WO2010113273A1 - 二次電池および電池システム - Google Patents

二次電池および電池システム Download PDF

Info

Publication number
WO2010113273A1
WO2010113273A1 PCT/JP2009/056684 JP2009056684W WO2010113273A1 WO 2010113273 A1 WO2010113273 A1 WO 2010113273A1 JP 2009056684 W JP2009056684 W JP 2009056684W WO 2010113273 A1 WO2010113273 A1 WO 2010113273A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sheet
electrode
terminal
secondary battery
Prior art date
Application number
PCT/JP2009/056684
Other languages
English (en)
French (fr)
Inventor
神田 義昭
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/063,098 priority Critical patent/US20110223465A1/en
Priority to PCT/JP2009/056684 priority patent/WO2010113273A1/ja
Priority to JP2011506894A priority patent/JP5230801B2/ja
Priority to KR1020117004303A priority patent/KR101297508B1/ko
Priority to CN200980133844.0A priority patent/CN102138244B/zh
Priority to EP09842627.3A priority patent/EP2416434B1/en
Publication of WO2010113273A1 publication Critical patent/WO2010113273A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a secondary battery in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, an electric vehicle using the battery, and a power feeding / storage system.
  • lithium ion secondary batteries in particular, have high energy density and high capacity, so they are used as power sources for household appliances. It is also attracting attention as a storage battery for surplus power storage such as power supplies and power plants.
  • a wound lithium ion secondary battery in which a pair of belt-like positive electrode and negative electrode are laminated via a separator to form a spiral, a plurality of sheet-like positive electrodes and a sheet-like negative electrode Are stacked lithium ion secondary batteries.
  • the electrode group composed of the plurality of sheet-like positive electrodes and sheet-like negative electrodes is enclosed in a rectangular battery can having a substantially rectangular cross section.
  • a wound type lithium ion secondary battery it may be enclosed in a cylindrical battery can having a substantially circular cross section, or may be enclosed in a square battery can.
  • the position of the sheet-like positive electrode and the sheet-like negative electrode in the battery can because the sheet-like positive electrode and the sheet-like negative electrode are laminated via a separator in both the laminated type and the wound type lithium ion secondary battery. May shift, that is, stacking may occur. When this stacking deviation occurs, the positive electrode and the negative electrode may come into contact with each other and short-circuit in the battery. Further, since the battery can is a conductor, it is necessary to insulate from the positive electrode and the negative electrode.
  • FIG. 6 shows a cross section in the surface direction in which a positive electrode terminal and a negative electrode terminal (not shown) are formed on the surface of the rectangular battery can 1.
  • An electrode group in which the sheet-like positive electrode 2 and negative electrode 3 are laminated via a separator (not shown) is inserted into the rectangular battery can 1.
  • auxiliary sheets 4 and 5 made of polypropylene are provided at the four corners of the electrode group, and the length of the surface on which the positive electrode terminal and the negative electrode terminal are formed. They are arranged in the side direction and the short side direction as shown in the figure.
  • the electrode surface width is the same as the inner length of the long side (inner), the square battery can corner X is rounded, so the sheet electrode near the corner is pressed and deformed. As a result, separator breakage or the like may occur, resulting in a short circuit.
  • the electrode surface width is slightly smaller than the inner method in the long side direction and is designed to have a size that is not affected by the roundness of the battery can corner X.
  • a certain space, that is, a hollow portion 6 must be provided between the electrode group and the square battery can 1.
  • the auxiliary sheet 5 is made of a thickness that can withstand at least the insulation, in other words, an extremely thin insulator without a beam.
  • the auxiliary sheet 5 follows the shape of the prismatic battery can 1 due to the weight of the electrode group.
  • the sheet-like positive electrode 2 and the sheet-like negative electrode 3 are displaced in the long side direction as shown in FIG.
  • the sheet-like positive electrode 2 and the sheet-like negative electrode 3 in the vicinity of the end of the electrode group move along the prismatic battery can 1 as shown in FIG. It has been found that if the material is deformed and further vibration is applied in this deformed state, the separator breaks or the like, resulting in a failure such as a short circuit.
  • the present invention can prevent electrode deformation at the corners of a rectangular battery can as much as possible even when continuous vibration is applied, and maximize performance as designed. It is an object of the present invention to provide a secondary battery and a power feeding or power storage system using the battery.
  • the secondary battery of the present invention employs the following configuration. That is, a rectangular battery can having a positive electrode terminal and a negative electrode terminal, and a sheet-like positive electrode disposed in the rectangular battery can and electrically connected to the positive electrode terminal and electrically connected to the negative electrode terminal An electrode group in which a sheet-like negative electrode is laminated via a separator; a width larger than the width of the electrode group in a long side direction of the surface of the rectangular battery can on which the positive electrode terminal and the negative electrode terminal are formed; A first insulating auxiliary sheet and a second insulating auxiliary sheet disposed in the rectangular battery can with a thickness capable of substantially closing a rounded portion of the corner of the battery can, The second insulating auxiliary sheet is disposed at a position facing the electrode group from the long side direction.
  • An electric vehicle as a power supply system includes a rectangular battery can having a positive electrode terminal and a negative electrode terminal, and a sheet-like positive electrode disposed in the square battery can and electrically connected to the positive electrode terminal. And an electrode group in which a sheet-like negative electrode electrically connected to the negative electrode terminal is laminated via a separator, and the electrode in the long side direction of the surface of the rectangular battery can where the positive electrode terminal and the negative electrode terminal are formed.
  • First and second insulating properties arranged in the square battery can with a width larger than the width of the group and a thickness capable of substantially closing the rounded portion of the corner of the square battery can
  • An auxiliary sheet, and the first and second insulating auxiliary sheets are arranged at positions facing each other across the electrode group from the long side direction, and a motor for driving wheels. And the motor is the secondary battery. And drives undergoing et feeding.
  • the electric vehicle may be any vehicle that can be driven by electricity, and may be a hybrid vehicle.
  • the power storage system includes a rectangular battery can having a positive electrode terminal and a negative electrode terminal, a sheet-like positive electrode disposed in the square battery can and electrically connected to the positive electrode terminal, and the negative electrode terminal.
  • First and second insulating auxiliary sheets disposed in the square battery can with a large width and a thickness capable of substantially closing a rounded portion of the corner of the square battery can.
  • the first and second insulating auxiliary sheets have a secondary battery disposed at a position facing the electrode group from the side in the long side direction, and a power generation facility, and the secondary battery
