継代目) を96ウエルプレート (Corning Incorporated、 Corning、 NY) へ播種し基本培地にて14日間培養した。X軸に1ウエルあたり播種した細胞の個数をプロットし、Y軸にコロニーが形成されなかったウエルの割合をプロットした。回帰直線を引き、Y軸の37%と対応するX軸の値から、1つのコロニー形成細胞を含む細胞の個数を求めた(11)。1ウエルあたり1細胞として播種したウエルより得られたコロニーは、継代しフィーダー馴化培地にて培養を継続した。7継代目の細胞について細胞表面および細胞内蛋白の表現型を決定し、凍結保存をした。
肺胞上皮細胞への分化:肺胞上皮細胞への分化能を検討するため、1ウエルあたり1 x 106個の細胞 (5~6継代目) を氷冷した基本培地1 mlに浮遊させ、Matrigel(登録商標) (BD Biosciences) 1 mlと氷上にてよく混合させ12ウエルプレートに播種し37℃で30分間かけてゲル化させた。その後、37℃に温めた基本培地1 mlを静かにMatrigel上に入れ、37℃で培養を続けた。7日後、Matrigel内とMatrigel下の細胞をそれぞれ分けて回収し、RNAを抽出した。Matrigel内の細胞は、冷却したPBS液でMatrigelを破砕し、そのPBSで洗浄、回収した。この操作では、Matrigel下の細胞は遊離しないため、次にMatrigel下の細胞をEDTA/Trypsin液で浮遊させ、回収した。
統計解析:GraphPad Prism Ver 5。0b (GraphPad Software、 San Diego、 CA) を使用した。限界希釈法は、非線形回帰により回帰式、R2を求めた。年齢とSP-C+/CD90+細胞の割合との相関については、Spearmanの順位相関係数を求めた。
[結果]
結果1:ヒト肺には、肺胞上皮の表現型をもつ間葉系幹細胞様の細胞群が存在する。
 血球系細胞を除去したヒト肺構成細胞をフィーダー上で培養すると、紡錘形の細胞が増殖し、約7日後にコロニーを形成した (Fig. 1a)。これらの細胞は継代することができ、2~3週後にはコンフルエントに達した。これらの細胞表面マーカーの発現をフローサイトメトリーにて解析した (Fig.1b)。多くの細胞が、ヒト間葉系幹細胞マーカーとして知られているCD73、CD90、CD105を発現していた(12)。血球および血管内皮のマーカーである、CD45、CD34、CD31及びVEGF receptor type 2の発現は認められなかった。また、組織幹細胞マーカーであるc-kit(13) およびCD133(14) の発現も認めなかった。以上のことから、得られた細胞群は間葉系幹細胞様の表面マーカーを有していた。CD90は、Thy-1とも呼ばれ、GPI結合膜蛋白であり、間葉系幹細胞だけでなく、CD34を発現する造血系幹細胞(15)や肝の幹細胞(16)のマーカーとして知られている。また、surfactant protein-C (SP-C) はII型肺胞上皮細胞に特異的に発現することが知られている(17)。そこで、得られた細胞群が肺胞上皮の表現型を有するかを検討するため、SP-CとCD90の二重染色を免疫蛍光抗体法にて行った (Fig. 1c)。SP-C/CD90両陽性細胞が認められ、SP-C (緑色) は細胞内に顆粒状に染色され、CD90 (赤色) は細胞膜に沿って部分的に染色された。そして、フローサイトメトリーでは、大部分の細胞がSP-C+/CD90+細胞であった (Fig.1d)。以上の検討から、ヒト肺には、II型肺胞上皮細胞のマーカーであるSP-Cと、幹細胞マーカーであるCD90を同時に発現する新規細胞群が存在することが明らかになった。
結果2:SP-C+/CD90+細胞はin vitroで自己複製能を示す。
 組織幹細胞は、その組織より分離され、自己複製能とより成熟した細胞への分化能を示す細胞と定義される(18)。我々は、SP-C+/CD90+細胞がヒト肺組織幹細胞の候補であると考え、まず自己複製能について検討した。Fig. 2aに示すように、限界希釈により得られた単一細胞から、10日後、コロニー形成が認められた。次に、SP-C+/CD90+細胞を多く含む細胞群に関し、コロニー形成能を有する細胞の頻度を決定するため、限界希釈法を行った (Fig.2b)。コロニー形成能をもつ細胞は、患者1、2では各々、細胞6、131個に1個の割合で含まれることが明らかになった。1ウエルに1個の細胞を播種したウエルよりできた2次コロニーについてフローサイトメトリーにてSP-C、CD90の発現を解析すると、Fig。 2cに示すように、元の細胞群と同様の発現パターンを示した。以上のことから、SP-C+/CD90+細胞はin vitroで自己複製能を示すことが示された。
結果3:SP-C+/CD90+細胞はin vitroで肺胞上皮細胞への分化を示す。
 SP-C+/CD90+細胞の肺胞上皮細胞への分化能を検討するため、SP-C+/CD90+細胞を多く含む細胞群をMatrigelにて7日間培養し、Matrigel内、Matrigel下の各々の細胞からRNAを抽出しRT-PCRにてmRNA発現の変化について検討した。Fig。3aに示すように、Matrigel内ではI型細胞のマーカーであるAQP5の発現が増強し、Matigel下ではII型細胞のマーカーであるSP-Cの発現が増強した。以上のことから、Matrigel内ではI型細胞へ、Matrigel下ではII型細胞への誘導が認められた。
結果4:SP-C+/CD90+細胞は肺胞壁に存在する。
 SP-C+/CD90+細胞の局在を決定するため、ヒト肺組織の凍結切片を作成し蛍光免疫染色を行った。Fig 4aに示すように、SP-C+/CD90+細胞は肺胞壁に存在した。共焦点レーザー顕微鏡による観察では、SP-Cは細胞内に染色され、CD90は細胞表面に部分的に認められ、ヒト肺より分離したSP-C+/CD90+細胞と同一の染色パターンを示した (Fig.4b)。SP-C+/CD90+細胞の割合を検討するため、血球系細胞を除去した後の肺細胞をフローサイトメトリーで解析した。Fig.4cに示すように、SP-C+/CD90+細胞は、0.45% ± 0.34% (mean ± S.D.) 含まれ、年齢と有意な逆相関を示すことが分かった (Fig. 4d)。以上の検討より、SP-C+/CD90+細胞は、肺胞壁に存在し、年齢とともに数の減少を認めることが明らかになった。
