WO2010113675A1 - Substrate cleaning device - Google Patents

Substrate cleaning device Download PDF

Info

Publication number
WO2010113675A1
WO2010113675A1 PCT/JP2010/054788 JP2010054788W WO2010113675A1 WO 2010113675 A1 WO2010113675 A1 WO 2010113675A1 JP 2010054788 W JP2010054788 W JP 2010054788W WO 2010113675 A1 WO2010113675 A1 WO 2010113675A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
cleaning
pure water
storage tank
solution
Prior art date
Application number
PCT/JP2010/054788
Other languages
French (fr)
Japanese (ja)
Inventor
正一 緒方
大輔 菅長
昌弘 吉田
Original Assignee
シャープ株式会社
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 住友精密工業株式会社 filed Critical シャープ株式会社
Publication of WO2010113675A1 publication Critical patent/WO2010113675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1316Methods for cleaning the liquid crystal cells, or components thereof, during manufacture: Materials therefor

Definitions

  • the present invention relates to a substrate cleaning apparatus that cleans a substrate using a cleaning liquid composed of an aqueous solution containing an oxidizing agent and a chelating agent, and more particularly to a substrate cleaning apparatus that uses a chelate superaqueous solution used in the manufacturing process of a liquid crystal panel. .
  • a photolithography process is frequently used in the manufacturing process of a liquid crystal panel or a semiconductor integrated circuit. Residues generated in this photolithography process cause a decrease in yield and the like, and are usually removed in a cleaning process using a cleaning liquid.
  • the substrate cleaning apparatus is an apparatus used in this cleaning process, and removes residues such as photoresist remaining on the substrate by supplying a cleaning liquid to the surface of the substrate.
  • a cleaning liquid for a glass substrate for a liquid crystal panel a cleaning liquid containing an oxidizing agent and a chelating agent is preferably used (see, for example, JP 2000-171985 A (Patent Document 1)).
  • the oxidizing agent hydrogen peroxide water is preferably used.
  • an aqueous solution containing hydrogen peroxide water and a chelating agent is referred to as a chelate superaqueous solution.
  • a substrate cleaning apparatus that uses this chelate superaqueous solution as a cleaning solution, one having a configuration as shown in FIG. 3 has been used.
  • the conventional substrate cleaning apparatus 1 ⁇ / b> B includes a cleaning tank 10 that cleans the glass substrate 200 using the chelate superwater solution 100, and a storage tank 16 that temporarily stores the chelate superwater solution 100.
  • a circulation path including a feed pipe 18 and a return pipe 15 connecting the washing tank 10 and the storage tank 16 is provided.
  • the circulating pump 19 provided in the feed pipe 18 is operated, so that the chelate superaqueous solution 100 stored in the storage tank 16 is stored in the storage tank 16, the feed pipe 18, and the cleaning tank 10.
  • the return pipe 15 and the storage tank 16 are circulated in this order.
  • the downstream end of the feed pipe 18 is connected to a discharge pipe 22 provided in the upper part of the cleaning tank 10, and the chelate superaqueous solution 100 is discharged from the discharge pipe 22 into the cleaning tank 10 in a shower shape. Is done.
  • the glass substrate 200 that is the object to be cleaned is transported from the carry-in port 11 to the carry-out port 12 so as to cross the inside of the washing tank 10 by the transport roller 14, and at that time, the chelate superaqueous solution discharged in the shower shape described above. 100 is supplied to the surface to be cleaned of the glass substrate 200.
  • the chelate superaqueous solution 100 supplied to the surface to be cleaned of the glass substrate 200 lifts the residue adhering to the surface to be cleaned of the glass substrate 200 from the surface to be cleaned, and then stores the liquid in the cleaning tank 10. It falls to the part 13.
  • the chelate superaqueous solution 100 dropped to the liquid reservoir 13 in the cleaning tank 10 is discharged to the storage tank 16 via the return pipe 15 and stored in the storage section 17 in the storage tank 16. Then, the chelate superaqueous solution 100 stored in the storage tank 16 is sent again to the discharge pipe 22 via the feed pipe 18 by the circulation pump 19. Thereby, the glass substrate 200 is continuously cleaned.
  • the concentration of the cleaning liquid gradually increases due to evaporation of water contained in the cleaning liquid, and it is necessary to periodically replace the cleaning liquid.
  • the liquid temperature of the cleaning liquid is generally set to a temperature higher than room temperature in order to increase the cleaning efficiency. Therefore, the water evaporation speed is relatively fast, the replacement cycle is shortened, and the material cost is reduced. The problem was soaring.
  • the present invention has been made to solve the above-described problems, and can suppress a change in the concentration of the chelating superaqueous solution as a cleaning solution, and as a result, the chelating superaqueous solution material to be used.
  • An object of the present invention is to provide a substrate cleaning apparatus capable of reducing the cost.
  • the substrate cleaning apparatus includes a circulation path, a pure water supply unit, a concentration detection unit, and a control unit.
  • the circulation path includes a cleaning tank that cleans the substrate by supplying a cleaning liquid composed of an aqueous solution containing a chelating agent and an oxidizing agent to the surface to be cleaned, and a storage tank in which the cleaning liquid is temporarily stored.
  • the cleaning liquid circulates between the cleaning tank and the storage tank.
  • the pure water supply unit is a part for supplying pure water to the cleaning liquid circulating in the circulation path.
  • the concentration detector is a part for detecting the concentration of the cleaning liquid.
  • the control unit is a part that controls the driving of the pure water supply unit based on the concentration information detected by the concentration detection unit, thereby adjusting the concentration of the cleaning liquid.
  • control unit controls the drive of the pure water supply unit so that the concentration of the cleaning liquid detected by the concentration detection unit is not more than a predetermined threshold value. It is preferable that
  • the circulation path includes a feed pipe that sends the cleaning liquid in the storage tank to the cleaning tank, and a return pipe that returns the cleaning liquid in the cleaning tank to the storage tank.
  • the concentration detection unit is provided in the feed pipe.
  • the pure water supply unit is configured to supply pure water to the storage tank.
  • the present invention it is possible to suppress a change in the concentration of a chelating superaqueous solution as a cleaning solution, and as a result, to provide a substrate cleaning apparatus capable of reducing the material cost of the chelating superaqueous solution to be used. Can do.
  • the substrate cleaning apparatus in the present embodiment is a cleaning apparatus used in the manufacturing process of the liquid crystal panel, and uses a chelate superaqueous solution as a cleaning solution.
  • the substrate cleaning apparatus in the present embodiment is a residue generated in a dry etching process when an amorphous silicon layer or a polysilicon layer is formed on a glass substrate in a photolithography process performed at the time of manufacturing a liquid crystal panel. Is efficiently removed from the glass substrate.
  • FIG. 1 is a schematic diagram showing a configuration of a substrate cleaning apparatus in the present embodiment.
  • the configuration of the substrate cleaning apparatus in the present embodiment will be described with reference to FIG. In FIG. 1, the same parts as those in the conventional substrate cleaning apparatus 1B shown in FIG.
  • the substrate cleaning apparatus 1 ⁇ / b> A includes a cleaning tank 10, a return pipe 15, a storage tank 16, a feed pipe 18, and a circulation pump 19.
  • the washing tank 10, the return pipe 15, the storage tank 16, and the feed pipe 18 correspond to tanks and pipes that constitute a circulation path through which the chelate superaqueous solution 100 circulates.
  • the cleaning tank 10 includes a carry-in port 11 into which the glass substrate 200 before the cleaning process is carried in and a carry-out port 12 through which the glass substrate 200 after the washing process is carried out.
  • the glass substrate 200 is transported so as to cross the cleaning tank 10 from the carry-in port 11 toward the carry-out port 12 by a transport roller 14 provided outside and inside the cleaning tank 10.
  • the cleaning tank 10 has a discharge pipe 22 positioned above the transport path of the glass substrate 200 and a liquid reservoir 13 positioned below the transport path of the glass substrate 200.
  • the discharge pipe 22 is for supplying the chelate superaqueous solution 100 in a shower shape to the surface to be cleaned of the glass substrate 200 that is transported by the transport roller 14 so as to cross the inside of the cleaning tank 10.
  • the liquid reservoir 13 is a part for receiving the chelate superaqueous solution 100 dropped from the surface to be cleaned of the glass substrate 200, temporarily storing it, and sending it to the return pipe 15.
  • the storage tank 16 is a tank for temporarily storing the chelate superaqueous solution 100 and is configured as a large tank as compared with the cleaning tank 10.
  • the storage tank 16 has a large-capacity storage section 17 for temporarily storing the chelate superaqueous solution 100 and is preferably disposed at a lower position than the cleaning tank 10.
  • the return pipe 15 has one end connected to the cleaning tank 10 and the other end connected to the storage tank 16.
  • the return pipe 15 is a pipe for returning the chelate superaqueous solution 100 temporarily stored in the liquid reservoir 13 of the cleaning tank 10 to the storage tank 16.
  • the opening end of the return pipe 15 on the cleaning tank 10 side is provided below the liquid level of the chelate superaqueous solution 100 stored in the liquid reservoir 13 of the cleaning tank 10. Further, the opening end of the return pipe 15 on the storage tank 16 side is provided above the liquid level of the chelate superaqueous solution 100 stored in the storage section 17 of the storage tank 16.
  • the feed pipe 18 has one end connected to the storage tank 16 and the other end connected to the discharge pipe 22 described above.
  • the feed pipe 18 is a pipe for sending the chelate superaqueous solution 100 temporarily stored in the storage unit 17 of the storage tank 16 to the cleaning tank 10.
  • the opening end of the feed pipe 18 on the storage tank 16 side is provided below the level of the chelate superaqueous solution 100 stored in the storage section 17 of the storage tank 16.
