WO2010117058A1 - Contact probe and probe unit - Google Patents

Contact probe and probe unit Download PDF

Info

Publication number
WO2010117058A1
WO2010117058A1 PCT/JP2010/056448 JP2010056448W WO2010117058A1 WO 2010117058 A1 WO2010117058 A1 WO 2010117058A1 JP 2010056448 W JP2010056448 W JP 2010056448W WO 2010117058 A1 WO2010117058 A1 WO 2010117058A1
Authority
WO
WIPO (PCT)
Prior art keywords
covering
outer periphery
coating
insulating
spring
Prior art date
Application number
PCT/JP2010/056448
Other languages
French (fr)
Japanese (ja)
Inventor
俊男 風間
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2011508397A priority Critical patent/JPWO2010117058A1/en
Publication of WO2010117058A1 publication Critical patent/WO2010117058A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point
    • H01R13/2485Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point for contacting a ball

Definitions

  • the present invention relates to a contact probe and a probe unit that are applied to an electrical property inspection of an electronic component such as a semiconductor package or a liquid crystal panel.
  • a probe unit containing a plurality of conductive contact probes is used. In the probe unit, it is required to reduce the pitch between contact probes with the recent progress of high integration and miniaturization of semiconductor packages and liquid crystal panels.
  • the conventional wire-type contact probe described above is composed of a wire made of a single material excluding the insulating coating, all the performance required as a contact probe, such as spring characteristics, electrical characteristics, and durability, is achieved. It was difficult to satisfy.
  • the present invention has been made in view of the above, and an object thereof is to provide a contact probe and a probe unit that can satisfy desired performances at least with respect to spring characteristics, electrical characteristics, and durability.
  • a contact probe includes a linear core made of a conductive material having a Vickers hardness of 450 or more, and an electrical resistivity of 5.00 ⁇ 10. consists -8 Omega ⁇ m or less conductive material, a conductive coating material covering the outer periphery of the core material made of an insulating material, an insulating coating covering the outer periphery of the conductive coating material, the modulus of longitudinal elasticity Is made of a spring material of 1.00 ⁇ 10 4 kgf / mm 2 or more, and includes a spring coating material that covers the outer periphery of the insulating coating and a plating coating that covers the outer periphery of the spring coating material, It is characterized by a symmetrical shape.
  • the contact probe according to the present invention is characterized in that, in the above-described invention, the contact probe further comprises a second insulating film made of an insulating material and covering an outer periphery of the plated film.
  • the contact probe according to the present invention comprises a linear core material made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electric resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • an insulating film made of an insulating material and covering an outer periphery of the spring-like covering material; and a longitudinal direction of the core material, the conductive covering material, the spring-like covering material, and the insulating film made of a conductive material
  • a plunger attached to the end of the shaft and has an axisymmetric shape.
  • the probe unit according to the present invention is composed of a linear core made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electrical resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • a plurality of contact probes are individually held and connected to the ground.
  • the probe unit according to the present invention is composed of a linear core made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electrical resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • a linear core material made of a conductive material having a Vickers hardness of 450 or more, and a conductive material having an electrical resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less, Because it is provided with a conductive coating covering the outer periphery and a spring coating having a longitudinal elastic modulus of 1.00 ⁇ 10 4 kgf / mm 2 or more and located on the outer periphery of the conductive coating.
  • the durability can be improved by the core material, the electrical characteristics can be improved by the conductive coating material, and the desired spring characteristics can be secured by the spring coating material. Therefore, it is possible to satisfy desired performance at least with respect to spring characteristics, electrical characteristics, and durability.
  • FIG. 1 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a diagram illustrating a state at the time of inspection of the probe unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a configuration of a main part of the probe unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing a state at the time of inspection of the probe unit according to Embodiment 2 of the present invention.
  • FIG. 6 is an enlarged partial cross-sectional view illustrating a contact mode between the contact probe and the inspection target electrode according to the second embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3
  • FIG. 7 is a diagram showing the configuration of the main part of the probe unit according to Embodiment 3 of the present invention.
  • 8 is a cross-sectional view taken along line BB in FIG.
  • FIG. 9 is a partial cross-sectional view showing a contact mode between a contact probe and coaxial wiring according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram illustrating a configuration of a main part of a probe unit according to Embodiment 4 of the present invention.
  • 11 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 12 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 5 of the present invention.
  • FIG. 13 is a diagram illustrating a state at the time of inspection in the probe unit.
  • FIG. 1 is a diagram showing a configuration of a probe unit according to Embodiment 1 of the present invention.
  • a probe unit 1 shown in FIG. 1 is a device for connecting a semiconductor package to be inspected to a tester that outputs an inspection signal to the semiconductor package. More specifically, the probe unit 1 includes a plurality of wire-type contact probes 2, a probe holder 3 that individually holds the plurality of contact probes 2, and a wiring board 5 in which wirings 4 are embedded.
  • contact probes 2 are arranged side by side in a direction perpendicular to the paper surface.
  • FIG. 2 is a diagram showing the internal structure of the contact probe 2, and is a cross-sectional view taken along the line AA of FIG.
  • the contact probe 2 is composed of a linear core material 21 made of a conductive material having a Vickers hardness (HV) of 450 or more, and a conductive material having an electric resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • HV Vickers hardness
  • the spring material 24 is made of the above-described spring material, and includes a spring coating 24 that covers the outer periphery of the insulating coating 23 and a plating coating 25 that covers the outer periphery of the spring coating 24, and has an axisymmetric shape.
  • the conductive member (core material 21 and conductive coating 22) on the inner peripheral side of the insulating coating 23 and the conductive member (spring coating 24 and plated coating 25) on the outer peripheral side of the insulating coating 23 are the insulating coating 23. Isolated by For this reason, the conductive member on the inner peripheral side of the insulating coating 23 and the conductive member on the outer peripheral side of the insulating coating 23 do not short-circuit.
  • the thickness of each layer shown in FIG. 2 is merely an example, and can be appropriately set according to the performance required for the contact probe 2.
  • the core material 21 has a circular cross section and is realized by tungsten, beryllium nickel, stainless steel, SK material, or the like.
  • the conductive coating material 22 is realized by gold, silver, aluminum, copper, gold alloy, silver alloy, copper alloy, beryllium copper, beryllium nickel, palladium alloy, or the like.
  • the insulating coating 23 is realized by resin, ceramic, or a mixture of resin and ceramic.
  • the spring covering 24 is realized by a material such as spring steel, stainless steel, beryllium copper, hard steel wire, or phosphor bronze.
  • the plating film 25 is realized by gold, a gold tin alloy, palladium, nickel, or the like.
  • the probe holder 3 includes a head side plate 31 that is inserted and held near the end of the contact probe 2 that is located on the side facing the inspection target (hereinafter referred to as “head side”) at the time of inspection, and the side facing the wiring board. (Hereinafter referred to as “wiring side”)
  • a wiring side plate 32 that is inserted and held near the end of the contact probe 2, and a head side plate that is interposed between the head side plate 31 and the wiring side plate 32.
  • the head side plate 31, the wiring side plate 32, and the connecting member 33 are made of a conductive material and are connected to the ground. Note that a plating film made of gold, a tin-gold alloy, palladium, nickel, or the like may be provided on the surface of the probe holder 3.
  • the head-side plate 31 has a plurality of insertion holes 311 that penetrate through the contact probe 2 in the thickness direction.
  • the wiring side plate 32 has a plurality of insertion holes 321 that penetrate the contact probe 2 through the plate thickness direction and have the same axis as any of the plurality of insertion holes 311.
  • the arrangement pattern of the insertion holes 311 and 321 is determined according to the arrangement pattern of the electrodes to be inspected.
  • the wiring board 5 has a holding hole 51 for inserting and holding the end of the wiring 4. An end portion of the wiring 4 inserted through the holding hole 51 is fixed to the wiring substrate 5 with an insulating adhesive G.
  • the wiring board 5 is made of a conductive material and is connected to the ground in the same manner as the probe holder 3.
  • FIG. 3 is a diagram showing a state of the probe unit 1 at the time of inspection.
  • the electrode 301 of the inspection object 300 comes into contact with the distal end side of the contact probe 2 and receives a load from the electrode 301.
  • the contact probe 2 bends by receiving a load due to contact with the electrode 301 and contacts the probe holder 3 at the outer edge. Since the outer edge of the contact probe 2 is a plating film 25, the contact probe 2 is electrically connected to the probe holder 3 and becomes equipotential. As a result, the surface of the contact probe 2 is shielded, noise can be prevented, and crosstalk can be reduced. Therefore, the electrical characteristics of the contact probe 2 are improved, and it is possible to cope with a high frequency signal of 1 GHz or more.
  • the linear core material 21 made of a conductive material having a Vickers hardness of 450 or more, and an electrical resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • the conductive coating 22 is made of a conductive material and covers the outer periphery of the core material, and is made of a spring material having a longitudinal elastic modulus of 1.00 ⁇ 10 4 kgf / mm 2 or more.
  • the core material 21 improves durability
  • the conductive coating material 22 improves electrical characteristics
  • the spring coating material 24 ensures desired spring characteristics. it can. Therefore, it is possible to satisfy desired performance at least with respect to spring characteristics, electrical characteristics, and durability.
  • the probe holder 3 is realized by a conductive material, the surface of the contact probe 2 is shielded, noise can be prevented, and crosstalk can be reduced. Therefore, the electrical characteristics of the contact probe 2 can be further improved.
  • FIG. 4 is a diagram showing a configuration of a main part of the probe unit according to Embodiment 2 of the present invention.
  • a probe unit 6 shown in FIG. 1 is a device for inspecting electrical characteristics using a coaxial structure, and includes a plurality of wire-type contact probes 7, a probe holder 8 that individually holds the plurality of contact probes 7, and an insulating material.
  • a wiring board 10 having a holding hole 101 for inserting and holding the coaxial wiring 9 and an insulating material, and is formed between the probe holder 8 and the wiring board 10 in a flat plate shape. And a guide member 11 that guides the tip of one electrode.
  • the contact probe 7 has the same cross section as the contact probe 2.
  • portions corresponding to the core material 21, the conductive coating material 22, the insulating coating 23, the spring coating material 24, and the plating coating 25 of the contact probe 2 are respectively designated as the core material 71 and the conductive coating material 72. , Insulating coating 73, spring coating 74, and plating coating 75.
  • the contact probe 7 has a crown-shaped end on the side in contact with the inspection object. This is because the core material 71, the conductive coating material 72, the spring coating material 74, and the plating film 75 are in contact with the electrodes when the contact probe 7 and the electrode to be inspected are in contact.
  • the probe holder 8 includes a head side plate 81 that is inserted and held near the end of the contact probe 7 on the head side, a wiring side plate 82 that is inserted and held near the end of the contact probe 7 on the wiring side, and a head.
  • a connecting member 83 is provided between the side plate 81 and the wiring side plate 82 to connect the head side plate 81 and the wiring side plate 82.
  • the head side plate 81, the wiring side plate 82 and the connecting member 83 are made of a conductive material and are connected to the ground.
  • the head side plate 81 has a plurality of insertion holes 811 that penetrate through the contact probe 7 in the thickness direction. Further, the wiring side plate 82 has a plurality of insertion holes 821 that penetrate the contact probe 7 through the plate thickness direction.