[参考文献]
1.      Adamson, I.Y., and Bowden, D.H. 1974. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 30:35-42.
2.      Evans, M.J., Cabral, L.J., Stephens, R.J., and Freeman, G. 1975. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22:142-150.
3.      Aso, Y., Yoneda, K., and Kikkawa, Y. 1976. Morphologic and biochemical study of pulmonary changes induced by bleomycin in mice. Lab Invest 35:558-568.
4.      Anderson, W.R., and Thielen, K. 1992. Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy. Ultrastruct Pathol 16:615-628.
5.      Ware, L.B., and Matthay, M.A. 2000. The acute respiratory distress syndrome. N Engl J Med 342:1334-1349.
6.      Kawanami, O., Ferrans, V.J., and Crystal, R.G.  1982. Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest 46:39-53.
7.      Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823-835.
8.      Kubo, H., Hegab, A.E., He, M., Ishizawa, K., and Yamada, M. 2008. Endogenous lung stem cells increased after lung injury. Proc Am Thorac Soc 5:362-363.
9.      Hegab, A.E., Kubo, H., Yamaya, M., Asada, M., He, M., Fujino, N., Mizuno, S., and Nakamura, T. 2008. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther 16:1417-1426.
10.     Bortnick, A.E., Favari, E., Tao, J.Q., Francone, O.L., Reilly, M., Zhang, Y., Rothblat, G.H., and Bates, S.R.  2003. Identification and characterization of rodent ABCA1 in isolated type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 285:L869-878.
11.     Tropepe, V., Coles, B.L., Chiasson, B.J., Horsford, D.J., Elia, A.J., McInnes, R.R., and van der Kooy, D. 2000. Retinal stem cells in the adult mammalian eye. Science 287:2032-2036.
12.     Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315-317.
13.     Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., Yasuzawa-Amano, S., Trofimova, I., Siggins, R.W., Lecapitaine, N., et al. 2007. Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068-14073.
14.     Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., Tsukamoto, A.S., Gage, F.H., and Weissman, I.L. 2000. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720-14725.
15.     Craig, W., Kay, R., Cutler, R.L., and Lansdorp, P.M. 1993. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177:1331-1342.
16.     Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B., and Camussi, G. 2006. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24:2840-2850.
17.     Phelps, D.S., and Floros, J. 1991. Localization of pulmonary surfactant proteins using immunohistochemistry and tissue in situ hybridization. Exp Lung Res 17:985-995.
18.     Weiss, D.J., Kolls, J.K., Ortiz, L.A., Panoskaltsis-Mortari, A., and Prockop, D.J. 2008. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 5:637-667.
 
