WO2010118873A1 - Vektor für den transport von mikrobiologischen organismen zu krankheitsherden - Google Patents

Vektor für den transport von mikrobiologischen organismen zu krankheitsherden Download PDF

Info

Publication number
WO2010118873A1
WO2010118873A1 PCT/EP2010/002327 EP2010002327W WO2010118873A1 WO 2010118873 A1 WO2010118873 A1 WO 2010118873A1 EP 2010002327 W EP2010002327 W EP 2010002327W WO 2010118873 A1 WO2010118873 A1 WO 2010118873A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
vector according
cells
group
cancer
Prior art date
Application number
PCT/EP2010/002327
Other languages
English (en)
French (fr)
Other versions
WO2010118873A8 (de
Inventor
Ute Steinfeld
Hyeck-Hee Lee
Jong-Oh Park
Ruth Eggers
Original Assignee
Kist-Europe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kist-Europe filed Critical Kist-Europe
Publication of WO2010118873A1 publication Critical patent/WO2010118873A1/de
Publication of WO2010118873A8 publication Critical patent/WO2010118873A8/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/18Erythrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/68Protozoa, e.g. flagella, amoebas, sporozoans, plasmodium or toxoplasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a protected and directed transport of bacteria or bacterial derived drug into human immune cells for the purpose of therapy and / or diagnosis and / or theranostics of diseased / degenerated tissues (e.g., cancer).
  • diseased / degenerated tissues e.g., cancer
  • a vector comprising at least one immune cell, stem cell or erythrocytes and incorporated therein at least one microbiological organism selected from the group consisting of bacteria, bacterial spores, mini-cells, constrictions or budding of bacteria and / or nucleolar materials, carcinogenic substances, viruses and / or substances for diagnostics.
  • the present invention thus relates to the transport of bacteria or bacteria-derived drugs by appropriate cells of the immune system to the focus.
  • a component of the concept is a therapy by means of bacteria or bacteria derived from bacteria. Carcinogenic mechanisms are used that have bacteria naturally or that are achieved by modification of the bacterial genome. Also, the bacteria can be loaded with drugs. Second component is the targeted positioning and the protected cells.
  • the encapsulated active substance is ex vivo into immune cells, stem cells or erythrocytes of the patient. After re-injection of the loaded immune cells into the blood system, they migrate via chemotaxis to the site of the disease, where they migrate through the epithelium into the diseased tissue and release the active ingredient directly at the site of the disease (eg tumor). Another possibility is to keep the bacteria in
  • Bacteria vary greatly in size and shape.
  • the size of bacteria ranges from 0.1 microns, which is the size of the largest known viruses, up to a diameter of 600 microns, a distance that is visible to the human eye.
  • the smallest bacteria include some members of the genus Mycoplasmas whose diameter is between 100 and 200nm.
  • Pathogenic and non-pathogenic, genetically modified and non-genetically modified bacteria can be used.
  • the genetic modification can serve, for example, to attenuate the human immunogenic properties of the bacteria. Or the production of a therapeutic substance.
  • the bacterium can be genetically provided with a biomarker, which allows the visualization of the diseased region, eg the dimensions of the tumor.
  • the bacteria can be loaded with encapsulated or unencapsulated magnetic nanoparticles, ferrofluids, magnetic colloids or magnetic fluids.
  • a possible entry The field of application here is magnetic resonance tomography.
  • the bacteria can be loaded with encapsulated or non-encapsulated contrast agents for use, for example, in X-ray diagnostics, magnetic resonance tomography (MRI) and sonography.
  • Non-human bacteria such as Vibrio may also have an antitumour effect, Shimizu et al.
  • the auxotrophy of bacteria such as Salmonella typhimurium severely limits the growth of these bacteria in normal body tissues. Hoffmann was able to develop effective bacterial therapy with S. typhimurium and show its efficacy in mice. In principle, as an alternative to bacteria, their spores can be used. These are more resistant to pH or temperature changes or toxic substances as they occur in encapsulation processes.
  • Diameter of 400 nm from bacteria filled with a carcinogenic substance overexpressed by the bacteria MacDiarmid et al. Nucleolar materials, such as. B. itiRNA or siRNA, which are introduced directly into the capsule.
  • antibiotics are also suitable for administration via the capsules.
  • the carriers of the encapsulated therapeutic agent are immune cells or stem cells that are part of the naive immune system. They include the encapsulated tumor agent via endocytosis or other internalizing cell-specific mechanisms, supported by the use of magnetic forces or others.
  • the cells to be used include among the granulocytes, for example, the eosinophils, which are chemotactically active and capable of phagocytosis. However, they do not leave the bloodstream, which limits the field of application.
  • the neutrophilic granulocytes can also take up bacteria via phagocytosis. Neutrophils can also actively exit the blood vessels and chemotactically, ie, target the tissue through.
  • monocytes these patrol the bloodstream and will actively move through chemotaxis to foreign tissues such as a tumor or a Bacteria or other foreign substances. If these are located in the body tissues, monocytes migrate over the blood vessel epithelium, where they differentiate into macrophages and as such, for example, fight cancer. Also lymphocytes can be used in the context of the invention for capsule transport, here are available the T cells, B cells and the natural killer cells. Also, immune cells that are genetically altered are encompassed by the invention, eg, T cells with a T cell receptor mutation used in Adaptive T-cell transfer therapy (Dudley, ME, Rosenberg, SA, Adoptive Cell Transfer Therapy Semin Oncol 2007 December; 34 (6): 524-531).
  • Advantageous bacteria or bacterial spores are selected from the group consisting of genetically alterable bacteria, in particular bacteria of the genera Bifidobacterium, e.g. Bifidobacterium langum, Clodistrium, e.g. Clodistrium novyi, salmonella, e.g. Salmonella typhimurium, Vibrio, E-scheria, e.g. Escheria choli, combinations thereof and / or their spores, constrictions or budding.
  • Bifidobacterium e.g. Bifidobacterium langum
  • Clodistrium e.g. Clodistrium novyi
  • salmonella e.g. Salmonella typhimurium
  • Vibrio E-scheria, e.g. Escheria choli, combinations thereof and / or their spores, constrictions or budding.
