WO2010113527A1 - 2次歪補正受信機及び2次歪補正方法 - Google Patents

2次歪補正受信機及び2次歪補正方法 Download PDF

Info

Publication number
WO2010113527A1
WO2010113527A1 PCT/JP2010/002448 JP2010002448W WO2010113527A1 WO 2010113527 A1 WO2010113527 A1 WO 2010113527A1 JP 2010002448 W JP2010002448 W JP 2010002448W WO 2010113527 A1 WO2010113527 A1 WO 2010113527A1
Authority
WO
WIPO (PCT)
Prior art keywords
output signal
component
signal
unit
weighting
Prior art date
Application number
PCT/JP2010/002448
Other languages
English (en)
French (fr)
Inventor
森田忠士
清水克人
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/256,890 priority Critical patent/US8391818B2/en
Priority to JP2011507045A priority patent/JP5528431B2/ja
Publication of WO2010113527A1 publication Critical patent/WO2010113527A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1483Balanced arrangements with transistors comprising components for selecting a particular frequency component of the output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1491Arrangements to linearise a transconductance stage of a mixer arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45932Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedback means
    • H03F3/45937Measuring at the loading circuit of the differential amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0047Offset of DC voltage or frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45481Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present

Definitions

  • the present invention relates to a wireless communication apparatus, and more particularly, to a secondary distortion correction receiver and a secondary distortion correction method for correcting intermodulation secondary distortion.
  • FIG. 1 is a block diagram illustrating a configuration of a receiver 10 disclosed in Non-Patent Document 1.
  • the intermodulation secondary distortion generated in the mixer 11 is adjusted by subtracting the weighted reference signal from the IF signal.
  • the correction coefficient used for this weighting is determined by the following method.
  • a differential output signal is output to an LPF (Low Pass Filter) 12, and a common mode output signal is output to the common mode detection unit 14.
  • the common mode detection unit 14 detects the common mode output signal of the mixer 11, and the LPF 15 performs low-pass filter processing on the signal to remove the harmonic component.
  • an ADC (Analog to Digital Converter) 16 converts the output of the LPF 15 into a digital signal, generates a digital domain reference signal, and outputs the digital domain reference signal to the LMS 17.
  • the LPF 12 removes the harmonic signal from the differential output signal of the mixer 11. Further, the ADC 13 converts the output of the LPF 12 into a digital signal, generates an IF signal in the digital domain, and outputs the IF signal in the digital domain to the LMS 17.
  • An LMS (Least Mean Square) 17 obtains a correlation value between the reference signal in the digital domain and the IF signal, and determines an optimal correction coefficient used for correcting the intermodulation secondary distortion by using the LMS algorithm. To do.
  • a DC (Direct Current) detection unit 22 detects a DC (Direct Current) component included in the output of the mixer 21, and the receiver 20 determines a constant according to the DC component.
  • the DC component of the mixer output is corrected and secondary distortion is suppressed.
  • both the differential output signal of the mixer and the common mode output signal are required, and the correction coefficient is calculated using only the differential output signal of the mixer. It is difficult to decide.
  • the center voltage of both the differential output signal of the mixer and the common mode output signal is determined. Must be adjusted with high accuracy. For this reason, two circuits for adjusting the center voltages of both the differential output signal and the common mode output signal of the mixer are required, and extra man-hours are required for the adjustment.
  • Patent Document 1 has a problem that it is difficult to sufficiently cancel the intermodulation secondary distortion.
  • An object of the present invention is to provide a second-order distortion correction receiver and a second-order distortion correction method capable of canceling intermodulation second-order distortion with high accuracy with a simple circuit configuration without requiring a complicated adjustment process. Is to provide.
  • the second-order distortion correction receiver extracts an active element having nonlinear characteristics that performs a nonlinear process on an input signal and outputs a differential output signal and a common mode output signal, and the common mode output signal.
  • a correction signal injection unit for outputting, a DC component detection unit for calculating an average DC component of the correction differential output signal, a weight determination unit for determining a weighting coefficient used in the weighting unit using the average DC component,
  • the structure which comprises is taken.
  • a second-order distortion correction method is a second-order distortion correction method for removing a second-order distortion component generated by an active element having nonlinear characteristics, wherein the active element performs nonlinear processing on an input signal. Extracting the obtained differential output signal and common mode output signal, weighting the common mode output signal, generating a correction signal, injecting the correction signal into the differential output signal, and correcting differential An output signal is output, an average DC component of the corrected differential output signal is calculated, and a weighting coefficient used for the weighting is determined using the average DC component.
  • the weighting coefficient used for the common mode output signal can be determined using the average DC component of the corrected differential output signal obtained by injecting the correction signal into the differential output signal.
  • the weighting coefficient for canceling the second-order distortion component can be determined using only the differential output signal of the nonlinear active element, and a simple adjustment without requiring a complicated adjustment process. With the circuit configuration, it is possible to cancel the intermodulation secondary distortion with high accuracy.
  • the figure which shows the structure of the receiver of patent document 1 The block diagram which shows the basic composition of the receiver of this invention.
  • FIG. The block diagram which shows the principal part structure of the receiver which concerns on Embodiment 4 of this invention.
  • FIG. 3 is a block diagram showing a basic configuration of the receiver 100 of the present invention.
  • the non-linear active element unit 110 performs non-linear conversion on the input signal, and outputs a differential output signal obtained by the non-linear conversion and a common mode output signal.
  • the differential output signal is a signal indicating a difference component between two system output signals in the differential system when a differential output type active element is used for the nonlinear active element unit 110 (differential system). It is.
  • the common mode output signal is a signal indicating a sum component of two system output signals in the differential system.
  • the non-linear active element unit 110 has non-linear characteristics and is constituted by, for example, a mixer.
  • the differential output signal contains intermodulation second-order distortion components.
  • the common mode detection unit 120 detects a common mode output signal output from the nonlinear active element unit 110.
  • the detected common mode output signal includes both a DC (Direct Current) component generated by signal input and an AC component including an intermodulation second-order distortion component.
  • the secondary distortion component has a tendency to be canceled out by the differential output, and is enhanced by the common mode output.
  • the weighting unit 130 weights the above-described common mode output signal using a weighting coefficient (weighting coefficient) determined by the weight determination unit 160 described later, and generates a correction signal.
  • the correction signal injection unit 140 subtracts the correction signal output from the weighting unit 130 from the differential output signal of the nonlinear active element unit 110 to generate a corrected differential output signal. As a result, the secondary distortion component included in the differential output signal is removed. A method for removing the distortion component will be described later.
  • the DC detection unit 150 detects the average DC component of the corrected differential output signal output from the correction signal injection unit 140. A method of detecting the average DC component in the DC detection unit 150 will be described later.