  • the arrangement pattern of the insertion holes 811 and 821 is determined according to the arrangement pattern of the electrodes to be inspected.
  • the coaxial wiring 9 has a center conductor 91, an outer conductor 92, and a hollow insulator 93 interposed between the center conductor 91 and the outer conductor 92.
  • the end portion of the center conducting wire 91 protrudes from the end portions of the outer peripheral conducting wire 92 and the insulator 93, and this projecting portion is inserted into the insertion hole 111 of the guide member 11.
  • the outer peripheral conducting wire 92 is connected to the ground and is equipotential with the probe holder 8.
  • the coaxial wiring 9 may be fixed to the wiring board 10 using the adhesive G as in the first embodiment.
  • FIG. 5 is a diagram showing a state of the probe unit 6 at the time of inspection.
  • the electrode 301 of the inspection object 300 comes into contact with the crown-shaped tip of the contact probe 7.
  • the contact probe 7 receives the load from the electrode 301 and bends to contact the probe holder 8.
  • the conductive layer (core material 71 and / or conductive coating material 72) located on the inner peripheral side of the insulating coating 23 is electrically connected to the central conductor 91 on the wiring side, while being positioned on the outer peripheral side of the insulating coating 23.
  • the conductive layers (spring-like covering material 74 and plating film 75) are electrically connected to the outer peripheral conductor 92 through the probe holder 8.
  • the core material 71, the conductive coating material 72, the spring coating material 74, and the plating film 75 are in contact with the electrode 301.
  • the tip shape of the contact probe 7 must be such that the inner peripheral conductive layer and the outer peripheral conductive layer of the insulating coating 73 can be in contact with the electrode 301 simultaneously. By adopting such a shape, it becomes possible to perform an electrical characteristic inspection with a coaxial structure while reducing external noise and crosstalk.
  • the probe holder 8 is realized by a conductive material, and the probe holder 8 and the outer peripheral conducting wire 92 of the coaxial wiring 9 are connected to the ground to be equipotential.
  • the contact probe 7 is indirectly connected to the outer peripheral conductor 92 through the probe holder 8. Therefore, the contact probe 7 can be substantially made into a coaxial structure, and the electrical characteristic inspection by the coaxial structure can be performed with a simple configuration while reducing external noise and crosstalk. As a result, measurement can be easily performed even if the diameter of the contact probe 7 is reduced to 0.1 mm or less.
  • FIG. 7 is a diagram showing the configuration of the main part of the probe unit according to Embodiment 3 of the present invention.
  • the probe unit 12 shown in the figure is a device that performs an electrical property inspection by a four-terminal measurement method, and includes a plurality of wire-type contact probes 13, a probe holder 14 that individually holds a plurality of contact probes 7, and an insulating property. And a wiring board 16 having a holding hole 161 for inserting and holding the coaxial wiring 15.
  • FIG. 8 is a diagram showing the internal structure of the contact probe 13, and is a cross-sectional view taken along the line BB of FIG.
  • the contact probe 13 includes a core material 131, a conductive coating material 132, an insulating coating 133, a spring coating material 134, a plating coating 135, and a second insulating coating 136 that covers the outer periphery of the plating coating 135 in order from the inner peripheral side. It has an axisymmetric shape.
  • the core material 131, the conductive coating material 132, the insulating coating 133, the spring coating material 134, and the plating coating 135 are the core material 21 of the contact probe 2, the conductive coating material 22, the insulating coating 23, the spring coating material 24, and the plating.
  • the coating 25 is realized by the same material as each other.
  • the second insulating coating 136 is made of the same insulating material as the insulating coating 133.
  • the thickness of each layer shown in FIG. 8 is merely an example, and can be set as appropriate according to the performance required for the contact probe 13.
  • the probe holder 14 includes a head side plate 141 that is inserted and held near the end of the contact probe 13 on the head side, a wiring side plate 142 that is inserted and held near the end of the contact probe 13 on the wiring side, and a head A connecting member 143 is provided between the side plate 141 and the wiring side plate 142 to connect the head side plate 141 and the wiring side plate 142.
  • the head side plate 141, the wiring side plate 142, and the connecting member 143 are made of an insulating material.
  • a conductive material provided with an insulating coating on the surface may be applied.
  • the head side plate 141 has a plurality of insertion holes 1411 that penetrate through the contact probe 13 in the thickness direction.
  • the wiring side plate 142 has a plurality of insertion holes 1421 that penetrate through the contact probe 13 in the thickness direction.
  • the arrangement pattern of the insertion holes 1411 and 1421 is determined according to the arrangement pattern of the electrodes to be inspected.
  • the coaxial wiring 15 includes a center conductor 151, an outer conductor 152, and a hollow insulator 153 interposed between the center conductor 151 and the outer conductor 152.
  • the outer periphery conducting wire 152 protrudes from the center conducting wire 151 and the insulator 153.
  • FIG. 9 is an enlarged partial sectional view showing a contact mode between the contact probe 13 and the coaxial wiring 15.
  • Core 131 is in contact with center conductor 151.
  • the spring covering material 134 and the plating film 135 are in contact with the outer peripheral conductor 152. Therefore, the center conducting wire 151 and the outer conducting wire 152 are both electrically connected to the contact probe 13, and one terminal is used for current application and the other is used for voltage measurement.
  • the outer peripheral conductor 152 of the coaxial wiring 15 is protruded from the central conductor 151 and the insulator 153, and the conductive layer (spring coating) provided on the outer peripheral side of the insulating coating 133 of the contact probe 13. Since it is configured to be in contact with the material 134 and / or the plated coating 135), for example, four-terminal measurement can be performed with a significantly simpler configuration as compared with the technique disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2009-8579. As a result, 4-terminal measurement can be easily performed even if the diameter of the contact probe 13 is reduced to 0.1 mm or less.
  • FIG. 10 is a diagram illustrating a configuration of a main part of a probe unit according to Embodiment 4 of the present invention.
  • the probe unit 17 shown in the figure includes a plurality of wire-type contact probes 18, a probe holder 19 that individually holds the plurality of contact probes 18, and a wiring board 42 that has a holding hole 421 for inserting and holding the wiring 41. And comprising.
  • the contact probe 18 is made of a conductive material having an axially symmetric shape, and includes a plunger 181 that comes into contact with the inspection target, and a wire portion 182 attached to the base end of the plunger 181.
  • the plunger 181 is provided in a direction opposite to the tip portion 181a via the flange portion 181b, a flange portion 181b having a diameter larger than the diameter of the tip portion 181a, and the wire portion 182. And a wire holding portion 181c that holds one end.
  • the wire part 182 is attached to the wire holding part 181c by performing soldering, gold brazing, silver brazing, caulking, driving, laser welding, or the like.
  • the plunger 181 is realized by a nickel alloy having a low contact resistance or an SK material having excellent wear resistance.
  • the wire portion 182 is made of a linear core material 1821 made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electric resistivity of 5.00 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • the probe holder 19 includes a head side plate 191 that is inserted and held near the end of the contact probe 18 on the head side, a wiring side plate 192 that is inserted and held near the end of the contact probe 18 on the wiring side, and a head.
  • a connecting member 193 is provided between the side plate 191 and the wiring side plate 192 to connect the head side plate 191 and the wiring side plate 192.
  • the head side plate 191, the wiring side plate 192, and the connecting member 193 are made of an insulating material.
  • the head side plate 191 has an insertion hole 1911 that passes through the contact probe 18 in the plate thickness direction.
  • the wiring side plate 192 has an insertion hole 1921 that penetrates the contact probe 18 in the thickness direction.
  • the arrangement pattern of the insertion holes 1911 and 1921 is determined according to the arrangement pattern of the electrodes to be inspected.
  • the end of the wiring 41 inserted into the holding hole 421 of the wiring board 42 is fixed to the wiring board 42 with an insulating adhesive G.
  • the probe unit 17 having the above configuration, when an electrode to be inspected is brought into contact with the tip portion 181a and a load is applied, the wire portion 182 is bent, and the inspection target and the wiring 41 are conducted in this bent state.
  • the attachment aspect of the plunger and wire part in this Embodiment 4 is not necessarily restricted to what was mentioned above.
  • the plunger and the wire portion may be mechanically connected by using a closely wound spring joint disclosed in Japanese Patent Application Laid-Open No. 2007-178404. Further, as disclosed in Japanese Patent Application Laid-Open No. 2007-178404, both ends of the wire portion may be connected to the plunger.
  • FIG. 12 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 5 of the present invention.
  • the probe unit 20 shown in the figure is an apparatus for inspecting electrical characteristics by a coaxial structure, and includes a plurality of wire-type contact probes 2, a probe holder 34 that individually holds the plurality of contact probes 2, and a coaxial wiring 94.
  • Embedded wiring board 5 is an apparatus for inspecting electrical characteristics by a coaxial structure, and includes a plurality of wire-type contact probes 2, a probe holder 34 that individually holds the plurality of contact probes 2, and a coaxial wiring 94.
  • the probe holder 34 includes a head side plate 35 that is inserted and held near the end portion of the contact probe 2 positioned on the head side, and a wiring side plate that is inserted and held near the end portion of the contact probe 2 positioned on the wiring side. 36, and a connecting member 37 that is interposed between the head side plate 35 and the wiring side plate 36 and connects the head side plate 35 and the wiring side plate 36. Further, an insulating member 38 that is realized by using an insulating material and covers the upper surface of the head side plate 35 is provided on the upper surface of the probe holder 34.
  • the head side plate 35, the wiring side plate 36 and the connecting member 37 are made of a conductive material and are connected to the ground.
  • the head side plate 35 has a plurality of insertion holes 351 that penetrate through the contact probe 2 in the thickness direction. Further, the wiring side plate 36 penetrates in the plate thickness direction and is inserted into the contact probe 2 and has a plurality of insertion holes 361 having different axes from the plurality of insertion holes 351.
  • the arrangement pattern of the insertion holes 351 and 361 is determined according to the arrangement pattern of the electrodes to be inspected.
  • the wiring board 5 has a holding hole 51 for inserting and holding the end of the coaxial wiring 94.
  • the end of the coaxial wiring 94 inserted through the holding hole 51 is fixed to the wiring substrate 5 with an insulating adhesive or the like.
  • the wiring board 5 is made of a conductive material and is connected to the ground in the same manner as the probe holder 34.
  • FIG. 13 is a diagram showing a state of the probe unit 20 at the time of inspection.
  • the contact probe 2 comes into contact with the electrode 301 of the inspection object 300 and the tip side of the contact probe 2, and is bent by receiving a load from the electrode 301.
  • the core material 21 of the contact probe 2 is electrically connected to the central conductor 95 on the wiring side.
  • the contact probe 2 is electrically connected to the probe holder 34 and becomes equipotential. As a result, the surface of the contact probe 2 is shielded, noise can be prevented, and crosstalk can be reduced. Therefore, the electrical characteristics of the contact probe 2 are improved, and it is possible to cope with a high frequency signal of 1 GHz or more.
  • the fifth embodiment of the present invention described above even if the axes of the insertion holes 351 and 361 of the head side plate 35 and the wiring side plate 36 are different, as in the first and second embodiments described above. It is possible to satisfy the desired performance with respect to the spring characteristics, electrical characteristics, and durability, and it is possible to make the bending direction of the contact probe 2 uniform by inclining the contact probe 2 in advance.
  • the insulating member 38 shown in FIG. 12 is also applicable to the first to fourth embodiments described above. By providing the insulating member, it is possible to prevent an electrical short circuit between adjacent contact probes when a plurality of contact probes are attached to the probe holder.
  • the present invention is useful when conducting a conduction state inspection and an operation characteristic inspection in an electronic component such as a semiconductor package or a liquid crystal panel.