  • nucleolar materials mRNA and / or siRNA can be used, while advantageous carcinogenic substances are selected from the group consisting of antibiotics; Cytostatic agents, such as antimetabolites, eg methotrexate, topoisome ras inhibitors, eg topotecan, taxanes, eg docetaxel, mitosis inhibitors, eg vincristine, intercalants, eg the anthracycline doxorubicin, tetracyclines, eg doxocycline, nucleic base analogs, eg fluorouracil, platin analogues, eg Carboplatin, alkylating agents, eg chlorobucil; Chemotherapeutic agents, such as antivirals, Angiogenesis inhibitors, antimycotics and anthelmintics and combinations thereof.
  • antibiotics such as antimetabolites, eg methotrexate, topoisome ras inhibitors, eg topotecan
  • Preferred immune cells are selected from the group of leukocytes, consisting in particular of monocytes, macrophages, dendritic cells, mast cells, B lymphocytes, T lymphocytes, NK cells, neutrophil granulocytes, eosinophilic granulocytes, basophilic granulocytes and combinations thereof.
  • the immune cell contains nanoparticles, preferably magnetic nanoparticles and microparticles, e.g. Liposomes or polymer-based particles.
  • chemotherapeutic agent preferably selected from the group consisting of antibiotics; Cytostatics, such as Antimetabolites, topoisomerase inhibitors, taxanes, mitosis inhibitors, intercalants, tetracyclines, nucleic acid analogs, platinum analogs, alkylanates, chemotherapeutics, such as. Virstatika, antimycotics and anthelminthics and combinations thereof is loaded.
  • the specificity of the immune cells to the disease foci is determined by surface proteins that express the immune cell and present on its surface, and through specific protein sections (peptides) that express foreign cells and that presents the immune cell on its surface.
  • the binding is also mediated by antibodies. In order to increase the specificity of the binding, retargeting
  • the capsule material is in particular selected from the group consisting of gellan, xanthan, calcium alginate, ammonium alginate, gallane, gum, gelatin, starch, polymers, e.g. Phospholipid dextrans, calcium phosphates, chitosans, polylysine derivatives, polyethylene glycol and / or mixtures thereof.
  • the capsule material may also contain at least one substance which attacks and kills the immune cell, stem cell or erythrocytes, so that the capsule is released, in particular substances selected from cytotoxic substances, e.g. from the group of antibiotics, e.g. Doxorubicin.
  • microencapsulation in the food industry
  • spray drying extrusion, phase and emulsion removal methods.
  • EncapBioSystems Ine. have developed the "Inotech's Encapsulator" for encapsulation of microorganisms using a technology that tears a laminar jet of fluid into uniformly sized droplets by overlapping vibrations, by changing the nozzles or changing the composition of the solution
  • the particle size can be reduced, as they are currently just under 100 ⁇ m, even more than the size that is practical for our application lies .
  • a polymer mixture is polymerized out into nanoscale fibers, forming mats of nanofibers capable of encapsulating microorganisms.
  • polymers form a particle in solution around a crystallization point.
  • the bacterium can be used as a crystallization point.
  • the excessively large fractions can be sorted out by means of an analytical sieve.
  • the survival rate of the encapsulated bacteria can be increased by placing them before encapsulation with the e.g. adapted to acidic environment, Shah has shown this for Lactobacillus acidophilus.
  • anaerophilic bacteria care must be taken to ensure an oxygen-free atmosphere during the encapsulation process.
  • the production time must be as short as possible to ensure a high survival rate of the bacteria.
  • the encapsulation material must be made of biocompatible materials. It should be stable under physiological conditions in the cytosol or in endocytic and phagocytic vesicles of human immune cells.
  • Microencapsulation method based on the formation of a calcium alginate gel capsule.
  • the excipients used for the micro-encapsulation of probiotic bacteria are usually gallan, gum, gelatin and starch, Kailasapathy.
  • material compositions are to be tested which encapsulate the bacteria over a certain time frame, but release it after a while.
  • the release of the capsule content is intended to be controlled, for example, via the stability of the capsule material in the immune cells.
  • Endocytic particles here capsule with bacteria
  • Endocytic particles are acidified in endosomes and attacked by various enzymes.
  • the goal is the release within a defined time window.
  • Another possibility is one about a chemical stimulus or physical Chinese stimulus, eg microwaves, radio waves, ultrasound, heat, radiofrequency field, induced release of the capsule contents. It can also release an active substance that damages the immune cell so that it can release the bacteria.
  • the vector according to the invention is suitable for use as a medicament.
  • the vector is particularly suitable as a therapeutic for especially breast cancer, renal cell carcinoma, malignant melanoma, colon carcinoma, rectal cancer, small intestine cancer, cervical carcinoma, endometrial carcinoma, sarcomas of the uterus, bladder cancer, Plattenepitherkrebs, endometrium carcinoma of the lung, adenocarcinoma, large and / or small cell bronchial carcinomas , malignant lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell leukemia, chronic lymphocytic leukemia, carcinoma of the stomach, prostate cancer, leukemia or metastatic breast or ovarian tumors, metastatic lung cancer; inflammation; Infections and / or diseases of bacterial or parasitic origin
  • Immune cells migrate chemotactically by detecting tumor markers and making them accessible. Bacterial therapy can also be used in combination with conventional chemotherapy. Dang et al. have been able to show that
  • all diseased / degenerated tissues in the body can be treated, which emit chemotactic stimuli, responding to the immune cells of the body with a directed movement towards the focus of the disease.
  • Theranostics essentially use in vitro diagnostic methods, such as DNA chip technologies. Imaging techniques, especially molecular imaging, will continue to grow in importance for early diagnosis. Thus, diagnoses can be made at a very early stage in the disease process, even before the molecular changes in anatomical restructuring show up. For example, tumors could be diagnosed up to 7 years earlier than with current techniques, Hengerer et al.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft einen geschützten und gerichteten Transport von Bakterien bzw. von Bakterien abgeleiteten Wirkstoff in humanen Immunzellen zum Zweck der Therapie und/oder Diagnostik und/oder Theranostik von kranken/degenerierten Geweben (z.B. Krebs).