  • the weight determination unit 160 calculates a more optimal weighting factor from the average DC component detected by the DC detection unit 150 and the current weighting factor, and outputs it to the weighting unit 130. A method for calculating the weighting coefficient will be described later.
  • K1 and K2 (K1-K2 ⁇ 1) are introduced as coefficients representing an unbalanced component between differential outputs.
  • each differential component signal is a signal obtained by multiplying K1 or K2 by (Equation 3)
  • the differential output components (Y1, Y2) are expressed by (Equation 4) and (Equation 5), respectively. Can do.
  • Each of the intermodulation secondary distortion component and the DC component is extracted from (Equation 4) and (Equation 5) and arranged as a differential component thereof.
  • the differential component IM2_diff of the intermodulation second-order distortion component is expressed by (Expression 6)
  • the differential component DC_diff of the DC component is expressed by (Expression 7).
  • each of the intermodulation secondary distortion component and the DC component is extracted from (Equation 4) and (Equation 5) and arranged as a common mode component thereof.
  • the common mode component IM2_com of the intermodulation second-order distortion component is expressed by (Expression 8), and the common mode component DC_com of the DC component is expressed by (Expression 9).
  • the correction differential output signal component obtained by multiplying the above common mode component by the weighting coefficient w and injecting the obtained correction signal into the differential output signal of the nonlinear active element is arranged.
  • the intermodulation second-order distortion component IM2_out included in the corrected differential output signal is expressed by (Expression 10)
  • the DC component DC_out included in the corrected differential output signal is expressed by (Expression 11).
  • the inventors of the present application have discovered the relationship between the above-described intermodulation second-order distortion component and DC component, and have come up with a second-order distortion correction receiver and a second-order distortion correction method according to the present invention.
  • the non-linear active element unit 110 performs non-linear conversion on the input signal, and outputs a differential output signal obtained by the non-linear conversion and a common mode output signal.
  • the non-linear active element unit 110 has non-linear characteristics and is configured by, for example, a mixer.
  • the differential output signal contains intermodulation second-order distortion components.
  • the DC component and the intermodulation second-order distortion component included in the differential output signal are expressed by the above-described (Expression 6) and (Expression 7), respectively.
  • the common mode detection unit 120 detects a common mode output signal output from the nonlinear active element unit 110.
  • the common mode output signal detected here includes both a DC component generated by signal input and an AC component including an intermodulation second-order distortion component. These components are represented by (Expression 8) and (Expression 9), respectively.
  • the weighting unit 130 weights the above-described common mode output signal using a weighting coefficient to generate a correction signal.
  • the weighting can be realized by using a current mirror circuit or a variable amplifier.
  • the correction signal generated by weighting the common mode output signal is injected into the differential output signal of the nonlinear active element unit 110 in the correction signal injection unit 140 to generate a corrected differential output signal.
  • the DC component and the intermodulation second-order distortion component included in the corrected differential output signal are expressed by the above-described (Expression 10) and (Expression 11), respectively.
  • the DC detection unit 150 detects the average DC component of the corrected differential output signal.
  • FIG. 4 is a block diagram illustrating a specific configuration of the DC detection unit 150.
  • the average calculation unit 151 performs an average calculation on the corrected differential output signal input so far.
  • a primary IIR (Infinite Impulse Response) filter can be used as an example of a specific configuration of the average calculation unit 151.
  • the counter unit 152 counts a predetermined period, and outputs an update timing signal to the update unit 153 every fixed period.
  • the update unit 153 updates the average value calculated by the average calculation unit 151 and outputs it as an average DC component.
  • the predetermined period of time described above is, for example, 20 milliseconds.
  • this “certain period” requires a long time spanning a plurality of symbols, and the length varies depending on the communication method.
  • the weight determination unit 160 determines the weighting coefficient using the average DC component included in the corrected differential output signal. Specifically, the weight determination unit 160 sets the coefficient w_cal that makes the average DC component included in the corrected differential output signal zero as a weighting coefficient.
  • the coefficient w_cal is obtained from the above (Equation 12).
  • the weight determination unit 160 calculates a more optimal weighting coefficient (w (t + 1)) at the next time point from the average DC component detected by the DC detection unit 150 and the current weighting coefficient (w (t)). To do.
  • the weighting coefficient (w (t + 1)) at the next time point can be obtained from (Equation 13) below.
  • is an update coefficient, and is a sufficiently small fixed value in the present embodiment.
  • is a large value.
  • the time until the weighting coefficient w (t) converges to the optimum value is shortened, but the stability of the system having the receiver 100 tends to be low.
  • the time until the weighting coefficient w (t) converges to the optimum value becomes longer, but the stability of the system tends to be improved. Therefore, it is assumed that the optimum update coefficient ⁇ in this system is determined by selecting an optimum value by actually performing the evaluation.
  • the weighting coefficient w (t) calculated by the weight determining unit 160 is output to the weighting unit 130, and the weighting unit 130 uses the weighting coefficient w (t) to weight the common mode output signal. To be implemented.
  • the weight determination unit 160 determines the weighting coefficient so that the DC component becomes zero.
  • the weighting unit 130 generates a correction signal by weighting the common mode output signal using the weighting coefficient.
  • the correction signal injection unit 140 removes the intermodulation second-order distortion component from the correction differential output signal by injecting the correction signal into the differential output signal.
  • the relationship between the intermodulation second-order distortion component and the DC component described above is used. That is, in the present embodiment, the weighting coefficient (see (Equation 12)) that can completely cancel the DC component of the corrected differential output signal and the intermodulation second-order distortion component of the corrected differential output signal are completely canceled.
  • the relationship that the weighting coefficient that can be used is the same value is used. Therefore, when determining the weighting coefficient, it is sufficient to use only the DC component of the corrected differential output signal detected by the DC detection unit 150, and adjustment of the center voltages of the corrected differential output signal and the common mode output signal is unnecessary. It is. Therefore, the intermodulation secondary distortion component can be canceled with high accuracy with a simple circuit configuration without requiring a complicated adjustment process.
  • the nonlinear active element unit 110 performs nonlinear processing on the input signal and outputs a differential output signal and a common mode output signal.
  • the common mode detection unit 120 extracts a common mode output signal.
  • the weighting unit 130 generates a correction signal by weighting the extracted common mode output signal.
  • the correction signal injection unit 140 injects the correction signal into the differential output signal and outputs the corrected differential output signal.
  • the DC detection unit 150 calculates an average DC component of the corrected differential output signal.
  • the weight determination unit 160 determines a weighting coefficient used in the weighting unit 130 using the average DC component. At this time, the weight determination unit 160 sets a coefficient that makes the average DC component included in the corrected differential output signal zero as a weighting coefficient.