Abstract

A contact probe is provided with: a linear core material (21) composed of a conductive material having a Vickers hardness of 450 or higher; a conductive coat material (22), which is composed of a conductive material having an electrical resistivity of 5.00×10-8 Ω∙m or lower, and covers the outer circumference of the core material (21); an insulating film (23), which is composed of an insulating material and covers the outer circumference of the conductive coat material (22); a coat material having spring characteristics (24), which is composed of a spring material having a longitudinal elastic modulus of 1.00×104 kgf/mm2 or more and covers the outer circumference of the insulating film (23); and a plating film (25) which covers the outer circumference of the coat material having spring characteristics (24). The contact probe has an axisymmetrical shape.

Description

コンタクトプローブおよびプローブユニットContact probe and probe unit
 本発明は、半導体パッケージや液晶パネル等の電子部品の電気特性検査に適用されるコンタクトプローブおよびプローブユニットに関する。 The present invention relates to a contact probe and a probe unit that are applied to an electrical property inspection of an electronic component such as a semiconductor package or a liquid crystal panel.
 従来、半導体パッケージや液晶パネル等の電子部品の導通状態検査や動作特性検査を行う際には、検査対象と該検査対象へ検査用信号を出力するテスターとの間の電気的な接続を図るため、導電性のコンタクトプローブを複数収容したプローブユニットが用いられる。プローブユニットにおいては、近年の半導体パッケージや液晶パネルの高集積化、微細化の進展に伴ってコンタクトプローブ間のピッチを狭小化することが求められている。 Conventionally, when conducting a conduction state inspection or an operation characteristic inspection of an electronic component such as a semiconductor package or a liquid crystal panel, an electrical connection between the inspection object and a tester that outputs an inspection signal to the inspection object is intended. A probe unit containing a plurality of conductive contact probes is used. In the probe unit, it is required to reduce the pitch between contact probes with the recent progress of high integration and miniaturization of semiconductor packages and liquid crystal panels.
 コンタクトプローブ間のピッチを狭小化する技術として、外部からの荷重に応じて屈曲可能な弾性を備えたワイヤー型のコンタクトプローブに関する技術が知られている(例えば、特許文献1を参照)。このコンタクトプローブは、導電性材料からなるワイヤーに絶縁被膜を施すことによって実現される。 As a technique for narrowing the pitch between contact probes, a technique related to a wire-type contact probe having elasticity that can be bent in response to an external load is known (see, for example, Patent Document 1). This contact probe is realized by applying an insulating film to a wire made of a conductive material.
特開2003-222637号公報Japanese Patent Laid-Open No. 2003-222637
 しかしながら、上述した従来のワイヤー型のコンタクトプローブは、絶縁被膜を除いて単一の材料からなる線材によって構成されているため、ばね特性、電気特性、耐久性などコンタクトプローブとして要求される性能を全て満足させることは困難であった。 However, since the conventional wire-type contact probe described above is composed of a wire made of a single material excluding the insulating coating, all the performance required as a contact probe, such as spring characteristics, electrical characteristics, and durability, is achieved. It was difficult to satisfy.
 本発明は、上記に鑑みてなされたものであって、少なくともばね特性、電気特性、耐久性に関して所望の性能を満足させることができるコンタクトプローブおよびプローブユニットを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a contact probe and a probe unit that can satisfy desired performances at least with respect to spring characteristics, electrical characteristics, and durability.
 上述した課題を解決し、目的を達成するために、本発明に係るコンタクトプローブは、ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、絶縁性材料からなり、前記導電性被覆材の外周を被覆する絶縁被膜と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記絶縁被膜の外周を被覆するばね性被覆材と、前記ばね性被覆材の外周を被覆するメッキ被膜と、を備え、軸対称な形状をなすことを特徴とする。 In order to solve the above-described problems and achieve the object, a contact probe according to the present invention includes a linear core made of a conductive material having a Vickers hardness of 450 or more, and an electrical resistivity of 5.00 × 10. consists -8 Omega · m or less conductive material, a conductive coating material covering the outer periphery of the core material made of an insulating material, an insulating coating covering the outer periphery of the conductive coating material, the modulus of longitudinal elasticity Is made of a spring material of 1.00 × 10 4 kgf / mm 2 or more, and includes a spring coating material that covers the outer periphery of the insulating coating and a plating coating that covers the outer periphery of the spring coating material, It is characterized by a symmetrical shape.
 また、本発明に係るコンタクトプローブは、上記発明において、絶縁性材料からなり、前記メッキ被膜の外周を被覆する第2絶縁被膜をさらに備えたことを特徴とする。 Further, the contact probe according to the present invention is characterized in that, in the above-described invention, the contact probe further comprises a second insulating film made of an insulating material and covering an outer periphery of the plated film.
 また、本発明に係るコンタクトプローブは、ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記導電性被覆材の外周を被覆するばね性被覆材と、絶縁性材料からなり、前記ばね性被覆材の外周を被覆する絶縁被膜と、導電性材料からなり、前記芯材、前記導電性被覆材、前記ばね性被覆材および前記絶縁被膜の長手方向の端部に取り付けられたプランジャーと、を備え、軸対称な形状をなすことを特徴とする。 The contact probe according to the present invention comprises a linear core material made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electric resistivity of 5.00 × 10 −8 Ω · m or less. A conductive covering material that covers the outer periphery of the core material, and a spring material that has a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more and covers the outer periphery of the conductive covering material And an insulating film made of an insulating material and covering an outer periphery of the spring-like covering material; and a longitudinal direction of the core material, the conductive covering material, the spring-like covering material, and the insulating film made of a conductive material And a plunger attached to the end of the shaft, and has an axisymmetric shape.
 また、本発明に係るプローブユニットは、ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、絶縁性材料からなり、前記被覆材の外周を被覆する絶縁被膜と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記絶縁被膜の外周を被覆するばね性被覆材と、前記ばね性被覆材の外周を被覆するメッキ被膜と、を有し、軸対称な形状をなすコンタクトプローブと、導電性材料からなり、複数の前記コンタクトプローブを個別に保持し、グラウンドに接続したプローブホルダと、を備えたことを特徴とする。 The probe unit according to the present invention is composed of a linear core made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less. A conductive covering material that covers the outer periphery of the core material, an insulating film that covers the outer periphery of the covering material, and a spring having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more A contact probe that is made of a material and has a spring-like covering material that covers the outer periphery of the insulating coating; and a plating film that covers the outer periphery of the spring-like covering material; A plurality of contact probes are individually held and connected to the ground.
 また、本発明に係るプローブユニットは、ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、絶縁性材料からなり、前記被覆材の外周を被覆する絶縁被膜と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記絶縁被膜の外周を被覆するばね性被覆材と、前記ばね性被覆材の外周を被覆するメッキ被膜と、絶縁性材料からなり、前記メッキ被膜の外周を被覆する第2絶縁被膜と、を有し、軸対称な形状をなすコンタクトプローブと、少なくとも表面が絶縁性材料からなり、複数の前記コンタクトプローブを個別に収容するプローブホルダと、を備えたことを特徴とする。 The probe unit according to the present invention is composed of a linear core made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less. A conductive covering material that covers the outer periphery of the core material, an insulating film that covers the outer periphery of the covering material, and a spring having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more A spring covering material that covers the outer periphery of the insulating coating, a plating film that covers the outer periphery of the spring covering material, and a second insulating coating that is formed of an insulating material and covers the outer periphery of the plating coating. And a contact probe having an axisymmetric shape, and a probe holder at least having a surface made of an insulating material and individually accommodating the plurality of contact probes.
 本発明によれば、ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、芯材の外周を被覆する導電性被覆材と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、導電性被覆材の外周に位置するばね性被覆材と、備えているため、芯材によって耐久性を向上させ、導電性被覆材によって電気特性を向上させ、ばね性被覆材によって所望のばね特性を確保することができる。したがって、少なくともばね特性、電気特性、耐久性に関して所望の性能を満足させることが可能となる。 According to the present invention, a linear core material made of a conductive material having a Vickers hardness of 450 or more, and a conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less, Because it is provided with a conductive coating covering the outer periphery and a spring coating having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more and located on the outer periphery of the conductive coating The durability can be improved by the core material, the electrical characteristics can be improved by the conductive coating material, and the desired spring characteristics can be secured by the spring coating material. Therefore, it is possible to satisfy desired performance at least with respect to spring characteristics, electrical characteristics, and durability.
図1は、本発明の実施の形態1に係るプローブユニットの要部の構成を示す図である。FIG. 1 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 1 of the present invention. 図2は、図1のA-A線断面図である。2 is a cross-sectional view taken along line AA in FIG. 図3は、本発明の実施の形態1に係るプローブユニットの検査時の状態を示す図である。FIG. 3 is a diagram illustrating a state at the time of inspection of the probe unit according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2に係るプローブユニットの要部の構成を示す図である。FIG. 4 is a diagram showing a configuration of a main part of the probe unit according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2に係るプローブユニットの検査時の状態を示す図である。FIG. 5 is a diagram showing a state at the time of inspection of the probe unit according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態2に係るコンタクトプローブと検査対象の電極との接触態様を示す拡大部分断面図である。FIG. 6 is an enlarged partial cross-sectional view illustrating a contact mode between the contact probe and the inspection target electrode according to the second embodiment of the present invention. 図7は、本発明の実施の形態3に係るプローブユニットの要部の構成を示す図である。FIG. 7 is a diagram showing the configuration of the main part of the probe unit according to Embodiment 3 of the present invention. 図8は、図7のB-B線断面図である。8 is a cross-sectional view taken along line BB in FIG. 図9は、本発明の実施の形態3に係るコンタクトプローブと同軸配線との接触態様を示す部分断面図である。FIG. 9 is a partial cross-sectional view showing a contact mode between a contact probe and coaxial wiring according to Embodiment 3 of the present invention. 図10は、本発明の実施の形態4に係るプローブユニットの要部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a main part of a probe unit according to Embodiment 4 of the present invention. 図11は、図10のC-C線断面図である。11 is a cross-sectional view taken along the line CC of FIG. 図12は、本発明の実施の形態5に係るプローブユニットの要部の構成を示す図である。FIG. 12 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 5 of the present invention. 図13は、プローブユニットにおける検査時の状態を示す図である。FIG. 13 is a diagram illustrating a state at the time of inspection in the probe unit.
 以下、添付図面を参照して本発明を実施するための形態を説明する。なお、図面は模式的なものであって、各部分の厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なる場合もあることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. It should be noted that the drawings are schematic, and the relationship between the thickness and width of each part, the ratio of the thickness of each part, and the like may be different from the actual ones. Of course, there may be included portions having different dimensional relationships and ratios.
(実施の形態1)
 図1は、本発明の実施の形態1に係るプローブユニットの構成を示す図である。同図に示すプローブユニット1は、検査対象である半導体パッケージと、半導体パッケージに対して検査用信号を出力するテスターとの接続を図る装置である。より具体的には、プローブユニット1は、複数のワイヤー型のコンタクトプローブ2と、複数のコンタクトプローブ2を個別に保持するプローブホルダ3と、配線4が埋め込まれた配線基板5と、を備える。なお、図1に示すプローブユニット1では、紙面と垂直な方向にコンタクトプローブ2が並んで配置されている。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a probe unit according to Embodiment 1 of the present invention. A probe unit 1 shown in FIG. 1 is a device for connecting a semiconductor package to be inspected to a tester that outputs an inspection signal to the semiconductor package. More specifically, the probe unit 1 includes a plurality of wire-type contact probes 2, a probe holder 3 that individually holds the plurality of contact probes 2, and a wiring board 5 in which wirings 4 are embedded. In the probe unit 1 shown in FIG. 1, contact probes 2 are arranged side by side in a direction perpendicular to the paper surface.