Description

Vektor für den Transport von mikrobiologischen Organismen zu Krankheitsherden
Die vorliegende Erfindung betrifft einen geschützten und gerichteten Transport von Bakterien bzw. von Bakterien abgeleiteten Wirkstoff in humanen Immunzellen zum Zweck der Therapie und/oder Diagnostik und/oder Theranostik von kranken/degenerierten Geweben (z.B. Krebs) .
Bei der Karzinogenese fuhren Mutationen in den Protoonkogenen oder Tumorsuppressorgenen zu genetischen Defekten in den Folgegenerationen. Liegen mehrere Mutationen vor, so potenziert sich dieser Effekt. Wenn auch Apoptose-Gene betroffen sind, so kann der programmierte Zelltod nicht mehr ablaufen, es kommt zu einem unkontrollierten Wuchern der Gewebe, dem Krebs. Zur Bekämpfung dieses Krebsgewebes werden heute verschiedene Methoden unter anderem eine Chemotherapie eingesetzt. Hierbei werden dem Patienten für die Tumorzellen chemische/toxische Substanzen verabreicht, die die Zelle in der Regel in ihrer Replikationsfä- higkeit behindern. Da es sich beim Tumor um körperei- genes Gewebe handelt, sind diese Substanzen auch für andere sich schnell teilende Körperzellen wie Haarzellen schädlich. Dadurch werden zahlreiche Nebenwirkungen beim Krebspatienten verursacht, die zum einen den Heilungsprozess behindern und zum anderen die zu verabreichende Medikamenten-Menge begrenzen.
Ein relativ neuer Ansatz in der Krebstherapie nutzt die krebsbekämpfende Wirkung von Bakterien. Worauf diese beruht ist nicht bekannt, man vermutet eine Stimulierung des Immunsystems durch die bakterielle
Infektion, Agrawal et al . Ein Ansatz, der in der Forschung zurzeit verfolgt wird, ist der Transport von nuklearen cancerogenen Substanzen zum Tumor über Bakterien. Für diese Anwendung müssen die Bakterien ge- netisch zusätzlich so verändert werden, dass sie ihre immunogenen Wirkung weitgehend verlieren. Trotzdem sind Nebenwirkungen aktuell zu hoch, als dass eine Behandlung als sinnvoll erscheint.
Aufgabe der vorliegenden Erfindung ist es somit, einen Vektor anzugeben, der einen effizienten und spezifischen Transport von Therapeutika und/oder Di- agnostika zu einem Krankheitsherd, insbesondere Tumoren, ermöglicht.
Diese Aufgabe wird bezüglich des Vektors mit den Merkmalen des Patentanspruchs 1 gelöst. Mit den Patentansprüchen 12 bis 14 werden Verwendungszwecke des Vektors angegeben.
Erfindungsgemäß wird somit ein Vektor bereitgestellt, umfassend mindestens eine Immun2elle, Stammzelle oder Erythrozyten sowie darin inkorporiert mindestens einen mikrobiologischen Organismus ausgewählt aus der Gruppe bestehend aus Bakterien, bakteriellen Sporen, Mini-Zellen, Abschnürungen oder Abknospungen von Bakterien und/oder nukleoläre Materialien, cancerogene Substanzen, Viren und/oder Substanzen für die Diagnostik.
Vorliegende Erfindung betrifft somit den Transport von Bakterien bzw. von Bakterien abgeleiteten Wirkstoffen durch geeignete Zellen des Immunsystems zum Krankheitsherd. Ein Bestandteil des Konzeptes ist eine Therapie mittels Bakterien bzw. von Bakterien ab- geleiteten Wirkstoffen. Dabei werden cancerogene Mechanismen genutzt, die Bakterien natürlicher Weise haben oder die durch Modifikation des bakteriellen Genoms erreicht werden. Auch können die Bakterien mit Wirkstoffen beladen werden. Zweiter Bestandteil ist die gerichtete Positionierung und der geschützte
Transport des Medikamentes (in der Regel des Bakteriums) um Nebenwirkungen der Behandlung zu minimieren. Dazu wird der verkapselte Wirkstoff ex vivo in Immunzellen, Stammzellen oder Erythrozyten des Patienten geschleust. Nach der Reinjektion der beladenen Immunzellen in das Blutsystem wandern diese über Chemotaxis zum Krankheitsherd, wo sie über das Epithel in das erkrankte Gewebe migrieren und direkt am Krankheitsherd (z.B. Tumor) den Wirkstoff freisetzen. Eine andere Möglichkeit besteht darin, die Bakterien im
Bereich des erkrankten Gewebes noch im Blutgefäß aus den Immunzellen freizulassen. Die Bakterien migrieren dann durch Chemotaxis über das Epithel des Blutgefäßes und weiter zum Krankheitsherd, den sie zerstören (Abb. 1-3) . Die Kombination dieser Aspekte bietet den Vorteil, dass die Nebenwirkungen der Therapie reduziert werden. Das beruht darauf, dass Bakterien in Zellen des Immunsystems verpackt werden, um sowohl die Bakteri- enzellen vor der Beseitigung durch das Immunsystem, als auch den Körper vor den Nebenwirkungen zu schützen. Durch die Bekämpfung der Bakterien durch das Immunsystem würde zum einen ihre Anzahl minimiert, was die Effektivität der Bakterien-Therapie stark verrin- gert, zum Anderen wird durch die Immunantwort mit nachfolgender Entzündungsreaktion etc. der Patient stark geschwächt, was in Extremfällen zum Tode führen kann.
Bakterien variieren stark in Größe und Form. Die Größe von Bakterien reicht von 0,1 μm, das entspricht der Größe der größten bekannten Viren, bis zu einem Durchmesser von 600 μm, einer Distanz, die für das menschliche Auge sichtbar ist. Zu den kleinsten Bak- terien gehören einige Mitglieder der Gattung der Mycoplasmen, deren Durchmesser zwischen 100 und 200nm liegt .
Eingesetzt werden können pathogene und nicht pathoge- ne, genetisch veränderte und nicht genetisch veränderte Bakterien. Die genetische Modifikation kann z.B. der Abschwächung der human immunogenen Eigenschaften der Bakterien dienen. Oder der Produktion einer therapeutischen Substanz. Für diagnostische Zwecke kann das Bakterium genetisch mit einem Biomar- ker versehen werden, der die bildliche Darstellung der erkrankten Region, z.B. die Ausmaße des Tumors ermöglicht. Hierzu können die Bakterien mit verkapselten oder nicht verkapselten magnetischen Nanopar- tikeln, Ferrofluiden, magnetischen Kolloiden oder magnetischen Fluiden beladen sein. Ein mögliches Ein- satzgebiet ist hierbei die Kernspintomographie. Des Weiteren können die Bakterien mit verkapselten oder nicht verkapselten Kontrastmitteln für den Einsatz z.B. in der Röntgendiagnostik, der Magnetresonanzto- mografie (MRT) und der Sonografie beladen sein.
Toxische Eigenschaften von Bakterien gegenüber Tumoren und eine gezielte chemotaktische Bewegung zum Tumor hin konnten unter anderem .bereits für folgende Bakterien-Stämme nachgewiesen werden. Yazawa et al . konnten zeigen, dass Bifidobakterium langum, das intravenös verabreicht wurde, selektiv in hypoxischen Regionen von soliden Tumoren auskeimt und wächst . Vogelstein et al . entfernten bei einem Clostridium no- vyi das letale Toxin und konnten zeigen, dass der so gewonnene Stamm C. novyi NT in avaskulären Regionen von in Mäusen gepflanzten Tumoren auskeimten und das umliegende Gewebe zerstörten. Für weniger toxische Salmonella typhimurium-Stämme konnte nachgewiesen werden, dass diese sich vorzugsweise in Tumoren ansammeln und dort therapeutische Moleküle, wie Prodrug-umsetzende Enzyme exprimierten. Hoffmann et al . reisolierten S. typhimurium aus humanen Darmkrebs-Tumoren, die Mäusen eingepflanzt wurden und konnten für diese Bakterien sowohl in vivo, als auch in vitro eine erhöhte Tumor-Targeting-Fähigkeit nachweisen, Min et al . Auch nicht humane Bakterien, wie Vibrio können einen Antitumor-Effekt haben, Shimizu et al.