  • the weighting unit 130 generates a correction signal by weighting the common mode output signal using a weighting coefficient (see (Equation 12)) that can cancel the DC component, and the correction signal injection unit 140 By injecting the correction signal into the differential output signal and outputting the corrected differential output signal, the intermodulation second-order distortion component can be canceled.
  • the weighting coefficient is determined using only the corrected differential output signal, a circuit for adjusting the center voltage of the differential output signal and the common mode output signal is not necessary, and the adjustment man-hours are also increased. It becomes unnecessary. Therefore, the intermodulation secondary distortion can be canceled with high accuracy with a simple configuration without requiring a complicated adjustment process.
  • FIG. 5 is a block diagram showing a main configuration of the receiver according to the present embodiment.
  • the same components as those of the receiver 100 of FIG. 3 are denoted by the same reference numerals as those in FIG. 5 employs a configuration in which an LPF 210 is added between the common mode detection unit 120 and the weighting unit 130 with respect to the receiver 100 of FIG.
  • the LPF 210 uses a filter that removes unnecessary interfering waves and the like outside the band because the intermodulation second-order distortion component to be canceled becomes a pass frequency band.
  • the LPF 210 removes components other than the intermodulation second-order distortion component from the common mode output signal. Only the same frequency component as the intermodulation second-order distortion component is input. As a result, since an appropriate correction signal can be generated in the weighting unit 130, the intermodulation second-order distortion component can be canceled with high accuracy in the correction signal injection unit 140.
  • the receiver 200 includes the LPF 210 that removes frequency components other than the frequency band of the common mode output signal between the common mode detection unit 120 and the weighting unit 130.
  • the intermodulation secondary distortion can be canceled with higher accuracy with a simple circuit configuration.
  • FIG. 6 is a block diagram showing a main configuration of the receiver according to the present embodiment.
  • the present embodiment is an example in which a mixer 310 is applied to the nonlinear active element unit 110.
  • the mixer 310 down-converts the frequency of the input signal to a lower frequency band. Then, the mixer 310 outputs the differential output signal and the common mode output signal obtained when down-converting the frequency of the input signal to a lower frequency band to the correction signal injection unit 140 and the common mode detection unit 120, respectively. .
  • the mixer 310 has a double balance mixer configuration as shown in FIG. In this case, the mixer 310 switches the frequency of the input signals RF + and RF ⁇ to a lower frequency band by switching the input signals RF + and RF ⁇ with the local signals LO + and LO ⁇ .
  • the configuration of the mixer 310 may be a configuration other than that shown in FIG.
  • FIG. 8 is a block diagram showing a main configuration of the receiver according to the present embodiment.
  • the present embodiment is an example in which an amplifier 410 is applied to the nonlinear active element unit 110.
  • the amplifier 410 adjusts (amplifies) the amplitude of the input signal. Then, the amplifier 410 outputs the differential output signal and the common mode output signal obtained when adjusting (amplifying) the amplitude of the input signal to the correction signal injection unit 140 and the common mode detection unit 120, respectively.
  • the amplifier 410 has a differential amplifier configuration as shown in FIG. 9, for example.
  • FIG. 9 For example.
  • FIG. 9 what is necessary is just to use what is generally known for the structure of amplifier, and structures other than FIG. 9 may be used.
  • FIG. 10 is a block diagram showing an internal configuration of the DC detection unit 150A according to the present embodiment.
  • the DC detection unit 150A of FIG. 10 includes a ⁇ DC detection unit 154 and an update unit 155 instead of the counter unit 152 and the update unit 153 with respect to the DC detection unit 150 of FIG.
  • the update unit 153 updates the average DC value every certain period.
  • the ⁇ DC detection unit 154 calculates the difference between the average DC value (t) calculated by the average calculation unit 151 and the average DC value (t ⁇ 1) at the previous time step. To do.
  • the ⁇ DC detection unit 154 determines that the average DC value has converged when the difference between the average DC value (t ⁇ 1) and the average DC value (t) is smaller than a certain threshold value. At that timing, the ⁇ DC detection unit 154 gives a weighting coefficient update instruction to the update unit 155.
  • the update unit 155 updates the average DC value in accordance with the update instruction from the ⁇ DC detection unit 154.
  • DC detection section 150A determines the degree of convergence of the average DC component value, and outputs the average DC component to weight determination section 160 when it is determined that the value has converged.
  • the weighting coefficient can be converged at a higher speed.
  • FIG. 11 is a block diagram showing a main configuration of the receiver according to the present embodiment.
  • the same reference numerals as those of FIG. 5 are given to the same components as those of the receiver 200 of FIG. 11 employs a configuration in which a communication status detection unit 510 and a ⁇ value control unit 520 are further added to the receiver 200 of FIG.
  • the communication status detection unit 510 checks fluctuations in the radio wave condition around the receiver 500.
  • a method for examining the fluctuation of the radio wave state it is conceivable to make a judgment based on various indices such as a fluctuation difference of an EVM (Error Vector Magnitude) index and a fluctuation difference of a DC value detected by the DC detection unit 150.
  • EVM Error Vector Magnitude
  • the communication status detection unit 510 calculates the EVM value of the corrected differential output signal. Next, the communication status detection unit 510 calculates a variation difference between the EVM value (t) and the EVM value (t ⁇ 1) at the previous time step. If the variation difference is larger than a predetermined threshold, the communication status detection unit 510 notifies the ⁇ value control unit 520 of a ⁇ value change.
  • the ⁇ value control unit 520 When the ⁇ value control unit 520 receives the ⁇ value change notification from the communication status detection unit 510, the ⁇ value control unit 520 changes the ⁇ value to ⁇ _pred set in advance, and outputs the changed ⁇ value to the weight determination unit 160. Note that the ⁇ value control unit 520 resets the changed ⁇ value to the original value after a certain period of time, and outputs the reset ⁇ value to the weight determination unit 160.
  • the communication status detection unit 510 checks the fluctuation of the radio wave condition around the receiver 500, and the ⁇ value control unit 520 receives the ⁇ value change notification in advance when the ⁇ value change notification is received. And the changed ⁇ value is output to the weight determination unit 160. Therefore, when the change in the communication state is large, the weight determination unit 160 determines the weight coefficient using the update coefficient ⁇ changed to a predetermined value.
  • the time required for convergence of the weighting coefficient can be shortened by temporarily changing the update coefficient ⁇ to a large value. Then, after a certain period of time has passed, that is, after reaching the final stage of convergence, the optimum weighting can be determined at a higher speed in total by resetting the ⁇ value to the original small value.
  • the time required for convergence of the weighting coefficient can be shortened.
  • the second-order distortion correction receiver and second-order distortion correction method according to the present invention it is possible to cancel intermodulation second-order distortion with high accuracy with a simple circuit configuration.
  • Non-linear active element unit 120 Common mode detection unit 130 Weighting unit 140 Correction signal injection unit 150, 150A DC detection unit 160 Weight determination unit 151 Average calculation unit 152 Counter unit 153, 155 Update Unit 154 ⁇ DC detection unit 210 LPF 310 mixer 410 amplifier 510 communication status detection unit 520 ⁇ value control unit 311 to 316, 411, 412 transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Amplifiers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