 図2は、コンタクトプローブ2の内部構造を示す図であり、図1のA-A線断面図である。コンタクトプローブ2は、ビッカース硬さ(HV)が450以上の導電性材料からなる線状の芯材21と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、芯材21の外周を被覆する導電性被覆材22と、絶縁性材料からなり、導電性被覆材22の外周を被覆する絶縁被膜23と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、絶縁被膜23の外周を被覆するばね性被覆材24と、ばね性被覆材24の外周を被覆するメッキ被膜25と、を備え、軸対称な形状をなしている。絶縁被膜23の内周側の導電性部材(芯材21および導電性被覆材22)と絶縁被膜23の外周側の導電性部材(ばね性被覆材24およびメッキ被膜25)とは、絶縁被膜23によって隔離されている。このため、絶縁被膜23の内周側の導電性部材と絶縁被膜23の外周側の導電性部材がショートすることはない。なお、図2に示す各層の厚みはあくまでも一例に過ぎず、コンタクトプローブ2に求められる性能に応じて適宜設定することができる。 FIG. 2 is a diagram showing the internal structure of the contact probe 2, and is a cross-sectional view taken along the line AA of FIG. The contact probe 2 is composed of a linear core material 21 made of a conductive material having a Vickers hardness (HV) of 450 or more, and a conductive material having an electric resistivity of 5.00 × 10 −8 Ω · m or less. A conductive coating material 22 covering the outer periphery of the core material 21, an insulating coating 23 made of an insulating material and covering the outer periphery of the conductive coating material 22, and a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 The spring material 24 is made of the above-described spring material, and includes a spring coating 24 that covers the outer periphery of the insulating coating 23 and a plating coating 25 that covers the outer periphery of the spring coating 24, and has an axisymmetric shape. The conductive member (core material 21 and conductive coating 22) on the inner peripheral side of the insulating coating 23 and the conductive member (spring coating 24 and plated coating 25) on the outer peripheral side of the insulating coating 23 are the insulating coating 23. Isolated by For this reason, the conductive member on the inner peripheral side of the insulating coating 23 and the conductive member on the outer peripheral side of the insulating coating 23 do not short-circuit. The thickness of each layer shown in FIG. 2 is merely an example, and can be appropriately set according to the performance required for the contact probe 2.
 芯材21は、円形の横断面を有しており、タングステン、ベリリウムニッケル、ステンレス、またはSK材などによって実現される。導電性被覆材22は、金、銀、アルミニウム、銅、金合金、銀合金、銅合金、ベリリウム銅、ベリリウムニッケル、またはパラジウム合金などによって実現される。絶縁被膜23は、樹脂、セラミック、または樹脂とセラミックとの混合物などによって実現される。ばね性被覆材24は、ばね鋼、ステンレス鋼、ベリリウム銅、硬鋼線、またはりん青銅などの材料によって実現される。メッキ被膜25は、金、金すず合金、パラジウム、またはニッケルなどによって実現される。 The core material 21 has a circular cross section and is realized by tungsten, beryllium nickel, stainless steel, SK material, or the like. The conductive coating material 22 is realized by gold, silver, aluminum, copper, gold alloy, silver alloy, copper alloy, beryllium copper, beryllium nickel, palladium alloy, or the like. The insulating coating 23 is realized by resin, ceramic, or a mixture of resin and ceramic. The spring covering 24 is realized by a material such as spring steel, stainless steel, beryllium copper, hard steel wire, or phosphor bronze. The plating film 25 is realized by gold, a gold tin alloy, palladium, nickel, or the like.
 プローブホルダ3は、検査時に検査対象と対向する側(以下、「ヘッド側」という)に位置するコンタクトプローブ2の端部付近を挿通して保持するヘッド側プレート31と、配線基板と対向する側(以下、「配線側」という)に位置するコンタクトプローブ2の端部付近を挿通して保持する配線側プレート32と、ヘッド側プレート31と配線側プレート32との間に介在してヘッド側プレート31と配線側プレート32とを連結する連結部材33とを有する。ヘッド側プレート31、配線側プレート32および連結部材33は導電性材料からなり、グラウンドに接続している。なお、プローブホルダ3の表面に、金、金すず合金、パラジウム、またはニッケルなどからなるメッキ被膜を設けてもよい。 The probe holder 3 includes a head side plate 31 that is inserted and held near the end of the contact probe 2 that is located on the side facing the inspection target (hereinafter referred to as “head side”) at the time of inspection, and the side facing the wiring board. (Hereinafter referred to as “wiring side”) A wiring side plate 32 that is inserted and held near the end of the contact probe 2, and a head side plate that is interposed between the head side plate 31 and the wiring side plate 32. 31 and a connecting member 33 for connecting the wiring side plate 32 to each other. The head side plate 31, the wiring side plate 32, and the connecting member 33 are made of a conductive material and are connected to the ground. Note that a plating film made of gold, a tin-gold alloy, palladium, nickel, or the like may be provided on the surface of the probe holder 3.
 ヘッド側プレート31は、板厚方向に貫通してコンタクトプローブ2を挿通する挿通孔311を複数個有する。また、配線側プレート32は、板厚方向に貫通してコンタクトプローブ2を挿通し、複数の挿通孔311のいずれかと軸線が一致する挿通孔321を複数個有する。挿通孔311、321の配置パターンは、検査対象の電極の配置パターンに応じて定められる。 The head-side plate 31 has a plurality of insertion holes 311 that penetrate through the contact probe 2 in the thickness direction. In addition, the wiring side plate 32 has a plurality of insertion holes 321 that penetrate the contact probe 2 through the plate thickness direction and have the same axis as any of the plurality of insertion holes 311. The arrangement pattern of the insertion holes 311 and 321 is determined according to the arrangement pattern of the electrodes to be inspected.
 配線基板5は、配線4の端部を挿通して保持する保持孔51を有する。保持孔51に挿通された配線4の端部は、絶縁性の接着剤Gによって配線基板5に固着されている。配線基板5は導電性材料からなり、プローブホルダ3と同様、グラウンドと接続している。 The wiring board 5 has a holding hole 51 for inserting and holding the end of the wiring 4. An end portion of the wiring 4 inserted through the holding hole 51 is fixed to the wiring substrate 5 with an insulating adhesive G. The wiring board 5 is made of a conductive material and is connected to the ground in the same manner as the probe holder 3.
 図3は、プローブユニット1における検査時の状態を示す図である。検査時には、検査対象300の電極301とコンタクトプローブ2の先端側が接触し、電極301から荷重を受ける。コンタクトプローブ2は、電極301との接触による荷重を受けて撓み、外縁でプローブホルダ3と接触する。コンタクトプローブ2の外縁はメッキ被膜25であるため、コンタクトプローブ2はプローブホルダ3と導通して等電位となる。この結果、コンタクトプローブ2の表面がシールドされ、ノイズを防止してクロストークを低減することができる。したがって、コンタクトプローブ2の電気特性が向上し、1GHz以上の高周波信号にも対応させることができる。 FIG. 3 is a diagram showing a state of the probe unit 1 at the time of inspection. At the time of inspection, the electrode 301 of the inspection object 300 comes into contact with the distal end side of the contact probe 2 and receives a load from the electrode 301. The contact probe 2 bends by receiving a load due to contact with the electrode 301 and contacts the probe holder 3 at the outer edge. Since the outer edge of the contact probe 2 is a plating film 25, the contact probe 2 is electrically connected to the probe holder 3 and becomes equipotential. As a result, the surface of the contact probe 2 is shielded, noise can be prevented, and crosstalk can be reduced. Therefore, the electrical characteristics of the contact probe 2 are improved, and it is possible to cope with a high frequency signal of 1 GHz or more.
 以上説明した本発明の実施の形態1によれば、ビッカース硬さが450以上の導電性材料からなる線状の芯材21と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、芯材の外周を被覆する導電性被覆材22と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、導電性被覆材の外周側に位置するばね性被覆材24と、備えているため、芯材21によって耐久性を向上させ、導電性被覆材22によって電気特性を向上させ、ばね性被覆材24によって所望のばね特性を確保することができる。したがって、少なくともばね特性、電気特性、耐久性に関して所望の性能を満足させることが可能となる。 According to the first embodiment of the present invention described above, the linear core material 21 made of a conductive material having a Vickers hardness of 450 or more, and an electrical resistivity of 5.00 × 10 −8 Ω · m or less. The conductive coating 22 is made of a conductive material and covers the outer periphery of the core material, and is made of a spring material having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more. The core material 21 improves durability, the conductive coating material 22 improves electrical characteristics, and the spring coating material 24 ensures desired spring characteristics. it can. Therefore, it is possible to satisfy desired performance at least with respect to spring characteristics, electrical characteristics, and durability.
 また、本実施の形態1によれば、プローブホルダ3が導電性材料によって実現されるため、コンタクトプローブ2の表面がシールドされ、ノイズを防止してクロストークを低減することができる。したがって、コンタクトプローブ2の電気特性を一段と向上させることができる。 Also, according to the first embodiment, since the probe holder 3 is realized by a conductive material, the surface of the contact probe 2 is shielded, noise can be prevented, and crosstalk can be reduced. Therefore, the electrical characteristics of the contact probe 2 can be further improved.
(実施の形態2)
 図4は、本発明の実施の形態2に係るプローブユニットの要部の構成を示す図である。同図に示すプローブユニット6は、同軸構造による電気特性検査を行う装置であり、複数のワイヤー型のコンタクトプローブ7と、複数のコンタクトプローブ7を個別に保持するプローブホルダ8と、絶縁性材料からなり、同軸配線9を挿通して保持する保持孔101を有する配線基板10と、絶縁性材料からなり、平板状をなしてプローブホルダ8と配線基板10との間に介在し、同軸配線9の一つの電極の先端部をガイドするガイド部材11と、を備える。
(Embodiment 2)
FIG. 4 is a diagram showing a configuration of a main part of the probe unit according to Embodiment 2 of the present invention. A probe unit 6 shown in FIG. 1 is a device for inspecting electrical characteristics using a coaxial structure, and includes a plurality of wire-type contact probes 7, a probe holder 8 that individually holds the plurality of contact probes 7, and an insulating material. A wiring board 10 having a holding hole 101 for inserting and holding the coaxial wiring 9 and an insulating material, and is formed between the probe holder 8 and the wiring board 10 in a flat plate shape. And a guide member 11 that guides the tip of one electrode.
 コンタクトプローブ7は、コンタクトプローブ2と同様の横断面を有している。以下、コンタクトプローブ7において、コンタクトプローブ2の芯材21、導電性被覆材22、絶縁被膜23、ばね性被覆材24、メッキ被膜25にそれぞれ対応する部位を、芯材71、導電性被覆材72、絶縁被膜73、ばね性被覆材74、メッキ被膜75という。コンタクトプローブ7は、検査対象と接触する側の端部がクラウン形状をなしている。これは、コンタクトプローブ7と検査対象の電極とが接触したときに、芯材71、導電性被覆材72、ばね性被覆材74、メッキ被膜75が電極と接触するようにするためである。 The contact probe 7 has the same cross section as the contact probe 2. Hereinafter, in the contact probe 7, portions corresponding to the core material 21, the conductive coating material 22, the insulating coating 23, the spring coating material 24, and the plating coating 25 of the contact probe 2 are respectively designated as the core material 71 and the conductive coating material 72. , Insulating coating 73, spring coating 74, and plating coating 75. The contact probe 7 has a crown-shaped end on the side in contact with the inspection object. This is because the core material 71, the conductive coating material 72, the spring coating material 74, and the plating film 75 are in contact with the electrodes when the contact probe 7 and the electrode to be inspected are in contact.
 プローブホルダ8は、コンタクトプローブ7のヘッド側の端部付近を挿通して保持するヘッド側プレート81と、コンタクトプローブ7の配線側の端部付近を挿通して保持する配線側プレート82と、ヘッド側プレート81と配線側プレート82との間に介在してヘッド側プレート81と配線側プレート82とを連結する連結部材83とを有する。ヘッド側プレート81、配線側プレート82および連結部材83は導電性材料からなり、グラウンドに接続している。 The probe holder 8 includes a head side plate 81 that is inserted and held near the end of the contact probe 7 on the head side, a wiring side plate 82 that is inserted and held near the end of the contact probe 7 on the wiring side, and a head. A connecting member 83 is provided between the side plate 81 and the wiring side plate 82 to connect the head side plate 81 and the wiring side plate 82. The head side plate 81, the wiring side plate 82 and the connecting member 83 are made of a conductive material and are connected to the ground.
 ヘッド側プレート81は、板厚方向に貫通してコンタクトプローブ7を挿通する挿通孔811を複数個有する。また、配線側プレート82は、板厚方向に貫通してコンタクトプローブ7を挿通する挿通孔821を複数個有する。挿通孔811、821の配置パターンは、検査対象の電極の配置パターンに応じて定められる。 The head side plate 81 has a plurality of insertion holes 811 that penetrate through the contact probe 7 in the thickness direction. Further, the wiring side plate 82 has a plurality of insertion holes 821 that penetrate the contact probe 7 through the plate thickness direction. The arrangement pattern of the insertion holes 811 and 821 is determined according to the arrangement pattern of the electrodes to be inspected.