本発明より、ヒト肺組織には、SP-C+/CD90+細胞が存在し、自己複製能と肺胞上皮細胞への分化能を示すヒト組織幹細胞であることが明らかになった。また、SP-C+/CD90+細胞は、年齢とともにその数が低下することが分かった。このような肺胞上皮系に分化できる幹細胞は肺傷害後の組織修復に関与する細胞であるので、再生医療等の臨床上も非常に重要な細胞である。更に、このような細胞はヒト肺組織幹細胞を同定する新たなマーカー発見の材料としても有用であり、本発明で得られたヒト組織幹細胞の分化シグナル等を解析することによって、新たな創薬を提供することが可能となる。

Claims (11)

  1. ヒトの肺組織より構成細胞を単離抽出する工程、及び、得られた単離細胞より肺組織幹細胞を分離培養する工程を含む、II型肺胞上皮細胞マーカー及び幹細胞マーカーを同時に発現する細胞の調製方法。
  2. 該細胞がSP-C+/CD90+細胞である、請求項1記載の調製方法。
  3. 該細胞がヒト肺胞上皮細胞に分化することが出来るヒト肺組織幹細胞であることを特徴とする、請求項1又は2記載の調製方法。
  4. 単離抽出する工程において、ヒトの肺組織から胸膜を剥離除去した後、肺組織内へ中性プロテアーゼ溶液を注入し、その後、コラゲナーゼ、中性プロテアーゼ及びデオキシリボヌクレアーゼを含む溶液中で細胞を溶解することを含む、請求項1ないし3のいずれか一項に記載の調製方法。
  5. ヒト肺組織幹細胞を分離培養する工程において、マウス胎児線維芽細胞から成るフィーダー細胞を用いて培養することを含む、請求項1~4のいずれか一項に記載の調製方法。
  6. 請求項1~5のいずれか一項に記載の調製方法によって得られた、ヒト肺胞上皮細胞に分化することが出来るヒト肺組織幹細胞、又は、該細胞を継代培養して得られるヒト肺組織幹細胞。
  7. 請求項6記載のヒト肺組織幹細胞を培養することから成る、ヒト肺上皮細胞への分化誘導方法。
  8. 再構成基底膜組成物を用いる培養によって、I型肺胞上皮細胞が再構成基底膜組成物内部に、II型肺胞上皮細胞が再構成基底膜組成物下部から得られることを特徴とする、請求項7記載の分化誘導方法。
  9. 再構成基底膜組成物がマウス肉腫から抽出した可溶性基底膜調製品である、請求項7又は8記載の分化誘導方法。
  10. 請求項7~9のいずれか一項に記載の分化誘導方法によって調製されたヒト肺胞上皮細胞、又は、該ヒト肺胞上皮細胞を継代培養して得られるヒト肺胞上皮細胞。
  11. 請求項5記載のヒト肺組織幹細胞又は請求項9記載のヒト肺胞上皮細胞を用いることを特徴とする、スクリーニング方法。
PCT/JP2010/056447 2009-04-17 2010-04-09 ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法 WO2010119819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/264,694 US20120094304A1 (en) 2009-04-17 2010-04-09 Method of preparing human lung tissue stem cells and method of inducing differentiation into human alveolar epithelial cells
JP2011509275A JPWO2010119819A1 (ja) 2009-04-17 2010-04-09 ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法
EP10764403.1A EP2420566A4 (en) 2009-04-17 2010-04-09 METHOD FOR PREPARING HUMAN PULMONARY TISSUE STEM CELLS AND METHOD FOR INDUCING HUMAN ALVEOLAR EPITHELIAL CELL DIFFERENTIATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-100548 2009-04-17
JP2009100548 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119819A1 true WO2010119819A1 (ja) 2010-10-21

Family

ID=42982481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056447 WO2010119819A1 (ja) 2009-04-17 2010-04-09 ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法

Country Status (4)