 複雑な調整工程を必要とすることなく、簡易な回路構成で、高精度に相互変調2次歪をキャンセルすることができる2次歪補正受信機及び2次歪補正方法を開示する。非線形能動素子部(110)は、入力信号に対して非線形処理を行って、差動出力信号及びコモンモード出力信号を出力する。コモンモード検出部(120)は、コモンモード出力信号を抽出する。重み付け部(130)は、抽出されたコモンモード出力信号に重み付けを行うことにより、補正信号を生成する。補正信号注入部(140)は、補正信号を差動出力信号に注入して、補正差動出力信号を出力する。DC検出部(150)は、補正差動出力信号の平均DC成分を算出する。重み決定部(160)は、平均DC成分を用いて、重み付け部(130)で用いる重み付け係数を決定する。このとき、重み決定部(160)は、補正差動出力信号に含まれる平均DC成分をゼロにする係数を重み付け係数とする。

Description

2次歪補正受信機及び2次歪補正方法
 本発明は、無線通信装置に関し、特に相互変調2次歪を補正する2次歪補正受信機及び2次歪補正方法に関する。
 近年、携帯電話やワンセグ受信機などの無線受信機において、広帯域化が要求されている。より広帯域な受信システムを実現するには、相互変調2次歪のキャンセル機能を強化する必要がある。
 相互変調2次歪のキャンセル方式の中でよく知られている方法として、非特許文献1に開示された方法がある。図1は、非特許文献1に開示される受信機10の構成を示すブロック図である。非特許文献1に開示される方法では、図1に示すように、IF信号から重み付けされたレファレンス信号を減算させることによって、ミキサ11で発生する相互変調2次歪を調整する。この重み付けに用いる補正係数は以下の方法で決定される。
 ミキサ11からは、LPF(Low Pass Filter)12に対して差動出力信号が出力され、コモンモード検出部14に対してコモンモード出力信号が出力される。まず、コモンモード検出部14は、ミキサ11のコモンモード出力信号を検出し、その信号に対して、LPF15はローパスフィルタ処理を行い、その高調波成分を除去する。さらに、ADC(Analog to Digital Converter)16は、LPF15の出力をデジタル信号に変換し、デジタル領域のレファレンス信号を生成し、デジタル領域のレファレンス信号をLMS17に出力する。
 次に、ミキサ11の差動出力信号に対して、LPF12は、その高調波信号を除去する。さらに、ADC13は、LPF12の出力をデジタル信号に変換して、デジタル領域のIF信号を生成し、デジタル領域のIF信号をLMS17に出力する。
 LMS(Least Mean Square)17は、前述のデジタル領域のレファレンス信号とIF信号との間の相関値を求め、LMSアルゴリズムを用いることによって、相互変調2次歪の補正に用いる最適な補正係数を決定する。
 また、別の相互変調2次歪のキャンセル方式として、特許文献1に開示された方法がある。この方式では、図2のように、DC(Direct Current)検出部22は、ミキサ21の出力に含まれているDC(Direct Current)成分を検出し、受信機20は、DC成分に応じた定電流を定電流源23からミキサ21の出力に注入することによって、ミキサ出力のDC成分を補正し2次歪を抑圧する。
米国特許第7421260号明細書
IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.43,NO.11,NOVEMBER 2008, "Digital Adaptive IIP2 Calibration Scheme for CMOS Downconversion Mixers"
 しかしながら、前記非特許文献1の方式では、補正係数を決定するには、ミキサの差動出力信号及びコモンモード出力信号の両方が必要となり、ミキサの差動出力信号のみだけを用いて補正係数を決定することが難しい。さらに、ミキサの差動出力信号とコモンモード出力信号との間で相関を取りLMSアルゴリズムを用いて補正係数を決定するためには、ミキサの差動出力信号及びコモンモード出力信号の両方の中心電圧を精度良く調整する必要がある。そのため、ミキサの差動出力信号及びコモンモード出力信号の両方の中心電圧を調整するための回路が2つ必要となり、その調整に余分な工数が必要になる。
 また、前記特許文献1の方式では、相互変調2次歪を十分にキャンセルさせることが難しいという課題があった。
 本発明の目的は、複雑な調整工程を必要とすることなく、簡易な回路構成で、高精度に相互変調2次歪をキャンセルすることができる2次歪補正受信機及び2次歪補正方法を提供することである。
 本発明の2次歪補正受信機は、入力信号に対して非線形処理を行って差動出力信号及びコモンモード出力信号を出力する、非線形特性を持つ能動素子と、前記コモンモード出力信号を抽出するコモンモード検出部と、抽出された前記コモンモード出力信号に重み付けを行うことにより、補正信号を生成する重み付け部と、前記補正信号を前記差動出力信号に注入して、補正差動出力信号を出力する補正信号注入部と、前記補正差動出力信号の平均DC成分を算出するDC成分検出部と、前記平均DC成分を用いて、前記重み付け部で用いる重み付け係数を決定する重み決定部と、を具備する構成を採る。
 本発明の2次歪補正方法は、非線形特性を持つ能動素子により発生する2次歪成分を除去する2次歪補正方法であって、入力信号に対して、前記能動素子が非線形処理を行って得られる差動出力信号及びコモンモード出力信号を抽出し、前記コモンモード出力信号に重み付けを行うことにより、補正信号を生成し、前記補正信号を前記差動出力信号に注入して、補正差動出力信号を出力し、前記補正差動出力信号の平均DC成分を算出し、前記平均DC成分を用いて、前記重み付けに用いる重み付け係数を決定する。
 これらによれば、補正信号を差動出力信号に注入して得られる補正差動出力信号の平均DC成分を用いて、コモンモード出力信号に対して用いる重み付け係数を決定することができるので、簡易な回路構成で、高精度に相互変調2次歪をキャンセルすることができる。
 本発明によれば、非線形能動素子の差動出力信号のみを用いて、2次歪み成分をキャンセルするための重み付け係数を決定することができ、複雑な調整工程を必要とすることなく、簡易な回路構成で、高精度に相互変調2次歪をキャンセルすることができる。
非特許文献1の受信機の構成を示す図 特許文献1の受信機の構成を示す図 本発明の受信機の基本構成を示すブロック図 本発明の実施の形態1に係るDC検出部の内部構成を示すブロック図 本発明の実施の形態2に係る受信機の要部構成を示すブロック図 本発明の実施の形態3に係る受信機の要部構成を示すブロック図 実施の形態3に係るミキサの構成例を示す図 本発明の実施の形態4に係る受信機の要部構成を示すブロック図 実施の形態4に係るアンプの構成例を示す図 本発明の実施の形態5に係るDC検出部の内部構成を示すブロック図 本発明の実施の形態6に係る受信機の要部構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (本発明の2次歪補正受信機の基本構成)
 図3は、本発明の受信機100の基本構成を示すブロック図である。
 非線形能動素子部110は、入力信号に対して非線形変換し、非線形変換により得られた差動出力信号と、コモンモード出力信号とを出力する。ここで、差動出力信号とは、非線形能動素子部110に差動出力型の能動素子を用いた場合(差動システム)に、当該差動システムにおける2系統出力信号の差の成分を示す信号である。コモンモード出力信号とは、当該差動システムにおける2系統出力信号の和の成分を示す信号である。
 この非線形能動素子部110は、非線形特性を有し、例えばミキサにより構成される。そして、その差動出力信号には、相互変調2次歪成分が混入している。
 コモンモード検出部120は、非線形能動素子部110から出力されるコモンモード出力信号を検出する。ここで検出されるコモンモード出力信号には、信号入力によって発生するDC(Direct Current)成分、及び、相互変調2次歪成分を含むAC成分の両方の成分が含まれている。
 なお、2次歪成分は、差動出力では打ち消される傾向があり、コモンモード出力では強めあって出力されるという特徴がある。
 そして、重み付け部130は、前述のコモンモード出力信号に対して、後述の重み決定部160により決定される重み付け係数(重み付け係数)を用いて重み付けを行い、補正信号を生成する。
 補正信号注入部140は、非線形能動素子部110の差動出力信号から、重み付け部130から出力される補正信号を減算して、補正差動出力信号を生成する。これにより、差動出力信号に含まれていた2次歪成分が除去される。なお、歪成分の除去の方法については、後述する。
 次に、DC検出部150において、補正信号注入部140から出力される補正差動出力信号の平均DC成分を検出する。DC検出部150における平均DC成分の検出方法については、後述する。
 重み決定部160は、DC検出部150により検出された平均DC成分と、現時点での重み付け係数とから、より最適な重み付け係数を算出し、重み付け部130へ出力する。重み付け係数の算出方法については、後述する。
 (相互変調2次歪成分とDC成分との関係)
 ここで、ある信号を非線形能動素子に入力した時に発生する相互変調2次歪とDCオフセットとの関係について説明する。相互変調2次歪は、非線形能動素子の2乗成分によって発生すると言われている。そこで(式1)の2乗演算に関する入出力モデルについて考える。(式1)において、Xが入力信号であり、Yが出力信号である。
Figure JPOXMLDOC01-appb-M000001