 同軸配線9は、中心導線91と、外周導線92と、中心導線91および外周導線92の間に介在する中空の絶縁体93とを有する。中心導線91の端部は、外周導線92および絶縁体93の端部よりも突出しており、この突出した部分がガイド部材11の挿通孔111に挿通されている。外周導線92はグラウンドに接続しており、プローブホルダ8と等電位である。なお、同軸配線9を保持孔101に固定する際には、上記実施の形態1と同様に接着剤Gを使用して同軸配線9を配線基板10に固着してもよい。 The coaxial wiring 9 has a center conductor 91, an outer conductor 92, and a hollow insulator 93 interposed between the center conductor 91 and the outer conductor 92. The end portion of the center conducting wire 91 protrudes from the end portions of the outer peripheral conducting wire 92 and the insulator 93, and this projecting portion is inserted into the insertion hole 111 of the guide member 11. The outer peripheral conducting wire 92 is connected to the ground and is equipotential with the probe holder 8. When the coaxial wiring 9 is fixed to the holding hole 101, the coaxial wiring 9 may be fixed to the wiring board 10 using the adhesive G as in the first embodiment.
 図5は、プローブユニット6における検査時の状態を示す図である。検査時には、検査対象300の電極301とコンタクトプローブ7のクラウン形状をなす先端部が接触する。これにより、コンタクトプローブ7は電極301から荷重を受けて撓み、プローブホルダ8と接触する。この際、絶縁被膜23の内周側に位置する導電層(芯材71および/または導電性被覆材72)は、配線側で中心導線91と導通する一方、絶縁被膜23の外周側に位置する導電層(ばね性被覆材74およびメッキ被膜75)は、プローブホルダ8を介して外周導線92と導通する。これに対し、ヘッド側では、図6の拡大部分断面図に示すように、芯材71、導電性被覆材72、ばね性被覆材74、メッキ被膜75が電極301と接触する。ここで、コンタクトプローブ7の先端形状は、絶縁被膜73の内周側の導電層および外周側の導電層が電極301と同時に接触することができるような形状でなければならない。このような形状とすることにより、同軸構造による電気特性検査を、外部ノイズ、クロストークを軽減して行うことが可能となる。 FIG. 5 is a diagram showing a state of the probe unit 6 at the time of inspection. At the time of inspection, the electrode 301 of the inspection object 300 comes into contact with the crown-shaped tip of the contact probe 7. As a result, the contact probe 7 receives the load from the electrode 301 and bends to contact the probe holder 8. At this time, the conductive layer (core material 71 and / or conductive coating material 72) located on the inner peripheral side of the insulating coating 23 is electrically connected to the central conductor 91 on the wiring side, while being positioned on the outer peripheral side of the insulating coating 23. The conductive layers (spring-like covering material 74 and plating film 75) are electrically connected to the outer peripheral conductor 92 through the probe holder 8. On the other hand, on the head side, as shown in the enlarged partial sectional view of FIG. 6, the core material 71, the conductive coating material 72, the spring coating material 74, and the plating film 75 are in contact with the electrode 301. Here, the tip shape of the contact probe 7 must be such that the inner peripheral conductive layer and the outer peripheral conductive layer of the insulating coating 73 can be in contact with the electrode 301 simultaneously. By adopting such a shape, it becomes possible to perform an electrical characteristic inspection with a coaxial structure while reducing external noise and crosstalk.
 以上説明した本発明の実施の形態2によれば、上述した実施の形態1と同様、少なくともばね特性、電気特性、耐久性に関して所望の性能を満足させることが可能となる。 According to the second embodiment of the present invention described above, it is possible to satisfy the desired performance at least with respect to the spring characteristics, electrical characteristics, and durability, as in the first embodiment.
 また、本実施の形態2によれば、プローブホルダ8が導電性材料によって実現されており、このプローブホルダ8と同軸配線9の外周導線92とをグラウンドに接続して等電位としているため、コンタクトプローブ7が撓むと、コンタクトプローブ7はプローブホルダ8を介して外周導線92に間接的に接続することとなる。したがって、コンタクトプローブ7を実質的に同軸構造とすることができ、簡易な構成によって同軸構造による電気特性検査を、外部ノイズ、クロストークを軽減して行うことができる。その結果、コンタクトプローブ7の径を0.1mm以下に細径化しても測定を容易に行うことができる。 Further, according to the second embodiment, the probe holder 8 is realized by a conductive material, and the probe holder 8 and the outer peripheral conducting wire 92 of the coaxial wiring 9 are connected to the ground to be equipotential. When the probe 7 is bent, the contact probe 7 is indirectly connected to the outer peripheral conductor 92 through the probe holder 8. Therefore, the contact probe 7 can be substantially made into a coaxial structure, and the electrical characteristic inspection by the coaxial structure can be performed with a simple configuration while reducing external noise and crosstalk. As a result, measurement can be easily performed even if the diameter of the contact probe 7 is reduced to 0.1 mm or less.
(実施の形態3)
 図7は、本発明の実施の形態3に係るプローブユニットの要部の構成を示す図である。同図に示すプローブユニット12は、4端子測定法による電気特性検査を行う装置であり、複数のワイヤー型のコンタクトプローブ13と、複数のコンタクトプローブ7を個別に保持するプローブホルダ14と、絶縁性材料からなり、同軸配線15を挿通して保持する保持孔161を有する配線基板16と、を備える。
(Embodiment 3)
FIG. 7 is a diagram showing the configuration of the main part of the probe unit according to Embodiment 3 of the present invention. The probe unit 12 shown in the figure is a device that performs an electrical property inspection by a four-terminal measurement method, and includes a plurality of wire-type contact probes 13, a probe holder 14 that individually holds a plurality of contact probes 7, and an insulating property. And a wiring board 16 having a holding hole 161 for inserting and holding the coaxial wiring 15.
 図8は、コンタクトプローブ13の内部構造を示す図であり、図7のB-B線断面図である。コンタクトプローブ13は、内周側から順に芯材131、導電性被覆材132、絶縁被膜133、ばね性被覆材134、メッキ被膜135、およびメッキ被膜135の外周を被覆する第2絶縁被膜136を備え、軸対称な形状をなしている。芯材131、導電性被覆材132、絶縁被膜133、ばね性被覆材134、メッキ被膜135は、コンタクトプローブ2の芯材21、導電性被覆材22、絶縁被膜23、ばね性被覆材24、メッキ被膜25とそれぞれ同様の材料によって実現される。また、第2絶縁被膜136は絶縁被膜133と同様の絶縁性材料からなる。なお、図8に示す各層の厚みはあくまでも一例に過ぎず、コンタクトプローブ13に求められる性能に応じて適宜設定することができる。 FIG. 8 is a diagram showing the internal structure of the contact probe 13, and is a cross-sectional view taken along the line BB of FIG. The contact probe 13 includes a core material 131, a conductive coating material 132, an insulating coating 133, a spring coating material 134, a plating coating 135, and a second insulating coating 136 that covers the outer periphery of the plating coating 135 in order from the inner peripheral side. It has an axisymmetric shape. The core material 131, the conductive coating material 132, the insulating coating 133, the spring coating material 134, and the plating coating 135 are the core material 21 of the contact probe 2, the conductive coating material 22, the insulating coating 23, the spring coating material 24, and the plating. The coating 25 is realized by the same material as each other. The second insulating coating 136 is made of the same insulating material as the insulating coating 133. The thickness of each layer shown in FIG. 8 is merely an example, and can be set as appropriate according to the performance required for the contact probe 13.
 プローブホルダ14は、コンタクトプローブ13のヘッド側の端部付近を挿通して保持するヘッド側プレート141と、コンタクトプローブ13の配線側の端部付近を挿通して保持する配線側プレート142と、ヘッド側プレート141と配線側プレート142との間に介在してヘッド側プレート141と配線側プレート142とを連結する連結部材143とを有する。ヘッド側プレート141、配線側プレート142および連結部材143は絶縁性材料からなる。なお、ヘッド側プレート141、配線側プレート142および連結部材143として、導電性材料の表面に絶縁被膜を設けたものを適用してもよい。 The probe holder 14 includes a head side plate 141 that is inserted and held near the end of the contact probe 13 on the head side, a wiring side plate 142 that is inserted and held near the end of the contact probe 13 on the wiring side, and a head A connecting member 143 is provided between the side plate 141 and the wiring side plate 142 to connect the head side plate 141 and the wiring side plate 142. The head side plate 141, the wiring side plate 142, and the connecting member 143 are made of an insulating material. As the head side plate 141, the wiring side plate 142, and the connecting member 143, a conductive material provided with an insulating coating on the surface may be applied.
 ヘッド側プレート141は、板厚方向に貫通してコンタクトプローブ13を挿通する挿通孔1411を複数個有する。また、配線側プレート142は、板厚方向に貫通してコンタクトプローブ13を挿通する挿通孔1421を複数個有する。挿通孔1411、1421の配置パターンは、検査対象の電極の配置パターンに応じて定められる。 The head side plate 141 has a plurality of insertion holes 1411 that penetrate through the contact probe 13 in the thickness direction. In addition, the wiring side plate 142 has a plurality of insertion holes 1421 that penetrate through the contact probe 13 in the thickness direction. The arrangement pattern of the insertion holes 1411 and 1421 is determined according to the arrangement pattern of the electrodes to be inspected.
 同軸配線15は、中心導線151と、外周導線152と、中心導線151および外周導線152の間に介在する中空の絶縁体153とを有する。このうち、外周導線152は、中心導線151および絶縁体153よりも突出している。 The coaxial wiring 15 includes a center conductor 151, an outer conductor 152, and a hollow insulator 153 interposed between the center conductor 151 and the outer conductor 152. Among these, the outer periphery conducting wire 152 protrudes from the center conducting wire 151 and the insulator 153.
 図9は、コンタクトプローブ13と同軸配線15との接触態様を示す拡大部分断面図である。芯材131は中心導線151と接触する。また、ばね性被覆材134およびメッキ被膜135は、外周導線152と接触する。したがって、中心導線151および外周導線152は、ともにコンタクトプローブ13と導通し、一方を電流印加用とし、他方を電圧測定用とすることによって検査対象の4端子測定を行うことができる。 FIG. 9 is an enlarged partial sectional view showing a contact mode between the contact probe 13 and the coaxial wiring 15. Core 131 is in contact with center conductor 151. Further, the spring covering material 134 and the plating film 135 are in contact with the outer peripheral conductor 152. Therefore, the center conducting wire 151 and the outer conducting wire 152 are both electrically connected to the contact probe 13, and one terminal is used for current application and the other is used for voltage measurement.
 以上説明した本発明の実施の形態3によれば、上述した実施の形態1と同様、少なくともばね特性、電気特性、耐久性に関して所望の性能を満足させることが可能となる。 According to the third embodiment of the present invention described above, it is possible to satisfy the desired performance at least with respect to the spring characteristics, electrical characteristics, and durability, as in the first embodiment.
 また、本実施の形態3によれば、同軸配線15の外周導線152を中心導線151や絶縁体153よりも突出させ、コンタクトプローブ13の絶縁被膜133の外周側に設けられる導電層(ばね性被覆材134および/またはメッキ被膜135)に接触する構成としているため、例えば特開2009-8579号公報に開示されている技術と比較して顕著に簡易な構成によって4端子測定を行うことができる。その結果、コンタクトプローブ13の径を0.1mm以下に細径化しても4端子測定を容易に行うことができる。 Further, according to the third embodiment, the outer peripheral conductor 152 of the coaxial wiring 15 is protruded from the central conductor 151 and the insulator 153, and the conductive layer (spring coating) provided on the outer peripheral side of the insulating coating 133 of the contact probe 13. Since it is configured to be in contact with the material 134 and / or the plated coating 135), for example, four-terminal measurement can be performed with a significantly simpler configuration as compared with the technique disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2009-8579. As a result, 4-terminal measurement can be easily performed even if the diameter of the contact probe 13 is reduced to 0.1 mm or less.
(実施の形態4)
 図10は、本発明の実施の形態4に係るプローブユニットの要部の構成を示す図である。同図に示すプローブユニット17は、複数のワイヤー型のコンタクトプローブ18と、複数のコンタクトプローブ18を個別に保持するプローブホルダ19と、配線41を挿通して保持する保持孔421を有する配線基板42と、を備える。
(Embodiment 4)
FIG. 10 is a diagram illustrating a configuration of a main part of a probe unit according to Embodiment 4 of the present invention. The probe unit 17 shown in the figure includes a plurality of wire-type contact probes 18, a probe holder 19 that individually holds the plurality of contact probes 18, and a wiring board 42 that has a holding hole 421 for inserting and holding the wiring 41. And comprising.
 コンタクトプローブ18は、軸対称な形状をなす導電性材料からなり、検査対象と接触するプランジャー181と、プランジャー181の基端部に取り付けられたワイヤー部182とを有する。 The contact probe 18 is made of a conductive material having an axially symmetric shape, and includes a plunger 181 that comes into contact with the inspection target, and a wire portion 182 attached to the base end of the plunger 181.
 プランジャー181は、先鋭端を有する先端部181aと、先端部181aの径よりも大きい径を有するフランジ部181bと、フランジ部181bを介して先端部181aと反対方向に設けられ、ワイヤー部182の一端を保持するワイヤー保持部181cと、を有する。ワイヤー部182は、半田付け、金ロウ付け、銀ロウ付け、カシメ、打ち込み、またはレーザ溶接などを施すことによってワイヤー保持部181cに取り付けられる。プランジャー181は、接触抵抗の低いニッケル合金や、耐摩耗性に優れたSK材によって実現される。 The plunger 181 is provided in a direction opposite to the tip portion 181a via the flange portion 181b, a flange portion 181b having a diameter larger than the diameter of the tip portion 181a, and the wire portion 182. And a wire holding portion 181c that holds one end. The wire part 182 is attached to the wire holding part 181c by performing soldering, gold brazing, silver brazing, caulking, driving, laser welding, or the like. The plunger 181 is realized by a nickel alloy having a low contact resistance or an SK material having excellent wear resistance.