Die Auxotrophie von Bakterien wie Salmonella typhimurium schränkt das Wachstum dieser Bakterien in normalen Körpergeweben stark ein. Hoffmann konnte eine effektive Bakterientherapie mit S. typhimurium entwi- ekeln und deren Wirksamkeit in Mäusen zeigen. Grundsätzlich können alternativ zu Bakterien deren Sporen eingesetzt werden. Diese sind resistenter gegenüber pH-Wert oder Temperatur-Änderungen oder toxischen Stoffen wie sie bei Verkapselungsprozessen auf- treten.
Es können noch weitere Substanzen eingekapselt werden:
Mini-cells, Abschnürungen/Abknospungen mit einem
Durchmesser von 400 nm von Bakterien, die mit einer von den Bakterien überexprimierten, cancerogenen Substanz gefüllt sind, MacDiarmid et al . Nukleoläre Materialien, wie z. B. itiRNA oder siRNA, die direkt in die Kapsel eingeschleust werden. Als cancerogen aktive Substanz kommen auch Antibiotika für die Applikation über die Kapseln in Frage.
Als Carrier des verkapselten Therapeutikums dienen Immunzellen oder Stammzellen, die Bestandteil des naiven Immunsystems sind. Sie nehmen das verkapselte Tumormittel über Endozytose oder andere internalisie- rende zellspezifische Mechanismen auf, technisch unterstütz z.B. durch Nutzung von Magnetkräften oder anderem. Zu den einzusetzenden Zellen gehören unter den Granulozyten zum Beispiel die Eosinophilen, die chemotaktisch aktiv sind und zur Phagozytose fähig. Sie verlassen die Blutbahn allerdings nicht, was das Anwendungsgebiet einschränkt. Auch die Neutrophilen Granulozyten können z.B. Bakterien über Phagozytose aufnehmen. Neutrophile können auch aktiv die Blutgefäße verlassen und chemotaktisch, d.h. zielgerichtet das Gewebe durchwandern. Der Schwerpunkt soll auf dem Einsatz von Monozyten liegen, diese patrouillieren im Blutkreislauf und werden bewegen sich aktiv über Chemotaxis zu Fremdgeweben wie einem Tumor oder einem Bakterium bzw. anderen Fremdstoffen hin. Liegen diese in den Körpergeweben, so migrieren Monozyten über das Blutgefäßepithel, wobei sie zu Makrophagen ausdifferenzieren und als solche z.B. den Krebs bekämpfen. Auch Lymphozyten können im Rahmen der Erfindung zum Kapseltransport eingesetzt werden, hier stehen zur Verfügung die T- Zellen, B- Zellen und die natürlichen Killerzellen. Auch Immunzellen, die genetisch verändert sind, sind durch die Erfindung umfasst, z.B. T- Zellen mit einer Mutation des T-Zell-Rezeptors, die in der Adaptiven T-ZeIl Transfer Therapie eingesetzt werden (Dudley, ME, Rosenberg, SA. Adoptive Cell Transfer Therapy Semin Oncol. 2007 December; 34 (6) : 524-531) .
Vorteilhafte Bakterien oder bakterielle Sporen sind dabei ausgewählt aus der Gruppe bestehend aus genetisch veränderbaren Bakterien, insbesondere aus Bakterien der Gattungen Bifidobakterium, z.B. Bifidobak- terium langum, Clodistrium, z.B. Clodistrium novyi , Salmonellen, z.B. Salmonella typhimurium, Vibrio, E- scheria, z.B. Escheria Choli, Kombinationen hieraus und/oder deren Sporen, Abschnürungen oder Abknospun- gen.
Als bevorzugte nukleoläre Materialien können mRNA und/oder siRNA eingesetzt werden, während vorteilhafte cancerogene Substanzen dabei ausgewählt sind aus der Gruppe bestehend aus Antibiotika; Cytostatika, wie z.B. Antimetabolite, z.B. Methotrexat, Topoisome- rasehemmer, z.B. Topotecan, Taxane, z.B. Docetaxel, Mitosehemmer, z.B. Vincristin, Interkalantien, z.B. das Anthrazyklin Doxorubicin, Tetracycline, z.B. Do- xocyclin, Nucleinbaseanaloga, z.B. Fluoruracil, PIa- tinanaloga, z.B. Carboplatin, Alkylantien, z.B. ChIo- rambucil; Chemotherapeutika, wie z.B. Virusstatika, Angiogenese-Inhibitoren, Antimykotika und Anthel- minthika sowie Kombinationen hieraus .
Bevorzugte Immunzellen sind dabei ausgewählt aus der Gruppe der Leukozyten, bestehend aus insbesondere Monozyten, Makrophagen, Dendritische Zellen, Mastzellen, B-Lymphozyten, T-Lymphozyten, NK-Zellen, neutro- philen Granulozyten, eosinophilen Granulozyten, basophilen Granulozyten sowie Kombinationen hieraus .
In einer weiteren vorteilhaften Ausführungsform des Vektors beinhaltet die Immunzelle Nanopartikel, bevorzugt magnetische Nanopartikel sowie Mikroparti- keln, z.B. Liposomen oder Polymer-basierende Parti - kel.
Weiter vorteilhaft ist, wenn der mikrobiologische Organismus mit einem Chemotherapeutikum, bevorzugt ausgewählt aus der Gruppe bestehend aus Antibiotika; Cy- tostatika, wie z.B. Antimetabolite, Topoisomerasehem- tner, Taxane, Mitosehemmer, Interkalantien, Tetracyclinen , Nucleinbaseanaloga, Platinanaloga, Alkylan- tien,- Chemotherapeutika, wie z.B. Virusstatika, Antimykotika und Anthelminthika sowie Kombinationen hier- aus beladen ist.
Die Spezifität der Immunzellen gegenüber den Krankheitsherden, wie beispielsweise Tumorzellen, wird bestimmt durch Oberflächenproteine, die die Immunzelle exprimiert und auf ihrer Oberfläche präsentiert und durch spezifische Proteinabschnitte (Peptide) , die fremde Zellen exprimieren und die die Immunzelle auf ihrer Oberfläche präsentiert. Die Bindung wird unter anderem auch durch Antikörper vermittelt. Um die Spe- zifität der Bindung zu erhöhen, sollen Retargeting-
Strategien eingesetzt werden, das heißt dass das Tar- geting/die Bindung u.a. durch synthetisch hergestellte Antikörper, z.B. mono-/bi- und tri- und multispezifische Antikörper vermittelt wird.
Ebenso ist es dabei von Vorteil, wenn die in der Immun- oder der Stammzelle inkorporierten Organismen bzw. nukleolären Materialien etc. verkapselt vorliegen. Das Kapselmaterial ist dabei insbesondere ausgewählt aus der Gruppe bestehend aus Gellan, Xanthan, Calciumalginat, Ammoniumalginat , Gallan, Gummi, Gelatine, Stärke, Polymere, z.B. Phospholipid-Dextrane, Calciumphosphate, Chitosane, Polylysin-Derivate, Po- lyethylenglycol und/oder Mischungen hieraus .
Dabei kann das Kapselmaterial auch mindestens eine Substanz enthalten, die die Immunzelle, Stammzelle oder die Erythrozyten angreift und abtötet, so dass die Kapsel freigesetzt wird, insbesondere Substanzen ausgewählt aus cytotoxische Substanzen, z.B. aus der Gruppe der Antibiotika, z.B. Doxorubicin.
Übliche Methoden für die Mikroverkapselung (im Lebensmittelbereich) beinhalten die Sprühtrocknung, das Extrudierverfahren, Phasen- bzw. Emulsions-Entmi- schungsverfahren.