 次に、入力信号Xとして、(式2)に示すように、ともに振幅の大きさがAで、周波数の異なる2つのトーン波が入力される場合を考える。
Figure JPOXMLDOC01-appb-M000002
 その時の出力信号Yは(式3)で表わされる。
Figure JPOXMLDOC01-appb-M000003
 ここでは、非線形能動素子として差動出力型の能動素子を用いた受信機を想定するので、差動出力間のアンバランス成分を表す係数として、K1及びK2(K1-K2<<1)を導入する。差動成分それぞれの信号が、K1又はK2を(式3)に掛け合わせた信号であるとすると、差動出力成分(Y1、Y2)は、それぞれ(式4)、(式5)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 上記(式4)及び(式5)から、相互変調2次歪成分及びDC成分の各々を抽出し、それらの差動成分として整理する。相互変調2次歪成分の差動成分IM2_diffは(式6)で表され、DC成分の差動成分DC_diffは(式7)で表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 同様に、(式4)と(式5)の中から、相互変調2次歪成分とDC成分の各々を抽出し、それらのコモンモード成分として整理する。相互変調2次歪成分のコモンモード成分IM2_comは(式8)で表され、DC成分のコモンモード成分DC_comは(式9)で表わされる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで上記のコモンモード成分に重み付け係数wを乗算し、得られる補正信号を非線形能動素子の差動出力信号に注入して得られる補正差動出力信号成分を整理する。補正差動出力信号に含まれる相互変調2次歪成分IM2_outは(式10)で表され、補正差動出力信号に含まれるDC成分DC_outは(式11)で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ここで(式11)のDC成分DC_outに注目し、この成分が完全にゼロになるような重み付け係数wを見つけることを考える。DC成分DC_outが完全にゼロになるようなwは、(式12)に示すw_calになると予測される。
Figure JPOXMLDOC01-appb-M000012
 ここで、このw=w_calの状態で、上記補正差動出力信号に含まれる相互変調2次歪成分IM2_outを調べる。(式12)のw_calを(式10)中のwに代入すると、IM2_outはゼロになることがわかる。
 つまり、受信機100において、最終出力(補正差動出力信号)に含まれるDC成分がゼロになるような重み付け係数(w=w_cal)を用いて、コモンモード出力信号を重み付けして、補正信号を生成し、当該補正信号を差動出力信号に注入して最終出力(補正差動出力信号)を出力することにより、最終出力(補正差動出力信号)に含まれる相互変調2次歪成分もゼロになることが分かる。
 本願発明者らは、上述した相互変調2次歪成分とDC成分との関係を発見し、本願発明に係る2次歪補正受信機及び2次歪補正方法を想到するに至った。
 (実施の形態1)
 本実施の形態では、高精度に相互変調2次歪をキャンセルすることができる受信機及び歪補正方法について説明する。なお、本実施の形態に係る受信機の構成は、図3と同様の構成であるため、図3を援用して説明する。
 非線形能動素子部110は、入力信号に対して非線形変換し、非線形変換により得られた差動出力信号と、コモンモード出力信号とを出力する。この非線形能動素子部110は、非線形特性を有し、例えばミキサにより構成される。そして、差動出力信号には、相互変調2次歪成分が混入している。差動出力信号に含まれるDC成分及び相互変調2次歪成分は、それぞれ、上述した(式6)、(式7)で表される。
 コモンモード検出部120は、非線形能動素子部110から出力されるコモンモード出力信号を検出する。ここで検出されるコモンモード出力信号は、信号入力によって発生するDC成分と、相互変調2次歪成分を含むAC成分の両方の成分が含まれている。これらの成分は、それぞれ、上述した(式8)、(式9)で表される。
 重み付け部130は、前述のコモンモード出力信号に対して、重み付け係数を用いて重み付けを行い、補正信号を生成する。重み付けは、具体的には、カレントミラー回路を用いたり、可変増幅器を用いたりすることにより実現できる。
 コモンモード出力信号に重み付けを行うことによって生成された補正信号は、補正信号注入部140において、非線形能動素子部110の差動出力信号に注入され、補正差動出力信号が生成される。補正差動出力信号に含まれるDC成分及び相互変調2次歪成分は、それぞれ、上述した(式10)、(式11)で表される。
 DC検出部150は、補正差動出力信号の平均DC成分を検出する。図4は、DC検出部150の具体的な構成を示すブロック図である。
 平均演算部151は、それまでに入力されていた補正差動出力信号に対して、平均演算を実施する。この平均演算部151の具体的な構成の一例として、一次型のIIR(Infinite Impulse Response)フィルタを用いることができる。
 カウンタ部152ではあらかじめ決定されている一定期間をカウントし、一定期間ごとに更新タイミング信号を更新部153に出力する。
 更新部153は、カウンタ部152より一定期間ごとに与えられる更新タイミング信号が入力されると、平均演算部151で算出された平均値を更新し、平均DC成分として出力する。
 なお、上記の、あらかじめ決定されている一定期間とは、例えば、20ミリ秒である。ただし、この「一定期間」としては、通信されるデータに依存せずにDC成分を検出するために、複数のシンボルをまたがるような長い時間が必要であり、その長さは通信方式によって異なる。
 再度、図3に戻り、重み決定部160は、補正差動出力信号に含まれる平均DC成分を用いて、重み付け係数を決定する。具体的には、重み決定部160は、補正差動出力信号に含まれる平均DC成分をゼロにする係数w_calを重み付け係数とする。係数w_calは、上述の(式12)より得られる。
 また、重み決定部160は、DC検出部150で検出した平均DC成分と、現時点での重み付け係数(w(t))から、より最適な次時点での重み付け係数(w(t+1))を算出する。次時点での重み付け係数(w(t+1))は、以下の(式13)より求めることができる。
Figure JPOXMLDOC01-appb-M000013
 (式13)において、μは更新係数であり、本実施の形態においては、十分に小さい固定の値とする。この更新係数μに大きい値を選択すると、重み付け係数w(t)が最適値へ収束するまでの時間は短くなるが、受信機100を有するシステムの安定度は低くなる傾向がある。一方、更新係数μに小さい値を選択すると、重み付け係数w(t)が最適値へ収束するまでの時間は長くなるが、システムの安定度は向上するという傾向がある。従って、このシステムにおける最適な更新係数μは、実際に評価を実施することによって最適な値を選択することにより決定されるとする。
 なお、上記の(式13)による重み付け係数w(t)の更新を行うためには、図4の更新部153として、乗算回路及び加算回路を用いることによって容易に実現することができる。また、乗算回路に代えてビットシフトにより乗算を実現してもよい。
 このように、重み決定部160で算出された重み付け係数w(t)は、重み付け部130に出力され、重み付け部130では、重み付け係数w(t)が用いられて、コモンモード出力信号に重み付けが実施される。
 なお、上記のシステムは、非線形能動素子部110に信号が何も入力されていない時に、補正信号注入部140の出力信号のDCオフセット成分が完全にゼロになるように事前に調整されていることを前提にしている。
 そして、事前に補正信号注入部140の出力信号のDCオフセット成分が完全にゼロになるように調整された状態で、ある入力信号が非線形能動素子部110に入力される状態で、DC検出部150は、補正信号注入部140から出力される補正差動出力信号のDC成分を検出する。そして、重み決定部160は、当該DC成分がゼロになるように重み付け係数を決定する。そして、重み付け部130は、当該重み付け係数を用いてコモンモード出力信号に重み付けして補正信号を生成する。そして、補正信号注入部140は、当該補正信号を差動出力信号に注入することにより、補正差動出力信号から相互変調2次歪成分を除去する。
 このように、本実施の形態では、前述した相互変調2次歪成分とDC成分との関係を利用している。すなわち、本実施の形態では、補正差動出力信号のDC成分が完全にキャンセルできている重み付け係数((式12)参照)と、補正差動出力信号の相互変調2次歪成分を完全にキャンセルできる重み付け係数とが、同じ値であるという関係を利用している。そのため、重み付け係数を決定する際には、DC検出部150で検出された補正差動出力信号のDC成分のみを用いればよく、補正差動出力信号及びコモンモード出力信号の中心電圧の調整も不要である。従って、複雑な調整工程を必要とすることなく、簡易な回路構成で、相互変調2次歪成分を精度よくキャンセルすることができる。
 以上のように、非線形能動素子部110は、入力信号に対して非線形処理を行って、差動出力信号及びコモンモード出力信号を出力する。コモンモード検出部120は、コモンモード出力信号を抽出する。重み付け部130は、抽出されたコモンモード出力信号に重み付けを行うことにより、補正信号を生成する。補正信号注入部140は、補正信号を差動出力信号に注入して、補正差動出力信号を出力する。DC検出部150は、補正差動出力信号の平均DC成分を算出する。重み決定部160は、平均DC成分を用いて、重み付け部130で用いる重み付け係数を決定する。このとき、重み決定部160は、補正差動出力信号に含まれる平均DC成分をゼロにする係数を重み付け係数とする。