Country Link
US (1) US20120094304A1 (ja)
EP (1) EP2420566A4 (ja)
JP (1) JPWO2010119819A1 (ja)
WO (1) WO2010119819A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513469A (ja) * 2013-03-15 2016-05-16 ザ ジャクソン ラボラトリー 非胚性幹細胞の単離とその使用
JPWO2018194124A1 (ja) * 2017-04-20 2020-02-27 学校法人慶應義塾 体細胞から肺胞上皮細胞への分化用試薬及びその使用
JP7319027B2 (ja) 2014-11-27 2023-08-01 コーニンクレッカ ネザーランド アカデミー ヴァン ウェテンシャッペン 培養培地
US11725184B2 (en) 2014-05-16 2023-08-15 Koninklijke Nederlandse Akademie Van Wetenschappen Culture method for organoids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533703A (ja) * 2016-11-02 2019-11-21 エーエーエル サイエンティフィックス,インコーポレイテッド 非間葉系ヒト肺幹細胞及び呼吸器疾患を治療するためのそれらの使用方法
CN112608879B (zh) * 2021-01-12 2022-08-12 北京大学 一种从胚胎干细胞分化获得肺上皮细胞的方法及其使用的培养基

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
JP2009514509A (ja) * 2005-10-17 2009-04-09 アカデミア シニカ 肺幹細胞および関連の方法およびキット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609412B2 (en) * 1999-08-05 2013-12-17 Regents Of The University Of Minnesota Mapc generation of lung tissue
GB0218332D0 (en) * 2002-08-07 2002-09-18 Imp College Innovations Ltd Preparation of type pneumocytes
WO2008103810A1 (en) * 2007-02-21 2008-08-28 Board Of Regents Of The University Of Texas System Method of preparing lung alveolar epithelial type ii cells derived from embryonic stem cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514509A (ja) * 2005-10-17 2009-04-09 アカデミア シニカ 肺幹細胞および関連の方法およびキット
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
ADAMSON, I.Y; BOWDEN, D.H.: "The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen", LAB INVEST, vol. 30, 1974, pages 35 - 42
ANDERSON, W.R.; THIELEN, K.: "Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy", ULTRASTRUCT PATHOL, vol. 16, 1992, pages 615 - 628
ASO, Y; YONEDA, K.; KIKKAWA, Y: "Morphologic and biochemical study of pulmonary changes induced by bleomycin in mice", LAB INVEST, vol. 35, 1976, pages 558 - 568
BEARZI, C.; ROTA, M.; HOSODA, T.; TILLMANNS, J.; NASCIMBENE, A.; DE ANGELIS, A.; YASUZAWA-AMANO, S.; TROFIMOVA, I.; SIGGINS, R.W.;: "Human cardiac stem cells", PROC NATL ACAD SCI U S A, vol. 104, 2007, pages 14068 - 14073
BENDER KIM C.F. ET AL.: "Identification of bronchioalveolar stem cells in normal lung and lung cancer.", CELL, vol. 121, no. 6, 2005, pages 823 - 835, XP008131911 *
BORTNICK A.E. ET AL.: "Identification and characterization of rodent ABCA1 in isolated type II pneumocytes.", AM J PHYSIOL LUNG CELL MOL PHYSIOL., vol. 285, no. 4, 2003, pages L869 - L878, XP055089989 *
BORTNICK, A.E.; FAVARI, E.; TAO, J.Q.; FRANCONE, O.L.; REILLY, M.; ZHANG, Y.; ROTHBLAT, G.H.; BATES, S.R.: "Identification and characterization of rodent ABCA1 in isolated type II pneumocytes", AM J PHYSIOL LUNG CELL MOL PHYSIOL, vol. 285, 2003, pages L869 - 878
CRAIG, W.; KAY, R.; CUTLER, R.L.; LANSDORP, P.M.: "Expression of Thy-1 on human hematopoietic progenitor cells", J EXP MED, vol. 177, 1993, pages 1331 - 1342
DOBBS L.G. ET AL.: "An improved method for isolating type II cells in high yield and purity.", AM REV RESPIR DIS., vol. 134, no. 1, 1986, pages 141 - 145, XP008025659 *
DOMINICI, M.; LE BLANC, K.; MUELLER, I.; SLAPER-CORTENBACH, I.; MARINI, F.; KRAUSE, D.; DEANS, R.; KEATING, A.; PROCKOP, D.; HORWI: "Minimal criteria for defining multipotent mesenchymal stromal cells", THE INTERNATIONAL SOCIETY FOR CELLULAR THERAPY POSITION STATEMENT. CYTOTHERAPY, vol. 8, 2006, pages 315 - 317
EVANS, M.J.; CABRAL, L.J.; STEPHENS, R.J.; FREEMAN, G.: "Transformation of alveolar type 2 cells to type 1 cells following exposure to N02", EXP MOL PATHOL, vol. 22, 1975, pages 142 - 150
EVANS, M.J.; CABRAL, L.J.; STEPHENS, R.J.; FREEMAN, G.: "Transformation of alveolar type 2 cells to type 1 cells following exposure to N02.", EXP MOL PATHOL, vol. 22, 1975, pages 142 - 150
HEGAB, A.E.; KUBO, H.; YAMAYA, M.; ASADA, M.; HE, M.; FUJINO, N.; MIZUNO, S.; NAKAMURA, T.: "Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema", MOL THER, vol. 16, 2008, pages 1417 - 1426