EncapBioSystems Ine . haben für die Verkapselung für Mikroorganismen den „Inotech's Encapsulator" entwickelt. Die hierbei angewandte Technologie beruht auf dem Prinzip, dass ein laminarer Flüssigkeitsstrahl durch sich überlagernde Vibrationen in einheitlich dimensionierte Tropfen zerrissen werden. Durch eine Veränderung der Düsen oder eine Änderung der Zusammensetzung der Lösung kann die Partikelgröße verklei- nert werden, da diese zurzeit mit knapp 100 μm noch über der für unsere Anwendung praktikablen Größe liegt .
Techninion Research & Development Foundation haben eine Methode zur Verkapselung von Mikroorganismen mittels Nanofasern entwickelt. Beim sogenannten
„Elektrospinning" wird durch Anlegen einer Spannung eine Polymer-Mischung zu nanoskaligen Fasern auspoly- merisiert. Dabei bilden sich Matten aus Nanofasern, die in der Lage sind, Mikroorganismen einzukapseln.
Ein weiterer Ansatzpunkt stellt die Nano-Verkapselung von Einzel-Zellen in Dispersion dar, siehe Edd et al . Hier werden einzelne Zellen in Nanodrops eingeschlossen, mit einer anschließenden Auspolymerisation des Tropfenmaterials ließen sich so evtl. Partikel gewinnen.
Bei der Dispersionspolymerisation bilden Polymere in Lösung um einen Kristallisationspunkt herum einen Partikel. Für eine Verkapselung kann z.B. das Bakterium als Kristallisationspunkt genutzt werden.
Bei einer großen Diversität des Kapsel-Durchmessers können die zu großen Fraktionen mittels eines Analy- sesiebes aussortiert werden.
Die Überlebensrate der verkapselten Bakterien lässt sich erhöhen, indem man sie vor der Verkapselung an die z.B. saure Umgebung adaptiert, Shah hat dies für Lactobacillus acidophilus gezeigt. Bei anaerophilen Bakterien muss beim Verkapselungs-Prozess auf eine Sauerstofffreie Atmosphäre geachtet werden. Die Produktionszeit muss, um eine hohe Überlebensrate der Bakterien zu gewährleisten, so kurz wie möglich sein.
Das Verkapselungsmaterial muss aus biokompatiblen Ma- terialien sein. Sie soll unter physiologischen Bedingungen im Cytosol bzw. in endozytotischen und phagozytotischen Vesikeln von humanen Immunzellen stabil vorliegen.
In der Lebensmittelproduktion ist es üblich, Bakterien in Agar-basierte Medien zu verpacken, Shah. Diese werden den Bedürfnissen der zu verkapselnden Mikroorganismen entsprechend mit Zusätzen wie Zuckern ver- setzt. McMaster et al . konnten Bifidobakterium lactis in Mischung aus hydriertem Gellan (Mehrfachzucker) und Xanthan (Verdickungs- und Geliermittel, E 415) verkapseln. Lee et al. haben Bifidobakterium longum in Calciumalginat (E 404) , versetzt mit Ammoniumalgi- nat (E 403) verkapselt. Eine häufig beschriebene
Mikroverkapselungs-Methode basiert auf der Bildung einer Kalziumalginat-Gelkapsel . Als Hilfsstoffe werden für die Mikro-Verkapselung von probiotischen Bakterien meist Gallan, Gummi, Gelatine und Stärke ver- wendet, Kailasapathy .
Im Rahmen des Projektes sollen Materialzusammensetzungen erprobt werden, die die Bakterien über einen bestimmten Zeitrahmen verkapseln, dieses aber nach einer Weile freilassen. Die Freisetzung des Kapselinhaltes soll dabei zum Beispiel über die Stabilität des Kapselmaterials in den Immunzellen gesteuert werden. Es werden endozytierte Partikel (hier Kapsel mit Bakterium) in Endosomen angesäuert und von diversen Enzymen angegriffen. Hier ist es sinnvoll, ein Ver- kapselungsmaterial einzusetzen, das diesen Bedingungen über einen bestimmten Zeitraum, bis der Wirkstoff am Zielort, z.B. der Tumorzelle, positioniert ist, stabil bleibt. Ziel ist die Freisetzung innerhalb ei- nes definierten Zeitfensters. Eine andere Möglichkeit ist eine über einen chemischen Reiz oder durch physi- kaiischen Reiz, z.B. Mikrowellen, Radiowellen, Ultraschall, Wärme, Hochfrequenzfeld, induzierte Freisetzung des Kapselinhaltes. Dabei kann auch ein Wirkstoff freigesetzt werden, der die Immunzelle schä- digt, so dass diese die Bakterien freilassen kann.
Der erfindungsgemäße Vektor eignet sich zur Verwendung als Arzneimittel.
Anwendungsbereiche sind die Therapie und die Diagnostik. Aber auch die Anwendung im Bereich der Thera- nostik ist denkbar, in diesem Falle werden die Immunzellen mit z.B. magnetischen Nanopartikeln beladen und so an den Wirkort verbracht. Der Vektor eignet sich dabei insbesondere als Therapeutikum gegen insbesondere Mammakarzinom, Nierenzellkarzinom, malignes Melanom, Kolonkarzinom, Rektumkarzinom, Dünndarmkrebs, Zervixkarzinoim, Endometriumkarzinom, Sarkome des Uterus, Harnblasenkrebs, Plattenepitherkrebs , En- dometriumkarzinom der Lunge, Adenokarzinom, groß- und/oder kleinzellige Bronchialkarzinome, malignes Lymphom, Hodgkin-Lymphom, Non-Hodgkin-Lymphome, Haar- zell-Leukämie, chronisch lymphatische Leukämie, Karzinome des Magens, Prostatakrebs, Leukämien oder me- tastasierte Brust- oder Ovarialtumore, metastasierter Lungenkrebs; Entzündungen; Infektionen und/oder Krankheiten bakteriellen oder parasitären Ursprungs. Auch kombinatorische Einsätze mit anderen Wirkstoffen sind denkbar.
Bei der Metastasierung bilden Tumore über Lymph- oder Blutgefäße oder durch „Abtropfung" Tochtergeschwülste, die überall im Körper verteilt sind und wegen ihres geringen Durchmessers schlecht zu lokalisieren. Bei diesen Tumoren kann das aktive Targeting der Immunzellen ausgenutzt werden. Krebsgewebe enthalten oft hypoxische Regionen, an dem die Sauerstoffkon- zentration signifikant niedriger ist als in normalem Körpergewebe. Diese Tumore sind durch Bestrahlung nicht gut zu bekämpfen, da der zelltötende Effekt hierbei vom Sauerstoff abhängig ist. Chemotherapien sind in diesen Regionen des Tumors ebenfalls ineffektiv, weil sie wenig mit Blutgefäßen versorgt sind und nur unzureichend über die Blutbahnen mit Medikamenten erreicht werden können. Der Vorteil ist nun, dass Bakterien zu anoxischen Bereichen wandern, während
Immunzellen chemotaktisch durch das Erkennen von Tumor-Markern wandern und diese so erreichbar machen. Die Therapie mit Bakterien kann auch in Kombination mit einer konventionellen Chemotherapie angewandt werden. Dang et al . haben zeigen können, dass der
Einsatz der Bakterien C. novyi zusätzlich zu konventionellen chemotherapeutischen Medikamenten wie dem Mitomycin (Sigma) die Wirksamkeit stark erhöht.
Generell können alle kranken/degenerierten Gewebe im Körper behandelt werden, die chemotaktische Reize aussenden, auf die Immunzellen des Körpers mit einer gerichteten Bewegung hin zum Krankheitsherd reagieren.
Bei der Theranostik werden im Wesentlichen in-vitro- diagnostische Verfahren, wie beispielsweise DNA- Chip- Technologien, verwendet. Die bildgebenden Verfahren, vor allem die molekulare Bildgebung, werden für die Frühdiagnostik an Bedeutung weiter zunehmen. Damit können Diagnosen zu einem sehr frühen Zeitpunkt im Krankheitsverlauf gestellt werden, noch bevor sich die molekularen Veränderungen in anatomischen Umstrukturierungen zeigen. Beispielsweise könnten so Tumorer- krankungen bis zu 7 Jahre früher als mit den heutigen Techniken diagnostiziert werden, Hengerer et al.