 このようにして、重み付け部130は、DC成分をキャンセルできる重み付け係数((式12)参照)を用いて、コモンモード出力信号を重み付けして補正信号を生成し、補正信号注入部140が、当該補正信号を差動出力信号に注入して、補正差動出力信号を出力することにより、相互変調2次歪成分をキャンセルすることができる。
 本実施の形態では、重み付け係数は、補正差動出力信号のみを用いて決定されるので、差動出力信号及びコモンモード出力信号の中心電圧を調整するための回路が不要となり、その調整工数も不要になる。そのため、複雑な調整工程を必要とすることなく、簡易な構成で、高精度に相互変調2次歪をキャンセルさせることができる。
 (実施の形態2)
 図5は、本実施の形態に係る受信機の要部構成を示すブロック図である。なお、図5の受信機200において、図3の受信機100と共通する構成部分には、図3と同一の符号を付して説明を省略する。図5の受信機200は、図3の受信機100に対して、コモンモード検出部120と重み付け部130との間にLPF210を追加した構成を採る。
 LPF210は、キャンセルしたい相互変調2次歪の成分が通過周波数帯域となり、帯域外の不必要な妨害波などを除去するフィルタを使用する。コモンモード検出部120の後段にLPF210を設けることにより、LPF210が、コモンモード出力信号のうち、相互変調2次歪成分以外の成分を除去するので、重み付け部130には、コモンモード出力信号のうち、相互変調2次歪成分と同一の周波数成分のみが入力されるようになる。この結果、重み付け部130において、適切な補正信号を生成することができるので、補正信号注入部140において、相互変調2次歪成分を精度良くキャンセルすることができる。
 以上のように、本実施の形態では、受信機200は、コモンモード検出部120と重み付け部130との間に、コモンモード出力信号の周波数帯以外の周波数成分を除去するLPF210を具備する。これにより、簡易な回路構成で、さらに高精度に相互変調2次歪をキャンセルすることができる。
 (実施の形態3)
 図6は、本実施の形態に係る受信機の要部構成を示すブロック図である。なお、図6の受信機300において、図5の受信機200と共通する構成部分には、図5と同一の符号を付して説明を省略する。本実施の形態は、非線形能動素子部110にミキサ310を適用した例である。
 ミキサ310は、入力信号の周波数をより低い周波数帯へダウンコンバートする。そして、ミキサ310は、入力信号の周波数をより低い周波数帯へダウンコンバートする際に得られる差動出力信号及びコモンモード出力信号を、それぞれ、補正信号注入部140及びコモンモード検出部120に出力する。
 ミキサ310は、例えば、図7に示すようなダブルバランスミキサの構成を採る。この場合、ミキサ310は、入力信号RF+,RF-をローカル信号LO+,LO-によりスイッチングを行うことによって、入力信号RF+,RF-の周波数をより低い周波数帯へダウンコンバートする。なお、ミキサ310の構成は、図7以外の構成であってもよい。
 (実施の形態4)
 図8は、本実施の形態に係る受信機の要部構成を示すブロック図である。なお、図8の受信機400において、図5の受信機200と共通する構成部分には、図5と同一の符号を付して説明を省略する。本実施の形態は、非線形能動素子部110にアンプ410を適用した例である。
 アンプ410は、入力信号の振幅を調整(増幅)する。そして、アンプ410は、入力信号の振幅を調整(増幅)する際に得られる差動出力信号及びコモンモード出力信号を、それぞれ、補正信号注入部140及びコモンモード検出部120に出力する。
 アンプ410は、例えば、図9に示すような差動アンプの構成を採る。なお、アンプの構成は、一般的に知られているものを用いればよく、図9以外の構成であってもよい。
 (実施の形態5)
 本実施の形態では、DC検出部の別の内部構成及び動作について説明する。なお、本実施の形態に係る受信機は、実施の形態1から実施の形態4の受信機のDC検出部150に代えて、DC検出部150Aを有する点のみが異なり、他の構成は同様である。そのため、本実施の形態に係る受信機の図示及び説明を省略し、DC検出部150Aについてのみ説明する。
 図10は、本実施の形態に係るDC検出部150Aの内部構成を示すブロック図である。なお、図10のDC検出部150Aにおいて、図4のDC検出部150と共通する構成部分には、図4と同一の符号を付して説明を省略する。図10のDC検出部150Aは、図4のDC検出部150に対し、カウンタ部152及び更新部153に代えて、ΔDC検出部154及び更新部155を有する。
 DC検出部150では、更新部153は、一定の期間ごとに平均DC値を更新していた。
 一方、DC検出部150Aでは、ΔDC検出部154は、平均演算部151で計算される平均DC値(t)と、一つ前のタイムステップにおける平均DC値(t-1)との差を計算する。
 ΔDC検出部154は、平均DC値(t-1)と平均DC値(t)との差が、ある閾値より小さくなれば、平均DC値として収束したと判断する。そして、そのタイミングで、ΔDC検出部154は、更新部155に重み付け係数の更新指示を与える。
 そして、更新部155は、ΔDC検出部154からの更新指示に従って、平均DC値を更新する。
 なお、これらの演算は、例えば数十MHz程度の速度で行われることが考えられる。そのため、上述のタイムステップは数十ナノ秒程度が一般的である。なお、最適な閾値は、システムにより異なるので、実評価により最適な値を決定し用いる事が好ましい。
 以上のように、本実施の形態では、DC検出部150Aは、平均DC成分の値の収束度を判定し、値が収束したと判定した場合に、平均DC成分を重み決定部160に出力する。これにより、簡易な回路構成で、高精度に相互変調2次歪をキャンセルすることができるという効果に加えて、より高速に重み付け係数を収束させることができるようになる。
 (実施の形態6)
 本実施の形態では、受信機周辺の電波状態が激変した場合、一時的に、更新係数μ((式13)参照)の値をμ_predに変更する。ここで、μ_predは、事前に設定されており、重み付け係数の収束完了までに要する時間を短くするために大きな値に設定されている。
 図11は、本実施の形態に係る受信機の要部構成を示すブロック図である。なお、図11の受信機500において、図5の受信機200と共通する構成部分には、図5と同一の符号を付して説明を省略する。図11の受信機500は、図5の受信機200に対して、通信状況検出部510及びμ値制御部520を更に追加した構成を採る。
 通信状況検出部510は、受信機500の周辺の電波状態の変動を調べる。電波状態の変動を調べる方法としては、EVM(Error Vector Magnitude)指標の変動差、DC検出部150で検出されるDC値の変動差などいろいろな指標による判断が考えられる。以下では、その一例として、通信状況検出部510が、EVM指標の変動差を用いて、電波状況の変動を調べる場合を例に説明する。
 通信状況検出部510は、補正差動出力信号のEVM値を計算する。次に、通信状況検出部510は、EVM値(t)と、一つ前のタイムステップにおけるEVM値(t-1)との変動差を計算する。そして、その変動差が、事前に決められた閾値より大きい場合、通信状況検出部510は、μ値制御部520に対してμ値変更通知を行う。
 μ値制御部520は、通信状況検出部510からのμ値変更通知を受け取ると、μ値を事前に設定されたμ_predに変更し、変更後のμ値を重み決定部160に出力する。なお、μ値制御部520は、一定時間が経過した後、変更されたμ値を元の値に再設定し、再設定後のμ値を重み決定部160に出力する。
 以上のように、本実施の形態では、通信状況検出部510は、受信機500の周辺の電波状態の変動を調べ、μ値制御部520は、μ値変更通知を受け取ると、μ値を事前に設定されたμ_predに変更し、変更後のμ値を重み決定部160に出力する。したがっって、重み決定部160は、通信の状態の変化が大きい場合、あらかじめ決められた値に変更された更新係数μを用いて、重み係数を決定する。
 このようにして、受信機の電波変動がある場合、更新係数μを一時的に大きな値に変更することにより、重み付け係数の収束に要する時間を早めることができる。そして、一定期間経過した後、すなわち収束の最終段階に達した後に、μ値を元の小さな値に再設定することで、トータルでより高速に最適重み付けを決定することができる。このように、本実施の形態によれば、簡易な回路構成で、高精度に相互変調2次歪をキャンセルすることができるという効果に加えて、受信機の電波変動があった場合にでも、重み付け係数の収束に要する時間を早めることができる。
 2009年4月3日出願の特願2009-091057に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明に係る次歪補正受信機及び2次歪補正方法によれば、簡易な回路構成で、相互変調2次歪を精度よくキャンセルさせることができる。
 100,200,300,400,500 受信機
 110 非線形能動素子部
 120 コモンモード検出部
 130 重み付け部
 140 補正信号注入部
 150,150A DC検出部
 160 重み決定部
 151 平均演算部
 152 カウンタ部
 153,155 更新部
 154 ΔDC検出部
 210 LPF
 310 ミキサ
 410 アンプ
 510 通信状況検出部
 520 μ値制御部
 311~316,411,412 トランジスタ