 図11は、ワイヤー部182の内部構造を示す図であり、図10のC-C線断面図である。ワイヤー部182は、ビッカース硬さが450以上の導電性材料からなる線状の芯材1821と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、芯材1821の外周を被覆する導電性被覆材1822と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、導電性被覆材1822の外周を被覆するばね性被覆材1823と、絶縁性材料からなり、ばね性被覆材の外周を被覆する絶縁被膜1824と、を有し、軸対称な形状をなしている。より具体的には、芯材1821、導電性被覆材1822、ばね性被覆材1823および絶縁被膜1824は、芯材21、導電性被覆材22、ばね性被覆材24および絶縁被膜23とそれぞれ同様の材料によって実現される。なお、図11に示す各層の厚みはあくまでも一例に過ぎず、ワイヤー部182に求められる性能に応じて適宜設定することができる。 11 is a view showing the internal structure of the wire portion 182 and is a cross-sectional view taken along the line CC of FIG. The wire portion 182 is made of a linear core material 1821 made of a conductive material having a Vickers hardness of 450 or more and a conductive material having an electric resistivity of 5.00 × 10 −8 Ω · m or less. A conductive coating 1822 that covers the outer periphery of the material, a spring material having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more, and a coating material 1823 that covers the outer periphery of the conductive coating 1822; It is made of an insulating material, and has an insulating coating 1824 that covers the outer periphery of the spring coating material, and has an axisymmetric shape. More specifically, the core material 1821, the conductive coating material 1822, the spring coating material 1823, and the insulating coating 1824 are the same as the core material 21, the conductive coating material 22, the spring coating material 24, and the insulating coating 23, respectively. Realized by material. In addition, the thickness of each layer shown in FIG. 11 is only an example, and can be appropriately set according to the performance required for the wire portion 182.
 プローブホルダ19は、コンタクトプローブ18のヘッド側の端部付近を挿通して保持するヘッド側プレート191と、コンタクトプローブ18の配線側の端部付近を挿通して保持する配線側プレート192と、ヘッド側プレート191と配線側プレート192との間に介在してヘッド側プレート191と配線側プレート192とを連結する連結部材193とを有する。ヘッド側プレート191、配線側プレート192および連結部材193は、絶縁性材料からなる。 The probe holder 19 includes a head side plate 191 that is inserted and held near the end of the contact probe 18 on the head side, a wiring side plate 192 that is inserted and held near the end of the contact probe 18 on the wiring side, and a head. A connecting member 193 is provided between the side plate 191 and the wiring side plate 192 to connect the head side plate 191 and the wiring side plate 192. The head side plate 191, the wiring side plate 192, and the connecting member 193 are made of an insulating material.
 ヘッド側プレート191は、板厚方向に貫通してコンタクトプローブ18を挿通する挿通孔1911を有する。また、配線側プレート192は、板厚方向に貫通してコンタクトプローブ18を挿通する挿通孔1921を有する。挿通孔1911、1921の配置パターンは、検査対象の電極の配置パターンに応じて定められる。 The head side plate 191 has an insertion hole 1911 that passes through the contact probe 18 in the plate thickness direction. In addition, the wiring side plate 192 has an insertion hole 1921 that penetrates the contact probe 18 in the thickness direction. The arrangement pattern of the insertion holes 1911 and 1921 is determined according to the arrangement pattern of the electrodes to be inspected.
 配線基板42の保持孔421に挿通された配線41の端部は、絶縁性の接着剤Gによって配線基板42に固着されている。 The end of the wiring 41 inserted into the holding hole 421 of the wiring board 42 is fixed to the wiring board 42 with an insulating adhesive G.
 以上の構成を有するプローブユニット17において、検査対象の電極を先端部181aと接触させて荷重を加えると、ワイヤー部182が撓み、この撓んだ状態で検査対象と配線41とが導通する。 In the probe unit 17 having the above configuration, when an electrode to be inspected is brought into contact with the tip portion 181a and a load is applied, the wire portion 182 is bent, and the inspection target and the wiring 41 are conducted in this bent state.
 以上説明した本発明の実施の形態4によれば、上述した実施の形態1と同様、少なくともばね特性、電気特性、耐久性に関して所望の性能を満足させることが可能となる。 According to the fourth embodiment of the present invention described above, it is possible to satisfy desired performances at least with respect to spring characteristics, electrical characteristics, and durability, as in the first embodiment described above.
 なお、本実施の形態4におけるプランジャーとワイヤー部との取付態様は上述したものに限られるわけではない。例えば、特開2007-178404号公報に開示されている密巻ばね継手を用いることによってプランジャーとワイヤー部とを機械的に接続してもよい。また、特開2007-178404号公報に開示されているように、ワイヤー部の両端でプランジャーと接続してもよい。 In addition, the attachment aspect of the plunger and wire part in this Embodiment 4 is not necessarily restricted to what was mentioned above. For example, the plunger and the wire portion may be mechanically connected by using a closely wound spring joint disclosed in Japanese Patent Application Laid-Open No. 2007-178404. Further, as disclosed in Japanese Patent Application Laid-Open No. 2007-178404, both ends of the wire portion may be connected to the plunger.
(実施の形態5)
 図12は、本発明の実施の形態5に係るプローブユニットの要部の構成を示す図である。同図に示すプローブユニット20は、同軸構造による電気特性検査を行う装置であり、複数のワイヤー型のコンタクトプローブ2と、複数のコンタクトプローブ2を個別に保持するプローブホルダ34と、同軸配線94が埋め込まれた配線基板5と、を備える。
(Embodiment 5)
FIG. 12 is a diagram showing a configuration of a main part of a probe unit according to Embodiment 5 of the present invention. The probe unit 20 shown in the figure is an apparatus for inspecting electrical characteristics by a coaxial structure, and includes a plurality of wire-type contact probes 2, a probe holder 34 that individually holds the plurality of contact probes 2, and a coaxial wiring 94. Embedded wiring board 5.
 プローブホルダ34は、ヘッド側に位置するコンタクトプローブ2の端部付近を挿通して保持するヘッド側プレート35と、配線側に位置するコンタクトプローブ2の端部付近を挿通して保持する配線側プレート36と、ヘッド側プレート35と配線側プレート36との間に介在してヘッド側プレート35と配線側プレート36とを連結する連結部材37と、を有する。また、プローブホルダ34の上面には、絶縁性材料を用いて実現され、ヘッド側プレート35の上面を覆う絶縁部材38が設けられている。ヘッド側プレート35、配線側プレート36および連結部材37は導電性材料からなり、グラウンドに接続している。 The probe holder 34 includes a head side plate 35 that is inserted and held near the end portion of the contact probe 2 positioned on the head side, and a wiring side plate that is inserted and held near the end portion of the contact probe 2 positioned on the wiring side. 36, and a connecting member 37 that is interposed between the head side plate 35 and the wiring side plate 36 and connects the head side plate 35 and the wiring side plate 36. Further, an insulating member 38 that is realized by using an insulating material and covers the upper surface of the head side plate 35 is provided on the upper surface of the probe holder 34. The head side plate 35, the wiring side plate 36 and the connecting member 37 are made of a conductive material and are connected to the ground.
 ヘッド側プレート35は、板厚方向に貫通してコンタクトプローブ2を挿通する挿通孔351を複数個有する。また、配線側プレート36は、板厚方向に貫通してコンタクトプローブ2を挿通し、複数の挿通孔351と軸線が異なる挿通孔361を複数個有する。挿通孔351、361の配置パターンは、検査対象の電極の配置パターンに応じて定められる。 The head side plate 35 has a plurality of insertion holes 351 that penetrate through the contact probe 2 in the thickness direction. Further, the wiring side plate 36 penetrates in the plate thickness direction and is inserted into the contact probe 2 and has a plurality of insertion holes 361 having different axes from the plurality of insertion holes 351. The arrangement pattern of the insertion holes 351 and 361 is determined according to the arrangement pattern of the electrodes to be inspected.
 配線基板5は、同軸配線94の端部を挿通して保持する保持孔51を有する。保持孔51に挿通された同軸配線94の端部は、絶縁性の接着剤等によって配線基板5に固着されている。配線基板5は導電性材料からなり、プローブホルダ34と同様、グラウンドと接続している。 The wiring board 5 has a holding hole 51 for inserting and holding the end of the coaxial wiring 94. The end of the coaxial wiring 94 inserted through the holding hole 51 is fixed to the wiring substrate 5 with an insulating adhesive or the like. The wiring board 5 is made of a conductive material and is connected to the ground in the same manner as the probe holder 34.
 図13は、プローブユニット20における検査時の状態を示す図である。検査時には、コンタクトプローブ2は、検査対象300の電極301とコンタクトプローブ2の先端側が接触し、電極301から荷重を受けて撓む。コンタクトプローブ2の芯材21は、配線側で中心導線95と導通する。また、コンタクトプローブ2の外縁はメッキ被膜25(図2参照)であるため、コンタクトプローブ2はプローブホルダ34と導通して等電位となる。この結果、コンタクトプローブ2の表面がシールドされ、ノイズを防止してクロストークを低減することができる。したがって、コンタクトプローブ2の電気特性が向上し、1GHz以上の高周波信号にも対応させることができる。 FIG. 13 is a diagram showing a state of the probe unit 20 at the time of inspection. At the time of inspection, the contact probe 2 comes into contact with the electrode 301 of the inspection object 300 and the tip side of the contact probe 2, and is bent by receiving a load from the electrode 301. The core material 21 of the contact probe 2 is electrically connected to the central conductor 95 on the wiring side. Further, since the outer edge of the contact probe 2 is a plated film 25 (see FIG. 2), the contact probe 2 is electrically connected to the probe holder 34 and becomes equipotential. As a result, the surface of the contact probe 2 is shielded, noise can be prevented, and crosstalk can be reduced. Therefore, the electrical characteristics of the contact probe 2 are improved, and it is possible to cope with a high frequency signal of 1 GHz or more.
 以上説明した本発明の実施の形態5によれば、ヘッド側プレート35および配線側プレート36の挿通孔351、361の軸線が異なる場合であっても、上述した実施の形態1、2と同様、ばね特性、電気特性、耐久性に関して所望の性能を満足させることが可能となるとともに、コンタクトプローブ2を予め傾斜させることでコンタクトプローブ2の撓み方向を一様にすることができる。 According to the fifth embodiment of the present invention described above, even if the axes of the insertion holes 351 and 361 of the head side plate 35 and the wiring side plate 36 are different, as in the first and second embodiments described above. It is possible to satisfy the desired performance with respect to the spring characteristics, electrical characteristics, and durability, and it is possible to make the bending direction of the contact probe 2 uniform by inclining the contact probe 2 in advance.
 なお、図12に示す絶縁部材38は、上述した実施の形態1~4にも適用可能である。絶縁部材を設けることによって、複数のコンタクトプローブをプローブホルダに取り付けた際に隣接するコンタクトプローブの電気的な短絡を防止することが可能である。 Note that the insulating member 38 shown in FIG. 12 is also applicable to the first to fourth embodiments described above. By providing the insulating member, it is possible to prevent an electrical short circuit between adjacent contact probes when a plurality of contact probes are attached to the probe holder.
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~5によってのみ限定されるべきものではない。すなわち、本発明は、ここでは記載していない様々な実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。 Up to this point, the mode for carrying out the present invention has been described. However, the present invention should not be limited only to the above-described first to fifth embodiments. That is, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. Is possible.
 本発明は、半導体パッケージや液晶パネルなどの電子部品における導通状態検査や動作特性検査を行う際に有用である。 The present invention is useful when conducting a conduction state inspection and an operation characteristic inspection in an electronic component such as a semiconductor package or a liquid crystal panel.
 1、6、12、17、20 プローブユニット
 2、7、13、18 コンタクトプローブ
 3、8、14、19、34 プローブホルダ
 4 配線
 5、10、16 配線基板
 9、15、94 同軸配線
 11 ガイド部材
 21、71、131、1821 芯材
 22、72、132、1822 導電性被覆材
 23、73、133、1824 絶縁被膜
 24、74、134、1823 ばね性被覆材
 25、75、135 メッキ被膜
 31、35、81、141、191 ヘッド側プレート
 32、36、82、142、192 配線側プレート
 33、37、83、143,193 連結部材
 38 絶縁部材
 51、101、161 保持孔
 91、95、151 中心導線
 92、152 外周導線
 93、153 絶縁体
 111 挿通孔
 136 第2絶縁被膜
 181 プランジャー
 181a 先端部
 181b フランジ部
 181c ワイヤー保持部
 182 ワイヤー部
 300 検査対象
 301 電極
 311、321、351、361、811、821、1411、1421、1911、1921 挿通孔
1, 6, 12, 17, 20 Probe unit 2, 7, 13, 18 Contact probe 3, 8, 14, 19, 34 Probe holder 4 Wiring 5, 10, 16 Wiring board 9, 15, 94 Coaxial wiring 11 Guide member 21, 71, 131, 1821 Core material 22, 72, 132, 1822 Conductive coating 23, 73, 133, 1824 Insulating coating 24, 74, 134, 1823 Spring coating 25, 75, 135 Plating coating 31, 35 81, 141, 191 Head side plate 32, 36, 82, 142, 192 Wiring side plate 33, 37, 83, 143, 193 Connecting member 38 Insulating member 51, 101, 161 Holding hole 91, 95, 151 Central conductor 92 , 152 Peripheral conductors 93, 153 Insulator 111 Insertion hole 136 Second insulating film 181 Plunger 181a tip 181b flange portion 181c wire holding portion 182 wire 300 inspected 301 electrodes 311,321,351,361,811,821,1411,1421,1911,1921 insertion hole