Claims

Patentansprüche
1. Vektor, umfassend mindestens eine Immunzelle, Stammzelle oder Erythrozyten sowie darin inkor- poriert mindestens einen mikrobiologischen Organismus ausgewählt aus der Gruppe bestehend aus Bakterien, bakteriellen Sporen, Mini-Zellen, Abschnürungen oder Abknospungen von Bakterien und/oder nukleoläre Materialien, cancerogene Substanzen, Viren und/oder diagnostisch einsetzbaren Substanzen.
2. Vektor nach Anspruch 1, dadurch gekennzeichnet, dass das Bakterium oder die bakteriellen Sporen ausgewählt sind aus der Gruppe bestehend aus ge- netisch veränderbaren Bakterien, insbesondere aus Bakterien der Gattungen Bifidobakterium, z.B. Bifidobakterium langum, Clodistrium, z.B. Clodistrium novyi , Salmonellen, z.B. Salmonella typhimurium, Vibrio, Escheria, z.B. Escheria Choli, Kombinationen hieraus und/oder deren Sporen, Abschnürungen oder Abknospungen.
3. Vektor nach Anspruch 1, dadurch gekennzeichnet, dass die nukleolären Materialien ausgewählt sind aus der Gruppe bestehend aus mRNA und/oder siR- NA.
4. Vektor nach Anspruch 1, dadurch gekennzeichnet, dass die cancerogene Substanz ausgewählt ist aus der Gruppe bestehend aus Antibiotika; Cytostati- ka, wie z.B. Antimetabolite, Topoisomerasehern- mer, Taxane, Mitosehemmer, Interkalantien, Tetracyclinen , Nucleinbaseanaloga, Platinanaloga, Alkylantien,- Chemotherapeutika, wie z.B. Vi- russtatika, Antimykotika und Anthelminthika so- wie Kombinationen hieraus .
5. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Immunzelle eine humane und/oder tierische Immunzelle ist und ausgewählt ist aus der Gruppe der Leukozyten, bestehend aus Monozyten, Makrophagen, Dendritische Zellen, Mastzellen, B-Lymphozyten, T- Lymphozyten, NK- Zellen, neutrophilen Granulozyten, eosinophilen Granulozyten, basophilen Granulozyten sowie Kombinationen hieraus .
6. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Immunzelle Partikel für die Diagnostik (Biomarker) , bevorzugt Nanopartikel, besonders bevorzugt magnetische Nanopartikel beinhaltet.
7. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mikrobiologische Organismus mit einem Chemotherapeutikum, bevorzugt ausgewählt aus der Gruppe bestehend aus Antibiotika; Cytostatika, wie z.B. Antimeta- bolite, Angiogenese- Inhibitoren, Topoisomerase- hemmer, Taxane, Mitosehemmer, Interkalantien, Tetracyclinen , Nucleinbaseanaloga, Platinanaloga, Alkylantien; Chemotherapeutika, wie z.B. Vi- russtatika, Antimykotika und Anthelminthika so- wie Kombinationen hieraus beladen ist.
8. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Immunzelle und/oder der mikrobiologische Organismus Ober- flächenproteine exprimiert und präsentiert, bzw. von anderen Zellen exprimierte Proteine auf der Zelloberfläche präsentiert, die selektiv an O- berflächenproteine von Tumorzellen binden, ins- besondere Oberflächenproteine exprimiert, die ausgewählt sind aus der Gruppe bestehend aus . bispezifischen und/oder multispezifischen Antikörpern.
9. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mikrobiologischen Organismus ausgewählt aus der Gruppe bestehend aus Bakterien, bakteriellen Sporen, E- rythrozyten, Mini-Zellen, Abschnürungen oder Ab- knospungen von Bakterien und/oder nukleoläre Ma- terialien, cancerogene Substanzen und/oder Viren mit einem biokompatiblen Material verkapselt ist, bevorzugt mit einem Material ausgewählt aus der Gruppe bestehend aus Gellan, Xanthan, Calci- umalginat, Ammoniumalginat , Gallan, Gummi, GeIa- tine, Stärke, Polymere, z.B. Phospholipid-
Dextrane, Calciumphosphate, Chitosane, Polyly- sin-Derivate und Polyethylenglycol, und/oder Mischungen hieraus .
10. Vektor nach vorhergehendem Anspruch, dadurch ge- kennzeichnet, dass Kapselmaterial mindestens eine Substanz enthält, die die Immunzelle, die Stammzelle oder die Erythrozyten angreift und abtötet, so dass die Kapsel freigesetzt wird, insbesondere Substanzen ausgewählt aus der Grup- pe bestehend aus cytotoxischen Substanzen, wie
Antibiotika, z.B. Doxorubicin.
11. Vektor nach einem der vorhergehenden Ansprüche zur Verwendung als Arzneimittel.
12. Verwendung eines Vektors nach einem der Ansprüche 1 bis 9 als Therapeutikum, Diagnostikum und/oder Theranostikum.
13. Verwendung eines Vektors nach einem der Ansprü- che 1 bis 9 als Therapeutikum für Krebs, insbesondere Nierenzellenkarzinom, malignes Melanom, Mammakarzinom, Kolonkarzinom, Rektumkarzinom, Dünndarmkrebs, Zervixkarzinoim, Endometriumkar- zinom, Sarkome des Uterus, Harnblasenkrebs, Plattenepitherkrebs, Endometriumkarzinom der
Lunge, Adenokarzinom, groß- und/oder kleinzellige Bronchialkarzinome, malignes Lymphom, Hodg- kin-Lymphom, Non-Hodgkin-Lymphome, Haarzeil - Leukämie, chronisch lymphatische Leukämie, Kar- zinome des Magens, Prostatakrebs, Arteriosklerose, Erkrankungen des Immunsystems wie Multiple Sklerose, Leukämien oder metastasierte Brust - oder Ovarialtumore, metastasierter Lungenkrebs; Entzündungen; Infektionen und/oder Krankheiten bakteriellen oder parasitären Ursprungs sowie
Erkrankungen, bei denen Immunzellen/Bakterien gezielt die Krankheitsherde ansteuern können.
14. Verwendung eines Vektors nach einem der Ansprüche 1 bis 9 als kombinatorisches Therapeutikum bei der Chemotherapie von Krebs.
PCT/EP2010/002327 2009-04-17 2010-04-15 Vektor für den transport von mikrobiologischen organismen zu krankheitsherden WO2010118873A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009017908A DE102009017908A1 (de) 2009-04-17 2009-04-17 Vektor für den Transport von mikrobiologischen Organismen zu Krankheitsherden
DE102009017908.9 2009-04-17