Claims (11)

  1.  入力信号に対して非線形処理を行って差動出力信号及びコモンモード出力信号を出力する、非線形特性を持つ能動素子と、
     前記コモンモード出力信号を抽出するコモンモード検出部と、
     抽出された前記コモンモード出力信号に重み付けを行うことにより、補正信号を生成する重み付け部と、
     前記補正信号を前記差動出力信号に注入して、補正差動出力信号を出力する補正信号注入部と、
     前記補正差動出力信号の平均DC成分を算出するDC成分検出部と、
     前記平均DC成分を用いて、前記重み付け部で用いる重み付け係数を決定する重み決定部と、
     を具備する2次歪補正受信機。
  2.  前記重み決定部は、前記補正差動出力信号に含まれる平均DC成分をゼロにする係数を前記重み付け係数とする、
     請求項1記載の2次歪補正受信機。
  3.  前記重み決定部は、前記平均DC成分の値と、現時点で用いている前記重み付け係数とを用いて、前記重み付け係数を更新する、
     請求項1記載の2次歪補正受信機。
  4.  前記重み決定部は、前記平均DC成分の値に所定の更新係数を乗算して得られる値と、現時点で用いている前記重み付け係数とを加算することにより、更新後の重み付け係数を生成する、
     請求項1記載の2次歪補正受信機。
  5.  前記重み決定部は、通信の状態の変化が大きい場合は、前記更新係数をあらかじめ設定された係数に変更して、前記重み係数を決定する、
     請求項4記載の2次歪補正受信機。
  6.  前記DC成分検出部は、一定期間ごとに前記平均DC成分の値を前記重み付け決定部に出力する、
     請求項1に記載の2次歪補正受信機。
  7.  前記DC成分検出部は、前記平均DC成分の値の収束度を判定し、値が収束したと判定した場合に、前記平均DC成分を前記重み決定部に出力する、
     請求項1に記載の2次歪補正受信機。
  8.  前記コモンモード検出部と前記重み付け部との間に設けられ、前記コモンモード出力信号の周波数帯以外の周波数成分を除去するローパスフィルタ部を、更に具備する、
     請求項1に記載の2次歪補正受信機。
  9.  前記能動素子は、ミキサであり、前記入力信号の周波数をダウンコンバートする、
     請求項1に記載の2次歪補正受信機。
  10.  前記能動素子は、アンプであり、前記入力信号の振幅を調整する、
     請求項1に記載の2次歪補正受信機。
  11.  非線形特性を持つ能動素子により発生する2次歪成分を除去する2次歪補正方法であって、
     入力信号に対して、前記能動素子が非線形処理を行って得られる差動出力信号及びコモンモード出力信号を抽出し、
     前記コモンモード出力信号に重み付けを行うことにより、補正信号を生成し、
     前記補正信号を前記差動出力信号に注入して、補正差動出力信号を出力し、
     前記補正差動出力信号の平均DC成分を算出し、
     前記平均DC成分を用いて、前記重み付けに用いる重み付け係数を決定する、
     2次歪補正方法。
PCT/JP2010/002448 2009-04-03 2010-04-02 2次歪補正受信機及び2次歪補正方法 WO2010113527A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/256,890 US8391818B2 (en) 2009-04-03 2010-04-02 Second-order distortion correcting receiver and second-order distortion correcting method
JP2011507045A JP5528431B2 (ja) 2009-04-03 2010-04-02 2次歪補正受信機及び2次歪補正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009091057 2009-04-03
JP2009-091057 2009-04-03