HERRERA, M.B.; BRUNO, S.; BUTTIGLIERI, S.; TETTA, C.; GATTI, S.; DEREGIBUS, M.C.; BUSSOLATI, B.; CAMUSSI, G.: "Isolation and characterization of a stem cell population from adult human liver", STEM CELLS, vol. 24, 2006, pages 2840 - 2850
KAWANAMI, 0.; FERRANS, V.J.; CRYSTAL, R.G.: "Structure of alveolar epithelial cells in patients with fibrotic lung disorders", LAB INVEST, vol. 46, 1982, pages 39 - 53
KAWANAMI, O.; FERRANS, V.J.; CRYSTAL, RG.: "Structure of alveolar epithelial cells in patients with fibrotic lung disorders", LAB INVEST, vol. 46, 1982, pages 39 - 53
KAZUHIRO SUGAHARA ET AL.: "Effector Saibo kara Mita Kokyuki Shikkan no Byotai Haiho Johi Saibo -Kino to Byohen Shufuku", LUNG PERSPECT, vol. 17, no. 2, 10 April 2009 (2009-04-10), pages 162 - 165 *
KIM, C.F.; JACKSON, E.L.; WOOLFENDEN, A.E.; LAWRENCE, S.; BABAR, I.; VOGEL, S.; CROWLEY, D.; BRONSON, R.T.; JACKS, T.: "Identification of bronchioalveolar stem cells in normal lung and lung cancer", CELL, vol. 121, 2005, pages 823 - 835
KUBO, H.; HEGAB, A.E.; HE, M.; ISHIZAWA, K.; YAMADA, M.: "Endogenous lung stem cells increased after lung injury", PROC AM THORAC SOC, vol. 5, 2008, pages 362 - 363
KUBO: "Hai no Saisei to Kansaibo", KOKYU TO JUNKAN, vol. 56, no. 3, 2008, pages 285 - 291, XP009174573 *
LAMA V.N. ET AL.: "Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts.", J CLIN INVEST., vol. 117, no. 4, 2007, pages 989 - 996, XP055089981 *
LAMA, V.N.; SMITH, L.; BADRI, L.; FLINT, A.; ANDREI, A.; MURRAY, S.; WANG, Z.; LIAO, H.; TOEWS, G.B.; KREBSBACH, P.H.: "Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts", J CLIN INVEST, vol. 117, 2007, pages 989 - 996
NAOYA FUJINO ET AL.: "Haiho Johi Saibo Marker no Hatsugen o Shimesu Hito Hai Soshiki Kan'yokei Saibo no Tanri", REGENERATIVE MEDICINE, vol. 8, 2009, pages 187, XP001526450 *
NAOYA FUJINO ET AL.: "Hito Haiho Johi II-gata Zenku Saibo no Bunri", REGENERATIVE MEDICINE, vol. 9, 5 February 2010 (2010-02-05), pages 253 *
PHELPS, D.S.; FLOROS, J.: "Localization of pulmonary surfactant proteins using immunohistochemistry and tissue in situ hybridization", EXP LUNG RES, vol. 17, 1991, pages 985 - 995
See also references of EP2420566A4 *
SUMMER R ET AL.: "Isolation of an adult mouse lung mesenchymal progenitor cell population.", AM J RESPIR CELL MOL BIOL., vol. 37, no. 2, 2007, pages 152 - 159, XP055089991 *
TROPEPE, V.; COLES, B.L.; CHIASSON, B.J.; HORSFORD, D.J.; ELIA, A.J.; MCINNES, R.R.; VAN DER KOOY, D.: "Retinal stem cells in the adult mammalian eye", SCIENCE, vol. 287, 2000, pages 2032 - 2036
UCHIDA, N.; BUCK, D.W.; HE, D.; REITSMA, M.J.; MASEK, M.; PHAN, T.V.; TSUKAMOTO, A.S.; GAGE, F.H.; WEISSMAN, I.L.: "Direct isolation of human central nervous system stem cells", PROC NATL ACAD SCI U S A, vol. 97, 2000, pages 14720 - 14725
WARE, L.B.; MATTHAY, M.A.: "The acute respiratory distress syndrome", N ENGL J MED, vol. 342, 2000, pages 1334 - 1349
WEISS, D.J.; KOLLS, J.K.; ORTIZ, L.A.; PANOSKALTSIS-MORTARI, A.; PROCKOP, D.J.: "Stem cells and cell therapies in lung biology and lung diseases", PROC AM THORAC SOC, vol. 5, 2008, pages 637 - 667
YUJI KUBO: "Shikkan no Byoin to Byotai 7. Hai Sonsho to Shufuku no Mechanism", ANNUAL REVIEW KOKYUKI, 2008, pages 113 - 119 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513469A (ja) * 2013-03-15 2016-05-16 ザ ジャクソン ラボラトリー 非胚性幹細胞の単離とその使用
JP2020018321A (ja) * 2013-03-15 2020-02-06 ザ ジャクソン ラボラトリーThe Jackson Laboratory 非胚性幹細胞の単離とその使用
US11725184B2 (en) 2014-05-16 2023-08-15 Koninklijke Nederlandse Akademie Van Wetenschappen Culture method for organoids
JP7319027B2 (ja) 2014-11-27 2023-08-01 コーニンクレッカ ネザーランド アカデミー ヴァン ウェテンシャッペン 培養培地
JPWO2018194124A1 (ja) * 2017-04-20 2020-02-27 学校法人慶應義塾 体細胞から肺胞上皮細胞への分化用試薬及びその使用
US11718831B2 (en) 2017-04-20 2023-08-08 Keio University Reagent for differentiating somatic cells into alveolar epithelial cells, and use of said reagent
JP7356626B2 (ja) 2017-04-20 2023-10-05 国立大学法人東海国立大学機構 体細胞から肺胞上皮細胞への分化用試薬及びその使用