  • the battery is supplied with power from the power generation facility and stores electricity.
  • any power generation equipment such as solar cells, fuel cells, windmills, thermal power generation equipment, hydroelectric power generation equipment, nuclear power generation equipment, etc. may be used.
  • a machine may be used. Even if it is not a power plant, the power generation equipment installed in a general household may be sufficient.
  • a width larger than the width of the electrode group and the roundness of the corner of the square battery can in the long side direction of the surface of the square battery can where the positive electrode terminal and the negative electrode terminal are formed.
  • the insulating auxiliary sheet is preferably a plastic resin such as polypropylene from the viewpoint of easy molding. It may be unirate.
  • the insulating auxiliary sheet must be one that does not deteriorate with the electrolytic solution. In order to sufficiently permeate the electrolytic solution into the electrode group, it is desirable that the insulating auxiliary sheet itself has a function of permeating the electrolytic solution. A through hole may be provided in the insulating auxiliary sheet to provide the permeation function. It is also possible to use an insulating auxiliary sheet without a beam. Even if there is no beam, the electrode near the corner of the rectangular battery can can be prevented from being deformed along the corner of the rectangular battery can as long as it has a thickness that covers the rounded corner. If the material and thickness of the insulating auxiliary sheet are adjusted to provide a beam or a plate that is difficult to bend or deform, deformation of the electrode can be prevented more firmly.
  • the electrode group is sandwiched between the insulating auxiliary sheets and pressed, and the insulating auxiliary sheets sandwiched with the insulating tape are connected and fixed to each other, so that the electrode group can support the insulating auxiliary even when vibration is applied. It is possible to prevent the sheet from shifting in the plane of the sheet.
  • the bending of the plurality of sheet-like positive electrode tabs electrically connected to the positive electrode terminal and the plurality of sheet-like negative electrode tabs electrically connected to the negative electrode terminal in the multilayer secondary battery is alleviated. It is possible to prevent the occurrence of failure. That is, by fixing the electrode group in the sheet surface by the wide-shaped insulating auxiliary sheet that protrudes to the electrode tab side of the electrode group, even if the secondary battery is accidentally placed upside down, Since the insulating auxiliary sheet hits the rectangular battery can, the electrode group is floated in a hollow state in the battery can, so that the bending of the electrode tab can be alleviated as compared with the case without this insulating auxiliary sheet.
  • the insulating auxiliary sheet is made of a beam or a plate that is difficult to deform, the insulating property integrated with the electrode group with the insulating tape when the electrode group is inserted into the rectangular battery can. Since the auxiliary sheet serves as an insertion guide, the electrode group can be easily inserted into the prismatic battery can.
  • the assembled battery may be configured by connecting a plurality of the secondary batteries in series or in parallel.
  • the sheet electrode at the end of the electrode group can be prevented from being deformed along the roundness of the corner of the prismatic battery can. Therefore, as a result, it is possible to obtain a secondary battery and a power supply / storage system using the battery that exhibit few failures and exhibit performance as designed.
  • FIG. 4A is a positional relationship diagram of a sheet-like positive electrode, a sheet-like negative electrode, and an insulating auxiliary plate of a laminated lithium ion secondary battery according to an embodiment of the present invention.
  • (B) is a square battery can sectional view of a laminated lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a positional relationship diagram of a sheet-like positive electrode, a sheet-like negative electrode, and an insulating auxiliary plate of a stacked lithium ion secondary battery according to an embodiment of the present invention.
  • 1 is a cross-sectional view of a prismatic battery can of a laminated lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a power feeding / storage system using a stacked lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a rectangular battery can of a laminated lithium ion secondary battery according to a prerequisite technology of the present invention.
  • FIG. 2 is a cross-sectional view of a square battery can of a laminated lithium ion secondary battery showing the problems of the base technology of the present invention. It is an expanded sectional view of the square battery can corner of the laminated lithium ion secondary battery showing the problems of the prerequisite technology of the present invention.
  • FIG. 1A is a diagram showing a positional relationship among a sheet-like positive electrode 2, a sheet-like negative electrode 3, an insulating auxiliary sheet (or plate) 8, and an insulating tape 10 enclosed in the rectangular battery can 1.
  • FIG. 1B shows a cross-section in the surface direction on the surface of the rectangular battery can 1 where a positive electrode terminal and a negative electrode terminal (not shown) are formed.
  • An example of a stacked lithium ion secondary battery is shown, but other secondary batteries may be used.
  • Inside the rectangular battery can 1 formed of aluminum or the like a plurality of substantially rectangular sheet-like positive electrodes 2 and substantially rectangular sheet-like negative electrodes 3 are laminated via a separator to constitute an electrode group.
  • the separator is the bag-like separator 7, and the sheet-like positive electrode 2 formed smaller than the sheet-like negative electrode 3 is disposed in the bag-like separator 7.
  • the sheet-like positive electrode 2 is wrapped with the bag-like separator 7, even when a misalignment occurs, the sheet-like positive electrode 2 and the sheet-like negative electrode 3 are less likely to short-circuit, and as a result, failure can be prevented.
  • the insulating auxiliary sheet 8 may be a non-beam or a beam as long as it can substantially block the rounded corners of the rectangular battery can 1. It is good also as an insulating auxiliary
  • the electrode surface width a in the long side direction in the cross section in the surface direction where the positive electrode terminal and the negative electrode terminal (not shown) are formed is a flat surface excluding the rounded corners of the rectangular battery can 1 in order to maximize the electric capacity. It is desirable to design it to be approximately the same as the width dimension of the surface.
  • the surface width of the sheet-like negative electrode 3 larger than the sheet-like positive electrode 2 is designed to be substantially the same as the width dimension of the flat surface excluding the rounded corners in the direction of the long side of the cross section of the square battery can 1.
  • the insulative auxiliary sheet 8 is designed to have substantially the same width as the inner method b of the rectangular battery can 1 in the long side direction.
  • the inner method of the rectangular battery can 1 in the short side direction in the cross section in the plane direction where the positive electrode terminal and the negative electrode terminal (not shown) are formed is c, and the flat surface excluding the rounded corner portion in the short side direction
  • the thickness e of the insulating auxiliary sheet 8 is designed as e ⁇ (cd ⁇ ⁇ 2).
  • the insulating auxiliary sheet 8 By disposing the insulating auxiliary sheet 8, even when the sheet-like electrodes are displaced due to vibration or the like, the displaced sheet-shaped electrodes are at an angle of about 90 degrees with respect to the rectangular battery can 1 in the short side direction. As a result, electrode bending is less likely to occur.