Claims (5)

  1.  ビッカース硬さが450以上の導電性材料からなる線状の芯材と、
     電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、
     絶縁性材料からなり、前記導電性被覆材の外周を被覆する絶縁被膜と、
     縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記絶縁被膜の外周を被覆するばね性被覆材と、
     前記ばね性被覆材の外周を被覆するメッキ被膜と、
     を備え、
     軸対称な形状をなすことを特徴とするコンタクトプローブ。
    A linear core made of a conductive material having a Vickers hardness of 450 or more;
    An electrically conductive coating material comprising an electrically conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less, and covering the outer periphery of the core material;
    An insulating film made of an insulating material and covering the outer periphery of the conductive coating material;
    A spring-like coating material comprising a spring material having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more, and covering the outer periphery of the insulating coating;
    A plating film covering the outer periphery of the springy coating material;
    With
    A contact probe characterized by an axisymmetric shape.
  2.  絶縁性材料からなり、前記メッキ被膜の外周を被覆する第2絶縁被膜をさらに備えたことを特徴とする請求項1記載のコンタクトプローブ。 The contact probe according to claim 1, further comprising a second insulating film made of an insulating material and covering an outer periphery of the plating film.
  3.  ビッカース硬さが450以上の導電性材料からなる線状の芯材と、
     電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、
     縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記導電性被覆材の外周を被覆するばね性被覆材と、
     絶縁性材料からなり、前記ばね性被覆材の外周を被覆する絶縁被膜と、
     導電性材料からなり、前記芯材、前記導電性被覆材、前記ばね性被覆材および前記絶縁被膜の長手方向の端部に取り付けられたプランジャーと、
     を備え、
     軸対称な形状をなすことを特徴とするコンタクトプローブ。
    A linear core made of a conductive material having a Vickers hardness of 450 or more;
    An electrically conductive coating material comprising an electrically conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less, and covering the outer periphery of the core material;
    A spring-like covering material comprising a spring material having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more and covering the outer periphery of the conductive covering material;
    An insulating film made of an insulating material and covering the outer periphery of the springy coating material;
    A plunger made of a conductive material, and attached to a longitudinal end of the core, the conductive coating, the spring coating, and the insulating coating;
    With
    A contact probe characterized by an axisymmetric shape.
  4.  ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、絶縁性材料からなり、前記被覆材の外周を被覆する絶縁被膜と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記絶縁被膜の外周を被覆するばね性被覆材と、前記ばね性被覆材の外周を被覆するメッキ被膜と、を有し、軸対称な形状をなすコンタクトプローブと、
     導電性材料からなり、複数の前記コンタクトプローブを個別に保持し、グラウンドに接続したプローブホルダと、
     を備えたことを特徴とするプローブユニット。
    A linear core material made of a conductive material having a Vickers hardness of 450 or more, and a conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less, and covering the outer periphery of the core material An insulating coating made of an insulating material, covering the outer periphery of the covering material, and a spring material having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more, and surrounding the outer periphery of the insulating coating A contact probe having an axisymmetric shape having a spring-like covering material and a plating film covering the outer periphery of the spring-like covering material;
    A probe holder made of a conductive material, individually holding a plurality of the contact probes, and connected to the ground;
    A probe unit comprising:
  5.  ビッカース硬さが450以上の導電性材料からなる線状の芯材と、電気抵抗率が5.00×10-8Ω・m以下の導電性材料からなり、前記芯材の外周を被覆する導電性被覆材と、絶縁性材料からなり、前記被覆材の外周を被覆する絶縁被膜と、縦弾性係数が1.00×104kgf/mm2以上のばね材料からなり、前記絶縁被膜の外周を被覆するばね性被覆材と、前記ばね性被覆材の外周を被覆するメッキ被膜と、絶縁性材料からなり、前記メッキ被膜の外周を被覆する第2絶縁被膜と、を有し、軸対称な形状をなすコンタクトプローブと、
     少なくとも表面が絶縁性材料からなり、複数の前記コンタクトプローブを個別に収容するプローブホルダと、
     を備えたことを特徴とするプローブユニット。
    A linear core material made of a conductive material having a Vickers hardness of 450 or more, and a conductive material having an electrical resistivity of 5.00 × 10 −8 Ω · m or less, and covering the outer periphery of the core material An insulating coating made of an insulating material, covering the outer periphery of the covering material, and a spring material having a longitudinal elastic modulus of 1.00 × 10 4 kgf / mm 2 or more, and surrounding the outer periphery of the insulating coating An axisymmetric shape having a spring-like covering material to be coated, a plating film covering the outer periphery of the spring-like covering material, and a second insulating film made of an insulating material and covering the outer periphery of the plating film A contact probe,
    A probe holder having at least a surface made of an insulating material and individually accommodating a plurality of the contact probes;
    A probe unit comprising:
PCT/JP2010/056448 2009-04-09 2010-04-09 Contact probe and probe unit WO2010117058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011508397A JPWO2010117058A1 (en) 2009-04-09 2010-04-09 Contact probe and probe unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-094975 2009-04-09
JP2009094975 2009-04-09