Also Published As

Publication number Publication date
US20120094304A1 (en) 2012-04-19
JPWO2010119819A1 (ja) 2012-10-22
EP2420566A1 (en) 2012-02-22
EP2420566A4 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
AU2009343787B2 (en) Isolation of human umbilical cord blood-derived mesenchymal stem cells
Szaraz et al. In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells
Letouzey et al. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium
US9546353B2 (en) Optimized and defined method for isolation and preservation of precursor cells from human umbilical cord
Xu et al. Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell‐like differentiative capacity
van Riet et al. Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial Lung-Chip cultures
WO2010119819A1 (ja) ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法
US20150175970A1 (en) Cells for therapy of the heart, method of obtaining a cell preparation, and cell preparation
JP7286651B2 (ja) 間葉系間質細胞及び臍帯から間葉系間質細胞を得るための方法
Toyoda et al. Multilineage-differentiating stress-enduring (Muse)-like cells exist in synovial tissue
Wu et al. Umbilical cord blood-derived non-hematopoietic stem cells retrieved and expanded on bone marrow-derived extracellular matrix display pluripotent characteristics
Gao et al. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration
Calenic et al. Characterization of oral keratinocyte stem cells and prospects of its differentiation to oral epithelial equivalents
US9700585B2 (en) Multipotent prenatal stem cells
Mazza et al. Marker profile for the evaluation of human umbilical artery smooth muscle cell quality obtained by different isolation and culture methods
JP6188075B2 (ja) 末梢組織の毛細血管構成細胞の不死化細胞株
Dorazehi et al. Potential use of amniotic membrane-derived scaffold for cerebrospinal fluid applications
Iachininoto et al. In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit+ cells
JP2022522973A (ja) ヒト臍帯間葉系幹細胞シート及びその製造方法
Hayashi et al. A basic study on self-reconstitution of alveolar epithelium-like cells by tissue stem cells in mouse lung
Kazemnejad et al. Role of Wnt signaling on proliferation of menstrual blood derived stem cells
RU2793467C2 (ru) Мезенхимальные стромальные клетки и способы получения мезенхимальных стромальных клеток из пуповины
RU2366706C1 (ru) Способ получения и индукции направленной дифференцировки культуры мультипотентных клеток сердца для клеточной терапии и/или тканевой инженерии в зоне ишемии миокарда
Gao et al. WJSC
Riet an, Schadewi k,. an, Khedoe, PPS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764403

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011509275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010764403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13264694

Country of ref document: US