  • the square battery can 1 is a conductor formed of a metal such as aluminum, it is necessary to insulate it from the sheet-like electrode. Therefore, the side-surface insulating auxiliary sheet 9 having a width d is arranged with the electrode group sandwiched in the short side direction of the inner wall of the rectangular battery can.
  • the side insulating auxiliary sheet 9 may be the same material as the insulating auxiliary sheet 8 or a different material.
  • both the insulating auxiliary sheet 8 and the side insulating auxiliary sheet 9 have a function that allows the electrolytic solution to easily penetrate.
  • FIG. 1A shows the tape position.
  • the electrode group is sandwiched between two insulating auxiliary sheets 8 and pressed to connect both insulating auxiliary sheets with an insulating tape.
  • the electrode group can be fixed in a hollow shape in the surface of the two insulating auxiliary sheets 8.
  • the insulating auxiliary sheet 8 and the electrode group are firmly fixed by the insulating tape 10 in order to sufficiently prevent the sheet-like electrode from being displaced after the electrode group is sealed in the rectangular battery can. Therefore, in FIG. 1A, when the position of the tab of the sheet-like electrode is set upward, the insulating tape is attached to the side surface at two locations and at the bottom surface.
  • the side insulating auxiliary sheet 9 described above can be omitted, and a configuration in which more electrolytic solution can be stored can be obtained.
  • the side insulating auxiliary sheet 9 is not necessarily omitted, and may be installed to prevent a short circuit between the sheet electrode and the rectangular battery can 1.
  • the insulating auxiliary sheet 8 has a larger width that protrudes in the vertical direction than the width of the electrode group, when the extending direction of the tab of the sheet-like electrode is upward.
  • the electrode group thus fixed is floated in a hollow state in the battery can, the bending of the electrode tab can be reduced as compared with the case where the insulating auxiliary sheet 8 is not provided. Therefore, failure due to the electrode tab being bent and cut can also be prevented.
  • the case of the stacked electrode group is shown, but it goes without saying that the same effect can be obtained when the wound electrode group is enclosed in a rectangular battery can.
  • the secondary battery for example, a lithium ion secondary battery is targeted.
  • a bottom surface insulating auxiliary sheet 11 is disposed on the bottom surface of the square battery can 1 for insulation between the electrode group and the square battery can 1.
  • the electrode group is fixed within the range of the insulating auxiliary sheet 8 by pressing the electrode group with the two insulating auxiliary sheets 8 and connecting the bottom surface insulating auxiliary sheet 11 together with the insulating tape. .
  • the insulating tape 12 wider than the insulating tape 10 wraps around the two insulating auxiliary sheets 8 in order to fix the electrode group more firmly. It is affixed to do.
  • the insulating tape 13 wider than the insulating tape 10 is used. Is pasted around the two insulating auxiliary sheets 8 and the bottom insulating auxiliary sheet 11. Except for this point, it is the same as described in the first embodiment. With this configuration, it is possible to prevent the sheet-like electrode from bending at the end of the electrode group and more reliably prevent short-circuiting between the square battery can 1 and the electrode group.
  • two electrode groups are arranged in the rectangular battery can 1. That is, by pressing one electrode group with the two insulating auxiliary sheets 8 in the rectangular battery can 1 and connecting the two insulating auxiliary sheets 8 with the insulating tape 10, the electrode groups are insulated. Two sets of configurations fixed in the plane of the auxiliary sheet 8 are arranged side by side in contact with each other. However, the total width in the short side direction by the two sets of configurations needs to be substantially the same as c. Except for this point, it is the same as described in the best mode and the embodiment of Example 1.
  • the insulating auxiliary sheet 8 at the extreme end in the arrangement in which the two sets of the above-described configurations are arranged in contact with each other closes the rounded corner of the rectangular battery can, the bending of the sheet-like electrode at the end of the electrode group is prevented. Can do.
  • two sets of the above-described configurations are arranged in the prismatic battery can 1, but three or more sets may be arranged.
  • the insulating auxiliary sheet 8 has a rectangular, circular (aligned arrangement), and circular (staggered arrangement) penetration, respectively. Holes 8a, 8b and 8c are provided. Any shape is acceptable as long as the electrode group can be pressed and firmly fixed in the plane of the insulating auxiliary sheet 8. Thereby, the penetration
  • the staggered arrangement as shown in FIG. 4C is more insulative between adjacent through holes than the case where the arrangement is arranged as shown in FIG. 4B.
  • the width of the auxiliary sheet 8 can be increased, and the electrode group can be more firmly pressed and fixed by increasing the width. Except for this point, it is the same as described in the first to third embodiments.
  • the secondary battery 21 mounted on the electric vehicle 20 and the standby secondary battery 15 arranged outside the house 14 are the secondary batteries according to the present invention described in the above-described best mode and other embodiments, for example, the stacked type. It is a lithium ion secondary battery.
  • Electric power generated from power generation facilities 18 such as wind power generation, thermal power generation, hydroelectric power generation, nuclear power generation, solar cells, and fuel cells is supplied to a control box 16 used by a user via a supply power system 17.
  • the power transmitted from the power generation facility 18 is supplied to any one of the secondary battery 21, the standby secondary battery 15, and the switchboard 19 that are the driving power source of the electric vehicle 20.
  • the standby secondary battery 15 or the secondary battery 21 of the electric vehicle 20 is charged and stored when electric power is supplied.
  • the control box may be programmed to supply power to the switchboard 19 during the daytime and to the secondary battery 21 of the standby secondary battery 15 or the electric vehicle 20 at nighttime.
  • the spare secondary battery 15 charged by the power storage system is electrically connected to the switchboard 19 in the house 14 via the control box 16.
  • the switchboard 19 is electrically connected to electrical appliances such as air conditioners and televisions connected to plugs in the house 14.
  • the user can select whether to drive the electrical appliance in the house 14 by receiving power from the power feeding power system 17 or to drive the electrical appliance using the power of the standby secondary battery 15 stored by the power storage system, This selection / switching is performed by the control box 16.
  • the backup secondary battery 15 is electrically connected to the switchboard 19 by switching in the control box, power is supplied from the backup secondary battery 15 to the switchboard 19 so that the appliance can be driven.
  • the electric vehicle 20 can run by supplying power to the motor that drives the wheels from the secondary battery 21 stored by the power storage system.
  • the electric vehicle 20 may be a vehicle capable of driving wheels with an electric motor, and may be a hybrid vehicle.
  • the stacking deviation and the electrode bending at the corner of the rectangular battery can due to vibration, which is a cause of failure in the secondary battery, are prevented as much as possible. Therefore, stable operation with few breakdowns is possible both as a power supply system in a car with a lot of vibrations and as a power supply / storage system in an earthquake-prone country.