Publications (1)

Publication Number Publication Date
WO2010113527A1 true WO2010113527A1 (ja) 2010-10-07

Family

ID=42827834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002448 WO2010113527A1 (ja) 2009-04-03 2010-04-02 2次歪補正受信機及び2次歪補正方法

Country Status (3)

Country Link
US (1) US8391818B2 (ja)
JP (1) JP5528431B2 (ja)
WO (1) WO2010113527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536627A (ja) * 2012-11-30 2015-12-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated 受信機iip2アナログ較正

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031177B2 (en) * 2012-12-20 2015-05-12 Broadcom Corporation Digital calibration of analog distortion using split analog front-end
US8811538B1 (en) 2013-03-15 2014-08-19 Blackberry Limited IQ error correction
EP2779510B1 (en) 2013-03-15 2018-10-31 BlackBerry Limited Statistical weighting and adjustment of state variables in a radio
US8942656B2 (en) 2013-03-15 2015-01-27 Blackberry Limited Reduction of second order distortion in real time
US8983486B2 (en) 2013-03-15 2015-03-17 Blackberry Limited Statistical weighting and adjustment of state variables in a radio
US9197279B2 (en) 2013-03-15 2015-11-24 Blackberry Limited Estimation and reduction of second order distortion in real time
TWI692197B (zh) 2018-12-07 2020-04-21 立積電子股份有限公司 混頻模組
TWI676351B (zh) 2018-12-07 2019-11-01 立積電子股份有限公司 電容器電路及電容式倍增濾波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067329U (ja) * 1992-06-22 1994-01-28 株式会社ケンウッド Fm受信機のafc回路
JPH1093461A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 受信機
JP2003273945A (ja) * 2002-03-14 2003-09-26 Nec Corp ダイレクトコンバージョン受信機およびdcオフセット消去方法
US20060094361A1 (en) * 2004-10-29 2006-05-04 Hooman Darabi Method and system for process, voltage, and temperature (PVT) measurement and calibration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318583A (en) 1992-05-05 1994-06-07 Ryder International Corporation Lancet actuator mechanism
GB9503064D0 (en) * 1995-02-16 1995-04-05 Philips Electronics Uk Ltd Improvements in or relating to zero IF receivers
US5749051A (en) * 1996-07-18 1998-05-05 Ericsson Inc. Compensation for second order intermodulation in a homodyne receiver
WO2002084859A1 (en) * 2001-04-18 2002-10-24 Nokia Corporation Balanced circuit arrangement and method for linearizing such an arrangement
US7139543B2 (en) * 2002-02-01 2006-11-21 Qualcomm Incorporated Distortion reduction in a wireless communication device
US7043208B2 (en) * 2002-10-15 2006-05-09 Motorola, Inc. Method and apparatus to reduce interference in a communication device
EP1552619A1 (en) * 2002-10-15 2005-07-13 Sirific Wireless Corporation Dc trimming circuit for radio frequency (rf) down-conversion
JP4335089B2 (ja) * 2004-08-04 2009-09-30 パナソニック株式会社 Dcオフセット調整装置およびdcオフセット調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067329U (ja) * 1992-06-22 1994-01-28 株式会社ケンウッド Fm受信機のafc回路
JPH1093461A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 受信機
JP2003273945A (ja) * 2002-03-14 2003-09-26 Nec Corp ダイレクトコンバージョン受信機およびdcオフセット消去方法
US20060094361A1 (en) * 2004-10-29 2006-05-04 Hooman Darabi Method and system for process, voltage, and temperature (PVT) measurement and calibration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.DUFRENE ET AL.: "Digital Adaptive IIP2 Calibration Scheme for CMOS Downconversion Mixers", IEEE JOURNAL OF SOLOD-STATE CIRCUITS, vol. 43, no. 11, November 2008 (2008-11-01), UNITED STATES, pages 2434 - 2445 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536627A (ja) * 2012-11-30 2015-12-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated 受信機iip2アナログ較正

Also Published As

Publication number Publication date
US8391818B2 (en) 2013-03-05
JPWO2010113527A1 (ja) 2012-10-04
US20120002770A1 (en) 2012-01-05
JP5528431B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5528431B2 (ja) 2次歪補正受信機及び2次歪補正方法
JP4593430B2 (ja) 受信機
JP4381945B2 (ja) 受信機、受信方法及び携帯無線端末
US9680674B2 (en) I/Q calibration techniques
TWI571078B (zh) 用於正交接收信號的寬頻寬類比至數位轉換的裝置和方法
US8588711B2 (en) Transmission apparatus and distortion compensation method
US20140370833A1 (en) Down-conversion circuit with interference detection
US20160065404A1 (en) Method and system for i/q mismatch calibration and compensation for wideband communication receivers
JP4230470B2 (ja) 軽減装置および方法、ならびに受信装置
US20140204986A1 (en) Apparatus and Method for Correcting IQ Imbalance
WO2010106752A1 (ja) 歪補正受信機及び歪補正方法
Moseley et al. A two-stage approach to harmonic rejection mixing using blind interference cancellation
US8630380B2 (en) Receiver apparatus, image signal attenuating method, and mismatch compensating method
EP2605412B1 (en) Second order intermodulation canceller
JP3902498B2 (ja) イメージ信号抑圧装置
US20150271005A1 (en) Phase imbalance calibration
JP5104561B2 (ja) 直交信号出力回路
JP2010272928A (ja) 直交性補償装置、無線受信装置、直交性補償方法及びプログラム
US7072617B1 (en) System and method for suppression of RFI interference
TWI355811B (en) Apparatus with tunable filter and related adjustin
JP2017028362A (ja) 送受信機
JP2010272929A (ja) 直交性補償装置、無線受信装置、直交性補償方法及びプログラム
JP2009005088A (ja) 受信機
US20090136020A1 (en) Method and apparatus for echo cancellation
RU2276834C2 (ru) Адаптивный компенсатор помех

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507045

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13256890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758306

Country of ref document: EP

Kind code of ref document: A1