  • a circulating pump 19 is provided in the middle of the feed pipe 18.
  • the circulation pump 19 is for sending the chelate superaqueous solution 100 from the storage tank 16 to the cleaning tank 10 via the feed pipe 18.
  • the substrate cleaning apparatus 1A includes a concentration sensor 21 and pure water in addition to the above-described cleaning tank 10, return pipe 15, storage tank 16, feed pipe 18 and circulation pump 19.
  • a supply source (not shown), a pure water supply pipe 24, a control valve 25 with a flow meter, and a control unit 26 are provided.
  • concentration sensor 21, pure water supply source, pure water supply pipe 24, control valve 25 with a flow meter, and control unit 26 are for automatically adjusting the concentration of the chelate superaqueous solution 100 circulating in the circulation path.
  • control valve of the pure water supply source, the pure water supply pipe 24 and the control valve 25 with the flow meter corresponds to a pure water supply unit for supplying pure water to the chelate superaqueous solution 100 circulating in the circulation path. .
  • the concentration sensor 21 is a concentration detection unit for detecting the concentration of the chelate superaqueous solution 100, and is provided in the middle of the feed tube 18 so that it passes through the feed tube 18 at the position where the concentration sensor 21 is attached.
  • the concentration of chelating superaqueous solution 100 to be detected is detected.
  • the concentration sensor 21 for example, an ultrasonic sensor that detects the concentration of the chelate superaqueous solution 100 by applying an ultrasonic wave to the chelate superaqueous solution 100 and picking up a reflected wave thereof is used.
  • the density sensor 21 outputs the detected density information to the control unit 26.
  • the pure water supply pipe 24 is a pipe for supplying pure water to the storage tank 16 from a pure water supply source.
  • the open end of the pure water supply pipe 24 on the storage tank 16 side is provided above the liquid level of the chelate superaqueous solution 100 stored in the storage section 17 of the storage tank 16.
  • the control valve 25 with a flow meter executes pure water supply via the pure water supply pipe 24 and stops the supply when the control valve is driven, and is provided at a midway position of the pure water supply pipe 24. It has been.
  • the driving of the control valve of the control valve with flowmeter 25 is controlled by the control unit 26.
  • the control valve 25 with a flow meter is provided with a pure water supply pipe 24 at a position where the control valve 25 with a flow meter is attached when the control valve is opened and pure water is supplied.
  • the flow rate of the pure water passing therethrough is measured, and information on the measured flow rate is output to the control unit 26.
  • the control unit 26 controls the drive of the control valve 25 with a flow meter based on the concentration information of the chelate superaqueous solution 100 input from the concentration sensor 21 described above. Specifically, when the concentration of the chelating superaqueous solution 100 input from the concentration sensor 21 is compared with a predetermined threshold value and it is determined that the input concentration of the chelating superaqueous solution 100 is equal to or less than the threshold value. When the control valve of the control valve 25 with a flow meter is maintained in a closed state, and it is determined that the concentration of the input chelate superaqueous solution 100 exceeds the threshold value, the control valve of the control valve 25 with a flow meter is opened.
  • control unit 26 is based on flow rate information input from the control valve 25 with a flow meter when the control valve of the control valve 25 with a flow meter is opened and pure water is supplied.
  • the supply amount of pure water is calculated, and when the calculated supply amount of pure water reaches a predetermined amount, the control valve of the control valve with flowmeter 25 is closed.
  • the glass substrate 200 is cleaned using the chelate superaqueous solution 100 in the cleaning tank 10 as in the conventional substrate cleaning apparatus 1B shown in FIG. Is done.
  • the chelate superaqueous solution 100 stored in the storage unit 17 of the storage tank 16 is sent to the discharge pipe 22 via the feed pipe 18 by the circulation pump 19 and washed in a shower form from the discharge pipe 22. It is discharged toward the tank 10.
  • the glass substrate 200 that is the object to be cleaned is transported from the carry-in port 11 to the carry-out port 12 so as to cross the inside of the washing tank 10 by the transport roller 14, and at that time, the chelate superaqueous solution discharged in the shower shape described above. 100 is supplied to the surface to be cleaned of the glass substrate 200.
  • the chelate superaqueous solution 100 supplied to the surface to be cleaned of the glass substrate 200 lifts the residue adhering to the surface to be cleaned of the glass substrate 200 from the surface to be cleaned, and then stores the liquid in the cleaning tank 10. It falls to the part 13.
  • the chelate superaqueous solution 100 dropped to the liquid reservoir 13 in the cleaning tank 10 is discharged to the storage tank 16 via the return pipe 15 and stored in the storage section 17 in the storage tank 16. Thereby, the glass substrate 200 is continuously cleaned.
  • the control unit 26 drives the pure water supply unit described above based on the concentration information of the chelate superaqueous solution 100 detected by the concentration sensor 21. By controlling the above, the concentration of the chelate superaqueous solution 100 is automatically adjusted.
  • a mechanism for realizing automatic adjustment of the concentration of the chelate superaqueous solution is described.
  • FIG. 2 is a flowchart showing a control flow executed in the control unit of the substrate cleaning apparatus shown in FIG.
  • the control unit 26 initializes the substrate cleaning apparatus 1A in step S1. Specifically, the control unit 26 closes the control valve of the control valve 25 with a flow meter.
  • step S2 the control unit 26 determines whether there is a user instruction to stop the operation of the substrate cleaning apparatus 1A.
  • the control unit 26 proceeds to step S3, and the signal is input. Is determined (ie, YES in step S2), the operation of the substrate cleaning apparatus 1A is stopped.
  • step S3 the control unit 26 detects the concentration of the chelate superaqueous solution 100. Specifically, the control unit 26 drives the concentration sensor 21 described above and receives input of concentration information of the chelate superaqueous solution 100 detected by the concentration sensor 21.
  • step S4 the control unit 26 determines whether or not the concentration of the chelate superaqueous solution 100 is equal to or less than a predetermined threshold value. Specifically, the control unit 26 compares the concentration information input from the concentration sensor 21 with the threshold value, and determines that the concentration of the chelate superaqueous solution 100 exceeds the threshold value (in step S4). In the case of NO), the process proceeds to step S5, and when it is determined that the concentration of the chelate superaqueous solution 100 is equal to or less than the threshold value (in the case of YES in step S4), the process returns to step S2.
  • step S5 the control unit 26 adds a predetermined amount of pure water to the chelate superaqueous solution 100 circulating in the circulation path. Specifically, the control unit 26 opens the control valve of the control valve 25 with the flowmeter that has been in a closed state to open the pure water supply source 24 to the storage tank 16 via the pure water supply pipe 24. Supply water. And the control part 26 calculates the supply amount of pure water based on the information of the flow volume input from the control valve 25 with a flow meter, and when the calculated supply amount of pure water reaches a predetermined amount, the flow rate The control valve of the metered control valve 25 is closed to a closed state.
  • step S6 the control unit 26 waits for a predetermined time, and then returns to step S2.
  • the waiting time in step S6 is a time required until the pure water added to the chelating superaqueous solution 100 in step S5 is sufficiently mixed with the chelating superaqueous solution 100 and the concentration is stabilized.
  • control unit 26 controls the operation of each functional block in accordance with the control flow described above, thereby automatically adjusting the concentration of the chelate superaqueous solution 100.
  • the substrate cleaning apparatus 1A By using the substrate cleaning apparatus 1A as described above, it is possible to constantly monitor the concentration of the chelate superaqueous solution 100 and automatically supply pure water when the concentration exceeds a predetermined threshold. Therefore, a change in the concentration of the chelate superaqueous solution 100 due to evaporation of moisture can be suppressed. Therefore, the exchange cycle of the chelate superaqueous solution 100 can be lengthened, and as a result, the material cost of the chelate superaqueous solution 100 can be greatly reduced. In addition, since the concentration change of the chelate superaqueous solution 100 can be suppressed, the occurrence of processing unevenness can be prevented. Therefore, the yield of the liquid crystal panel can be improved, and the manufacturing cost of the liquid crystal panel can be greatly reduced.
  • the concentration sensor 21 for detecting the concentration of the chelate superaqueous solution 100 is provided in the middle of the feed tube 20 in the middle of the feed tube 20 in the above-described embodiment.
  • the position for providing is not particularly limited to this position, and may be provided at any position in the circulation path.
  • tube 24 is specifically limited to this position. However, it may be provided at any position in the circulation path. However, when considering that the glass substrate 200 is cleaned by continuously operating the substrate cleaning apparatus 1A even when pure water is supplied, it is connected to the position near the discharge pipe 22 of the cleaning tank 10 or the feed pipe 18. It is not a good idea to do this, but it is preferable to connect to the storage tank 16, the return pipe 15, a position near the return pipe 15 of the cleaning tank 10, or the like.
  • Substrate cleaning device 10 cleaning tank, 11 carry-in port, 12 carry-out port, 13 liquid reservoir, 14 transport roller, 15 return pipe, 16 storage tank, 17 reservoir, 18 feed pipe, 19 circulation pump, 21 concentration Sensor, 22 discharge pipe, 24 pure water supply pipe, 25 control valve with flow meter, 26 control unit, 100 chelate superaqueous solution, 200 glass substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