Publications (2)

Publication Number Publication Date
WO2010118873A1 true WO2010118873A1 (de) 2010-10-21
WO2010118873A8 WO2010118873A8 (de) 2010-12-23

Family

ID=42270186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/002327 WO2010118873A1 (de) 2009-04-17 2010-04-15 Vektor für den transport von mikrobiologischen organismen zu krankheitsherden

Country Status (2)

Country Link
DE (1) DE102009017908A1 (de)
WO (1) WO2010118873A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019830A1 (de) * 2012-08-03 2014-02-06 Kist Europe Korea Institute Of Science And Technology Europe Forschungsgesellschaft Mbh Transport von photosensibilisierenden substanzen mit hilfe von immunzellen zur tumorbehandlung
CN114432458A (zh) * 2022-01-21 2022-05-06 同济大学 一种细菌载药系统及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045153A1 (en) * 2001-11-21 2003-06-05 The Johns Hopkins University Combination bacteriolytic therapy for the treatment of tumors
US20040208928A1 (en) * 2003-04-15 2004-10-21 Animal Technology Institute Taiwan Method for preparing an orally administrable formulation for controlled release
WO2005039492A2 (en) * 2003-10-22 2005-05-06 The John Hopkins University Improved combination bacteriolytic therapy for the treatment of tumors
WO2007079147A2 (en) * 2005-12-28 2007-07-12 Advanced Bionutrition Corporation A delivery vehicle for probiotic bacteria comprising a dry matrix of polysaccharides, saccharides and polyols in a glass form and methods of making same
WO2007140613A1 (en) * 2006-06-06 2007-12-13 Mcgill University Fermented milk product and use thereof
EP2019138A1 (de) * 2006-05-24 2009-01-28 Anaeropharma Science Inc. Verfahren zur konstruktion eines gentransportträgers
WO2009027830A2 (en) * 2007-03-30 2009-03-05 Engeneic Molecular Delivery Pty Ltd. Bacterially-derived, intact minicells that encompass plasmid-free functional nucleic acid for in vivo delivery to mammalian cells
EP2098589A2 (de) * 2008-02-15 2009-09-09 Kist-Europe Forschungsgesellschaft Mbh Immunzellmodifizierungsverfahren und Zellmodifizierungsvorrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045153A1 (en) * 2001-11-21 2003-06-05 The Johns Hopkins University Combination bacteriolytic therapy for the treatment of tumors
US20040208928A1 (en) * 2003-04-15 2004-10-21 Animal Technology Institute Taiwan Method for preparing an orally administrable formulation for controlled release
WO2005039492A2 (en) * 2003-10-22 2005-05-06 The John Hopkins University Improved combination bacteriolytic therapy for the treatment of tumors
WO2007079147A2 (en) * 2005-12-28 2007-07-12 Advanced Bionutrition Corporation A delivery vehicle for probiotic bacteria comprising a dry matrix of polysaccharides, saccharides and polyols in a glass form and methods of making same
EP2019138A1 (de) * 2006-05-24 2009-01-28 Anaeropharma Science Inc. Verfahren zur konstruktion eines gentransportträgers
WO2007140613A1 (en) * 2006-06-06 2007-12-13 Mcgill University Fermented milk product and use thereof
WO2009027830A2 (en) * 2007-03-30 2009-03-05 Engeneic Molecular Delivery Pty Ltd. Bacterially-derived, intact minicells that encompass plasmid-free functional nucleic acid for in vivo delivery to mammalian cells
EP2098589A2 (de) * 2008-02-15 2009-09-09 Kist-Europe Forschungsgesellschaft Mbh Immunzellmodifizierungsverfahren und Zellmodifizierungsvorrichtung