Abstract

 この二次電池は、正極端子および負極端子を備えた角型電池缶(1)と、角型電池缶(1)内に配置され、正極端子に電気的に接続されたシート状正極(2)及び負極端子に電気的に接続されたシート状負極(2)がセパレータ(7)を介して積層された電極群と、正極端子および負極端子が形成された角型電池缶の面の長辺方向に電極群の幅より大きな幅と角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて角型電池缶内に配置された第1および第2の絶縁性補助シート(8)とを有し、第1及び第2の絶縁性補助シート(8)は長辺方向の側から電極群を挟んで対向する位置に配置されている。

Description

二次電池および電池システム
 本発明は、正極電極と負極電極とをセパレータを介して積層した二次電池、同電池を用いた電気自動車、および給電・蓄電システムに関するものである。
 充電可能な電池としての二次電池のうち、特にリチウムイオン二次電池は、高いエネルギー密度を有し高容量であるため、家電製品の電源として用いられるほか、近年、電気自動車用電源、住宅用電源、発電所等の余剰電力保存用蓄電池としても着目されている。
 リチウムイオン二次電池の形態としては、一対の帯状の正極電極と負極電極とをセパレータを介して積層し渦巻状とした巻回型リチウムイオン二次電池と、複数のシート状正極とシート状負極とを複数のセパレータを介して積層した積層型リチウムイオン二次電池がある。
積層型リチウムイオン二次電池では、上記複数のシート状正極とシート状負極とからなる電極群は、断面が略長方形の角型の電池缶に封入される。巻回型リチウムイオン二次電池では、断面が略円形の円筒型の電池缶に封入される場合もあれば、角型電池缶に封入される場合もある。
 積層型、巻回型いずれのリチウムイオン二次電池においても、シート状正極とシート状負極がセパレータを介して積層される構造であるため、電池缶内でシート状正極とシート状負極との位置がズレる場合、すなわち積層ズレの生じる場合がある。この積層ズレが生じると、正極と負極が接触し電池内でショートする可能性がある。また、電池缶は導電体であるため、正極、負極との絶縁をする必要もある。
そこで、角型電池缶に積層型リチウムイオン二次電池の電極群を封入する場合に、絶縁性であるポリプロピレン製の補助シートを電極群の最端部にあるシート状電極面上に設け、電極群とともにテープ固定する提案がなされている(下記特許文献1参照)。
特開2008-91099号公報
 上記提案によれば積層面方向の絶縁を図るとともに、補助シートと積層された電極がテープ固定されることで積層ズレが防止できるとするが、これでは積層ズレ防止が不十分であって、このため設計通りの性能を十分に発揮できないとの知見を得た。これにつき図6、図7、図8を用いて説明する。
図6に角型電池缶1の面のうち、図示しない正極端子および負極端子が形成された面方向での断面を示す。シート状の正極2と負極3が図示しないセパレータを介して積層された電極群は角型電池缶1内に挿入されている。電極群と導電体である角型電池缶1との絶縁をするために、電極群の4隅にはポリプロピレン製の補助シート4、5が、上記正極端子および負極端子が形成された面の長辺方向と短辺方向にそれぞれ図のとおり配置される。電極面幅を上記長辺方向の内法(うちのり)と同一寸法にすると、角型電池缶角部Xが丸みを帯びているために角部付近のシート状電極が圧迫され変形し、これによりセパレータ破れ等が発生し、結果としてショートする可能性がある。このようなシート状電極の変形を回避するため電極面幅は上記長辺方向の内法よりもやや小さく、電池缶角部Xの丸みの影響を受けない寸法に設計されている。
また、角型電池缶1には電解液を蓄える必要があるため、電極群と角型電池缶1との間には一定の空間、すなわち中空部分6を設けなければならない。このため補助シート5は絶縁に最低限耐えられる程度の厚み、言い換えれば極めて薄くはりのない絶縁体が用いられる。
ところが、この構成では、例えば電気自動車用電源として用いられた場合、角型電池缶1に継続的な振動が加えられると、補助シート5が電極群の重みにより角型電池缶1の形状に沿って変形するとともに、シート状正極2、シート状負極3が図7に示すように上記長辺方向にズレを生じる。このズレが生じると、角型電池缶1の角部を拡大した図8に示すように、電極群の端部付近にあるシート状正極2、シート状負極3が角型電池缶1に沿って変形し、この変形した状態でさらに振動が加えられるとセパレータ破れなどが発生し、結果としてショートなどの故障が生じることが判明した。なお、電極群の中央部のシート状電極は、仮にズレたとしても上記角型電池缶1の内壁と垂直な角度で当たるため、電極が曲がるなどの変形は生じ難く、故障の原因となる可能性は小さい。
 本発明は、上記問題に鑑み、継続的な振動が加えられた場合であっても、角型電池缶角部での電極変形を極力防止し、設計通りの性能を最大限発揮することのできる二次電池および同電池を用いた給電または蓄電システムを提供することを目的とする。
 上記課題を解決するために、本発明の二次電池は以下の構成を採用する。
すなわち、正極端子および負極端子を備えた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および負極端子が形成された前記角型電池缶の面の長辺方向に前記電極群の幅より大きな幅と、前記角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて前記角型電池缶内に配置された第1および第2の絶縁性補助シートとを有し、前記第1及び第2の絶縁性補助シートは前記長辺方向の側から前記電極群を挟んで対向する位置に配置されていることを特徴とする。
 また、本発明による給電システムとしての電気自動車は、正極端子および負極端子を備えた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および負極端子が形成された前記角型電池缶の面の長辺方向に前記電極群の幅より大きな幅と、前記角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて前記角型電池缶内に配置された第1および第2の絶縁性補助シートとを備え、前記第1及び第2の絶縁性補助シートは前記長辺方向の側から前記電極群を挟んで対向する位置に配置されている二次電池と、車輪を駆動するモーターとを有し、前記モーターは前記二次電池から給電を受けて駆動することを特徴とする。
 電気自動車としては、電気で駆動可能な自動車であればよく、ハイブリッド自動車でもよい。
 また、本発明による蓄電システムは、正極端子および負極端子を備えた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および負極端子が形成された前記角型電池缶の面の長辺方向に前記電極群の幅より大きな幅と、前記角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて前記角型電池缶内に配置された第1および第2の絶縁性補助シートとを備え、前記第1及び第2の絶縁性補助シートは前記長辺方向の側から前記電極群を挟んで対向する位置に配置されている二次電池と、発電設備とを有し、前記二次電池は前記発電設備から給電を受けて蓄電することを特徴とする。
発電設備としては、太陽電池、燃料電池、風車、火力発電設備、水力発電設備、原子力発電設備など、発電を行う設備であればいずれのものでもよく、自動車、自転車、エレベータなどに備えられる単なる発電機でもよい。発電所でなくとも、一般家庭に設置される発電設備でもよい。
本発明の二次電池および電池システムによれば、正極端子および負極端子が形成された角型電池缶の面の長辺方向に電極群の幅より大きな幅と角型電池缶の角部の丸みを塞ぐ厚みとを備えた絶縁性補助シートにより、角型電池缶角部付近の電極が角型電池缶の角の丸み部分に沿って変形することを防止することができる。この効果は、積層型と巻回型のいずれの二次電池でも、例えば積層型リチウムイオン二次電池や巻回型リチウムイオン二次電池のいずれにおいても得られるものである。