Publications (1)

Publication Number Publication Date
WO2010117058A1 true WO2010117058A1 (en) 2010-10-14

Family

ID=42936339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056448 WO2010117058A1 (en) 2009-04-09 2010-04-09 Contact probe and probe unit

Country Status (3)

Country Link
JP (1) JPWO2010117058A1 (en)
TW (1) TWI424165B (en)
WO (1) WO2010117058A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154670A (en) * 2011-01-24 2012-08-16 Nidec-Read Corp Inspection jig, electrode structure of inspection jig, and manufacturing method of the same
JP2014112072A (en) * 2012-11-05 2014-06-19 Shinko Electric Ind Co Ltd Probe card and manufacturing method for the same
JPWO2013051675A1 (en) * 2011-10-07 2015-03-30 日本発條株式会社 Probe unit
JP2017521668A (en) * 2014-07-14 2017-08-03 テクノプローベ エス.ピー.エー. Contact probe for test head and corresponding manufacturing method
DE102020126546A1 (en) 2020-10-09 2022-04-14 Infineon Technologies Ag A TEST PEN WITH A PEN TIP WITH LATERALLY ARRANGED PEN TIP SECTIONS
US20220196704A1 (en) * 2020-12-17 2022-06-23 Nhk Spring Co., Ltd. Measurement unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365657A (en) * 1989-08-03 1991-03-20 Tokyo Electron Ltd Probe apparatus
JPH1130630A (en) * 1997-07-10 1999-02-02 Tokyo Kasoode Kenkyusho:Kk Probe for stylet and probe card
JP2005351846A (en) * 2004-06-14 2005-12-22 Micronics Japan Co Ltd Probe needle
JP2007178404A (en) * 2005-12-28 2007-07-12 Nhk Spring Co Ltd Contact probe
JP2007225286A (en) * 2006-02-21 2007-09-06 Luzcom:Kk Very thin coaxial line, manufacturing method therefor, and method of manufacturing very thin pin probe using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4456696B2 (en) * 1999-07-06 2010-04-28 住友電気工業株式会社 Coaxial cable strands, coaxial cables, and coaxial cable bundles
JP2001324515A (en) * 2000-05-17 2001-11-22 Suncall Corp Contact probe device for inspecting electronic part
JP2001337110A (en) * 2000-05-29 2001-12-07 Bureijingu:Kk Probe pin and probe card
JP2008157904A (en) * 2006-12-25 2008-07-10 Shuichi Ikeda Contact for electric test
WO2008081704A1 (en) * 2006-12-28 2008-07-10 Nhk Spring Co., Ltd. Method for fixing probe unit wiring, and probe unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365657A (en) * 1989-08-03 1991-03-20 Tokyo Electron Ltd Probe apparatus
JPH1130630A (en) * 1997-07-10 1999-02-02 Tokyo Kasoode Kenkyusho:Kk Probe for stylet and probe card
JP2005351846A (en) * 2004-06-14 2005-12-22 Micronics Japan Co Ltd Probe needle
JP2007178404A (en) * 2005-12-28 2007-07-12 Nhk Spring Co Ltd Contact probe
JP2007225286A (en) * 2006-02-21 2007-09-06 Luzcom:Kk Very thin coaxial line, manufacturing method therefor, and method of manufacturing very thin pin probe using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154670A (en) * 2011-01-24 2012-08-16 Nidec-Read Corp Inspection jig, electrode structure of inspection jig, and manufacturing method of the same
JPWO2013051675A1 (en) * 2011-10-07 2015-03-30 日本発條株式会社 Probe unit
JP2014112072A (en) * 2012-11-05 2014-06-19 Shinko Electric Ind Co Ltd Probe card and manufacturing method for the same
JP2017521668A (en) * 2014-07-14 2017-08-03 テクノプローベ エス.ピー.エー. Contact probe for test head and corresponding manufacturing method
DE102020126546A1 (en) 2020-10-09 2022-04-14 Infineon Technologies Ag A TEST PEN WITH A PEN TIP WITH LATERALLY ARRANGED PEN TIP SECTIONS
US20220196704A1 (en) * 2020-12-17 2022-06-23 Nhk Spring Co., Ltd. Measurement unit

Also Published As

Publication number Publication date
TW201042264A (en) 2010-12-01
TWI424165B (en) 2014-01-21
JPWO2010117058A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP3653131B2 (en) Conductive contact
US6953348B2 (en) IC socket
JP5352170B2 (en) Inspection socket
WO2010117058A1 (en) Contact probe and probe unit
JP5103566B2 (en) Electrical contact and inspection jig having the same
WO2018190194A1 (en) Electrical connection apparatus
US8928137B2 (en) Flow meter with ultrasound transducer directly connected to and fixed to measurement circuit board
JPH11248748A (en) Probe card
JP2012181119A (en) Inspection device of substrate and method for manufacturing the same
US7148713B1 (en) Algoristic spring as probe
US6034534A (en) Laminated contact probe for inspection of ultra-microscopic pitch
JP2734412B2 (en) Semiconductor device socket
TW200532209A (en) Multi-signal single beam probe
JP2016011925A (en) Contact probe and contact probe unit
JP2002055118A (en) Prober
JP5651333B2 (en) Probe unit
JP5228610B2 (en) PCB inspection jig
JP2021026981A (en) Header and connector using the same
JP4979190B2 (en) Inspection probe jig
KR101662911B1 (en) Wire Space Transformer
JP2004125548A (en) Probe card
WO2024014231A1 (en) Probe device
JP4838658B2 (en) Substrate inspection jig and electrode structure of substrate inspection jig
JP2007285980A (en) Probe device
JP2004170181A (en) Checking tool for high-frequency/high-speed device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508397

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761757

Country of ref document: EP

Kind code of ref document: A1