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
AGRAWAL NISHANT ET AL: "Bacteriolytic therapy can generate a potent immune response against experimental tumors.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 19 OCT 2004 LNKD- PUBMED:15471990, vol. 101, no. 42, 19 October 2004 (2004-10-19), pages 15172 - 15177, XP002589676, ISSN: 0027-8424 *
DUDLEY MARK E ET AL: "Adoptive cell transfer therapy.", SEMINARS IN ONCOLOGY DEC 2007 LNKD- PUBMED:18083376, vol. 34, no. 6, December 2007 (2007-12-01), pages 524 - 531, XP002589675, ISSN: 0093-7754 *
DUDLEY, ME; ROSENBERG, SA, ADOPTIVE CELL TRANSFER THERAPY SEMIN ONCOL, vol. 34, no. 6, December 2007 (2007-12-01), pages 524 - 531
LEE K Y ET AL: "Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY FEB 2000 LNKD- PUBMED:10653768, vol. 66, no. 2, February 2000 (2000-02-01), pages 869 - 873, XP002589678, ISSN: 0099-2240 *
MACDIARMID JENNIFER A ET AL: "Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug.", NATURE BIOTECHNOLOGY JUL 2009 LNKD- PUBMED:19561595, vol. 27, no. 7, July 2009 (2009-07-01), pages 643 - 651, XP002589674, ISSN: 1546-1696 *
MCMASTER L D ET AL: "Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140.", INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY 15 JUL 2005 LNKD- PUBMED:15992622, vol. 102, no. 2, 15 July 2005 (2005-07-15), pages 231 - 237, XP002589679, ISSN: 0168-1605 *
NAKAMURA T ET AL: "Cloned Cytosine Deaminase Gene Expression of Bifidobacterium longum and Application to Enzyme/Pro-drug Therapy of Hypoxic Solid TUmors", BIOSCIENCE BIOTECHNOLOGY BIOCHEMISTRY, JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, TOKYO, JAPAN LNKD- DOI:10.1271/BBB.66.2362, vol. 66, no. 11, 1 January 2002 (2002-01-01), pages 2362 - 2366, XP003019453, ISSN: 0916-8451 *
SHAH N P: "Probiotic bacteria: selective enumeration and survival in dairy foods.", JOURNAL OF DAIRY SCIENCE APR 2000 LNKD- PUBMED:10791807, vol. 83, no. 4, April 2000 (2000-04-01), pages 894 - 907, XP002589677, ISSN: 0022-0302 *
STEINFELD U ET AL: "T lymphocytes as potential therapeutic drug carrier for cancer treatment", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER BV, NL LNKD- DOI:10.1016/J.IJPHARM.2005.12.040, vol. 311, no. 1-2, 27 March 2006 (2006-03-27), pages 229 - 236, XP025113312, ISSN: 0378-5173, [retrieved on 20060327] *
YAZAWA K ET AL: "BIFIDOBACTERIUM LONGUM AS A DELIVERY SYSTEM FOR CANCER GENE THERAPY: SELECTIVE LOCALIZATION AND GROWTH IN HYPOXIC TUMORS", CANCER GENE THERAPY, NORWALK, CT, US LNKD- DOI:10.1038/SJ.CGT.7700122, vol. 7, no. 2, 1 February 2000 (2000-02-01), pages 269 - 274, XP009004079, ISSN: 0929-1903 *
YAZAWA K ET AL: "Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors", BREAST CANCER RESEARCH AND TREATMENT, SPRINGER, NEW YORK, NY LNKD- DOI:10.1023/A:1010644217648, vol. 66, no. 2, 1 March 2001 (2001-03-01), pages 165 - 170, XP002485931, ISSN: 0167-6806 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019830A1 (de) * 2012-08-03 2014-02-06 Kist Europe Korea Institute Of Science And Technology Europe Forschungsgesellschaft Mbh Transport von photosensibilisierenden substanzen mit hilfe von immunzellen zur tumorbehandlung
CN114432458A (zh) * 2022-01-21 2022-05-06 同济大学 一种细菌载药系统及其制备方法

Also Published As

Publication number Publication date
DE102009017908A1 (de) 2010-10-21
WO2010118873A8 (de) 2010-12-23

Similar Documents

Publication Publication Date Title
CN106177986B (zh) 一种脂质体-聚合物载药纳米粒子及其制备方法和应用
Salford et al. A new brain tumor therapy combining bleomycin with in vivo electropermeabilization
Zhao et al. Dual-core prebiotic microcapsule encapsulating probiotics for metabolic syndrome
Smerkova et al. Nanomaterials with active targeting as advanced antimicrobials
Zhu et al. Gut microbiota: influence on carcinogenesis and modulation strategies by drug delivery systems to improve cancer therapy
WO2005042142A2 (de) Thermosensitive, biokompatible polymerträger mit veränderbarer physikalischer struktur für die therapie, diagnostik und analytik
EP3558372A1 (de) Beschichtete nanopartikel zur verwendung in der modulation der elektrischen polarisierung von neuronen
Linazasoro et al. Potential applications of nanotechnologies to Parkinson's disease therapy
CA3062089C (en) Immunomagnetic nanocapsule, fabrication method and use thereof, and kit for treating cancer
Mittal et al. Nanotechnology-based drug delivery for the treatment of CNS disorders
Hussain et al. Nanofibrous drug delivery systems for breast cancer: a review
CN104288093B (zh) 纳米药物透皮制剂在肿瘤中的应用
Hwang Targeted delivery of erythropoietin hybridized with magnetic nanocarriers for the treatment of central nervous system injury: A literature review
WO2010118873A1 (de) Vektor für den transport von mikrobiologischen organismen zu krankheitsherden
Morad et al. Bioengineered metallic nanomaterials for nanoscale drug delivery systems
CN101653611A (zh) 一种白蛋白-阿霉素纳米制剂及其制备方法和应用
Liu et al. Gut lumen-targeted oral delivery system for bioactive agents to regulate gut microbiome
Pourmadadi et al. Innovative chitosan-polyacrylic acid-MoS2 nanocomposite for enhanced and pH-responsive quercetin delivery
CN101653612A (zh) 利用白蛋白-葡聚糖制备的阿霉素纳米制剂及其应用
KR20170104024A (ko) 헬리코박터파일로리균 유래 나노소포 및 이의 용도
KR20170103140A (ko) 아커만시아 뮤시니필라균 유래 나노소포 및 이의 용도
KR102208650B1 (ko) 다중 약물의 동시 전달을 위한 온도민감성 나노스펀지 플랫폼 및 이의 용도
EP2322142A1 (de) Biokompatible, magnetische Nanopartikel zur Behandlung von Glioblastomen
KR20210010608A (ko) 약물 방출 거동 제어를 위한 온도민감성 나노스펀지 플랫폼 및 이를 포함하는 약제학적 조성물
US10736964B2 (en) Immunomagnetic nanocapsule and kit for treating cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10715113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10715113

Country of ref document: EP

Kind code of ref document: A1