絶縁性補助シートは成型容易の観点からプラスチック樹脂、例えばポリプロピレンが望ましい。ユニレートなどでもよい。絶縁性補助シートは、電解液で劣化しないものである必要がある。電極群へ十分に電解液を浸透させるために、絶縁性補助シートそれ自身に電解液を浸透させる機能があるのが望ましい。絶縁性補助シートに貫通穴を設けて当該浸透機能をもたせてもよい。
絶縁性補助シートははりのないものを用いることも可能である。はりがなくても、上記角の丸み部分を塞ぐ厚みがあれば、角型電池缶角部付近の電極が角型電池缶の角の丸み部分に沿って変形することを防止することができる。
絶縁性補助シートの材料、厚みを調整し、はりがあるもの、またはたわみや変形困難なプレートとすれば、より強固に上記電極の変形を防止できる。
 上記絶縁性補助シートで電極群を挟み込み且つ圧迫しつつ絶縁性テープで上記挟み込んだ絶縁性補助シート同士を連結して固定することで、振動が与えられた場合においても電極群が上記絶縁性補助シートの面内でずれることを防止することができる。
 上記正極端子および負極端子が形成された角型電池缶の面の垂直方向に電極群の幅より大きな幅をさらに有する上記絶縁性補助シートと電極群とを絶縁テープで圧迫して固定することで、積層型の二次電池における上記正極端子に電気的に接続される複数のシート状正極の電極タブおよび上記負極端子に電気的に接続される複数のシート状負極の電極タブの折れ曲がりを緩和し、故障発生を防止することができる。すなわち、電極群の電極タブ側にせり出した幅広形状の絶縁性補助シートによってそのシート面内に電極群が固定されることで、仮に二次電池が誤って天地逆転に置かれた場合にも、絶縁性補助シートが角型電池缶に当たるため電極群を電池缶内で中空状態に浮かせるため、この絶縁性補助シートがない場合に比べ電極タブの折れ曲がりを緩和できるものである。
 また、この場合に絶縁性補助シートをはりのあるもの又は変形困難なプレートとすれば、電極群を角型電池缶内に挿入する際に、絶縁性テープで電極群と一体とされた絶縁性補助シートが挿入ガイドの役割を果たすので、電極群の角型電池缶への挿入が容易となる。
 上記二次電池を直列または並列に複数接続することにより、組電池を構成してもよい。
 本発明によれば、角型電池缶に継続的な振動が加えられた場合においても、電極群の端部のシート電極が角型電池缶の角部の丸みに沿って変形することが防止できるため、結果として故障が少なく、設計通りの性能を発揮する二次電池および同電池を用いた給電・蓄電システムを得ることができる。
(a)は本発明の一実施形態に係る積層型リチウムイオン二次電池のシート状正極、シート状負極および絶縁性補助プレートの位置関係図である。(b)は本発明の一実施形態に係る積層型リチウムイオン二次電池の角型電池缶断面図である。 本発明の一実施形態に係る積層型リチウムイオン二次電池のシート状正極、シート状負極、および絶縁性補助プレートの位置関係図である。 本発明の一実施形態に係る積層型リチウムイオン二次電池の角型電池缶断面図である。 (a)は本発明の一実施形態に係る積層型リチウムイオン二次電池の絶縁性補助プレートの開口部形状図である。(b)は本発明の一実施形態に係る積層型リチウムイオン二次電池の絶縁性補助プレートの開口部形状図である。(c)は本発明の一実施形態に係る積層型リチウムイオン二次電池の絶縁性補助プレートの開口部形状図である。 本発明の一実施形態に係る積層型リチウムイオン二次電池を用いた給電・蓄電システム概要図である。 本発明の前提技術に係る積層型リチウムイオン二次電池の角型電池缶断面図である。 本発明の前提技術の問題点を示す積層型リチウムイオン二次電池の角型電池缶断面図である。 本発明の前提技術の問題点を示す積層型リチウムイオン二次電池の角型電池缶角部の拡大断面図である。
符号の説明
1 角型電池缶
2 シート状正極
3 シート状負極
4 絶縁性補助シート
5 絶縁性補助シート
6 中空部分
7 袋状セパレータ
8 絶縁性補助プレート
9 側面絶縁性補助シート
10 絶縁性テープ
11 底面絶縁性補助シート
12 絶縁性テープ
13 絶縁性テープ
14 家屋
15 予備の二次電池
16 制御ボックス
17 給電電力系統
18 発電設備
19 配電盤
20 電気自動車
21 二次電地
発明を実施するための形態
 以下に、本発明の一実施形態に係る二次電池について、図面を参照して説明する。本発明は以下の実施形態に限定されるものでなく、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
(第1の実施形態)
 図1(a)は、角型電池缶1に封入されるシート状正極2、シート状負極3、絶縁性補助シート(またはプレート)8、絶縁性テープ10の位置関係を示す図である。図1(b)は、角型電池缶1の面のうち、図示しない正極端子および負極端子が形成された面方向での断面を示す。積層型リチウムイオン二次電池の例を示すが、他の二次電池でもよい。
アルミ等で成型された角型電池缶1の内部には、略長方形のシート状正極2と略長方形のシート状負極3がセパレータを介して複数積層されて電極群を構成している。ここでは、セパレータは袋状セパレータ7であり、シート状負極3より小さめに形成されたシート状正極2が袋状セパレータ7内に配置される。袋状セパレータ7でシート状正極2を包む構成により、積層ズレが生じた場合においても、シート状正極2およびシート状負極3とがショートすることが少なく、結果として故障を防止することができる。
絶縁性補助シート8は、角型電池缶1の角の丸み部分を実質的に塞ぐことができれば、はりのないものでもはりのあるものでもよい。材料、厚みを調整してたわみや変形困難な絶縁性補助プレートとしてもよい。
絶縁性補助シートまたは絶縁性補助プレート8が、角型電池缶1の角の丸み部分を実質的に塞ぐため、電極群の端部の電極が角型電池缶1の角の丸み部分に沿って変形することを防止できる。
図示しない正極端子および負極端子が形成された面方向での断面における長辺方向の電極面幅aは電気容量を極力大きくするために、角型電池缶1の角の丸み部分を除いた平らな面の幅寸法とほぼ同一となるよう設計するのが望ましい。
本図では、シート状正極2より大きなシート状負極3の面幅が角型電池缶1の断面長辺方向の角の丸み部分を除いた平らな面の幅寸法とほぼ同一となるよう設計される。
絶縁性補助シート8は、上記長辺方向の角型電池缶1の内法(うちのり)bと実質的に同一寸法幅に設計される。
また、図示しない正極端子および負極端子が形成された面方向での断面における短辺方向の角型電池缶1の内法をc、上記短辺方向の角の丸み部分を除いた平らな面の幅寸法をdとすると、絶縁性補助シート8の厚み e は e ≒ (c-d) ÷ 2 と設計される。
このように設計されることで、角型電池缶1の角の丸み部分を絶縁性補助シートでほぼ完全に塞ぐことができ、このためシート状電極2、3が角型電池缶1の角の丸み部分で折れ曲がり、故障を引き起こすことを防止できる。
 上記絶縁性補助シート8を配置することで、振動等でシート状電極同士にズレが生じた場合でも、ズレたシート状電極は上記短辺方向の角型電池缶1に約90度の角度で当たるため、電極曲がりが生じ難くなる。しかし、角型電池缶1はアルミなどの金属で形成される導電体であるため、シート状電極との絶縁を図る必要がある。そのため、幅dの側面絶縁性補助シート9を角型電池缶の内壁の上記短辺方向に上記電極群を挟んで配置する。
 側面絶縁性補助シート9は、絶縁性補助シート8と同じ材質でもよく、異なる材質でもよい。絶縁性補助シート8と異なり絶縁をするためだけに必要であるので、電解液を電極群と角型電池缶1内に多く蓄えるために、できるだけ薄く設計するのが望ましい。
 絶縁性補助シート8も側面絶縁性補助シート9も、電解液が浸透しやすい機能を有していることが望ましい。
 図1(a)にテープ位置を示す。2つの絶縁性補助シート8で電極群を挟み、加圧して両絶縁性補助シートを絶縁性テープで連結する。これにより、2つの絶縁性補助シート8の面内に中空状に電極群を固定することができる。角型電池缶に電極群を封入後、シート状電極のズレを十分に防止すべく、絶縁性テープ10による絶縁性補助シート8および電極群の固定は強固であるのが望ましい。そこで、図1(a)では、シート状電極のタブのある位置を上方とすると、側面に2箇所ずつ、また、底面の1箇所に絶縁性テープを貼り付けている。
 このように強固に電極群を絶縁性補助シート8間に固定することで、先述の側面絶縁性補助シート9を省くことが可能になり、電解液をさらに多く蓄える構成とすることができる。もちろん、側面絶縁性補助シート9を必ずしも省く必要はなく、シート状電極と角型電池缶1との間の短絡防止のために設置してもよい。
図1(a)では、絶縁性補助シート8は、シート状電極のタブの延びる方向を上方とすると、電極群の幅より上下方向にはみだした大きな幅を有している。この配置でテープ固定されることで、角型電池缶1と電極群との絶縁のために電池缶の底面に絶縁性補助シートを新たに配置する必要がなくなる。また、仮にこの二次電池が誤って天地逆転に置かれた場合にも、電極群の電極タブ側にせり出した絶縁性補助シート8が角型電池缶に当たって、2つの絶縁性補助シート8で圧迫されて固定された電極群を電池缶内で中空状態に浮かせるため、この絶縁性補助シート8がない場合に比べ電極タブの折れ曲がりを緩和できる。よって、電極タブが折れ曲がって切断することによる故障も防止できる。
 本実施形態では、積層型の電極群の場合を示したが、巻回型の電極群を角型電池缶に封入する場合にも同様の効果が得られることはいうまでもない。二次電池としては、例えばリチウムイオン二次電池を対象とする。
  (第2の実施形態)
 第2の実施形態に係る二次電池について、図2を参照して説明する。本実施形態は、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
図2では、上記第1の実施形態と異なり、角型電池缶1の底面に電極群と角型電池缶1との絶縁のため底面絶縁性補助シート11を配置している。そして、2つの絶縁性補助シート8で電極群を圧迫し且つ底面絶縁性補助シート11をともに絶縁性テープで連結することで、電極群を絶縁性補助シート8の範囲内に固定するものである。
また、本実施形態では、図1の側面の絶縁性テープ10に加え、より強固に電極群を固定するため絶縁性テープ10より幅広の絶縁性テープ12が2枚の絶縁性補助シート8を周回するように貼付されている。また、底面絶縁性補助シート11と絶縁性補助シート8との連結を強固にして電極群と角型電池缶との短絡を十分に防止するために、絶縁性テープ10より幅広の絶縁性テープ13が2枚の絶縁性補助シート8および底面絶縁性補助シート11を周回するように貼付されている。
その点以外は、上記第1の実施形態で述べたと同様である。
この構成により、電極群の端部におけるシート状電極の曲がりを防止するとともに、角型電池缶1と電極群との短絡をより確実に防止できる。
  (第3の実施形態)
 第3の実施形態に係る二次電池について、図3を参照して説明する。本実施形態は、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
図3では、上記の形態と異なり、角型電池缶1の中に2つの電極群を配置している。すなわち、角型電池缶1内に、2つの絶縁性補助シート8で1つの電極群を圧迫し、絶縁性テープ10でこれら2つの絶縁性補助シート8を連結することでこの電極群を絶縁性補助シート8の面内に固定した構成を2組、互いに接した状態で並べて配置している。ただし、この2組の構成による上記短辺方向の総幅は、実質的にcと同様になる必要がある。
その点以外は、上記最良の形態および実施例1の実施形態で述べたと同様である。
2組の上記構成を接して並べた配置における最端部の絶縁性補助シート8が角型電池缶の角の丸み部分を塞ぐため、電極群の端部におけるシート状電極の曲がりを防止することができる。
本実施形態では、角型電池缶1内に2組の上記構成を配置したが、3組以上配置してもよい。
  (第4の実施形態)
 第4の実施形態に係る二次電池について、図4を参照して説明する。本実施形態は、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
図4の(a)、(b)、(c)では、上記第1~3の実施形態と異なり、絶縁性補助シート8にそれぞれ四角形、円形(整列配置)、円形(千鳥状配置)の貫通穴8a、8b、8cを設けている。電極群を圧迫して絶縁性補助シート8の面内にしっかり電極群を固定できるのであれば、いかような形状も許容される。これにより、電解液の電極群への浸透を良くし、性能向上を図ることができる。しかし、電極面固定の際の圧力を均等に分散できるので、四角形、三角形など角のある貫通穴形状よりは円形の貫通穴形状の方が望ましい。また、円形の貫通穴形状であっても、図4(b)のように整列配置した場合に比べ図4(c)のような千鳥状配置とした方が、隣接する貫通穴間の絶縁性補助シート8の幅を大きくすることができ、この幅が大きいことでよりしっかりと電極群を押さえて固定することができる。
その点以外は、上記第1~3の実施形態で述べたと同様である。
  (第5の実施形態)
 他の実施形態に係る積層型リチウムイオン二次電池を利用した蓄電・給電システムについて、図5を参照して説明する。本発明は以下の実施形態に限定されるものでなく、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
 電気自動車20に搭載された二次電池21および家屋14外に配置された予備二次電池15は、先述の最良の形態およびその他の実施形態で述べた本発明に係る二次電池、例えば積層型リチウムイオン二次電池である。
 まず、蓄電システムにつき説明する。風力発電、火力発電、水力発電、原子力発電、太陽電池、燃料電池等の発電設備18から発電された電力は、供給電力系統17を経由してユーザーの利用する制御ボックス16へ供給される。制御ボックス16でユーザーが切り替え操作することで、電気自動車20の駆動用電源である二次電池21、予備二次電池15、配電盤19のいずれかに発電設備18から送電された電力を供給する。予備二次電池15または電気自動車20の二次電池21は電力供給がなされると充電・蓄電を行う。災害等により発電設備18からの給電が停止した場合に予備電源とするため、予備二次電池15には充分な蓄電を行っておくのが望ましい。
昼間は配電盤19、夜間は予備二次電池15または電気自動車20の二次電池21へ電力供給するように制御ボックスをプログラム制御してもよい。
 次に給電システムにつき説明する。上記蓄電システムにより充電がなされた予備二次電池15は、制御ボックス16を介して家屋14内の配電盤19に電気的に接続されている。配電盤19は、家屋14内のプラグに接続されたエアコン、テレビ等の電化製品と電気的に接続されている。ユーザーは給電電力系統17からの電力を受けて家屋14内の電化製品を駆動するかまたは上記蓄電システムにより蓄電した予備二次電池15の電力を利用して電化製品を駆動するかを選択でき、この選択・切り替えを制御ボックス16により行う。
 制御ボックスにおける切り替えにより、予備二次電池15が配電盤19に電気的に接続された場合には、予備二次電池15から配電盤19へ給電され、上記電化製品の駆動が可能となる。
 電気自動車20は、上記蓄電システムにより蓄電した二次電池21から車輪を駆動するモーターに給電することで、走行可能となる。電気自動車20は電気モーターで車輪を駆動することが可能な自動車であればよく、ハイブリッド自動車でもよい。
  本発明に係る積層型リチウムイオン二次電池を利用した蓄電・給電システムでは、同二次電池において故障の一因である振動による角型電池缶内角部での積層ズレ及び電極曲がりを極力防止することができるので、振動の多い自動車における給電システムとしても、地震の多発国における給電・蓄電システムとしても、故障の少ない安定した動作が可能となる。

Claims (7)

  1.  正極端子および負極端子を備えた角型電池缶と、
     前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、
     前記正極端子および負極端子が形成された前記角型電池缶の面の長辺方向に前記電極群の幅より大きな幅と、前記角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて前記角型電池缶内に配置された第1および第2の絶縁性補助シートとを有し、
     前記第1及び第2の絶縁性補助シートは前記長辺方向の側から前記電極群を挟んで対向する位置に配置されていることを特徴とする二次電池。
  2.  前記シート状正極および前記シート状負極を複数有し、前記シート状正極と前記シート状負極はそれぞれセパレータを介して積層されていることを特徴とする請求項1に記載の二次電池。
  3.  前記第1および第2の絶縁性補助シートには、貫通穴が設けられていることを特徴とする請求項1に記載の二次電池。
  4.  絶縁性テープをさらに有し、前記第1および第2の絶縁性補助シートは前記電極群を圧迫して前記絶縁性テープで連結されていることを特徴とする請求項1に記載の二次電池。
  5.  前記第1および第2の絶縁性補助シートは、前記正極端子および負極端子が形成された前記角型電池缶の面の垂直方向に前記電極群の幅より大きな幅を備えていることを特徴とする請求項4に記載の二次電池。
  6.  正極端子および負極端子を備えた角型電池缶と、
    前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、
     前記正極端子および負極端子が形成された前記角型電池缶の面の長辺方向に前記電極群の幅より大きな幅と、前記角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて前記角型電池缶内に配置された第1および第2の絶縁性補助シートとを備え、
     前記第1及び第2の絶縁性補助シートは前記長辺方向の側から前記電極群を挟んで対向する位置に配置されている二次電池と、
     車輪を駆動するモーターとを有し、
     前記モーターは前記二次電池から給電を受けて駆動することを特徴とする電気自動車。
  7.  正極端子および負極端子を備えた角型電池缶と、
     前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、
     前記正極端子および負極端子が形成された前記角型電池缶の面の長辺方向に前記電極群の幅より大きな幅と、前記角型電池缶の角部の丸み部分を実質的に塞ぐことができる厚みとを備えて前記角型電池缶内に配置された第1および第2の絶縁性補助シートとを備え、
     前記第1及び第2の絶縁性補助シートは前記長辺方向の側から前記電極群を挟んで対向する位置に配置されている二次電池と、
     発電設備とを有し、
     前記二次電池は前記発電設備から給電を受けて蓄電することを特徴とする蓄電システム。
PCT/JP2009/056684 2009-03-31 2009-03-31 二次電池および電池システム WO2010113273A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/063,098 US20110223465A1 (en) 2009-03-31 2009-03-31 Rechargeable battery and battery system
PCT/JP2009/056684 WO2010113273A1 (ja) 2009-03-31 2009-03-31 二次電池および電池システム
JP2011506894A JP5230801B2 (ja) 2009-03-31 2009-03-31 二次電池および電池システム
KR1020117004303A KR101297508B1 (ko) 2009-03-31 2009-03-31 2차 전지 및 전지 시스템
CN200980133844.0A CN102138244B (zh) 2009-03-31 2009-03-31 二次电池及电池系统
EP09842627.3A EP2416434B1 (en) 2009-03-31 2009-03-31 Rechargeable battery and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056684 WO2010113273A1 (ja) 2009-03-31 2009-03-31 二次電池および電池システム

Publications (1)

Publication Number Publication Date
WO2010113273A1 true WO2010113273A1 (ja) 2010-10-07

Family

ID=42827606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056684 WO2010113273A1 (ja) 2009-03-31 2009-03-31 二次電池および電池システム

Country Status (6)

Country Link
US (1) US20110223465A1 (ja)
EP (1) EP2416434B1 (ja)
JP (1) JP5230801B2 (ja)
KR (1) KR101297508B1 (ja)
CN (1) CN102138244B (ja)
WO (1) WO2010113273A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154155A1 (ja) * 2012-04-13 2013-10-17 株式会社 豊田自動織機 蓄電装置及び二次電池
JP2015526857A (ja) * 2013-02-15 2015-09-10 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
JP2015527709A (ja) * 2013-02-15 2015-09-17 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
JP2015534218A (ja) * 2013-02-15 2015-11-26 エルジー・ケム・リミテッド 電極組立体
KR101613771B1 (ko) * 2013-06-12 2016-04-19 주식회사 엘지화학 이차전지용 셀 구조물 및 그의 제조방법
JP2016091664A (ja) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 二次電池の製造方法および二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802283B2 (en) 2012-01-19 2014-08-12 Samsung Sdi Co., Ltd. Fabricating method of secondary battery
WO2013110182A1 (en) * 2012-01-26 2013-08-01 Mahy E Cell Partnership Electrode assembly for a lithium-ion battery
CN104054205B (zh) 2012-06-28 2017-03-01 株式会社Lg化学 电极组件和包含其的电化学电池
WO2021196028A1 (zh) * 2020-03-31 2021-10-07 宁德新能源科技有限公司 电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182579A (ja) * 1998-12-16 2000-06-30 Toshiba Battery Co Ltd 板状ポリマー電解質電池
JP2004047161A (ja) * 2002-07-09 2004-02-12 Nissan Motor Co Ltd 二次電池及びそれを用いた組電池
JP2006040899A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd 二次電池
JP2008091099A (ja) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 積層式リチウムイオン電池
JP2008091079A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981175B1 (en) * 1998-08-20 2012-05-02 Panasonic Corporation Polymer electrolyte fuel cell stack
KR20010027275A (ko) * 1999-09-13 2001-04-06 김순택 밀폐전지
JP4572019B2 (ja) * 1999-10-08 2010-10-27 パナソニック株式会社 組電池
JP2004031121A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd ラミネート電池および組電池
KR100858799B1 (ko) * 2002-06-29 2008-09-17 삼성에스디아이 주식회사 파우치형 이차전지
KR100759396B1 (ko) * 2005-12-29 2007-09-19 삼성에스디아이 주식회사 이차 전지
JP5336698B2 (ja) * 2006-06-16 2013-11-06 株式会社東芝 非水電解質電池
EP2416433A4 (en) * 2009-03-31 2013-12-25 Mitsubishi Heavy Ind Ltd ACCUMULATOR AND ACCUMULATOR SYSTEM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182579A (ja) * 1998-12-16 2000-06-30 Toshiba Battery Co Ltd 板状ポリマー電解質電池
JP2004047161A (ja) * 2002-07-09 2004-02-12 Nissan Motor Co Ltd 二次電池及びそれを用いた組電池
JP2006040899A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd 二次電池
JP2008091099A (ja) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 積層式リチウムイオン電池
JP2008091079A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416434A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905826B2 (en) 2012-04-13 2018-02-27 Kabushiki Kaisha Toyota Jidoshokki Electric storage device and rechargeable battery
JP2013235818A (ja) * 2012-04-13 2013-11-21 Toyota Industries Corp 蓄電装置及び二次電池
WO2013154155A1 (ja) * 2012-04-13 2013-10-17 株式会社 豊田自動織機 蓄電装置及び二次電池
US9923230B2 (en) 2013-02-15 2018-03-20 Lg Chem, Ltd. Electrode assembly
US10615392B2 (en) 2013-02-15 2020-04-07 Lg Chem, Ltd. Electrode assembly and polymer secondary battery cell including the same
US11476546B2 (en) 2013-02-15 2022-10-18 Lg Energy Solution, Ltd. Electrode assembly and polymer secondary battery cell including the same
US10971751B2 (en) 2013-02-15 2021-04-06 Lg Chem, Ltd. Electrode assembly
JP2015527709A (ja) * 2013-02-15 2015-09-17 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
JP2015526857A (ja) * 2013-02-15 2015-09-10 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
US9947909B2 (en) 2013-02-15 2018-04-17 Lg Chem. Ltd. Electrode assembly and polymer secondary battery cell including the same
US10804520B2 (en) 2013-02-15 2020-10-13 Lg Chem, Ltd. Electrode assembly and polymer secondary battery cell including the same
US10418609B2 (en) 2013-02-15 2019-09-17 Lg Chem, Ltd. Electrode assembly and polymer secondary battery cell including the same
US10615448B2 (en) 2013-02-15 2020-04-07 Lg Chem, Ltd. Electrode assembly
JP2015534218A (ja) * 2013-02-15 2015-11-26 エルジー・ケム・リミテッド 電極組立体
KR101613771B1 (ko) * 2013-06-12 2016-04-19 주식회사 엘지화학 이차전지용 셀 구조물 및 그의 제조방법
US10062875B2 (en) 2014-10-30 2018-08-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing secondary battery including fixing tape and protection member, and secondary battery
JP2016091664A (ja) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 二次電池の製造方法および二次電池

Also Published As

Publication number Publication date
CN102138244B (zh) 2014-05-28
KR20110046495A (ko) 2011-05-04
KR101297508B1 (ko) 2013-08-16
US20110223465A1 (en) 2011-09-15
JP5230801B2 (ja) 2013-07-10
JPWO2010113273A1 (ja) 2012-10-04
CN102138244A (zh) 2011-07-27
EP2416434B1 (en) 2017-01-25
EP2416434A4 (en) 2013-12-25
EP2416434A1 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5230801B2 (ja) 二次電池および電池システム
JP5244918B2 (ja) 二次電池および電池システム
JP5506692B2 (ja) 二次電池、電気自動車および蓄電システム
KR101271567B1 (ko) 고정부재가 플레이트들의 관통구에 삽입되어 있는 구조의 전지모듈 및 이를 포함하는 전지팩
JP5398273B2 (ja) 蓄電モジュール
JP5244919B2 (ja) 二次電池および電池システム
KR102366429B1 (ko) 전극탭의 용접 특성을 개선한 전극 및 이를 포함하는 이차전지
JP5506693B2 (ja) 二次電池および電池システム
KR102564972B1 (ko) 이차 전지 및 이차 전지 적층체
KR20140073656A (ko) 체결장치 및 이를 포함하는 전지모듈 어셈블리
US20150024261A1 (en) Battery Cell for Secondary Batteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133844.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506894

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117004303

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009842627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009842627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13063098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE