WO2010110474A1 - 光スイッチ - Google Patents

光スイッチ Download PDF

Info

Publication number
WO2010110474A1
WO2010110474A1 PCT/JP2010/055532 JP2010055532W WO2010110474A1 WO 2010110474 A1 WO2010110474 A1 WO 2010110474A1 JP 2010055532 W JP2010055532 W JP 2010055532W WO 2010110474 A1 WO2010110474 A1 WO 2010110474A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
light
input
port
output port
Prior art date
Application number
PCT/JP2010/055532
Other languages
English (en)
French (fr)
Inventor
伸昭 松浦
恒一 葉玉
悦 橋本
雄三 石井
光男 碓氷
徹 松浦
寿樹 西澤
祐司 三橋
Original Assignee
日本電信電話株式会社
Nttエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, Nttエレクトロニクス株式会社 filed Critical 日本電信電話株式会社
Priority to US13/260,554 priority Critical patent/US8699832B2/en
Publication of WO2010110474A1 publication Critical patent/WO2010110474A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links

Definitions

  • the present invention relates to an optical switch that performs multiplexing / splitting and route selection of wavelength multiplexed optical signals.
  • a wavelength selective optical switch capable of adding or dropping an optical signal of an arbitrary wavelength to an arbitrary route is indispensable.
  • a mirror device made by MEMS (Micro Electro Mechanical System) technology is often used as means for deflecting light.
  • the mirror device can be provided with a plurality of pivot axes for pivoting the mirror. Therefore, for example, in addition to the first pivoting axis that realizes switching of the optical path, a second pivoting axis orthogonal to the first pivoting axis is provided, and the mirror is pivoted about the second pivoting axis. By moving it, the light loss can be changed. Thereby, control of the power of the optical signal can be realized as well as switching of the optical path.
  • MEMS Micro Electro Mechanical System
  • the ADD type optical switch combines optical signals of different wavelengths input from a plurality of input ports and outputs the multiplexed optical signals from at least one output port.
  • the DROP type optical switch demultiplexes wavelength-multiplexed optical signals input from at least one input port for each wavelength, and outputs the demultiplexed optical signals from different output ports for each wavelength. The configuration of such an optical switch will be described with reference to FIGS. 9 to 11.
  • the optical switch 100 shown in FIGS. 9 to 11 includes an input / output port array 110 in which an input port and an output port (hereinafter collectively referred to as “input / output port”) are arranged in a predetermined direction, and a first lens 121. , And a condensing optical system 120 including a cylindrical lens 122 and a second lens 123, a diffraction grating 130, a third lens 140, and a plurality of MEMS mirror devices 151 arranged in a line along a predetermined direction And the mirror array 150, which are arranged in a line along the z-axis in this order.
  • each mirror of the MEMS mirror device 151 is rotatable about an x axis orthogonal to the z axis and ay axis orthogonal to the x axis, and the input / output port is on the y axis
  • the MEMS mirror devices 151 are arranged in the direction along the x-axis.
  • the input / output port array 110 is composed of a plurality of input ports and one output port.
  • signal light hereinafter referred to as input light
  • input light signal light
  • Ru demultiplexed by the diffraction grating 130.
  • the split input light is collected by the third lens 140 and is incident on the corresponding MEMS mirror device 151 of the mirror array 150.
  • the respective signal lights (hereinafter referred to as output lights) deflected by the MEMS mirror device 151 are condensed by the third lens 140 and multiplexed by the diffraction grating 130.
  • the output light wavelength-multiplexed in this way is output from one output port through the condensing optical system 120.
  • the input / output port array 110 is configured of one input port and a plurality of output ports.
  • the input light input from one input port is collected on the diffraction grating 130 by the collection optical system 120, and is separated by wavelength by the diffraction grating 130.
  • the demultiplexed signal light of each wavelength is collected by the third lens 140 and is incident on the corresponding MEMS mirror device 151 of the mirror array 150.
  • the output light of each wavelength deflected by the MEMS mirror device 151 is output from the corresponding output port via the third lens 140, the diffraction grating 130, and the focusing optical system 120.
  • rotating the mirrors of the MEMS mirror device 151 of the mirror array 150 about the x axis changes the traveling direction of the output light in the arrangement direction (y direction) of the input / output port array 110 So it means to select the input port or output port. That is, in the case of the ADD type optical switch, the input port is selected, and in the case of the DROP type optical switch, the output port is selected.
  • rotating the mirror of the MEMS mirror device 151 about the y axis changes the traveling direction of the output light in the direction (x direction) orthogonal to the arrangement direction of the input / output port array 110, so output from the input port It means controlling the coupling rate to the port, that is, the amount of light attenuation.
  • the optical switch 100 By combining the rotation around the x-axis and the rotation around the y-axis, the optical switch 100 outputs the output light so as to bypass the input / output port other than the input / output port when switching the input / output port.
  • the optical coupling of the input / output port can be moved or given a predetermined amount of light attenuation.
  • FIG. 12 shows the output port 111 and the input ports 112 to 114 projected to the position of the second lens 123 in the ADD type optical switch.
  • the input port 112 is disposed at the top
  • the input port 113 is disposed at the bottom
  • the input port 114 is an input port 112. It is arranged directly under the
  • the mirror of each MEMS mirror device 151 is rotated about the y axis .
  • the light spot of the output light based on the input light from the input port 112 is a position (hereinafter referred to as a withdrawal position) ⁇ adjacent to the output port 111 in the x direction, as shown in FIG.
  • the mirror of each MEMS mirror device 151 is rotated about the x axis.
  • the light spot of the output light projected to the retreat position ⁇ sequentially moves from one based on the input port 112 and reaches one based on the input port 113.
  • the mirror of each MEMS mirror device 151 is rotated about the y axis, and the light spot is output as shown by a symbol b. It is coupled to port 111.
  • the light spots of the input light and the output light have an elliptical shape. For this reason, even if the light spot is moved to the withdrawal position in order to switch the input port, the area of the output light entering the output port 111 interferes with the light spot at the withdrawal position ⁇ . Thereby, when the mirror of each MEMS mirror device 151 is rotated about the x axis to switch the input port, the output light based on the input port 114 in the middle is incident on the output port 111, and as a result, crosstalk could occur.
  • FIG. 13 shows an input port 115 and output ports 116 to 118 projected at the position of the second lens 123 in the DROP type optical switch.
  • the output port 116 is disposed at the top
  • the output port 117 is disposed at the bottom
  • the output port 118 is the output port 116. It is arranged directly under the
  • the mirror of the MEMS mirror device 151 corresponding to the output light of the predetermined wavelength is rotated about the y axis, Rotate in the order of x-axis and y-axis. Then, as indicated by a symbol c, the light spot ⁇ of the output light of the predetermined wavelength moves from the output port 116 to the output port 117.
  • the light spot of the output light has an elliptical shape as described above, when moving the light spot of the output light to switch the output port, it corresponds to each output port adjacent to the movement path And the light spot of the output light interfere with each other, resulting in crosstalk.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide an optical switch that can reduce crosstalk when switching between input and output ports.
  • an optical switch includes an input / output unit in which at least one input port and at least one output port are arranged along a first direction, and an input port A demultiplexing unit for demultiplexing the input light input from the light source for each wavelength; And a light shielding portion configured to block output light other than the predetermined output light from being output from the predetermined output port when the output light is output from the predetermined output port.
  • the present invention by providing the light shielding portion, when the predetermined output light is output from the predetermined output port, the output light other than the predetermined output light is prevented from being output from the predetermined output port. As a result, crosstalk at the time of switching between input and output ports can be reduced.
  • FIG. 1 is a perspective view schematically showing the configuration of an optical switch according to a first embodiment of the present invention.
  • FIG. 2 is a front view schematically showing the configuration of the light shielding portion.
  • FIG. 3 is a front view schematically showing a modification of the light shielding portion.
  • FIG. 4 is a front view schematically showing a modified example of the light shielding portion.
  • FIG. 5 is a perspective view schematically showing the configuration of the optical switch according to the second embodiment of the present invention.
  • FIG. 6 is a front view schematically showing the configuration of the light shielding portion.
  • FIG. 7 is a front view schematically showing a modified example of the light shielding portion.
  • FIG. 8 is a front view schematically showing a modified example of the light shielding portion.
  • FIG. 1 is a perspective view schematically showing the configuration of an optical switch according to a first embodiment of the present invention.
  • FIG. 2 is a front view schematically showing the configuration of the light shielding portion.
  • FIG. 3 is
  • FIG. 9 is a perspective view schematically showing the configuration of a conventional optical switch.
  • FIG. 10 is a front view of FIG.
  • FIG. 11 is a top view of FIG.
  • FIG. 12 is a diagram for explaining the switching operation of the input / output port in the conventional optical switch.
  • FIG. 13 is a diagram for explaining the switching operation of the input / output port in the conventional optical switch.
  • a first embodiment of the present invention will be described.
  • a light shielding portion is further provided to the optical switch 100 described with reference to FIGS. 9 to 11. Therefore, in the following, components equivalent to those of the optical switch 100 are given the same names and reference numerals, and the description thereof will be omitted as appropriate.
  • the optical switch 1 is an ADD type wavelength selective optical switch, and an input / output port array 110 in which input ports and output ports are arranged in a predetermined direction;
  • the condensing optical system 120 including the lens 121, the cylindrical lens 122, and the second lens 123, the light shielding unit 10, the diffraction grating 130, the third lens 140, and the plurality of MEMS mirror devices 151 are predetermined.
  • the mirror array 150 is arranged in a line along the direction, and these are arranged in a line along the z-axis in this order.
  • each mirror of the MEMS mirror device 151 is rotatable about an x axis orthogonal to the z axis and ay axis orthogonal to the x axis, and the input / output port is on the y axis
  • the MEMS mirror devices 151 are arranged in the direction along the x-axis.
  • the light shielding portion 10 is formed of a light shielding mask such as a plate material which does not transmit light, and the base portion 11 having a substantially rectangular shape in plan view and a central portion of one side along the y axis direction of the base portion 11 And a protrusion 12 protruding in the x-axis direction.
  • the convex portion 12 has a substantially rectangular shape in plan view, and the length in the y-axis direction is equal to or greater than the length in the y-axis direction of the output light, and the length in the x-axis direction is the length in the x-axis direction of the output light It is formed so that it may become above.
  • Such a light shielding portion 10 is such that the convex portion 12 protrudes toward the central portion of the second lens 123 when the second lens 123 is viewed from the negative side of the z axis as shown in FIG.
  • the base 11 is disposed adjacent to the second lens 123 and the negative side of the x-axis.
  • the convex portion 12 overlaps with the save area ⁇ , and the end thereof interferes with a part of the area of the output light entering the output port 111 on the negative side in the x-axis direction.
  • the light shielding portion 10 is disposed at a position where the respective light spots between the second lens 123 and the diffraction grating 130 are not separated from one another and spread to an appropriate size. Thereby, the intended light spot can be effectively blocked.
  • the operation of the optical switch 1 according to the present embodiment will be described.
  • a case where one output port and four input ports are provided will be described as an example.
  • the input port 112 is disposed at the top
  • the input port 113 is disposed at the bottom
  • the input port 114 is an input port 112. It is arranged directly under the
  • the output port 111 is disposed at the center.
  • the input light input from the plurality of input ports is collected by the collection optical system 120 and travels toward the diffraction grating 130.
  • the convex portion 12 of the light shielding portion 10 is provided at a position adjacent to the output port 111 in the x-axis direction, and does not interfere with the region through which the input light passes. Therefore, the input light reaches the diffraction grating 130 without being blocked by the light shielding unit 10.
  • the input light reaching the diffraction grating 130 is demultiplexed by the diffraction grating 130.
  • the split input light is collected by the third lens 140 and is incident on the corresponding MEMS mirror device 151 of the mirror array 150.
  • the respective output lights deflected by the MEMS mirror device 151 are condensed by the third lens 140, and are multiplexed by the diffraction grating 130.
  • the multiplexed wavelength-multiplexed output light travels toward the condensing optical system 120 by the multiplexing. At this time, as shown in FIG.
  • the end of the convex portion 12 of the light shielding portion 10 interferes with a part of the end on the negative side in the x-axis direction of the output light incident on the output port 111 .
  • the output light is attenuated in light intensity in accordance with the amount of interference with the convex portion 12.
  • the output light whose light intensity has been adjusted by the light shielding unit 10 is output from the output port 111 via the condensing optical system 120.
  • the operation in the case of switching the output light to be output from the output port 111 will be described with reference to FIG.
  • the case where the output light output from the output port 111 is switched from one based on the input port 112 to one based on the input port 113 will be described as an example.
  • each MEMS mirror device 151 is rotated about the y axis. Then, as indicated by the symbol a, the light spot of the output light based on the input light from the input port 112 moves to the retreat position ⁇ adjacent to the output port 111 in the x direction, as shown in FIG.
  • the retreat position ⁇ interferes with the convex portion 12 of the light shielding portion 10. Therefore, the light spot moved to the retreat position ⁇ is blocked by the convex portion 12 and does not advance to the input / output port side more than the light shielding portion 10.
  • the mirror of each MEMS mirror device 151 is rotated about the x axis. Then, the light spot of the output light output toward the retreat position ⁇ sequentially moves from the one based on the input port 112 and reaches the one based on the input port 113. At this time, conventionally, since the light spot of the input light and the output light has an elliptical shape, the area of the output light incident on the output port 111 interferes with the light spot at the withdrawal position ⁇ to cause crosstalk. was there. However, in the present embodiment, by providing the light shielding portion 10, the light spot of the output light output toward the retreat position ⁇ is blocked by the convex portion 12 and does not advance toward the output port 111. Therefore, crosstalk can be prevented from occurring.
  • the output light other than the predetermined output light is the predetermined output. Since output from the port can be prevented, as a result, crosstalk can be reduced when switching between input and output ports.
  • the attenuation amount of the output light can be adjusted, so that the output light having a desired light intensity can be output.
  • the shape of the light shielding part 10 is not limited to a shape as shown in FIG. 2, According to the structure etc. of an optical system, it can set suitably freely.
  • the light shielding portion 20 shown in FIG. 3 is formed of a member which does not transmit light, and extends from the base 21 having a substantially rectangular shape in plan view and one upper side of the base 11 along the y-axis direction. And an arm 22 shaped like a letter "U" in plan view.
  • the arm portion 22 has a generally rectangular shape in plan view, and a first member 22a extending from one end connected to the upper portion of the base 21 to the positive side in the x-axis direction, and a generally rectangular shape in plan view A second member 22b linearly extending from the other end of the first member 22a to the negative side in the y-axis direction, and a substantially rectangular shape in plan view, the second member 22b
  • the third member 22c linearly extends from the other end to the negative side in the x-axis direction.
  • the light blocking portion 20 shown in FIG. 3 is applied to an optical switch in which a retraction position ⁇ corresponding to the retraction position ⁇ shown in FIG. 2 is provided on the opposite side across the region corresponding to the output port 111 is there.
  • a retraction position ⁇ corresponding to the retraction position ⁇ shown in FIG. 2 is provided on the opposite side across the region corresponding to the output port 111 is there.
  • the arm 22 looks at the second lens 123 from the negative side of the z axis as shown in FIG. 3
  • the other end of the third member 22 c is directed to the center of the second lens 123.
  • the base 11 is disposed adjacent to the second lens 123 and the negative side of the x-axis so as to protrude.
  • the third member 22c overlaps with the save area ⁇ , and the other end interferes with a part of the area of the output light entering the output port 111 in the x-axis direction on the positive side. Therefore, the crosstalk can be prevented and the amount of attenuation can be adjusted by providing the light shielding portion 20.
  • the light shielding portion 30 shown in FIG. 4 is a combination of the light shielding portion 10 and the light shielding portion 20 described above. That is, the light shielding portion 30 is formed of a member that does not transmit light, and the base 31 having a substantially rectangular shape in plan view and the central portion of one side along the y axis direction of the base 31 are positive in the x axis direction. And an arm 33 shaped like a letter "U" in a plan view extending from the top of the one side of the base 31. As shown in FIG.
  • the convex portion 32 has a substantially rectangular shape in plan view, and the length in the y-axis direction is equal to or greater than the length in the y-axis direction of the output light, and the length in the x-axis direction is the x-axis direction of the output light It is formed to be longer than the length.
  • the arm 33 has a substantially rectangular shape in plan view, and a first member 33a extending from one end connected to the upper portion of the base 31 to the positive side in the x-axis direction; A second member 33b having a shape and extending linearly from the other end of the first member 33a to the negative side in the y-axis direction, and a substantially rectangular shape in plan view, the second member 33b And a third member 33c linearly extending from the other end of the second end to the negative side in the x-axis direction.
  • the light shielding portion 30 shown in FIG. 4 is applied to an optical switch provided with the retraction position ⁇ shown in FIG. 2 and the retraction position ⁇ shown in FIG.
  • the convex portion 32 protrudes toward the central portion of the second lens 123
  • the base 31 is disposed adjacent to the second lens 123 on the negative side of the x-axis such that the other end of the third member 33 c protrudes toward the center of the second lens 123.
  • the convex portion 32 overlaps with the save area ⁇ , and the end thereof interferes with a part of the area of the output light entering the output port 111 on the negative side in the x-axis direction.
  • the third member 33 c overlaps with the save area ⁇ , and the other end is made to interfere with a part of the area of the output light entering the output port 111 on the positive side in the x-axis direction. Therefore, by providing the light shielding portion 30, it is possible to prevent crosstalk and adjust the amount of attenuation.
  • the optical switch 2 is a DROP type wavelength selective optical switch, and an input / output port array 110 in which input ports and output ports are arranged in a predetermined direction;
  • the mirror array 150 is arranged in a line along the direction, and these are arranged in a line along the z-axis in this order.
  • each mirror of the MEMS mirror device 151 is rotatable about an x axis orthogonal to the z axis and ay axis orthogonal to the x axis, and the input / output port is on the y axis
  • the MEMS mirror devices 151 are arranged in the direction along the x-axis.
  • the light shielding portion 40 is formed of a light shielding mask such as a plate member which does not transmit light, and a base portion 41 having a substantially rectangular shape in plan view and a central portion of one side along the y-axis direction of the base portion 41 And a recess 42 in the negative direction in the x-axis direction from The recess 42 has a substantially rectangular shape in plan view, and is formed such that the length in the y-axis direction is equal to or greater than the length in the y-axis direction of the output light.
  • a light shielding mask such as a plate member which does not transmit light
  • a base portion 41 having a substantially rectangular shape in plan view and a central portion of one side along the y-axis direction of the base portion 41
  • a recess 42 in the negative direction in the x-axis direction from The recess 42 has a substantially rectangular shape in plan view, and is formed such that the length in the y-axis direction is equal to or greater than the length in the y-
  • the recess 42 surrounds the central portion of the second lens 123 and the base 41
  • the base 41 is configured such that the positive side end (hereinafter referred to as a light shielding end) 41 a in the x-axis direction interferes with part of the negative side end in the x-axis direction of the output light incident on the output port. Is disposed adjacent to the second lens 123 and the negative side of the x axis. Further, the light shielding portion 40 is disposed at a position where the respective light spots between the second lens 123 and the diffraction grating 130 are not divided and spread to an appropriate size. Thereby, the intended light spot can be effectively blocked.
  • the operation of the optical switch 2 according to the present embodiment will be described.
  • a case where one input port and four output ports are provided will be described as an example.
  • the output port 116 is disposed at the top
  • the output port 117 is disposed at the bottom
  • the output port 118 is the output port 116. It is arranged directly under the Further, the input port 115 is disposed at the center.
  • the input light input from the input port 115 travels toward the diffraction grating 130 by the condensing optical system 120.
  • the recess 42 of the light shielding portion 40 is provided so as to surround the region through which the input light passes, and does not interfere with the input light. Therefore, the input light reaches the diffraction grating 130 without being blocked by the light shielding unit 40.
  • the input light reaching the diffraction grating 130 is demultiplexed by the diffraction grating 130 for each wavelength.
  • the demultiplexed input light of each wavelength is collected by the third lens 140 and is incident on the corresponding MEMS mirror device 151 of the mirror array 150.
  • the output light of each wavelength deflected by the MEMS mirror device 151 is collected by the third lens 140 and passes through the diffraction grating 130.
  • the output light having passed through the diffraction grating 130 travels toward the focusing optical system 120.
  • the light shielding end 41a interferes with part of the end on the negative side in the x-axis direction of the output light incident on the output port.
  • the output light is attenuated in light intensity in accordance with the amount of interference with the light shielding portion 40.
  • the output light whose light intensity has been adjusted by the light shielding unit 40 is output from the corresponding output port via the condensing optical system 120.
  • the operation in the case of switching the port for outputting the output light will be described with reference to FIG.
  • the case where the output port for outputting the output light of a predetermined wavelength is switched from the output port 116 to the output port 117 will be described as an example.
  • the mirror of the MEMS mirror device 151 corresponding to a predetermined wavelength is rotated about the y axis, around the x axis, and around the y axis in order. Then, as indicated by a symbol c, the light spot ⁇ of the output light of the predetermined wavelength moves from the output port 116 to the output port 117.
  • the light spot ⁇ of the output light since the light spot of the output light has an elliptical shape, the area of the output light incident on each output port adjacent to the movement path interferes with the light spot ⁇ of the output light Talk sometimes occurred.
  • the light spot ⁇ of the output light is blocked by the light blocking end portion 41 a by providing the light blocking portion 40, the light spot does not advance toward the output port side. Therefore, crosstalk can be prevented from occurring.
  • the output light other than the predetermined output light is the predetermined output. Since output from the port can be prevented, as a result, crosstalk can be reduced when switching between input and output ports.
  • the shape of the light shielding part 40 is not limited to a shape as shown in FIG. 6, According to the structure etc. of an optical system, it can set suitably freely.
  • the light shielding portion 50 shown in FIG. 7 is formed of a member which does not transmit light, and extends from the base 51 having a substantially rectangular shape in plan view and one upper side of the base 51 along the y axis. And an arm portion 52 shaped like a letter “L” in plan view.
  • the arm portion 52 has a substantially rectangular shape in plan view, and a first member 52a extending from one end connected to the upper portion of the base 51 to the positive side in the x-axis direction, and a substantially rectangular shape in plan view A second member 52b linearly extending from the other end of the first member 52a to the negative side in the y-axis direction, and a side of the second member 52b facing the base 51 It is comprised from the recessed part 52c formed in the approximate center part.
  • the recess 52c has a substantially rectangular shape in plan view, and is formed such that the length in the y-axis direction is equal to or greater than the length in the y-axis direction of the output light.
  • the light shielding unit 50 shown in FIG. 7 is applied to an optical switch in which the movement trajectory c shown in FIG. 6 is set on the opposite side across the region corresponding to the input / output port.
  • the recess 52 c surrounds the central portion of the second lens 123 and the second An end (light shielding end) 52d on the side facing the base 51 of the member 52b is disposed at a position where it interferes with part of the end on the positive side in the x-axis direction of the output light entering the output port.
  • the light spot ⁇ of the output light is blocked by the light shielding end 51a, and therefore does not advance toward the output port. This can prevent crosstalk from occurring. Further, since the light intensity is attenuated according to the amount of the output light interfering with the light shielding portion 50, the position of the light shielding end 51a is adjusted to control the amount of the output light blocked by the light shielding end 51a. Thus, the attenuation of the light intensity of the output light can be controlled.
  • the light shielding portion may be configured as shown in FIG.
  • the light shielding portion 60 shown in FIG. 8 is a combination of the light shielding portion 40 and the light shielding portion 50 described above. That is, the light shielding portion 60 is formed of a member that does not transmit light, and the base 61 having a substantially rectangular shape in a plan view and a plan view substantially extending from an upper portion of one side along the y axis of the base 61 And an arm 62 shaped like an "L".
  • the base 61 is provided with a recess 61a which is recessed in the negative direction of the x-axis from the center of the side along the y-axis and the positive side in the x-axis.
  • the arm portion 62 has a substantially rectangular shape in plan view, and a first member 62a extending from one end connected to the upper portion of the base portion 61 to the positive side in the x-axis direction; A second member 62b having a shape and linearly extending from the other end of the first member 62a to the negative side in the y-axis direction, and a side opposite to the base 61 of the second member 62b And a concave portion 62c formed in a substantially central portion.
  • the concave portions 61a and 62c have a substantially rectangular shape in plan view, and are formed such that the length in the y-axis direction is equal to or greater than the length in the y-axis direction of the output light.
  • the light shielding portion 60 shown in FIG. 8 is applied to an optical switch for moving the light spot ⁇ of the output light along the moving path c shown in FIG. 6 and the moving path d shown in FIG. 7 when switching the output port. It is In this case, when the second lens 123 is viewed from the negative side of the z axis as shown in FIG.
  • the light shielding portion 60 surrounds the central portions of the concave portions 61 a and 62 c, and the positive portion of the base 61 in the x axis direction
  • the end (light shielding end) 61b on the side interferes with part of the end on the negative side in the x-axis direction of the output light incident on the output port, and faces the base 61 of the second member 62b
  • the end (light shielding end) 62d on the side is disposed so as to interfere with part of the end on the positive side in the x-axis direction of the output light.
  • the light spot ⁇ of the output light is blocked by the light shielding end portions 61a and 61d, and thus does not advance toward the output port side. This can prevent crosstalk from occurring. Further, since the light intensity is attenuated according to the amount of interference of the output light with the light shielding portion 60, the position of the light shielding end 61b, 61d is adjusted and the amount of the output light blocked by the light shielding end 61b, 61d. Can control the attenuation of the light intensity of the output light.
  • the present invention can be applied to various devices for deflecting the light path.
  • I / O port array 120 ... condensing optical system, 121 ... first lens, 122 ... cylindrical lens , 123 ... second lens, 130 ... diffraction grating, 140 ... third lens, 150 ... mirror array, 151 ... MEMS mirror device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 遮光部(10)は、待避位置αに向かって出力されている出力光の光スポットを凸部(12)によって遮る。これにより、待避位置αに向かって出力光は、出力ポート(111)に向かって進行しない。このため、クロストークが生じるのを防ぐことができる。

Description

光スイッチ
 本発明は、波長多重光信号の合分波や方路選択を行う光スイッチに関するものである。
 波長分割多重通信の分野において、フレキシブルに再構成可能なネットワークを実現するには、任意の波長の光信号を任意の方路へ挿入または分岐させることができる波長選択光スイッチが必要不可欠である。この光スイッチには、光を偏向させるための手段として、MEMS(Micro Electro Mechanical Systemes)技術により作成されたミラー装置がよく用いられる。このミラー装置は、ミラーを回動させるための回動軸を複数設けることが可能である。したがって、例えば、光路の切り替えを実現する第1の回動軸の他に、その第1の回転軸と直交する第2の回動軸を設け、この第2の回動軸回りにミラーを回動させることにより、光損失を変化させることができる。これにより、光路の切り替えとともに、光信号のパワーの制御も実現することができる。
 このような光スイッチには、その機能によってADD型とDROP型という二種類の形態が存在する。ADD型の光スイッチは、複数の入力ポートから入力された異なる波長の光信号を合波して、少なくとも1つの出力ポートから出力するものである。一方、DROP型の光スイッチは、少なくとも1つの入力ポートから入力された波長多重された光信号を波長毎に分波して、その波長毎に異なる出力ポートから出力するものである。このような光スイッチの構成について、図9~図11を参照して説明する。
 図9~図11に示す光スイッチ100は、入力ポートおよび出力ポート(以下、合わせて「入出力ポート」と言う)が所定の方向に配列された入出力ポートアレイ110と、第1のレンズ121と、シリンドリカルレンズ122および第2のレンズ123から構成される集光光学系120と、回折格子130と、第3のレンズ140と、複数のMEMSミラー装置151が所定の方向に沿って一列に配列されたミラーアレイ150とを備えており、これらがこの順番でz軸に沿って一列に配列されている。ここで、MEMSミラー装置151の各ミラーは、z軸に対して直交するx軸およびこのx軸に対して直交するy軸回りに回動可能とされており、入出力ポートはそのy軸に沿った方向に配列されており、MEMSミラー装置151はそのx軸に沿った方向に配列されている。
 光スイッチ100がADD型の場合、入出力ポートアレイ110は、複数の入力ポートと、1つの出力ポートとから構成される。このようなADD型の場合、複数の入力ポートから入力された信号光(以下、入力光という)は、集光光学系120により回折格子130上に集光され、この回折格子130により分波される。この分波された各入力光は、第3のレンズ140により集光されてミラーアレイ150の対応するMEMSミラー装置151に入射される。このMEMSミラー装置151により偏向された各信号光(以下、出力光という)は、第3のレンズ140により集光され、回折格子130により合波される。このようにして波長多重された出力光は、集光光学系120を介して1つの出力ポートから出力される。
 一方、光スイッチ100がDROP型の場合、入出力ポートアレイ110は、1つの入力ポートと複数の出力ポートとから構成される。このようなDROP型の場合、1つの入力ポートから入力された入力光は、集光光学系120により回折格子130上に集光され、この回折格子130により波長毎に分波される。この分波された各波長の信号光は、第3のレンズ140により集光されてミラーアレイ150の対応するMEMSミラー装置151に入射される。このMEMSミラー装置151により偏向された各波長の出力光は、第3のレンズ140、回折格子130および集光光学系120を介して、対応する出力ポートから出力される。
 このような光スイッチ100において、ミラーアレイ150のMEMSミラー装置151のミラーをx軸回りに回動させることは、出力光の進行方向が入出力ポートアレイ110の配列方向(y方向)に変化するので、入力ポートまたは出力ポートを選択することを意味する。すなわち、ADD型の光スイッチの場合には入力ポートを、DROP型の光スイッチの場合には出力ポートを、それぞれ選択することとなる。一方、MEMSミラー装置151のミラーをy軸回りに回動させることは、出力光の進行方向が入出力ポートアレイ110の配列方向と直交する方向(x方向)に変化するので、入力ポートから出力ポートへの結合率、すなわち光減衰量を制御することを意味する。このようなx軸回りの回動とy軸回りの回動を組み合わせることにより、光スイッチ100では、入出力ポートを切り替える際に、当該入出力ポート以外の入出力ポートを迂回するよう出力光を移動させたり、当該入出力ポートの光結合に所定の光減衰量を与えることができる。
特開2003-101479号公報
 しかしながら、上述したような光スイッチにおいては、入出力ポートを切り替えるために当該入出力ポート以外の入出力ポートを迂回するように出力光を移動させようとすると、その出力光の一部が当該入出力ポート以外の入出力ポートに結合し、クロストークが生じることがあった。
 例えば、ADD型の光スイッチの場合には、所定の入力ポート以外の入力ポートに基づく出力光が、出力ポートに結合してしまう。この現象について図12を参照して説明する。
 図12は、ADD型の光スイッチにおいて、第2のレンズ123の位置に投影された、出力ポート111と、入力ポート112~114とを示すものである。ここで、y方向の正の向きを上方、負の向きを下方としたとき、入力ポート112は最上部に配設され、入力ポート113は最下部に配設され、入力ポート114は入力ポート112の直下に配設されている。
 このような場合において、出力ポート111から出力させる出力光を、入力ポート112に基づくものから入力ポート113に基づくものに切り替える場合、まず、各MEMSミラー装置151のミラーをy軸回りに回動させる。すると、符号aで示すように、入力ポート112からの入力光に基づく出力光の光スポットは、図12に示すように、出力ポート111のx方向に隣接する位置(以下、待避位置という)αに移動する。次に、各MEMSミラー装置151のミラーをx軸回りに回動させる。すると、待避位置αに投影される出力光の光スポットが、入力ポート112に基づくものから順次移動して行き入力ポート113に基づくものに到達する。待避位置αに投影される出力光の光スポットが入力ポート113に基づくものになると、各MEMSミラー装置151のミラーをy軸回りに回動させ、符号bに示すように、その光スポットを出力ポート111に結合させる。
 ここで、入力光や出力光の光スポットは、楕円形状を有している。このため、入力ポートを切り替えるために光スポットを待避位置に移動させても、出力ポート111に入射する出力光の領域と待避位置αの光スポットとが干渉してしまう。これにより、入力ポートを切り替えるために各MEMSミラー装置151のミラーをx軸回りに回動させると、途中の入力ポート114に基づく出力光が出力ポート111に入射してしまい、結果として、クロストークが生じてしまうことがあった。
 一方、DROP型の光スイッチの場合には、所定の出力ポート以外の出力ポートに出力光が結合してしまう。この現象について図13を参照して説明する。
 図13は、DROP型の光スイッチにおいて、第2のレンズ123の位置に投影された、入力ポート115と、出力ポート116~118とを示すものである。ここで、y方向の正の向きを上方、負の向きを下方としたとき、出力ポート116は最上部に配設され、出力ポート117は最下部に配設され、出力ポート118は出力ポート116の直下に配設されている。
 このような場合において、所定の波長の出力光を出力させる出力ポートを出力ポート116から117に切り替える場合、まず、その所定の波長の出力光に対応するMEMSミラー装置151のミラーをy軸回り、x軸回り、y軸回りと順に回動させる。すると、符号cで示すように、所定の波長の出力光の光スポットβが、出力ポート116から出力ポート117にまで移動する。
 このとき、出力光の光スポットは上述したように楕円形状を有しているので、出力ポートを切り替えるために出力光の光スポットを移動させる際に、この移動経路に隣接する各出力ポートに対応する領域と出力光の光スポットとが干渉してしまい、結果として、クロストークが生じてしまうことがあった。
 そこで、本発明は、上述したような課題を解決するためになされたものであり、入出力ポートの切り替え時のクロストークを低減させることができる光スイッチを提供することを目的とする。
 上述したような課題を解消するために、本発明に係る光スイッチは、少なくとも1つの入力ポートと、少なくとも1つの出力ポートとが第1の方向に沿って配列された入出力部と、入力ポートから入力された入力光を波長毎に分波する分波部と、この分波部により分波された入力光を偏向して、出力光として所定の出力ポートから出力させる偏向部と、所定の出力光を所定の出力ポートから出力させるときに、当該所定の出力光以外の出力光が当該所定の出力ポートから出力されるのを遮る遮光部とを備えたことを特徴とするものである。
 本発明によれば、遮光部を設けることにより、所定の出力光を所定の出力ポートから出力させるときに、当該所定の出力光以外の出力光が当該所定の出力ポートから出力されるのを防ぐことができるので、結果として、入出力ポートの切り替え時のクロストークを低減させることができる。
図1は、本発明の第1の実施例における光スイッチの構成を模式的に示す斜視図である。 図2は、遮光部の構成を模式的に示す正面図である。 図3は、遮光部の変形例を模式的に示す正面図である。 図4は、遮光部の変形例を模式的に示す正面図である。 図5は、本発明の第2の実施例における光スイッチの構成を模式的に示す斜視図である。 図6は、遮光部の構成を模式的に示す正面図である。 図7は、遮光部の変形例を模式的に示す正面図である。 図8は、遮光部の変形例を模式的に示す正面図である。 図9は、従来の光スイッチの構成を模式的に示す斜視図である。 図10は、図9の正面図である。 図11は、図9の上面図である。 図12は、従来の光スイッチにおける入出力ポートの切り替え動作を説明するための図である。 図13は、従来の光スイッチにおける入出力ポートの切り替え動作を説明するための図である。
[第1の実施例]
 まず、本発明の第1の実施例について説明する。なお、本実施例に係る光スイッチは、図9~図11を参照して説明した光スイッチ100にさらに遮光部を設けたものである。したがって、以下において、光スイッチ100と同等の構成要素については、同じ名称および符号を付して適宜説明を省略する。
 図1に示すように、本実施例に係る光スイッチ1は、ADD型の波長選択光スイッチであって、入力ポートおよび出力ポートが所定の方向に配列された入出力ポートアレイ110と、第1のレンズ121、シリンドリカルレンズ122および第2のレンズ123から構成される集光光学系120と、遮光部10と、回折格子130と、第3のレンズ140と、複数のMEMSミラー装置151が所定の方向に沿って一列に配列されたミラーアレイ150とを備えており、これらがこの順番でz軸に沿って一列に配列されている。ここで、MEMSミラー装置151の各ミラーは、z軸に対して直交するx軸およびこのx軸に対して直交するy軸回りに回動可能とされており、入出力ポートはそのy軸に沿った方向に配列されており、MEMSミラー装置151はそのx軸に沿った方向に配列されている。
 ここで、遮光部10は、光を透過させない板材等の遮光マスクから構成されており、平面視略矩形の形状を有する基部11と、この基部11のy軸方向に沿った1辺の中央部からx軸方向に突出した凸部12とを備えている。この凸部12は、平面視略矩形の形状を有し、y軸方向の長さが出力光のy軸方向の長さ以上、x軸方向の長さが出力光のx軸方向の長さ以上になるように形成されている。このような遮光部10は、図2に示すようにz軸の負の側から第2のレンズ123を見たとき、凸部12が第2のレンズ123の中央部に向かって突出するように、基部11が第2のレンズ123とx軸の負の側に隣接する位置に配設される。これにより、凸部12は、待避領域αと重なり、かつ、その端部が出力ポート111に入射する出力光の領域のx軸方向における負の側の一部と干渉するようにされる。また、遮光部10は、第2のレンズ123と回折格子130との間の、各光スポットが互いに分波されておらず、かつ適当な大きさに広がった位置に配設されている。これにより、意図する光スポットを効果的に遮ることができる。
 次に、本実施例に係る光スイッチ1の動作について説明する。なお、本実施例においては、1つの出力ポートと4つの入力ポートとが設けられている場合を例に説明する。ここで、y方向の正の向きを上方、負の向きを下方としたとき、入力ポート112は最上部に配設され、入力ポート113は最下部に配設され、入力ポート114は入力ポート112の直下に配設されている。また、出力ポート111は、中央に配設されている。
 複数の入力ポートから入力された入力光は、集光光学系120により集光され、回折格子130に向かって進行して行く。図2に示すように、遮光部10の凸部12は、出力ポート111とx軸方向に隣接する位置に設けられており、入力光が通過する領域に干渉していない。したがって、入力光は、遮光部10により遮られることなく回折格子130に到達する。
 回折格子130に到達した入力光は、回折格子130により分波される。この分波された各入力光は、第3のレンズ140により集光されてミラーアレイ150の対応するMEMSミラー装置151に入射される。このMEMSミラー装置151により偏向された各出力光は、第3のレンズ140により集光され、回折格子130により合波される。この合波されることにより波長多重された出力光は、集光光学系120に向かって進行して行く。このとき、遮光部10の凸部12は、図2に示すように、その端部が出力ポート111に入射する出力光のx軸方向における負の側の端部の一部と干渉している。これにより、出力光は、凸部12と干渉している量に応じて光強度が減衰されることとなる。
 遮光部10により光強度が調整された出力光は、集光光学系120を介して出力ポート111から出力される。
 次に、本実施例に係る光スイッチ1において、出力ポート111から出力させる出力光を切り替える場合の動作について、図2を参照して説明する。なお、以下においては、出力ポート111から出力させる出力光を、入力ポート112に基づくものから入力ポート113に基づくものに切り替える場合を例に説明する。
 まず、各MEMSミラー装置151のミラーをy軸回りに回動させる。すると、符号aで示すように、入力ポート112からの入力光に基づく出力光の光スポットは、図2に示すように、出力ポート111のx方向に隣接する待避位置αに移動する。この待避位置αは、遮光部10の凸部12と干渉している。したがって、待避位置αに移動した光スポットは、凸部12により遮られ、遮光部10よりも入出力ポート側には進行しない。
 出力光の光スポットを待避位置αに移動させると、各MEMSミラー装置151のミラーをx軸回りに回動させる。すると、待避位置αに向けて出力されている出力光の光スポットが、入力ポート112に基づくものから順次移動して行き入力ポート113に基づくものに到達する。このとき、従来では、入力光や出力光の光スポットが楕円形状を有する故に出力ポート111に入射する出力光の領域と待避位置αの光スポットとが干渉して、クロストークが生じてしまうことがあった。しかしながら、本実施例では遮光部10を設けることにより、待避位置αに向かって出力されている出力光の光スポットが凸部12によって遮られ、出力ポート111に向かって進行しない。したがって、クロストークが生じるのを防ぐことができる。
 待避位置αに投影される出力光の光スポットが入力ポート113に基づくものになると、各MEMSミラー装置151のミラーをy軸回りに回動させ、符号bに示すように、その光スポットを出力ポート111に結合させる。これにより、切り替え動作が終了する。
 以上説明したように、本実施例によれば、遮光部10を設けることにより、所定の出力光を所定の出力ポートから出力させるときに、当該所定の出力光以外の出力光が当該所定の出力ポートから出力されるのを防ぐことができるので、結果として、入出力ポートの切り替え時のクロストークを低減させることができる。
 また、凸部12の端部の位置を調整することにより、出力光の減衰量を調整できるので、所望の光強度を有する出力光を出力させることができる。
 なお、遮光部10の形状は図2に示すような形状に限定されず、光学系の構成等に応じて適宜自由に設定することができる。
 例えば、図3に示すような構成にしてもよい。この図3に示す遮光部20は、光を透過させない部材から構成されており、平面視略矩形の形状を有する基部21と、この基部11のy軸方向に沿った1辺の上部から延在する平面視略「コ」の字状の腕部22とを備えている。この腕部22は、平面視略矩形の形状を有し、基部21の上部に接続された一端からx軸方向の正の側に延在する第1の部材22aと、平面視略矩形の形状を有し、第1の部材22aの他端からy軸方向の負の側に直線状に延在する第2の部材22bと、平面視略矩形の形状を有し、第2の部材22bの他端からx軸方向の負の側に直線状に延在する第3の部材22cとから構成されている。
 この図3に示す遮光部20は、図2で示した待避位置αに相当する待避位置γが、出力ポート111に対応する領域を挟んだ反対側に設けられた光スイッチに適用されるものである。この場合、腕部22は、図3に示すようにz軸の負の側から第2のレンズ123を見たとき、第3の部材22cの他端が第2のレンズ123の中央部に向かって突出するように、基部11が第2のレンズ123とx軸の負の側に隣接する位置に配設される。これにより、第3の部材22cは、待避領域γと重なり、かつ、その他端が出力ポート111に入射する出力光の領域のx軸方向における正の側の一部と干渉するようにされる。したがって、遮光部20を設けることにより、クロストークを防ぐと共に、減衰量を調整することができる。
 また、遮光部は図4に示すような構成としてもよい。この図4に示す遮光部30は、上述した遮光部10と遮光部20を組み合わせたものである。すなわち、遮光部30は、光を透過させない部材から構成されており、平面視略矩形の形状を有する基部31と、基部31のy軸方向に沿った1辺の中央部からx軸方向の正の側に突出した凸部32と、基部31の当該1辺の上部から延在する平面視略「コ」の字状の腕部33とから構成されている。
 ここで、凸部32は、平面視略矩形の形状を有し、y軸方向の長さが出力光のy軸方向の長さ以上、x軸方向の長さが出力光のx軸方向の長さ以上になるように形成されている。
 また、腕部33は、平面視略矩形の形状を有し、基部31の上部に接続された一端からx軸方向の正の側に延在する第1の部材33aと、平面視略矩形の形状を有し、第1の部材33aの他端からy軸方向の負の側に直線状に延在する第2の部材33bと、平面視略矩形の形状を有し、第2の部材33bの他端からx軸方向の負の側に直線状に延在する第3の部材33cとから構成されている。
 この図4に示す遮光部30は、図2で示した待避位置αと図3で示した待避位置γとが設けられた光スイッチに適用されるものである。このような遮光部30は、図4に示すようにz軸の負の側から第2のレンズ123を見たとき、凸部32が第2のレンズ123の中央部に向かって突出するとともに、第3の部材33cの他端が第2のレンズ123の中央部に向かって突出するように、基部31が第2のレンズ123とx軸の負の側に隣接する位置に配設される。これにより、凸部32は、待避領域αと重なり、かつ、その端部が出力ポート111に入射する出力光の領域のx軸方向における負の側の一部と干渉するようにされる。また、第3の部材33cは、待避領域γと重なり、かつ、その他端が出力ポート111に入射する出力光の領域のx軸方向における正の側の一部と干渉するようにされる。したがって、遮光部30を設けることにより、クロストークを防ぐと共に、減衰量を調整することができる。
[第2の実施例] 
 次に、本発明の第2の実施例について説明する。なお、本実施例に係る光スイッチにおいて、図9~図11を参照して説明した光スイッチ100および上述した第1の実施例と同等の構成要素については、同じ名称および符号を付して適宜説明を省略する。
 図5に示すように、本実施例に係る光スイッチ2は、DROP型の波長選択光スイッチであって、入力ポートおよび出力ポートが所定の方向に配列された入出力ポートアレイ110と、第1のレンズ121、シリンドリカルレンズ122および第2のレンズ123から構成される集光光学系120と、遮光部40と、回折格子130と、第3のレンズ140と、複数のMEMSミラー装置151が所定の方向に沿って一列に配列されたミラーアレイ150とを備えており、これらがこの順番でz軸に沿って一列に配列されている。ここで、MEMSミラー装置151の各ミラーは、z軸に対して直交するx軸およびこのx軸に対して直交するy軸回りに回動可能とされており、入出力ポートはそのy軸に沿った方向に配列されており、MEMSミラー装置151はそのx軸に沿った方向に配列されている。
 ここで、遮光部40は、光を透過させない板材等の遮光マスクから構成されており、平面視略矩形の形状を有する基部41と、この基部41のy軸方向に沿った1辺の中央部からx軸方向の負の向きにへこんだ凹部42とを備えている。この凹部42は、平面視略矩形の形状を有し、y軸方向の長さが出力光のy軸方向の長さ以上になるように形成されている。このような遮光部40は、図6に示すようにz軸の負の側から第2のレンズ123を見たとき、凹部42が第2のレンズ123の中央部を取り囲み、かつ、基部41のx軸方向における正の側の端部(以下、遮光端部という)41aが、出力ポートに入射する出力光のx軸方向における負の側の端部の一部と干渉するように、基部41が第2のレンズ123とx軸の負の側に隣接する位置に配設される。また、遮光部40は、第2のレンズ123と回折格子130との間の、各光スポットが互いに分波されておらず、かつ適当な大きさに広がった位置に配設されている。これにより、意図する光スポットを効果的に遮ることができる。
 次に、本実施例に係る光スイッチ2の動作について説明する。なお、本実施例においては、1つの入力ポートと4つの出力ポートとが設けられている場合を例に説明する。ここで、y方向の正の向きを上方、負の向きを下方としたとき、出力ポート116は最上部に配設され、出力ポート117は最下部に配設され、出力ポート118は出力ポート116の直下に配設されている。また、入力ポート115は、中央に配設されている。
 入力ポート115から入力された入力光は、集光光学系120により回折格子130に向かって進行して行く。図6に示すように、遮光部40の凹部42は、入力光が通過する領域を取り囲むように設けられており、入力光に干渉しない。したがって、入力光は、遮光部40により遮られることなく回折格子130に到達する。
 回折格子130に到達した入力光は、回折格子130により波長毎に分波される。この分波された各波長の入力光は、第3のレンズ140により集光されてミラーアレイ150の対応するMEMSミラー装置151に入射される。このMEMSミラー装置151により偏向された各波長の出力光は、第3のレンズ140により集光され、回折格子130を通過する。この回折格子130を通過した出力光は、集光光学系120に向かって進行して行く。このとき、遮光端部41aは、図6に示すように、出力ポートに入射する出力光のx軸方向における負の側の端部の一部と干渉している。これにより、出力光は、遮光部40と干渉している量に応じて光強度が減衰されることとなる。
 遮光部40により光強度が調整された出力光は、集光光学系120を介して対応する出力ポートから出力される。
 次に、本実施例に係る光スイッチ2において、出力光を出力させるポートを切り替える場合の動作について、図6を参照して説明する。なお、以下においては、所定の波長の出力光を出力させる出力ポートを出力ポート116から出力ポート117に切り替える場合を例に説明する。
 まず、所定の波長に対応するMEMSミラー装置151のミラーをy軸回り、x軸回り、y軸回りと順に回動させる。すると、符号cで示すように、所定の波長の出力光の光スポットβが、出力ポート116から出力ポート117にまで移動する。このとき、従来では、出力光の光スポットが楕円形状を有している故に、移動経路に隣接する各出力ポートに入射する出力光の領域と出力光の光スポットβとが干渉して、クロストークが生じてしまうことがあった。しかしながら、本実施例では遮光部40を設けることにより、出力光の光スポットβが遮光端部41aにより遮られるので、出力ポート側に向かって進行しない。したがって、クロストークが生じるのを防ぐことができる。
 以上説明したように、本実施例によれば、遮光部40を設けることにより、所定の出力光を所定の出力ポートから出力させるときに、当該所定の出力光以外の出力光が当該所定の出力ポートから出力されるのを防ぐことができるので、結果として、入出力ポートの切り替え時のクロストークを低減させることができる。
 なお、遮光部40の形状は図6に示すような形状に限定されず、光学系の構成等に応じて適宜自由に設定することができる。
 例えば、図7に示すような構成にしてもよい。この図7に示す遮光部50は、光を透過させない部材から構成されており、平面視略矩形の形状を有する基部51と、この基部51のy軸に沿った1辺の上部から延在する平面視略「L」の字状の腕部52とを備えている。この腕部52は、平面視略矩形の形状を有し、基部51の上部に接続された一端からx軸方向の正の側に延在する第1の部材52aと、平面視略矩形の形状を有し、第1の部材52aの他端からy軸方向の負の側に直線状に延在する第2の部材52bと、この第2の部材52bの基部51と対向する側の辺の略中央部に形成された凹部52cとから構成されている。この凹部52cは、平面視略矩形の形状を有し、y軸方向の長さが出力光のy軸方向の長さ以上になるように形成されている。
 この図7に示す遮光部50は、図6で示した移動軌跡cを、入出力ポートに対応する領域を挟んだ反対側に設定した光スイッチに適用されるものである。この場合、腕部52は、図7に示すようにz軸の負の側から第2のレンズ123を見たとき、凹部52cが第2のレンズ123の中央部を取り囲み、かつ、第2の部材52bの基部51と対向する側の端部(遮光端部)52dが出力ポートに入射する出力光のx軸方向における正の側の端部の一部と干渉する位置に配設される。これにより、移動軌跡dに沿って出力光の出力ポートを切り替える際、出力光の光スポットβが遮光端部51aにより遮られるので、出力ポート側に向かって進行しない。このため、クロストークが生じるのを防ぐことができる。また、出力光が遮光部50と干渉している量に応じて光強度が減衰されるので、遮光端部51aの位置を調整して遮光端部51aにより遮られる出力光の量を制御することにより、出力光の光強度の減衰量を制御することができる。
 また、遮光部は図8に示すような構成としてもよい。この図8に示す遮光部60は、上述した遮光部40と遮光部50を組み合わせたものである。すなわち、遮光部60は、光を透過させない部材から構成されており、平面視略矩形の形状を有する基部61と、この基部61のy軸に沿った1辺の上部から延在する平面視略「L」の字状の腕部62とを備えている。
 基部61は、y軸に沿いかつx軸における正の側の辺の中央部からx軸方向の負の向きにへこんだ凹部61aを備えている。また、腕部62は、平面視略矩形の形状を有し、基部61の上部に接続された一端からx軸方向の正の側に延在する第1の部材62aと、平面視略矩形の形状を有し、第1の部材62aの他端からy軸方向の負の側に直線状に延在する第2の部材62bと、この第2の部材62bの基部61と対向する側の辺の略中央部に形成された凹部62cとから構成されている。ここで、凹部61a,62cは、平面視略矩形の形状を有し、y軸方向の長さが出力光のy軸方向の長さ以上になるように形成されている。
 この図8に示す遮光部60は、出力ポートを切り替える際に図6で示した移動経路cと図7で示した移動経路dに沿って出力光の光スポットβを移動させる光スイッチに適用されるものである。この場合、遮光部60は、図8に示すようにz軸の負の側から第2のレンズ123を見たとき、凹部61a,62cの中央部を取り囲み、基部61のx軸方向における正の側の端部(遮光端部)61bが、出力ポートに入射する出力光のx軸方向における負の側の端部の一部と干渉し、かつ、第2の部材62bの基部61と対向する側の端部(遮光端部)62dが当該出力光のx軸方向における正の側の端部の一部と干渉するように配設される。これにより、移動軌跡c,dに沿って出力光の出力ポートを切り替える際、出力光の光スポットβが遮光端部61a,61dにより遮られるので、出力ポート側に向かって進行しない。このため、クロストークが生じるのを防ぐことができる。また、出力光が遮光部60と干渉している量に応じて光強度が減衰されるので、遮光端部61b,61dの位置を調整して遮光端部61b,61dにより遮られる出力光の量を制御することにより、出力光の光強度の減衰量を制御することができる。
 本発明は、光の方路を偏向させる各種装置に適用することができる。
 1,2…光スイッチ、10…遮光部、11,21…基部、12…凸部、20…遮光部、22…腕部、22a…第1の部材、22b…第2の部材、22c…第3の部材、30…遮光部、31…基部、32…凸部、33…腕部、33a…第1の部材、33b…第2の部材、33c…第3の部材、40…遮光部、41…基部、41a…遮光端部、42…凹部、50…遮光部、51…基部、52…腕部、52a…第1の部材、52b…第2の部材、52c…凹部、52d…遮光端部、60…遮光部、61…基部、61a…凹部、61b…遮光端部、62…腕部、62a…第1の部材、62b…第2の部材、62c…凹部、62d…遮光端部、110…入出力ポートアレイ、120…集光光学系、121…第1のレンズ、122…シリンドリカルレンズ、123…第2のレンズ、130…回折格子、140…第3のレンズ、150…ミラーアレイ、151…MEMSミラー装置。

Claims (5)

  1.  少なくとも1つの入力ポートと、少なくとも1つの出力ポートとが第1の方向に沿って配列された入出力部と、
     前記入力ポートから入力された入力光を波長毎に分波する分波部と、
     この分波部により分波された前記入力光を偏向して、出力光として所定の出力ポートから出力させる偏向部と、
     所定の出力光を所定の出力ポートから出力させるときに、当該所定の出力光以外の出力光が当該所定の出力ポートから出力されるのを遮る遮光部と
     を備えたことを特徴とする光スイッチ。
  2.  前記入出力部と前記分波部との間に配設される第1の集光レンズと、
     前記分波部と前記偏向部との間に配設される第2の集光レンズと
     をさらに備え、
     前記遮光部は、前記第1の集光レンズと前記分波部との間に配設される遮光マスクである
     ことを特徴とする請求項1記載の光スイッチ。
  3.  前記遮光部は、前記出力光の一部を遮る
     ことを特徴とする請求項1記載の光スイッチ。
  4.  前記入出力部は、複数の前記入力ポートと、1つの前記出力ポートとからなり、
     前記遮光部は、所定の前記入力ポートからの入力光に基づく出力光以外の出力光が前記出力ポートから出力されるのを遮る
     ことを特徴とする請求項1記載の光スイッチ。
  5.  前記入出力部は、1つの前記入力ポートと、複数の前記出力ポートとからなり、
     前記遮光部は、所定の波長の出力光が前記所定の出力ポート以外の出力ポートから出力されるのを遮る
     ことを特徴とする請求項1記載の光スイッチ。
PCT/JP2010/055532 2009-03-27 2010-03-29 光スイッチ WO2010110474A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/260,554 US8699832B2 (en) 2009-03-27 2010-03-29 Optical switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009078997A JP5345884B2 (ja) 2009-03-27 2009-03-27 光スイッチ
JP2009-078997 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010110474A1 true WO2010110474A1 (ja) 2010-09-30

Family

ID=42781164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055532 WO2010110474A1 (ja) 2009-03-27 2010-03-29 光スイッチ

Country Status (3)

Country Link
US (1) US8699832B2 (ja)
JP (1) JP5345884B2 (ja)
WO (1) WO2010110474A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341867B2 (ja) * 2010-11-24 2013-11-13 日本電信電話株式会社 波長選択スイッチとその制御方法
US9369783B2 (en) * 2012-02-17 2016-06-14 Alcatel Lucent Wavelength-selective cross-connect device having astigmatic optics
US9188831B2 (en) 2012-02-17 2015-11-17 Alcatel Lucent Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
JP5692865B2 (ja) * 2012-04-11 2015-04-01 独立行政法人産業技術総合研究所 波長クロスコネクト装置
CN114200590B (zh) * 2021-12-09 2023-06-27 武汉光迅科技股份有限公司 一种二维MEMS光开关Hitless切换控制方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062831A (ja) * 2003-07-28 2005-03-10 Olympus Corp 光スイッチおよび光スイッチの制御方法
JP2006106304A (ja) * 2004-10-05 2006-04-20 Fujitsu Ltd 光路切り替えスイッチおよび波長選択光スイッチ
JP2008224824A (ja) * 2007-03-09 2008-09-25 Ntt Electornics Corp 波長選択スイッチ
JP2009025755A (ja) * 2007-07-23 2009-02-05 Ntt Electornics Corp 波長選択スイッチ
JP2009128578A (ja) * 2007-11-22 2009-06-11 Fujitsu Ltd 波長選択スイッチ
JP2009134294A (ja) * 2007-11-08 2009-06-18 Fujitsu Ltd 光デバイスおよび波長選択スイッチ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097859A (en) * 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6657770B2 (en) 2001-06-22 2003-12-02 Lucent Technologies Inc. Programmable optical multiplexer/demultiplexer
CN1762177A (zh) * 2003-07-28 2006-04-19 奥林巴斯株式会社 光开关和控制光开关的方法
JP4813061B2 (ja) * 2005-01-19 2011-11-09 オリンパス株式会社 光スイッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062831A (ja) * 2003-07-28 2005-03-10 Olympus Corp 光スイッチおよび光スイッチの制御方法
JP2006106304A (ja) * 2004-10-05 2006-04-20 Fujitsu Ltd 光路切り替えスイッチおよび波長選択光スイッチ
JP2008224824A (ja) * 2007-03-09 2008-09-25 Ntt Electornics Corp 波長選択スイッチ
JP2009025755A (ja) * 2007-07-23 2009-02-05 Ntt Electornics Corp 波長選択スイッチ
JP2009134294A (ja) * 2007-11-08 2009-06-18 Fujitsu Ltd 光デバイスおよび波長選択スイッチ
JP2009128578A (ja) * 2007-11-22 2009-06-11 Fujitsu Ltd 波長選択スイッチ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI HADAMA ET AL.: "Doteki Crosstalk o Teigen shita MEMS-gata Hacho Sentaku Switch", 2009 NEN IEICE ELECTRONICS SOCIETY TAIKAI, vol. C-3-81, 1 September 2009 (2009-09-01), pages 236 *

Also Published As

Publication number Publication date
JP5345884B2 (ja) 2013-11-20
US20120093458A1 (en) 2012-04-19
JP2010231020A (ja) 2010-10-14
US8699832B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
USRE47906E1 (en) Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
JP4875087B2 (ja) 光波長選択ルータ
USRE39411E1 (en) Reconfigurable all-optical multiplexers with simultaneous add-drop capability
EP1298467B1 (en) Optical wavelength selective switch without distortion of unblocked channels
JP6031457B2 (ja) 角度多重化光学系を用いた波長スイッチ・システム
EP2976846B1 (en) Wavelength selective switch having integrated channel monitor
JP3937403B2 (ja) 再構成可能型光アドドロップ多重化装置
AU2008279248B2 (en) Multiple function digital optical switch
JP5993033B2 (ja) 複数の入力ポート及び複数の出力ポートを有する小型波長選択クロス接続デバイス
CA2655746A1 (en) Optical communication system
WO2010110474A1 (ja) 光スイッチ
EP3257176B1 (en) Wavelength selective switch with increased frequency separation to avoid crosstalk
CN111856658B (zh) 一种光通信的装置和波长选择方法
US6947628B1 (en) Dynamic wavelength-selective optical add-drop switches
EP1656815B1 (en) Optical switch and method of controlling an optical switch
JP7381753B2 (ja) 光スイッチング方法および装置、シリコン上の液晶、および波長選択スイッチ
JP2014222313A (ja) 波長選択スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13260554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756269

Country of ref document: EP

Kind code of ref document: A1