A substrate cleaning device (1A) is equipped with a circulation route, a concentration sensor (21), and a control unit (26). The circulation route includes a cleaning tank (10) that uses an aqueous solution of hydrogen peroxide and chelating agents (100) to clean a glass substrate (200), a storage tank (16) that temporarily stores the aqueous solution of hydrogen peroxide and chelating agents (100), and a delivery pipe (18) and a return pipe (15) that connect the cleaning tank (10) and the storage tank (16). The concentration sensor (21) is disposed on the delivery pipe (18) and is for detecting the concentration of the aqueous solution of hydrogen peroxide and chelating agents (100). The control unit (26) controls the concentration of the aqueous solution of hydrogen peroxide and chelating agents (100) by supplying a given amount of pure water to the storage tank (16) on the basis of concentration information detected by the concentration sensor (21). As a result of this configuration, the substrate cleaning device is capable of suppressing changes in the concentration of the aqueous solution of hydrogen peroxide and chelating agents, thereby reducing materials costs for the aqueous solution of hydrogen peroxide and chelating agents being used.

Description

基板洗浄装置Substrate cleaning device
 本発明は、酸化剤とキレート剤とを含む水溶液からなる洗浄液を用いて基板を洗浄する基板洗浄装置に関し、特に、液晶パネルの製造過程で利用されるキレート過水液を用いた基板洗浄装置に関する。 The present invention relates to a substrate cleaning apparatus that cleans a substrate using a cleaning liquid composed of an aqueous solution containing an oxidizing agent and a chelating agent, and more particularly to a substrate cleaning apparatus that uses a chelate superaqueous solution used in the manufacturing process of a liquid crystal panel. .
 一般に、液晶パネルや半導体集積回路の製造過程においては、フォトリソグラフィ工程が多用される。このフォトリソグラフィ工程において生じる残渣は、歩留まりの低下等の原因となるため、通常は洗浄液を用いた洗浄工程において除去される。基板洗浄装置は、この洗浄工程において使用される装置であり、基板の表面に洗浄液を供給することで基板上に残存するフォトレジスト等の残渣を取り除くものである。 Generally, a photolithography process is frequently used in the manufacturing process of a liquid crystal panel or a semiconductor integrated circuit. Residues generated in this photolithography process cause a decrease in yield and the like, and are usually removed in a cleaning process using a cleaning liquid. The substrate cleaning apparatus is an apparatus used in this cleaning process, and removes residues such as photoresist remaining on the substrate by supplying a cleaning liquid to the surface of the substrate.
 液晶パネル用のガラス基板の洗浄液として、酸化剤とキレート剤とを含む洗浄液が好適に利用される(たとえば、特開2000-171985号公報(特許文献1)等参照)。酸化剤としては、好適に過酸化水素水が利用され、特に過酸化水素水とキレート剤とを含む水溶液は、キレート過水液と称される。従来、このキレート過水液を洗浄液として使用する基板洗浄装置としては、図3に示す如くの構成のものが利用されていた。 As a cleaning liquid for a glass substrate for a liquid crystal panel, a cleaning liquid containing an oxidizing agent and a chelating agent is preferably used (see, for example, JP 2000-171985 A (Patent Document 1)). As the oxidizing agent, hydrogen peroxide water is preferably used. In particular, an aqueous solution containing hydrogen peroxide water and a chelating agent is referred to as a chelate superaqueous solution. Conventionally, as a substrate cleaning apparatus that uses this chelate superaqueous solution as a cleaning solution, one having a configuration as shown in FIG. 3 has been used.
 図3に示すように、従来の基板洗浄装置1Bは、キレート過水液100を用いてガラス基板200の洗浄を行なう洗浄槽10と、キレート過水液100を一時的に貯留する貯留槽16と、これら洗浄槽10および貯留槽16を接続する送り管18および戻し管15とを含む循環路を備えている。当該基板洗浄装置1Bにおいては、送り管18に設けられた循環ポンプ19が作動させられることで、貯留槽16に貯留されたキレート過水液100が、貯留槽16、送り管18、洗浄槽10、戻し管15、貯留槽16の順で循環するように構成されている。 As shown in FIG. 3, the conventional substrate cleaning apparatus 1 </ b> B includes a cleaning tank 10 that cleans the glass substrate 200 using the chelate superwater solution 100, and a storage tank 16 that temporarily stores the chelate superwater solution 100. A circulation path including a feed pipe 18 and a return pipe 15 connecting the washing tank 10 and the storage tank 16 is provided. In the substrate cleaning apparatus 1 </ b> B, the circulating pump 19 provided in the feed pipe 18 is operated, so that the chelate superaqueous solution 100 stored in the storage tank 16 is stored in the storage tank 16, the feed pipe 18, and the cleaning tank 10. The return pipe 15 and the storage tank 16 are circulated in this order.
 送り管18の下流側の先端は、洗浄槽10の上部に設けられた吐出管22に接続されており、吐出管22からはキレート過水液100がシャワー状に洗浄槽10内に向けて吐出される。被洗浄物であるガラス基板200は、搬入口11から搬出口12へと搬送ローラ14によって洗浄槽10内を横断するように搬送され、その際に上述したシャワー状に吐出されたキレート過水液100がガラス基板200の被洗浄面へと供給される。 The downstream end of the feed pipe 18 is connected to a discharge pipe 22 provided in the upper part of the cleaning tank 10, and the chelate superaqueous solution 100 is discharged from the discharge pipe 22 into the cleaning tank 10 in a shower shape. Is done. The glass substrate 200 that is the object to be cleaned is transported from the carry-in port 11 to the carry-out port 12 so as to cross the inside of the washing tank 10 by the transport roller 14, and at that time, the chelate superaqueous solution discharged in the shower shape described above. 100 is supplied to the surface to be cleaned of the glass substrate 200.
 ガラス基板200の被洗浄面へと供給されたキレート過水液100は、ガラス基板200の被洗浄面に付着している残渣を当該被洗浄面から浮かし取り、その後、洗浄槽10内の液溜め部13へと落下する。洗浄槽10内の液溜め部13へと落下したキレート過水液100は、戻し管15を経由して貯留槽16へと排出され、貯留槽16内の貯留部17にて貯留される。そして、貯留槽16に貯留されたキレート過水液100は、循環ポンプ19によって再び送り管18を経由して吐出管22へと送られる。これにより、ガラス基板200が連続的に洗浄処理されることになる。 The chelate superaqueous solution 100 supplied to the surface to be cleaned of the glass substrate 200 lifts the residue adhering to the surface to be cleaned of the glass substrate 200 from the surface to be cleaned, and then stores the liquid in the cleaning tank 10. It falls to the part 13. The chelate superaqueous solution 100 dropped to the liquid reservoir 13 in the cleaning tank 10 is discharged to the storage tank 16 via the return pipe 15 and stored in the storage section 17 in the storage tank 16. Then, the chelate superaqueous solution 100 stored in the storage tank 16 is sent again to the discharge pipe 22 via the feed pipe 18 by the circulation pump 19. Thereby, the glass substrate 200 is continuously cleaned.
特開2000-171985号公報Japanese Unexamined Patent Publication No. 2000-171985
 しかしながら、上述した如くの従来の基板洗浄装置においては、洗浄液中に含まれる水分の蒸発によって洗浄液の濃度が徐々に上昇してしまう問題があり、定期的に洗浄液を交換する必要があった。ここで、洗浄液の液温は、洗浄効率を高めるために室温よりも高い温度に設定される場合が一般的であり、そのため水分の蒸発スピードも比較的速く、交換周期が短くなって材料費が高騰する問題を招いていた。 However, in the conventional substrate cleaning apparatus as described above, there is a problem that the concentration of the cleaning liquid gradually increases due to evaporation of water contained in the cleaning liquid, and it is necessary to periodically replace the cleaning liquid. Here, the liquid temperature of the cleaning liquid is generally set to a temperature higher than room temperature in order to increase the cleaning efficiency. Therefore, the water evaporation speed is relatively fast, the replacement cycle is shortened, and the material cost is reduced. The problem was soaring.
 また、交換周期を長くするためには、定期的に純水を補給すればよいことになるが、その際には、洗浄液の濃度を所望の濃度に調節する作業が必要であり、作業工程が煩雑化する問題があった。 Further, in order to lengthen the replacement cycle, it is only necessary to replenish pure water periodically. In this case, it is necessary to adjust the concentration of the cleaning liquid to a desired concentration, and the work process is There was a problem of complications.
 したがって、本発明は、上述の問題点を解決すべくなされたものであり、洗浄液としてのキレート過水液の濃度変化を抑制することが可能であり、その結果、使用するキレート過水液の材料費を低減することが可能な基板洗浄装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and can suppress a change in the concentration of the chelating superaqueous solution as a cleaning solution, and as a result, the chelating superaqueous solution material to be used. An object of the present invention is to provide a substrate cleaning apparatus capable of reducing the cost.
 本発明に基づく基板洗浄装置は、循環路と、純水供給部と、濃度検出部と、制御部とを備える。上記循環路は、キレート剤と酸化剤とを含む水溶液からなる洗浄液を基板の被洗浄面に供給することで基板の洗浄を行なう洗浄槽と、洗浄液が一時的に貯留される貯留槽とを含み、当該洗浄槽と当該貯留槽との間で洗浄液が循環するように構成されたものである。上記純水供給部は、上記循環路を循環する洗浄液に純水を供給するための部位である。上記濃度検出部は、洗浄液の濃度を検出するための部位である。上記制御部は、上記濃度検出部によって検出された濃度情報に基づいて上記純水供給部の駆動を制御し、これにより洗浄液の濃度を調整する部位である。 The substrate cleaning apparatus according to the present invention includes a circulation path, a pure water supply unit, a concentration detection unit, and a control unit. The circulation path includes a cleaning tank that cleans the substrate by supplying a cleaning liquid composed of an aqueous solution containing a chelating agent and an oxidizing agent to the surface to be cleaned, and a storage tank in which the cleaning liquid is temporarily stored. The cleaning liquid circulates between the cleaning tank and the storage tank. The pure water supply unit is a part for supplying pure water to the cleaning liquid circulating in the circulation path. The concentration detector is a part for detecting the concentration of the cleaning liquid. The control unit is a part that controls the driving of the pure water supply unit based on the concentration information detected by the concentration detection unit, thereby adjusting the concentration of the cleaning liquid.
 上記本発明に基づく基板洗浄装置にあっては、上記制御部が、上記濃度検出部によって検出される洗浄液の濃度が予め定めた閾値以下となるように上記純水供給部の駆動を制御するものであることが好ましい。 In the substrate cleaning apparatus according to the present invention, the control unit controls the drive of the pure water supply unit so that the concentration of the cleaning liquid detected by the concentration detection unit is not more than a predetermined threshold value. It is preferable that
 上記本発明に基づく基板洗浄装置にあっては、上記循環路が、上記貯留槽中の洗浄液を上記洗浄槽に送る送り管と、上記洗浄槽中の洗浄液を上記貯留槽に戻す戻し管とを含んでいることが好ましく、その場合に、上記濃度検出部が、上記送り管に設けられていることが好ましい。 In the substrate cleaning apparatus according to the present invention, the circulation path includes a feed pipe that sends the cleaning liquid in the storage tank to the cleaning tank, and a return pipe that returns the cleaning liquid in the cleaning tank to the storage tank. In that case, it is preferable that the concentration detection unit is provided in the feed pipe.
 上記本発明に基づく基板洗浄装置にあっては、上記純水供給部が、上記貯留槽に純水を供給するように構成されていることが好ましい。 In the substrate cleaning apparatus according to the present invention, it is preferable that the pure water supply unit is configured to supply pure water to the storage tank.
 本発明によれば、洗浄液としてのキレート過水液の濃度変化を抑制することが可能であり、その結果、使用するキレート過水液の材料費を低減することが可能な基板洗浄装置とすることができる。 According to the present invention, it is possible to suppress a change in the concentration of a chelating superaqueous solution as a cleaning solution, and as a result, to provide a substrate cleaning apparatus capable of reducing the material cost of the chelating superaqueous solution to be used. Can do.
本発明の実施の形態における基板洗浄装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the board | substrate cleaning apparatus in embodiment of this invention. 本発明の実施の形態における基板洗浄装置の制御部において実施される制御フローを示すフローチャートである。It is a flowchart which shows the control flow implemented in the control part of the board | substrate cleaning apparatus in embodiment of this invention. 従来の基板洗浄装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional board | substrate cleaning apparatus.
 以下、本発明の一実施の形態について、図を参照して説明する。なお、本実施の形態における基板洗浄装置は、液晶パネルの製造過程において使用される洗浄装置であり、洗浄液としてキレート過水液を使用するものである。具体的には、本実施の形態における基板洗浄装置は、液晶パネルの製造時に行なわれるフォトリソグラフィ工程において、ガラス基板上にアモルファスシリコン層やポリシリコン層を形成する際のドライエッチング工程において発生した残渣を、ガラス基板から効率的に除去するためのものである。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the substrate cleaning apparatus in the present embodiment is a cleaning apparatus used in the manufacturing process of the liquid crystal panel, and uses a chelate superaqueous solution as a cleaning solution. Specifically, the substrate cleaning apparatus in the present embodiment is a residue generated in a dry etching process when an amorphous silicon layer or a polysilicon layer is formed on a glass substrate in a photolithography process performed at the time of manufacturing a liquid crystal panel. Is efficiently removed from the glass substrate.
 図1は、本実施の形態における基板洗浄装置の構成を示す模式図である。まず、図1を参照して、本実施の形態における基板洗浄装置の構成について説明する。なお、図1においては、図3に示した従来の基板洗浄装置1Bと同様の部分について図中同一の符号を付している。 FIG. 1 is a schematic diagram showing a configuration of a substrate cleaning apparatus in the present embodiment. First, the configuration of the substrate cleaning apparatus in the present embodiment will be described with reference to FIG. In FIG. 1, the same parts as those in the conventional substrate cleaning apparatus 1B shown in FIG.
 図1に示すように、基板洗浄装置1Aは、洗浄槽10と、戻し管15と、貯留槽16と、送り管18と、循環ポンプ19とを備えている。このうち、洗浄槽10、戻し管15、貯留槽16および送り管18は、キレート過水液100が循環する循環路を構成する槽および配管に相当する。 As shown in FIG. 1, the substrate cleaning apparatus 1 </ b> A includes a cleaning tank 10, a return pipe 15, a storage tank 16, a feed pipe 18, and a circulation pump 19. Among these, the washing tank 10, the return pipe 15, the storage tank 16, and the feed pipe 18 correspond to tanks and pipes that constitute a circulation path through which the chelate superaqueous solution 100 circulates.
 洗浄槽10は、洗浄処理前のガラス基板200が搬入される搬入口11と、洗浄処理後のガラス基板200が搬出される搬出口12とを備えている。ガラス基板200は、洗浄槽10の外部および内部に設けられた搬送ローラ14によって洗浄槽10内を搬入口11から搬出口12に向けて横断するように搬送される。 The cleaning tank 10 includes a carry-in port 11 into which the glass substrate 200 before the cleaning process is carried in and a carry-out port 12 through which the glass substrate 200 after the washing process is carried out. The glass substrate 200 is transported so as to cross the cleaning tank 10 from the carry-in port 11 toward the carry-out port 12 by a transport roller 14 provided outside and inside the cleaning tank 10.
 洗浄槽10は、ガラス基板200の搬送路よりも上方に位置する吐出管22と、ガラス基板200の搬送路よりも下方に位置する液溜め部13とを有している。吐出管22は、搬送ローラ14によって洗浄槽10内を横断するように搬送されるガラス基板200の被洗浄面にキレート過水液100をシャワー状に供給するためのものである。液溜め部13は、ガラス基板200の被洗浄面から落下したキレート過水液100を受け止め、これを一時的に貯留して戻し管15に送るための部位である。 The cleaning tank 10 has a discharge pipe 22 positioned above the transport path of the glass substrate 200 and a liquid reservoir 13 positioned below the transport path of the glass substrate 200. The discharge pipe 22 is for supplying the chelate superaqueous solution 100 in a shower shape to the surface to be cleaned of the glass substrate 200 that is transported by the transport roller 14 so as to cross the inside of the cleaning tank 10. The liquid reservoir 13 is a part for receiving the chelate superaqueous solution 100 dropped from the surface to be cleaned of the glass substrate 200, temporarily storing it, and sending it to the return pipe 15.
 貯留槽16は、キレート過水液100を一時的に貯留するための槽であり、洗浄槽10に比して大型の槽にて構成されている。貯留槽16は、キレート過水液100を一時的に貯留するための大容量の貯留部17を有しており、好適には洗浄槽10よりも低所に配置される。 The storage tank 16 is a tank for temporarily storing the chelate superaqueous solution 100 and is configured as a large tank as compared with the cleaning tank 10. The storage tank 16 has a large-capacity storage section 17 for temporarily storing the chelate superaqueous solution 100 and is preferably disposed at a lower position than the cleaning tank 10.
 戻し管15は、洗浄槽10にその一端が接続されており、他端が貯留槽16に接続されている。戻し管15は、洗浄槽10の液溜め部13に一時的に貯留されたキレート過水液100を貯留槽16に戻すための配管である。戻し管15の洗浄槽10側の開口端は、洗浄槽10の液溜め部13に貯留されたキレート過水液100の液面よりも下方に設けられている。また、戻し管15の貯留槽16側の開口端は、貯留槽16の貯留部17に貯留されたキレート過水液100の液面よりも上方に設けられている。 The return pipe 15 has one end connected to the cleaning tank 10 and the other end connected to the storage tank 16. The return pipe 15 is a pipe for returning the chelate superaqueous solution 100 temporarily stored in the liquid reservoir 13 of the cleaning tank 10 to the storage tank 16. The opening end of the return pipe 15 on the cleaning tank 10 side is provided below the liquid level of the chelate superaqueous solution 100 stored in the liquid reservoir 13 of the cleaning tank 10. Further, the opening end of the return pipe 15 on the storage tank 16 side is provided above the liquid level of the chelate superaqueous solution 100 stored in the storage section 17 of the storage tank 16.
 送り管18は、貯留槽16にその一端が接続されており、他端が上述した吐出管22に接続されている。送り管18は、貯留槽16の貯留部17に一時的に貯留されたキレート過水液100を洗浄槽10に送るための配管である。送り管18の貯留槽16側の開口端は、貯留槽16の貯留部17に貯留されたキレート過水液100の液面よりも下方に設けられている。 The feed pipe 18 has one end connected to the storage tank 16 and the other end connected to the discharge pipe 22 described above. The feed pipe 18 is a pipe for sending the chelate superaqueous solution 100 temporarily stored in the storage unit 17 of the storage tank 16 to the cleaning tank 10. The opening end of the feed pipe 18 on the storage tank 16 side is provided below the level of the chelate superaqueous solution 100 stored in the storage section 17 of the storage tank 16.
 送り管18の途中位置には、循環ポンプ19が設けられている。循環ポンプ19は、当該送り管18を介してキレート過水液100を貯留槽16から洗浄槽10に送出するためのものである。 A circulating pump 19 is provided in the middle of the feed pipe 18. The circulation pump 19 is for sending the chelate superaqueous solution 100 from the storage tank 16 to the cleaning tank 10 via the feed pipe 18.
 図1に示すように、本実施の形態における基板洗浄装置1Aは、上述した洗浄槽10、戻し管15、貯留槽16、送り管18および循環ポンプ19に加え、さらに濃度センサ21と、純水供給源(不図示)と、純水供給管24と、流量計付き制御弁25と、制御部26とを備えている。これら濃度センサ21、純水供給源、純水供給管24、流量計付き制御弁25および制御部26は、循環路を循環するキレート過水液100の濃度を自動調整するためのものであり、このうち、純水供給源、純水供給管24および流量計付き制御弁25の制御弁が、循環路を循環するキレート過水液100に純水を供給するための純水供給部に相当する。 As shown in FIG. 1, the substrate cleaning apparatus 1A according to the present embodiment includes a concentration sensor 21 and pure water in addition to the above-described cleaning tank 10, return pipe 15, storage tank 16, feed pipe 18 and circulation pump 19. A supply source (not shown), a pure water supply pipe 24, a control valve 25 with a flow meter, and a control unit 26 are provided. These concentration sensor 21, pure water supply source, pure water supply pipe 24, control valve 25 with a flow meter, and control unit 26 are for automatically adjusting the concentration of the chelate superaqueous solution 100 circulating in the circulation path. Among these, the control valve of the pure water supply source, the pure water supply pipe 24 and the control valve 25 with the flow meter corresponds to a pure water supply unit for supplying pure water to the chelate superaqueous solution 100 circulating in the circulation path. .
 濃度センサ21は、キレート過水液100の濃度を検出するための濃度検出部であり、送り管18の途中位置に設けられることで、当該濃度センサ21が取付けられた位置の送り管18を通過するキレート過水液100の濃度を検出する。濃度センサ21としては、たとえばキレート過水液100に超音波を印加してその反射波を拾うことでキレート過水液100の濃度を検出する超音波式のものが利用される。濃度センサ21は、検出した濃度情報を制御部26に出力する。 The concentration sensor 21 is a concentration detection unit for detecting the concentration of the chelate superaqueous solution 100, and is provided in the middle of the feed tube 18 so that it passes through the feed tube 18 at the position where the concentration sensor 21 is attached. The concentration of chelating superaqueous solution 100 to be detected is detected. As the concentration sensor 21, for example, an ultrasonic sensor that detects the concentration of the chelate superaqueous solution 100 by applying an ultrasonic wave to the chelate superaqueous solution 100 and picking up a reflected wave thereof is used. The density sensor 21 outputs the detected density information to the control unit 26.
 純水供給管24は、その一端が図示しない純水供給源に接続されており、他端が貯留槽16に接続されている。純水供給管24は、純水の供給源から純水を貯留槽16に供給するための配管である。純水供給管24の貯留槽16側の開口端は、貯留槽16の貯留部17に貯留されたキレート過水液100の液面よりも上方に設けられている。 One end of the pure water supply pipe 24 is connected to a pure water supply source (not shown), and the other end is connected to the storage tank 16. The pure water supply pipe 24 is a pipe for supplying pure water to the storage tank 16 from a pure water supply source. The open end of the pure water supply pipe 24 on the storage tank 16 side is provided above the liquid level of the chelate superaqueous solution 100 stored in the storage section 17 of the storage tank 16.
 流量計付き制御弁25は、その制御弁が駆動されることによって純水供給管24を介した純水の供給および供給の停止を実行するものであり、純水供給管24の途中位置に設けられている。流量計付き制御弁25の制御弁は、制御部26によってその駆動が制御される。また、流量計付き制御弁25は、その制御弁が開状態とされて純水の供給が行なわれている場合に、当該流量計付き制御弁25が取付けられた位置の純水供給管24を通過する純水の流量を計測し、計測した流量の情報を制御部26に出力する。 The control valve 25 with a flow meter executes pure water supply via the pure water supply pipe 24 and stops the supply when the control valve is driven, and is provided at a midway position of the pure water supply pipe 24. It has been. The driving of the control valve of the control valve with flowmeter 25 is controlled by the control unit 26. Further, the control valve 25 with a flow meter is provided with a pure water supply pipe 24 at a position where the control valve 25 with a flow meter is attached when the control valve is opened and pure water is supplied. The flow rate of the pure water passing therethrough is measured, and information on the measured flow rate is output to the control unit 26.
 制御部26は、上述した濃度センサ21から入力されたキレート過水液100の濃度情報に基づいて流量計付き制御弁25の駆動を制御する。具体的には、濃度センサ21から入力されたキレート過水液100の濃度と予め定めた閾値とを比較し、入力されたキレート過水液100の濃度が上記閾値以下であると判断した場合に流量計付き制御弁25の制御弁を閉状態に維持し、入力されたキレート過水液100の濃度が上記閾値を超えていると判断した場合に流量計付き制御弁25の制御弁を開状態とする。また、制御部26は、流量計付き制御弁25の制御弁が開状態とされて純水の供給が行なわれている場合に、流量計付き制御弁25から入力される流量の情報に基づいて純水の供給量を算出し、算出した純水の供給量が予め定めた量に達した時点で流量計付き制御弁25の制御弁を閉状態にする。 The control unit 26 controls the drive of the control valve 25 with a flow meter based on the concentration information of the chelate superaqueous solution 100 input from the concentration sensor 21 described above. Specifically, when the concentration of the chelating superaqueous solution 100 input from the concentration sensor 21 is compared with a predetermined threshold value and it is determined that the input concentration of the chelating superaqueous solution 100 is equal to or less than the threshold value. When the control valve of the control valve 25 with a flow meter is maintained in a closed state, and it is determined that the concentration of the input chelate superaqueous solution 100 exceeds the threshold value, the control valve of the control valve 25 with a flow meter is opened. And Further, the control unit 26 is based on flow rate information input from the control valve 25 with a flow meter when the control valve of the control valve 25 with a flow meter is opened and pure water is supplied. The supply amount of pure water is calculated, and when the calculated supply amount of pure water reaches a predetermined amount, the control valve of the control valve with flowmeter 25 is closed.
 以上において説明した本実施の形態における基板洗浄装置1Aにおいては、図3に示した従来の基板洗浄装置1Bと同様に、洗浄槽10内においてキレート過水液100を用いてガラス基板200の洗浄処理が行なわれる。 In the substrate cleaning apparatus 1A in the present embodiment described above, the glass substrate 200 is cleaned using the chelate superaqueous solution 100 in the cleaning tank 10 as in the conventional substrate cleaning apparatus 1B shown in FIG. Is done.
 具体的には、貯留槽16の貯留部17に貯留されたキレート過水液100は、循環ポンプ19によって送り管18を経由して吐出管22へと送られ、吐出管22からシャワー状に洗浄槽10内に向けて吐出される。被洗浄物であるガラス基板200は、搬入口11から搬出口12へと搬送ローラ14によって洗浄槽10内を横断するように搬送され、その際に上述したシャワー状に吐出されたキレート過水液100がガラス基板200の被洗浄面へと供給される。 Specifically, the chelate superaqueous solution 100 stored in the storage unit 17 of the storage tank 16 is sent to the discharge pipe 22 via the feed pipe 18 by the circulation pump 19 and washed in a shower form from the discharge pipe 22. It is discharged toward the tank 10. The glass substrate 200 that is the object to be cleaned is transported from the carry-in port 11 to the carry-out port 12 so as to cross the inside of the washing tank 10 by the transport roller 14, and at that time, the chelate superaqueous solution discharged in the shower shape described above. 100 is supplied to the surface to be cleaned of the glass substrate 200.
 ガラス基板200の被洗浄面へと供給されたキレート過水液100は、ガラス基板200の被洗浄面に付着している残渣を当該被洗浄面から浮かし取り、その後、洗浄槽10内の液溜め部13へと落下する。洗浄槽10内の液溜め部13へと落下したキレート過水液100は、戻し管15を経由して貯留槽16へと排出され、貯留槽16内の貯留部17にて貯留される。これにより、ガラス基板200が連続的に洗浄処理されることになる。 The chelate superaqueous solution 100 supplied to the surface to be cleaned of the glass substrate 200 lifts the residue adhering to the surface to be cleaned of the glass substrate 200 from the surface to be cleaned, and then stores the liquid in the cleaning tank 10. It falls to the part 13. The chelate superaqueous solution 100 dropped to the liquid reservoir 13 in the cleaning tank 10 is discharged to the storage tank 16 via the return pipe 15 and stored in the storage section 17 in the storage tank 16. Thereby, the glass substrate 200 is continuously cleaned.
 ここで、本実施の形態における基板洗浄装置1Aにおいては、上述したように、濃度センサ21によって検出されたキレート過水液100の濃度情報に基づき、制御部26が上述した純水供給部の駆動を制御することでキレート過水液100の濃度の自動調整が行なわれる。以下においては、本実施の形態における基板洗浄装置1Aにおいては、キレート過水液の濃度の自動調整が実現される仕組みについて説明する。 Here, in the substrate cleaning apparatus 1 </ b> A according to the present embodiment, as described above, the control unit 26 drives the pure water supply unit described above based on the concentration information of the chelate superaqueous solution 100 detected by the concentration sensor 21. By controlling the above, the concentration of the chelate superaqueous solution 100 is automatically adjusted. In the following, in the substrate cleaning apparatus 1A according to the present embodiment, a mechanism for realizing automatic adjustment of the concentration of the chelate superaqueous solution is described.
 図2は、図1に示す基板洗浄装置の制御部において実施される制御フローを示すフローチャートである。図2に示すように、基板洗浄装置1Aが稼動されると、まず、制御部26は、ステップS1において基板洗浄装置1Aの初期化を行なう。具体的には、制御部26は、流量計付き制御弁25の制御弁を閉状態とする。 FIG. 2 is a flowchart showing a control flow executed in the control unit of the substrate cleaning apparatus shown in FIG. As shown in FIG. 2, when the substrate cleaning apparatus 1A is operated, first, the control unit 26 initializes the substrate cleaning apparatus 1A in step S1. Specifically, the control unit 26 closes the control valve of the control valve 25 with a flow meter.
 次に、ステップS2において、制御部26は、基板洗浄装置1Aの稼動を停止するユーザの指示があるか否かを判断する。制御部26は、基板洗浄装置1Aの稼動の停止を指示する信号が入力されていないと判断した場合(すなわちステップS2においてNOの場合)にステップS3へと移行し、当該信号が入力されていると判断した場合(すなわちステップS2おいてYESの場合)に基板洗浄装置1Aの稼動を停止する。 Next, in step S2, the control unit 26 determines whether there is a user instruction to stop the operation of the substrate cleaning apparatus 1A. When it is determined that the signal for instructing to stop the operation of the substrate cleaning apparatus 1A is not input (that is, in the case of NO in step S2), the control unit 26 proceeds to step S3, and the signal is input. Is determined (ie, YES in step S2), the operation of the substrate cleaning apparatus 1A is stopped.
 ステップS3において、制御部26は、キレート過水液100の濃度検出を行なう。具体的には、制御部26は、上述した濃度センサ21を駆動し、濃度センサ21によって検出されたキレート過水液100の濃度情報の入力を受ける。 In step S3, the control unit 26 detects the concentration of the chelate superaqueous solution 100. Specifically, the control unit 26 drives the concentration sensor 21 described above and receives input of concentration information of the chelate superaqueous solution 100 detected by the concentration sensor 21.
 次に、ステップS4において、制御部26は、キレート過水液100の濃度が予め定めた閾値以下であるか否かを判断する。具体的には、制御部26は、濃度センサ21から入力された濃度の情報と上記閾値とを比較し、キレート過水液100の濃度が上記閾値を超えていると判断した場合(ステップS4においてNOの場合)にステップS5へと移行し、キレート過水液100の濃度が上記閾値以下であると判断した場合(ステップS4においてYESの場合)にステップS2へと戻る。 Next, in step S4, the control unit 26 determines whether or not the concentration of the chelate superaqueous solution 100 is equal to or less than a predetermined threshold value. Specifically, the control unit 26 compares the concentration information input from the concentration sensor 21 with the threshold value, and determines that the concentration of the chelate superaqueous solution 100 exceeds the threshold value (in step S4). In the case of NO), the process proceeds to step S5, and when it is determined that the concentration of the chelate superaqueous solution 100 is equal to or less than the threshold value (in the case of YES in step S4), the process returns to step S2.
 ステップS5において、制御部26は、所定量の純水を循環路を循環するキレート過水液100に加える。具体的には、制御部26は、閉状態にあった流量計付き制御弁25の制御弁を開いて開状態とし、純水供給管24を介して純水供給源から貯留槽16へと純水を供給する。そして、制御部26は、流量計付き制御弁25から入力される流量の情報に基づいて純水の供給量を算出し、算出した純水の供給量が予め定めた量に達した時点で流量計付き制御弁25の制御弁を閉じて閉状態にする。 In step S5, the control unit 26 adds a predetermined amount of pure water to the chelate superaqueous solution 100 circulating in the circulation path. Specifically, the control unit 26 opens the control valve of the control valve 25 with the flowmeter that has been in a closed state to open the pure water supply source 24 to the storage tank 16 via the pure water supply pipe 24. Supply water. And the control part 26 calculates the supply amount of pure water based on the information of the flow volume input from the control valve 25 with a flow meter, and when the calculated supply amount of pure water reaches a predetermined amount, the flow rate The control valve of the metered control valve 25 is closed to a closed state.
 次に、ステップS6において、制御部26は、予め定められた所定の時間だけ待機し、その後ステップS2へと戻る。当該ステップS6における待機時間は、ステップS5においてキレート過水液100に加えられた純水が当該キレート過水液100と十分に混じり合って濃度が安定するまでに必要な時間である。 Next, in step S6, the control unit 26 waits for a predetermined time, and then returns to step S2. The waiting time in step S6 is a time required until the pure water added to the chelating superaqueous solution 100 in step S5 is sufficiently mixed with the chelating superaqueous solution 100 and the concentration is stabilized.
 本実施の形態における基板洗浄装置1Aにおいては、制御部26が上述した制御フローに沿って各機能ブロックの動作の制御を行なうことにより、キレート過水液100の濃度の自動調整が実現される。 In the substrate cleaning apparatus 1A according to the present embodiment, the control unit 26 controls the operation of each functional block in accordance with the control flow described above, thereby automatically adjusting the concentration of the chelate superaqueous solution 100.
 以上において説明した如くの基板洗浄装置1Aとすることにより、常時キレート過水液100の濃度の監視が可能になるとともに、当該濃度が予め定めた閾値を超えた場合に自動的に純水が供給される構成とすることができるため、水分の蒸発によるキレート過水液100の濃度変化を抑制することができる。したがって、キレート過水液100の交換周期を長くすることができ、その結果、キレート過水液100の材料費を大幅に低減できるようになる。また、キレート過水液100の濃度変化を抑制することができるため、処理ムラの発生を防止することもできるようになる。したがって、液晶パネルの歩留まりを向上させることが可能になり、液晶パネルの製造コストを大幅に削減することが可能になる。 By using the substrate cleaning apparatus 1A as described above, it is possible to constantly monitor the concentration of the chelate superaqueous solution 100 and automatically supply pure water when the concentration exceeds a predetermined threshold. Therefore, a change in the concentration of the chelate superaqueous solution 100 due to evaporation of moisture can be suppressed. Therefore, the exchange cycle of the chelate superaqueous solution 100 can be lengthened, and as a result, the material cost of the chelate superaqueous solution 100 can be greatly reduced. In addition, since the concentration change of the chelate superaqueous solution 100 can be suppressed, the occurrence of processing unevenness can be prevented. Therefore, the yield of the liquid crystal panel can be improved, and the manufacturing cost of the liquid crystal panel can be greatly reduced.
 上述した本実施の形態にあっては、キレート過水液100の濃度を検出するための濃度センサ21を送り管20の途中位置に設けた場合を例示して説明を行なったが、濃度センサ21を設ける位置としては、特にこの位置に限定されるものではなく、循環路のいずれの位置に設けることとしてもよい。しかしながら、高精度にキレート過水液100の濃度を検出するためには、キレート過水液100中に可能な限り泡が含まれていないことが必要であり、洗浄槽10内や戻し管15、送り管18の循環ポンプ19の下流側近傍等の位置は避け、貯留槽16の貯留部17や送り管18の循環ポンプ19の上流側の位置あるいは送り管18の洗浄槽10寄りの位置等に設けることが好ましい。 In the above-described embodiment, the case where the concentration sensor 21 for detecting the concentration of the chelate superaqueous solution 100 is provided in the middle of the feed tube 20 has been described as an example. The position for providing is not particularly limited to this position, and may be provided at any position in the circulation path. However, in order to detect the concentration of the chelating superaqueous solution 100 with high accuracy, it is necessary that the chelating superaqueous solution 100 be free of bubbles as much as possible. Avoid the position near the downstream side of the circulation pump 19 of the feed pipe 18, avoid the position of the storage section 17 of the storage tank 16, the position upstream of the circulation pump 19 of the feed pipe 18, or the position of the feed pipe 18 near the cleaning tank 10. It is preferable to provide it.
 また、上述した本実施の形態においては、濃度センサ21として超音波式のものを利用した場合を例示して説明を行なったが、濃度センサ21としては、これ以外にもキレート過水液100の吸光度を計測することで濃度を検出するものや、キレート過水液100の比抵抗を計測することで濃度を検出するもの等、種々のセンサの利用が可能である。 Moreover, in this Embodiment mentioned above, although the case where the ultrasonic type thing was utilized as the density | concentration sensor 21 was demonstrated and demonstrated, as the density | concentration sensor 21, besides this, chelate superaqueous solution 100 of Various sensors such as one that detects the concentration by measuring the absorbance and one that detects the concentration by measuring the specific resistance of the chelate superaqueous solution 100 can be used.
 また、上述した本実施の形態においては、貯留槽16に純水供給管24が接続された場合を例示して説明を行なったが、純水供給管24の接続位置は、特にこの位置に限定されるものではなく、循環路のいずれの位置に設けることとしてもよい。しかしながら、純水の供給時においても基板洗浄装置1Aを連続運転してガラス基板200の洗浄処理を行なうことを考慮した場合には、洗浄槽10の吐出管22寄りの位置や送り管18に接続することは得策ではなく、貯留槽16や戻し管15、洗浄槽10の戻し管15寄りの位置等に接続することが好ましい。 Moreover, in this Embodiment mentioned above, although the case where the pure water supply pipe | tube 24 was connected to the storage tank 16 was illustrated and demonstrated, the connection position of the pure water supply pipe | tube 24 is specifically limited to this position. However, it may be provided at any position in the circulation path. However, when considering that the glass substrate 200 is cleaned by continuously operating the substrate cleaning apparatus 1A even when pure water is supplied, it is connected to the position near the discharge pipe 22 of the cleaning tank 10 or the feed pipe 18. It is not a good idea to do this, but it is preferable to connect to the storage tank 16, the return pipe 15, a position near the return pipe 15 of the cleaning tank 10, or the like.
 また、上述した本実施の形態においては、貯留槽16にキレート過水液100の攪拌のための攪拌装置を特に設けない構成とした場合を例示して説明を行なったが、必要に応じて貯留槽16にこのような攪拌装置を設けることとしてもよい。また、本実施の形態においては、循環路中にキレート過水液100中に含まれる泡を消すための消泡装置を特に設けない構成とした場合を例示して説明を行なったが、必要に応じて循環路中にこのような消泡装置を設けることとしてもよい。 Moreover, in this Embodiment mentioned above, although the case where it was set as the structure which does not provide especially the stirring apparatus for stirring of the chelate superaqueous solution 100 in the storage tank 16 was demonstrated, it was stored as needed. Such a stirring device may be provided in the tank 16. Further, in the present embodiment, the explanation has been given by exemplifying the case where the defoaming device for eliminating the bubbles contained in the chelate superaqueous solution 100 is not provided in the circulation path. Accordingly, such a defoaming device may be provided in the circulation path.
 このように、今回開示した上記一実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Thus, the above-described embodiment disclosed herein is illustrative in all respects and is not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1A,1B 基板洗浄装置、10 洗浄槽、11 搬入口、12 搬出口、13 液溜め部、14 搬送ローラ、15 戻し管、16 貯留槽、17 貯留部、18 送り管、19 循環ポンプ、21 濃度センサ、22 吐出管、24 純水供給管、25 流量計付き制御弁、26 制御部、100 キレート過水液、200 ガラス基板。 1A, 1B Substrate cleaning device, 10 cleaning tank, 11 carry-in port, 12 carry-out port, 13 liquid reservoir, 14 transport roller, 15 return pipe, 16 storage tank, 17 reservoir, 18 feed pipe, 19 circulation pump, 21 concentration Sensor, 22 discharge pipe, 24 pure water supply pipe, 25 control valve with flow meter, 26 control unit, 100 chelate superaqueous solution, 200 glass substrate.

Claims (4)

  1.  キレート剤と酸化剤とを含む水溶液からなる洗浄液を基板の被洗浄面に供給することで前記基板の洗浄を行なう洗浄槽(10)、および前記洗浄液が一時的に貯留される貯留槽(16)を含み、前記洗浄槽(10)と前記貯留槽(16)との間で前記洗浄液が循環するように構成された循環路と、
     前記循環路を循環する前記洗浄液に純水を供給するための純水供給部と、
     前記洗浄液の濃度を検出する濃度検出部(21)と、
     前記濃度検出部(21)によって検出された濃度情報に基づいて前記純水供給部の駆動を制御し、これにより前記洗浄液の濃度を調整する制御部(26)とを備えた、基板洗浄装置。
    A cleaning tank (10) for cleaning the substrate by supplying a cleaning liquid comprising an aqueous solution containing a chelating agent and an oxidizing agent to the surface to be cleaned, and a storage tank (16) for temporarily storing the cleaning liquid A circulation path configured to circulate the cleaning liquid between the cleaning tank (10) and the storage tank (16),
    A pure water supply unit for supplying pure water to the cleaning liquid circulating in the circulation path;
    A concentration detector (21) for detecting the concentration of the cleaning liquid;
    A substrate cleaning apparatus comprising: a control unit (26) that controls driving of the pure water supply unit based on the concentration information detected by the concentration detection unit (21) and thereby adjusts the concentration of the cleaning liquid.
  2.  前記制御部(26)は、前記濃度検出部(21)によって検出される前記洗浄液の濃度が予め定めた閾値以下となるように前記純水供給部の駆動を制御する、請求の範囲第1項に記載の基板洗浄装置。 The said control part (26) controls the drive of the said pure water supply part so that the density | concentration of the said washing | cleaning liquid detected by the said density | concentration detection part (21) may become below a predetermined threshold value. A substrate cleaning apparatus according to claim 1.
  3.  前記循環路は、前記貯留槽(16)中の前記洗浄液を前記洗浄槽(10)に送る送り管(18)と、前記洗浄槽(10)中の前記洗浄液を前記貯留槽(16)に戻す戻し管(15)とを含み、
     前記濃度検出部(21)が、前記送り管(18)に設けられている、請求の範囲第1項に記載の基板洗浄装置。
    The circulation path returns the cleaning liquid in the storage tank (16) to the cleaning tank (10), and a feed pipe (18) for returning the cleaning liquid in the cleaning tank (10) to the storage tank (16). A return pipe (15),
    The substrate cleaning apparatus according to claim 1, wherein the concentration detector (21) is provided in the feed pipe (18).
  4.  前記純水供給部が、前記貯留槽(16)に純水を供給するように構成されている、請求の範囲第1項に記載の基板洗浄装置。 The substrate cleaning apparatus according to claim 1, wherein the pure water supply unit is configured to supply pure water to the storage tank (16).
PCT/JP2010/054788 2009-03-31 2010-03-19 Substrate cleaning device WO2010113675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009085267A JP2012119344A (en) 2009-03-31 2009-03-31 Substrate cleaning apparatus
JP2009-085267 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113675A1 true WO2010113675A1 (en) 2010-10-07

Family

ID=42827971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054788 WO2010113675A1 (en) 2009-03-31 2010-03-19 Substrate cleaning device

Country Status (2)

Country Link
JP (1) JP2012119344A (en)
WO (1) WO2010113675A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184666A1 (en) * 2014-06-04 2015-12-10 深圳市华星光电技术有限公司 Wash chamber discharging method and device
CN109752868A (en) * 2017-11-06 2019-05-14 夏普株式会社 Liquid circulating apparatus
CN111206211A (en) * 2018-11-21 2020-05-29 天津鑫辉兴业金属制品有限公司 Vacuum plasma coating platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124185A (en) * 1998-10-13 2000-04-28 Dainippon Screen Mfg Co Ltd Substrate treating device
JP2002086084A (en) * 2000-07-14 2002-03-26 Sony Corp Method and apparatus for cleaning substrate
JP2004014641A (en) * 2002-06-04 2004-01-15 Tokyo Electron Ltd Cleaning equipment and cleaning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124185A (en) * 1998-10-13 2000-04-28 Dainippon Screen Mfg Co Ltd Substrate treating device
JP2002086084A (en) * 2000-07-14 2002-03-26 Sony Corp Method and apparatus for cleaning substrate
JP2004014641A (en) * 2002-06-04 2004-01-15 Tokyo Electron Ltd Cleaning equipment and cleaning method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184666A1 (en) * 2014-06-04 2015-12-10 深圳市华星光电技术有限公司 Wash chamber discharging method and device
CN109752868A (en) * 2017-11-06 2019-05-14 夏普株式会社 Liquid circulating apparatus
CN109752868B (en) * 2017-11-06 2021-07-13 夏普株式会社 Liquid circulation device
CN111206211A (en) * 2018-11-21 2020-05-29 天津鑫辉兴业金属制品有限公司 Vacuum plasma coating platform

Also Published As

Publication number Publication date
JP2012119344A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP3382138B2 (en) Chemical liquid supply device and chemical liquid supply method
JP5795983B2 (en) Substrate processing equipment
CN110197803B (en) Substrate liquid processing apparatus and substrate liquid processing method
KR101750647B1 (en) Liquid supply device and substrate processing device
JP5313647B2 (en) Substrate processing apparatus and substrate processing method
KR101046424B1 (en) Treatment liquid supply mechanism, treatment liquid supply method and storage medium
JP2009004728A (en) Substrate processing apparatus
JP2007109738A (en) Liquid processor, processing liquid supply method and processing liquid supply program
JP5841007B2 (en) Chemical supply method and substrate processing apparatus
JP2004363292A (en) Liquid feeder and board treating system
WO2010113675A1 (en) Substrate cleaning device
US11465168B2 (en) Liquid processing device and liquid processing method
KR20190103947A (en) Substrate processing apparatus, processing liquid draining method, processing liquid replacing method, and substrate processing method
JP4982453B2 (en) Treatment liquid supply mechanism, liquid treatment apparatus, and treatment liquid supply method
JP2009260257A (en) Substrate treating apparatus and substrate treating method
JP7126927B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2000021838A (en) Substrate treatment device
JP2007059749A (en) Apparatus for diluting cleaning stock solution
JP2006202811A (en) Substrate processing equipment
JP3892670B2 (en) Substrate processing method and substrate processing apparatus
JP3695917B2 (en) Substrate processing equipment
JP2000208470A (en) Substrate treatment apparatus
JP4647532B2 (en) Substrate processing apparatus and substrate processing method
JP4440180B2 (en) Substrate processing apparatus and substrate processing method
JPH11207274A (en) Substrate treatment solution tank and substrate treatment solution apparatus using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP