WO2010110382A1 - 青いバラに含まれる新規化合物 - Google Patents
青いバラに含まれる新規化合物 Download PDFInfo
- Publication number
- WO2010110382A1 WO2010110382A1 PCT/JP2010/055262 JP2010055262W WO2010110382A1 WO 2010110382 A1 WO2010110382 A1 WO 2010110382A1 JP 2010055262 W JP2010055262 W JP 2010055262W WO 2010110382 A1 WO2010110382 A1 WO 2010110382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- blue
- compound
- rose
- dye
- Prior art date
Links
- RTLVTWSRKNGPHQ-UHFFFAOYSA-O CCCCC(C)CCC(CC)(CCC=C(C)CCCCCCC=C)[NH3+] Chemical compound CCCCC(C)CCC(CC)(CCC=C(C)CCCCCCC=C)[NH3+] RTLVTWSRKNGPHQ-UHFFFAOYSA-O 0.000 description 1
- 0 COc(cc(c(-c(c(C(*[C@](C(*CC1OC(c(cc2O)cc(O)c2O)=*)CO2)C1OC(c(cc1O)cc(O)c1O)=O)=O)cc(O)c1O)c1O)c1O)C2=O)c1O Chemical compound COc(cc(c(-c(c(C(*[C@](C(*CC1OC(c(cc2O)cc(O)c2O)=*)CO2)C1OC(c(cc1O)cc(O)c1O)=O)=O)cc(O)c1O)c1O)c1O)C2=O)c1O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/74—Rosaceae, e.g. strawberry, apple, almonds, pear, rose, blackberries or raspberries
- A01H6/749—Rosa, i.e. roses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/12—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
- C07D493/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/08—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H9/00—Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
- C07H9/02—Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing only oxygen as ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/825—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0073—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
Definitions
- the present invention relates to a novel compound that is a rose pigment imparted with the ability to produce delphinidin by genetic recombination, and a plant such as a rose containing the pigment and parts thereof.
- the present invention also relates to a method for modifying the flower color of a plant using the compound.
- Rose is an important plant as a cut flower, and its pigment has been investigated in detail.
- cyanidin 3,5-diglucoside, pelargonidin 3,5-diglucoside, cyanidin 3-glucoside, pelargonidin 3-glucoside, peonidin 3,5-diglucoside, peonidin 3-glucoside and the like are known as anthocyanin pigments. Biosynthetic pathways for anthocyanins containing these pigments are known.
- Roses expressing flavonoid 3 ′, 5′-hydroxylase genes by genetic recombination are also referred to as Delphinidine (hereinafter referred to as Delphinidin 3,5-diglucoside). )
- Delphinidine hereinafter referred to as Delphinidin 3,5-diglucoside.
- the hydroxylation reaction at the 5'-position of the B ring of the flavonoid is considered to occur at the flavanone or dihydroflavonol stage.
- This hydroxylation reaction is considered to occur on the endoplasmic reticulum because flavonoid 3 ', 5'-hydroxylase is a kind of cytochrome P450 present in the endoplasmic reticulum.
- an enzyme that catalyzes the biosynthetic reaction of anthocyanins for example, anthocyanidin glycosyltransferase has no sequence such as a signal peptide and is a soluble protein, and therefore is present in the cytoplasm of cells.
- Anthocyanins are transported to the vacuole by a pump after sugar is added.
- rosocyanin Since rosocyanin has a cyanidin skeleton in a part of its structure, it may be synthesized based on cyanidin, a precursor common to cyanidin, or an analog of cyanidin. However, this is not speculative, and it has not been clarified what substance is actually used as a precursor and synthesized through such a route. On the other hand, in the rose in which the flavonoid 3 ′, 5′-hydroxylase gene is expressed by genetic recombination as described above, delphinidin is synthesized instead of the cyanidin moiety.
- the problem to be solved by the present invention is to provide a novel compound which is a rose pigment imparted with the ability to produce delphinidin by genetic recombination, and a plant such as a rose containing the pigment and parts thereof. It is. Another problem to be solved by the present invention is to provide a method for modifying the flower color of a plant using the compound.
- the present invention is as follows. [1] The following general formula (I): ⁇ Wherein R 1 represents the following group: And R 2 is —OH, or R 1 and R 2 together form —O—, or R 1 is a group: And R 2 is —OH. However, the coordination (wavy line) of the hydroxyl group at the 1-position of glucose in R 1 indicates that the ⁇ -form and the ⁇ -form are tautomeric. ⁇ The compound represented by this.
- [5] A plant comprising the compound according to any one of [1] to [4]. However, the plant does not naturally contain the compound.
- a new pigment in the petals of blue roses was extracted, isolated and purified, and its chemical structure was elucidated. This is the basis of research to create a new rose family by genetically engineering the color of roses.
- the novel pigment according to the present invention can be used to improve the color of cut flowers by, for example, absorbing it into cut flowers such as roses, and can also be used as a plant natural pigment, for example, to add color to food and drinks. It is.
- FIG. 1 shows the chemical structural formulas of cyanidin, delphinidin, and rosocyanin.
- FIG. 2 shows the structure of plasmid pSPB919 introduced into the mauve rose variety “Lavande”.
- FIG. 3 is a visible-ultraviolet absorption spectrum of blue dye (1) in 30% acetonitrile and 0.5% TFA.
- FIG. 4 is a chromatogram when the blue dye (1) is analyzed by HPLC. The compound has two peaks because the hydroxyl group at the 1-position of glucose shows the tautomerism between the ⁇ -form and the ⁇ -form. .
- FIG. 5 is a visible-ultraviolet absorption spectrum diagram of the red dye (2) in 30% acetonitrile and 0.5% TFA.
- FIG. 6 is a chromatogram when the red dye (2) is analyzed by HPLC.
- FIG. 7 is a visible-ultraviolet absorption spectrum diagram of blue dye (3) in 30% acetonitrile and 0.5% TFA.
- FIG. 8 is a chemical structural formula of the blue dye (1). In the figure, the coordination (wavy line) of the glucose hydroxyl group indicates a tautomer of ⁇ -form and ⁇ -form.
- FIG. 9 is a chemical structural formula of the red dye (2).
- FIG. 10 is a chemical structural formula of the blue dye (3).
- FIG. 11 is a 1 H NMR spectrum diagram of the blue dye (1) shown in FIG.
- FIG. 12 is a spectrum diagram of 13 C NMR of the blue dye (1) shown in FIG.
- FIG. 13 is a 1 H NMR spectrum diagram of the red dye (2) shown in FIG.
- FIG. 14 shows the structure of plasmid pSPB130 introduced into the mauve rose “WKS82”.
- the novel dye according to the present invention has a structure in which one more hydroxyl group is added to the B ring of the known substances rosocyanin A1, rosocyanin B and rosocyanin A2 (the number of hydroxyl groups in the B ring is 2).
- the novel blue pigment according to the present invention is a novel compound having a blue pigment delphinidin partial structure (the number of hydroxyl groups in the B ring is 3), which is a known substance that has been confirmed to exist in blue roses. It can be said that there is.
- rosocyanins having a large molecular weight further increase the solubility-improving effect by adding one hydroxyl group to the B ring and having three hydroxyl groups. It is considered to be a more effective pigment when transported to the vesicle and exhibiting blue color.
- rosocyanins are superior in that they are synthesized in a plant compared to general pigments.
- the present invention also provides a plant containing the compounds shown in FIGS. However, the plant does not naturally contain the compound or the compound is not present in the petals in detectable amounts.
- the present invention provides a method for modifying the flower color of a plant using the compounds shown in FIGS.
- the compound according to the present invention introduces a gene of an enzyme involved in the synthesis of the compound according to the present invention into a target plant by a genetic engineering technique, and a predetermined amount of the compound that can be detected in the plant petal Can be obtained for the first time.
- a physical method in which the compound according to the present invention is directly absorbed by a plant can be used, but the embodiment in which the target plant contains the compound is not limited thereto.
- the plant of the present invention contains the compounds shown in FIGS. 8 to 10 in the petals.
- the content rate of these compounds in the petal of a plant body is not specifically limited, Preferably it is 0.00001 mg / g or more per petal wet weight.
- the lower limit is more preferably 0.0001 mg / g or more, and still more preferably 0.0007 mg / g or more.
- the upper limit is preferably 1 mg / g or less, more preferably 0.5 mg / g or less, and still more preferably 0.13 mg / g or less.
- plants covered include rose, chrysanthemum, carnation, snapdragon, cyclamen, orchid, eustoma, freesia, gerbera, gladiolus, gypsophila, kalanchoe, lily, pelargonium, geranium, petunia, torenia, tulip, rice, barley, wheat , Rapeseed, potato, tomato, poplar, banana, eucalyptus, sweet potato, soybean, alfalfa, lupine, corn, cauliflower, and the like, but are not limited thereto.
- the present invention also relates to a part of the plant described above, in particular, a cut flower, and a cut flower processed product using the cut flower.
- the cut flower processed product includes, but is not limited to, a pressed flower using the cut flower, a preserved flower, a dried flower, a resin-encapsulated product, and the like.
- Example 1 Isolation and purification of dye compound
- the dye compound of the present invention was isolated and purified using blue rose as an extraction source.
- a blue rose was produced as a source for producing and extracting the cultivar Labande into which the plasmid pSPB919 was introduced .
- a cultivar Labande into which plasmid pSPB919 was introduced was produced by the method described below.
- RNA was obtained from the cut blue iris petals, and polyA + RNA was prepared therefrom.
- a cDNA library using ⁇ ZAPII (Stratagene) as a vector was prepared from this polyA + RNA using a cDNA library preparation kit (Stratagene) by the method recommended by the manufacturer.
- the IFR DFR gene fragment was analyzed in the same manner as the report on the acquisition of gentian DFR gene fragment (Tanaka et al. Plant Cell Physiol. 37, 711-716, 1996).
- the obtained DNA fragment of about 400 bp was recovered by Gene Clean by the method recommended by the manufacturer and subcloned into pCR-TOPO.
- a sequence homologous to the rose DFR gene was found.
- an iris cDNA library was screened to obtain an iris DFR cDNA containing the full-length amino acid sequence.
- the entire base sequence of cDNA contained in the clone designated pSPB906 was determined (see SEQ ID NO: 9 and SEQ ID NO: 10 of Patent Document 2 for the base sequence and amino acid sequence).
- pSPB909 a plasmid obtained by ligating a DNA fragment of about 3.9 kb obtained by digesting pSPB580 with BamHI and XhoI and a DNA fragment of about 1.5 kb obtained by digesting pSPB906 with BamHI and XhoI was designated as pSPB909. .
- RNA of rose DFR cDNA in plants was performed as follows. An about 3.5 kb DNA fragment (including Mac1 promoter, rose DFR cDNA, and mas terminator) obtained by partial digestion of pCGP1364 (Tanaka et al. Plant Cell Physiol. (1995) 36 1023-1031) with pUC19 (Yansch) -Perron C ⁇ et al., Gene 33: 103-119, 1985), the plasmid obtained by inserting the HindIII site of pUC19 close to the MacI promoter was designated as pCGP1394.
- a DNA fragment of about 1.4 kb obtained by digesting pCGP1394 with HindIII and SacII a DNA fragment of about 1.9 kb obtained by digesting pCGP1394 with PstI, blunting and further digesting with SacII
- pBinPLUS was digested with SacI, blunt-ended, and ligated with a binary vector fragment obtained by digesting with HindIII to obtain pSPB185.
- pSPB185 was obtained by digesting pSPB185 with XbaI, blunting, and ligating with SalI linker.
- pSPB528 is a binary vector that can be expressed in plants by inserting a structural gene between the cauliflower mosaic virus 35S promoter having an enhancer and a manopin synthase terminator.
- pCGP645s obtained by digesting pCGP645 with SmaI and PvuI and then blunting and ligating was obtained.
- the 5'-side sequence of rose DFR cDNA was obtained by PCR amplification using reverse primer and synthetic primer RDF310 (see SEQ ID NO: 19 of Patent Document 2) as a template using pCGP645s as a template and cloned into pCRTOPO .
- the base sequence of DNA was determined and it was confirmed that there was no error due to PCR. This was designated as pSPB569.
- the 5′-side sequences of rose DFR cDNAs of different lengths were obtained by PCR amplification using reverse primers and synthetic primer RDF830 (see SEQ ID NO: 20 of Patent Document 2) as primers and pCGP645s as a template. And cloned into pCRTOPO. The base sequence of DNA was determined and it was confirmed that there was no error due to PCR.
- pSPB570 DNA fragment obtained by digesting pSPB528 with BamHI and SacI, DNA fragment obtained by digesting pSPB569 with SacI and XhoI, 0.3 kb DNA fragment and pSPB570 with BamHI and SalI To obtain pSPB572.
- This vector is designed to transcribe double-stranded RNA of rose DFR cDNA in plants.
- PUE6 was digested with SacI, blunt-ended, and SalI linker was inserted to obtain pUE8.
- a DNA fragment obtained by digesting pUE8 with HindIII and EcoRI was introduced into the HindIII and EcoRI sites of pBinPLUS to obtain pSPB189.
- a DNA fragment of about 3.7 kb obtained by digesting pSPB189 with BamHI and SalI and a DNA fragment of about 1.8 kb obtained by complete digestion of pCGP1961 with BamHI and partial digestion with XhoI were ligated to obtain pSPB567.
- pSPB572 was digested with PacI and dephosphorylated, a DNA fragment of about 2.8 kb obtained by digesting pSPB567 with PacI was ligated, and the nptII gene and the pansy-derived F3′5′H # 40 were the same.
- a plasmid transcribed in the direction was selected and designated pSPB905.
- This plasmid is expected to transcribe the IFR-derived DFR gene and the pansy-derived F3′5′H # 40 gene in roses, and to suppress the expression of the rose DFR gene by transcription of double-stranded RNA.
- This plasmid was introduced into Agrobacterium tumefaciens Agl0 strain.
- pSPB919 By infecting with the Agrobacterium, pSPB919 (see FIG. 2) was introduced into a mauve rose variety “Labande” to obtain a transformant. The transformed cells were subdivided to obtain a blue rose (variety Labande into which plasmid pSPB919 was introduced), which was a recombinant plant, and flowered.
- Pigment Compound A pigment compound was purified from 230 g of the blue rose (variety Labande introduced with plasmid pSPB919) obtained as described above by the following method. 230 g of the petal was freeze-ground in liquid nitrogen using a homogenizer, and 50% acetonitrile containing 1 L of 0.5% TFA was added and immersed overnight. The filtrate filtered through diatomaceous earth was concentrated to about 2/5 volume with a rotary evaporator. This concentrated extract was loaded onto 400 ml of adsorption resin HP-20 (Mitsubishi Kasei Co., Ltd.).
- the fraction was purified by the following preparative HPLC.
- Column is Develosil-ODS-UG (Nomura Chemical Co., Ltd.) 5cm ⁇ * 50cm, mobile phase is A: water, B: 50% acetonitrile 0.5% TFA, flow rate 32ml / min, B30% (30min hold) B30 ⁇ B100 % Linear gradient (50 min), B100% was held for 20 minutes.
- Detection was performed at A260 nm. Fractions containing the blue dye eluted at 67-82 min were collected and lyophilized. Chromatography was repeated twice.
- the lyophilized product (1.2 g) was loaded onto a Sephadex LH-20 column (Pharmacia) (1.2 L) equilibrated with 50% acetonitrile. After eluting with 2.5 L of 50% acetonitrile, fractions containing a blue dye eluted with 2.5 L of 50% acetonitrile were collected and lyophilized.
- the obtained lyophilized product was chromatographed again by preparative HPLC.
- the column was YMC pack PolymerC18 (YMC Co., Ltd., 2 cm ⁇ * 30 cm), the mobile phase was A: 0.5% TFA / water, B: 0.5% TFA / 50% acetonitrile, 6 ml / min, with the following gradient. B65% (30 min hold) B65 ⁇ B90% linear gradient (20 min), B90% was held for 30 minutes, and detection was performed at A260 nm.
- the red dye (2) eluted at 50-52 min, the blue dye (1) eluted at 60-65 min, and the blue dye (3) eluted at 65-73 min were collected and lyophilized. Chromatography was repeated a total of 3 times.
- the color tone of the freeze-dried product, the blue pigment (1), the red pigment (2) and the blue pigment (3) thus obtained was visually observed. As a result, dark blue, dark red, and dark blue were exhibited.
- the content in the petal of the blue pigment (1) was measured, the content was in the range of 0.0007 mg / g to 0.13 mg / g per wet petal weight.
- Example 2 Structural analysis by instrumental analysis of the dye compound Various instrumental analyzes were performed on the blue dye (1), the red dye (2), and the blue dye (3) using samples purified again as necessary. Blue dye (1), red dye (2), and blue dye (3) were analyzed by HPLC, and an absorption spectrum at 650-250 nm in 30% acetonitrile, 0.5% TFA was measured with a Photodede array detector ( (See FIGS. 3, 5, and 7).
- HPLC Shodex-Asahipak-ODP50 (made by Showa Denko) 4.6 mm ⁇ * 25 cm was used for the column, and the mobile phase was isocratic elution of 0.6 ml / min of 30% acetonitrile and 0.5% TFA.
- Detection was performed by measuring an absorption spectrum of 650-250 nm with a Photodiode array detector (SPD-M10Avp, manufactured by Shimadzu Corporation) and monitoring a chromatogram of A560 nm.
- the TOF-MS measurement of the blue dye (1), the red dye (2), and the blue dye (3) was performed. MS was measured in positive and V mode using ESI with a Z-spray ion source attached to a Q-TOF Premier (Micromass, UK). Cone volt. : 60 V, Capillary voltage: 3 KV, mass correction by rock spray was performed, and leucine enkephalin (m / z 556.2771 [M + H] + ) was used as a reference.
- the blue dye (1) has a molecular ion of m / z 1221.1352 [M] +
- the red dye (2) has a molecular ion of m / z 435.0380 [M] +
- the blue dye (2) has The molecular ions of m / z 1373.1442 [M] + were given, and the molecular formulas C 56 H 37 O 32 (err .: +6.9 ppm), C 22 H 11 O 10 (err .: +6.4 ppm), and C 63 H, respectively. It was in good agreement with 41 O 36 (err .: +4.6 ppm).
- the absorption spectra of blue dye (1), red dye (2), and blue dye (3) in 30% acetonitrile containing 0.5% TFA are shown in FIG. 3, FIG. 5, and FIG. 7, respectively.
- the absorption maximum of the visible part of the blue dye (1) and the blue dye (3) is 593 nm, which is shifted to a wavelength slightly longer than the absorption maximum of the compound of the formula (II) described in Example 1 of Patent Document 3. It was.
- the compound of formula (II) described in Patent Document 3 exhibits a blue color as described in Patent Document 3. However, since the absorption maximums of the blue dye (1) and the blue dye (3) obtained this time were longer than the absorption maximum of the compound of the formula (II) described in Patent Document 3, It exhibits a blue color more than the compound (II).
- the molecular weight of the blue dye (1) measured by TOF-MS was m / z 1221.13 [M] + , which is the molecular weight 1205 of the compound of formula (II) described in Example 1 of Patent Document 3. It was 16 mass units larger. This indicates that the cultivar Labande introduced with the plasmid pSPB919 described in Patent Document 2 contains a dye compound having a molecular weight of 16 larger than that of the dye compound known from Patent Document 3.
- the blue dye (1) is disclosed in Example 1 of Patent Document 3. It was thought that there was one oxygen atom more than the compound represented by the formula (II) described. Since the flavonoid 3 ′, 5′-hydroxylase specifically hydroxylates the B ring of the flavonoid, the identified compound is not the rosocyanin A1 glycoside described in Non-Patent Document 1, but B The compound was judged to be a compound having a delphinidin partial structure having three hydroxyl groups in the ring. That is, the structures of the blue dye (1), the red dye (2), and the blue dye (3) were determined to be the structures shown in FIGS. 8, 9, and 10, respectively.
- the analysis result of 1 H NMR of the blue dye (1) is shown in FIG. 11, and the analysis result of 13 C NMR is shown in FIG.
- the blue dye (1) has a ⁇ 3.67 (1H, d12, Glc-6 ⁇ ), ⁇ 4.48 (1H, dd2,9, Glc-5 ⁇ ), ⁇ 4.84 (1H, t9, Glc-4 ⁇ ) in 1 H NMR.
- the analysis result of 1 H NMR of the red dye (2) is shown in FIG.
- the red dye (2) is ⁇ 7.32 (1H, d1.5, A-6), ⁇ 7.40 (1H, d1.5, A-8), ⁇ 7.68 (2H, s, B) in 1 H NMR. -2 ', 6') and ⁇ 7.92 (1H, s, D-3 ").
- Example 3 Confirmation of Pigment Compound in Blue Rose of Different Variety The presence of the compound of the present invention was confirmed for a blue rose of a variety different from Example 1.
- Production of Variety “WKS82” Introducing Plasmid pSPB130 A variety “WKS82” having plasmid pSPB130 introduced was produced by the following method. Anthocyanins can be modified with aromatic acyl groups to stabilize the anthocyanins and to make their color blue (eg WO 96/25500). The following experiments were conducted with the aim of producing acylated delphinidin-type anthocyanins. RNA was obtained from Torenia cultivar Summer Wave petals, and polyA + RNA was prepared therefrom.
- a cDNA library using ⁇ ZAPII (Stratagene) as a vector was prepared using a directed cDNA library preparation kit (Stratagene) by the method recommended by the manufacturer.
- the major anthocyanins of Torenia have glucose at the 5-position modified with an aromatic acyl group (Suzuki et al. Molecular Breeding 2000 6, 239-246), so anthocyanin acyltransferase is expressed in Torenia petals. .
- Anthocyanin acyltransferase has a specific amino acid sequence stored therein, and an anthocyanin acyltransferase gene can be obtained by using a corresponding synthetic DNA as a primer (WO96 / 25500). Specifically, using 10 ng of single-stranded cDNA synthesized at the time of preparation of the Torenia cDNA library as a template, 100 ng of ATC primer (see SEQ ID NO: 17 of Patent Document 2), 100 ng of oligo dT primer (SEQ ID NO: Patent Document 2) 18) was used as a primer, and PCR was performed using Taq polymerase (Takara, Japan) under the conditions recommended by the manufacturer.
- PCR was performed for 25 cycles of a reaction of 95 ° C for 1 minute, 55 ° C for 1 minute, and 72 ° C for 1 minute.
- the obtained DNA fragment of about 400 bp was recovered by Gene Clean II (BIO, 101. Inc.) by the method recommended by the manufacturer and subcloned into pCR-TOPO.
- Gene Clean II BIO, 101. Inc.
- a homologous sequence was found in the gentian acyltransferase gene (Fujiwara et al. (1998) Plant J. 16 421-431).
- the nucleotide sequence was determined using the dye primer method (Applied Biosystems) and the sequencer 310 or 377 (both Applied Biosystems).
- This DNA fragment was labeled with DIG using a DIG labeling detection kit (Nippon Roche), and a Torenia cDNA library was screened by plaque hybridization by the method recommended by the manufacturer. Twelve clones were randomly selected that gave the positive signal obtained, and the plasmid was recovered therefrom and the nucleotide sequence was determined. They showed good homology to anthocyanin acyltransferases. Among these clones, the entire nucleotide sequence of cDNA contained in the clone designated as pTAT7 was determined (see SEQ ID NO: 7 of Patent Document 2 for the nucleotide sequence and SEQ ID NO: 8 of Patent Document 2 for the amino acid sequence). )
- PBE2113-GUS (Mitsubara et al. Plant. Vell Physiol. 37, 45-59 to 1996) was digested with SacI, blunt-ended, and an 8 bp XhoI linker (Takara) was inserted. About 1.7 kb of DNA obtained by digesting pTAT7 with BamHI and XhoI was inserted into the BamHI and XhoI sites of this plasmid to obtain pSPB120.
- pSPB120 ' was obtained by digesting pSPB120 with SnaBI and BamHI, followed by blunting and ligation.
- plasmid pCGP1961 containing F3′5′H # 40 cDNA derived from pansy was completely digested with BamHI, and a DNA fragment of about 1.8 kb obtained by partial digestion with XhoI was recovered and digested with BamHI and XhoI.
- the obtained plasmid ligated with pUE5H was designated as pUEBP40.
- PUEBP40 ' was obtained by digesting pUEBP40 with SnaBI and BamHI, followed by blunting and ligation. An approximately 2.7 kb DNA fragment obtained by partially digesting pUEBP40 'with HindIII was recovered, and pSPB120' was ligated with the DNA fragment partially digested with HindIII.
- the vector was pSPB130 (see FIG. 12).
- This plasmid is constitutively expressed in plants and constitutively expressed in pansy-derived F3'5'H # 40 gene and Torenia-derived 5AT gene, and transcribed in a petal-specific manner.
- This plasmid was introduced into Agrobacterium tumefaciens Ag10 strain.
- pSPB130 FOG. 12
- WKS82 mauve rose
- Transformed cells were subdivided to obtain a blue rose (variety “WKS82” introduced with plasmid pSPB130) as a recombinant plant, and flowered.
- a new pigment in the petals of blue roses was extracted, isolated and purified, and its chemical structure was elucidated.
- the compound newly found in the present invention exhibits a blue color as compared with rosocyanines known to exist in mauve roses. Therefore, the color of a plant flower can be modified using the above-mentioned compound found in the present invention.
- this compound as a plant pigment, for example, it can be used for coloring food and drink.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Nutrition Science (AREA)
- Plant Pathology (AREA)
- Botany (AREA)
- Physiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Saccharide Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
一方、前述のように遺伝子組み換えにより、フラボノイド3’,5’-水酸化酵素遺伝子を発現させたバラにおいては、シアニジンの部分に代えてデルフィニジンが合成される。もし仮に、上記のようなロザシアニン合成経路についての仮説、すなわちシアニジンを前駆体としてロザシアニンが合成されるのではないかという仮説が正しいのであれば、前駆体となるシアニジンが殆ど存在しないこれら遺伝子組換えバラにおいては、ロザシアニン類は合成されないことになる。
発明者らは、ロザシアニン合成系についての知見を得るために、特許文献1又は特許文献2に記載されるシアニジンを殆ど含有しない、あるいは、宿主と比較してシアニジン含量が著しく低下した上記遺伝子組換えバラを用いて、解析を行ったところ、予想に反し、本来バラが有しているロザシアニン類とは明らかに化学構造の異なる新規化合物が存在することを見出した。さらに、この新規化合物は、遺伝子組換えによりフラボノイド3’,5’-水酸化酵素遺伝子を発現させたバラに特異的に存在することが明らかになり、本発明を完成するに至った。
[1]下記一般式(I):
本発明の3種類の化合物は、それぞれ、図3、図4、図11、及び/又は図12に示すデータを与える化合物であるか、図5、図6、図9、及び/又は図13に示すデータを与える化合物であるか、あるいは図7に示すデータを与える化合物である。
本発明の植物体は、図8~図10に示す化合物を花弁内に含有する。植物体の花弁中のこれらの化合物の含有率は特に限定されないが、好ましくは花弁湿重量あたり、0.00001mg/g以上である。下限値は、より好ましくは0.0001mg/g以上、さらに好ましくは0.0007mg/g以上である。上限値は、好ましくは1mg/g以下、より好ましくは0.5mg/g以下、さらに好ましくは0.13mg/g以下である。
そのなかでも好ましくは、バラ科の植物であり、より好ましくはバラ科バラ属の植物であり、更に好ましくはRosa hybridaに代表されるバラ科バラ属バラである。 本発明は、前記した植物の部分、特に切り花、該切り花を用いた、切り花加工品にも関する。ここで、切り花加工品としては、当該切り花を用いた押し花、プリザーブドフラワー、ドライフラワー、樹脂封入品などを含むが、これに限定されるものではない。
実施例1:色素化合物の単離、精製
青いバラを抽出源として、本発明の色素化合物を単離精製した。
プラスミドpSPB919を導入した品種ラバンデの作出
抽出源である青いバラを作出した。以下に示す方法により、プラスミドpSPB919を導入した品種ラバンデを作出した。
切花の青いアイリス花弁からRNAを得、さらにこれからpolyA+RNAを調製した。このpolyA+RNAからλZAPII(Stratagene社)をベクターとするcDNAライブラリーをcDNAライブラリー作製キット(Stratagene社)を用いて製造者が推奨する方法で作製した。アイリスのDFR遺伝子断片は、リンドウのDFR遺伝子断片を取得した報告と同様に行った(Tanaka et al.Plant Cell Physiol.37,711-716,1996)。
次にpSPB580をBamHIとXhoIで消化して得られる約3.9kbのDNA断片とpSPB906をBamHIとXhoIで消化して得られる約1.5kbのDNA断片を連結し得られたプラスミドをpSPB909とした。
pSPB528はエンハンサーを有するカリフラワーモザイクウィルス35Sプロモーターとマノピンシンターゼターミネーターの間に構造遺伝子を挿入し植物で発現させることができるバイナリ-ベクターである。また、pCGP645に含まれるバラDFRcDNAの5’非翻訳領域配列を短くするためにpCGP645をSmaIとPvuIで消化した後平滑末端化し、ライゲーションして得られたpCGP645sを得た。
当該アグロバクテリウムに感染させることで、藤色系バラ品種「ラバンデ」へpSPB919(図2参照)を導入して、形質転換体を得た。形質転換細胞を細分化させ、組換え植物体である青いバラ(プラスミドpSPB919を導入した品種ラバンデ)を得て、それを開花させた。
上記のようにして得られた青いバラ(プラスミドpSPB919を導入した品種ラバンデ)の花弁230gから以下の方法で色素化合物を精製した。
花弁230gを、ホモジナイザーを用いて液体窒素中で凍結粉砕し、1Lの0.5%TFAを含む50%アセトニトリルを加え一晩浸漬した。珪藻土ろ過したろ液をロータリーエバポレーターで約2/5の体積まで濃縮した。
この濃縮した抽出液を吸着樹脂HP-20(三菱化成(株))400mlに負荷した。800mlの水洗後、1Lの0.1%TFAを含む20%アセトニトリル、0.1%TFAを含む60%アセトニトリルでステップワイズに溶出した。60%画分に青色色素を含む画分が溶出した。
当該凍結乾燥品1.2gを50%アセトニトリルで平衡化したSephadexLH-20カラム(ファルマシア)(1.2L)に負荷した。50%アセトニトリル2.5L溶出後、さらに50%アセトニトリル2.5Lで溶出した青色色素を含む画分を集め、凍結乾燥した。
カラムはYMC pack PolymerC18 (ワイエムシー株式会社、2cmφ*30cm)、移動相はA: 0.5%TFA/水、B: 0.5%TFA/ 50%アセトニトリル、6ml/min、以下のグラジエントで行った。B65%(30min保持)B65→B90%のリニアグラジエント(20min)、B90%を30分間保持し、検出はA260nmで行った。50-52minに溶出した赤色色素(2)、及び60-65minに溶出した青色色素(1)、及び65-73minに溶出した青色色素(3)を集め凍結乾燥した。クロマトは計3回繰り返した。
このうち、青色色素(1)について、花弁中の含有量を測定したところ、その含有量は、花弁湿重量当り0.0007mg/g~0.13mg/gの範囲であった。
青色色素(1)、赤色色素(2)、及び青色色素(3)について、必要により再度精製した試料を用いて各種機器分析を行った。
青色色素(1)、赤色色素(2)、及び青色色素(3)をHPLCで分析し、Photodiode array 検出器で、30%アセトニトリル、0.5%TFA中での650-250nmの吸収スペクトルを測定した(図3、図5、図7参照)。
HPLCはカラムにShodex-Asahipak-ODP50(昭和電工社製)4.6mmφ*25cmを用い、移動相は0.6ml/minの30%アセトニトリル、0.5%TFAのアイソクラティック溶出を行った。検出はPhotodiode array 検出器(SPD-M10Avp、(株)島津製作所製)で650-250nmの吸収スペクトルを測定しA560nmのクロマトグラムをモニターした。
青色色素(1) λmax 593nm R.T. 14.6分及び18.5分*
赤色色素(2) λmax 535nm R.T. 8.9分
青色色素(3) λmax 594nm R.T. 21.6分
*青色色素(1)はグルコースの1位の水酸基がα体とβ体が互変異性を示すため2本のピークを示す。
MSは、Q-TOF Premier(Micromass社製、英国)でイオン源にZスプレーイオンソースをつけたESIを用い、ポジティブ、Vモードで測定した。Cone volt.:60V、Capillary voltage:3KV、ロックスプレーによる質量補正を行い、リファレンスにはロイシンエンケファリン(m/z556.2771[M+H]+)を用いた。
青色色素(1)及び青色色素(3)の可視部の吸収極大は593nmで、特許文献3の実施例1に記載された式(II)の化合物の吸収極大よりもやや長波長にシフトしていた。
特許文献3に記載の式(II)の化合物は、特許文献3に記載されているように青色を呈する。しかし、今回得られた青色色素(1)、青色色素(3)の吸収極大は、特許文献3に記載の式(II)の化合物の吸収極大よりも更に長波長側であったことから、式(II)の化合物よりも一段と青い色を呈する。よって、本発明で新たに見出した青色色素(1)、青色色素(3)は、植物の色を更に青くする効果があることが明らかとなった。青色色素(1)の分子量をTOF-MSで測定したところ、m/z 1221.13[M]+であり、これは、特許文献3の実施例1に記載された式(II)の化合物の分子量1205よりも、16マスユニット大きかった。これは、特許文献2に記載されたプラスミドpSPB919を導入した品種ラバンデには、特許文献3から公知の前記色素化合物よりも分子量が16大きい色素化合物が含まれていることを示す。フラボノイド3’,5’-水酸化酵素による水酸化反応による分子量の増加は、酸素原子1個の付加による16の増加であることから、青色色素(1)は、特許文献3の実施例1に記載された式(II)で表される化合物よりも酸素原子が1つだけ多いと考えられた。フラボノイド3’,5’-水酸化酵素はフラボノイドのB環を特異的に水酸化することから、今般、同定された化合物は、非特許文献1に記載されたロザシアニンA1配糖体ではなく、B環に水酸基を3個有するデルフィニジン部分構造を有する化合物であると判断された。すなわち、青色色素(1)、赤色色素(2)、及び青色色素(3)の構造は、それぞれ、図8、図9、及び図10に示す構造であると判断した。
青色色素(1)の1H NMRの解析結果を図11に、そして13C NMRの解析結果を、図12に示す。
青色色素(1)は、1H NMRにおいてδ3.67 (1H, d12, Glc-6α)、δ4.48 (1H, dd2,9, Glc-5α)、δ4.84(1H, t9, Glc-4α)、δ4.94 (1H, dd2,9, Glc-2α)、δ4.99 (1H, dd2,12, Glc-6α)、δ5.30 (1H, d2, Glc-1α)、δ5.64 (1H, t9, Glc-3α)、δ6.22 (1H, s, HHDP) 、δ6.27 (1H, s, HHDP)、δ6.77 (2H, s, gallate-2,6)、δ6.79 (1H, s, D-3”)、δ6.83 (1H d2, A-6)、δ6.85(2H, s, gallate-2,6)、δ7.03 (1H, d2, A-8)、δ7.87 (2H, s, B-2’,6’)のシグナルが認められた。HHDPはhexahydroxy diphenoyl基の略号である。この他、糖の1位の水酸基がβタイプのグルコースのシグナルもマイナーシグナルとして観察された。
赤色色素(2)の1H NMRの解析結果を図13に示す。
赤色色素(2)は、1H NMRにおいてδ7.32 (1H, d1.5, A-6)、δ7.40 (1H, d1.5, A-8)、δ7.68 (2H, s, B-2’,6’)、δ7.92 (1H, s, D-3”) のシグナルが認められた。
実施例1とは異なる品種の青いバラについて、本発明の化合物の存在を確認した。
プラスミドpSPB130を導入した品種「WKS82」の作出
以下の方法でプラスミドpSPB130を導入した品種「WKS82」を作出した。
アントシアニンを芳香族アシル基により修飾することによりアントシアニンを安定化させ、かつその色を青くすることができる(例えば、WO96/25500)。アシル化したデルフィニジン型アントシアニンの生産を目指して以下の実験を行った。
トレニア品種サマーウェーブ花弁からRNAを得、さらにこれからpolyA+RNAを調製した。このpolyA+RNAからλZAPII(Stratagene社)をベクターとするcDNAライブラリーをdirectional cDNAライブラリー作製キット(Stratagene社)を用いて製造者が推奨する方法で作製した。トレニアの主要アントシアニンはその5位のグルコースが芳香族アシル基により修飾されている(Suzuki et al.Molecular Breeding 2000 6,239-246)ので、トレニア花弁においてはアントシアニンアシル基転移酵素が発現している。
上記のようにして得られた青いバラ(プラスミドpSPB130を導入した品種「WKS82」)の花弁230gから、実施例1と同様の方法で、抽出、単離、および精製を行い、青色色素(1)、赤色色素(2)及び青色色素(3)を得た。
得られた青色色素(1)、赤色色素(2)及び青色色素(3)について目視で色調を観察した。その結果、それぞれ、濃い青、濃い赤および濃い青を呈していた。
また、青色色素(1)、赤色色素(2)及び青色色素(3)について、LC-TOF-MSを用いて、実施例1で同定した色素成分とそれぞれ同一の化合物であることを確認した。
Claims (15)
- 請求項1~4のいずれか1項に記載の化合物を含む植物。但し、該植物は天然には該化合物を含まない。
- バラ科の植物である、請求項5に記載の植物。
- 前記バラ科の植物が、バラ科バラ属の植物である、請求項6に記載の植物。
- 前記バラ科バラ属の植物が、バラ科バラ属バラである、請求項7に記載の植物。
- 請求項5~8のいずれか1項に記載の植物の部分。
- 切り花である、請求項9に記載の植物の部分。
- 請求項10に記載の切り花を用いた、切り花加工品。
- 請求項1~4のいずれか1項に記載の化合物を用いて、植物の花の色を改変する方法。
- 前記植物が、バラ科の植物である、請求項12に記載の方法。
- 前記バラ科の植物が、バラ科バラ属の植物である、請求項13に記載の方法。
- 前記バラ科バラ属の植物が、バラ科バラ属バラである、請求項14に記載の方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010228224A AU2010228224B2 (en) | 2009-03-27 | 2010-03-25 | Novel compound contained in blue rose |
RU2011143378/04A RU2507206C2 (ru) | 2009-03-27 | 2010-03-25 | Новое соединение, содержащееся в голубой розе |
JP2011506120A JP5099653B2 (ja) | 2009-03-27 | 2010-03-25 | 青いバラに含まれる新規化合物 |
US13/259,749 US9057076B2 (en) | 2009-03-27 | 2010-03-25 | Compounds purified from blue roses |
CA2756087A CA2756087C (en) | 2009-03-27 | 2010-03-25 | Compound contained in blue rose |
BRPI1009803A BRPI1009803A8 (pt) | 2009-03-27 | 2010-03-25 | Composto contido na rosa azul |
KR1020117022593A KR101659525B1 (ko) | 2009-03-27 | 2010-03-25 | 파란 장미에 함유되는 신규 화합물 |
MX2011009991A MX2011009991A (es) | 2009-03-27 | 2010-03-25 | Compuesto novedoso contenido en rosa azul. |
EP10756178A EP2412715A4 (en) | 2009-03-27 | 2010-03-25 | NEW CONNECTION IN BLUE ROSES |
CN2010800139531A CN102365287A (zh) | 2009-03-27 | 2010-03-25 | 蓝月季中含有的新型化合物 |
IL215359A IL215359A0 (en) | 2009-03-27 | 2011-09-25 | Compound contained in a blue rose |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-080524 | 2009-03-27 | ||
JP2009080524 | 2009-03-27 | ||
JP2009115722 | 2009-05-12 | ||
JP2009-115722 | 2009-05-12 | ||
JP2009-173096 | 2009-07-24 | ||
JP2009173096 | 2009-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110382A1 true WO2010110382A1 (ja) | 2010-09-30 |
Family
ID=42781073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055262 WO2010110382A1 (ja) | 2009-03-27 | 2010-03-25 | 青いバラに含まれる新規化合物 |
Country Status (15)
Country | Link |
---|---|
US (1) | US9057076B2 (ja) |
EP (2) | EP2412715A4 (ja) |
JP (3) | JP5099653B2 (ja) |
KR (1) | KR101659525B1 (ja) |
CN (1) | CN102365287A (ja) |
AU (1) | AU2010228224B2 (ja) |
BR (1) | BRPI1009803A8 (ja) |
CA (1) | CA2756087C (ja) |
CO (1) | CO6430465A2 (ja) |
EC (1) | ECSP11011356A (ja) |
IL (1) | IL215359A0 (ja) |
MX (1) | MX2011009991A (ja) |
RU (1) | RU2507206C2 (ja) |
TW (1) | TWI493033B (ja) |
WO (1) | WO2010110382A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178385A1 (ja) * | 2014-05-19 | 2015-11-26 | サントリーホールディングス株式会社 | バラ色素化合物の新規な用途 |
WO2020203217A1 (ja) | 2019-03-29 | 2020-10-08 | サントリーホールディングス株式会社 | Ltbp-1発現促進用組成物及びltbp-1発現促進作用を有する物質のスクリーニング方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993001290A1 (en) * | 1991-07-11 | 1993-01-21 | International Flower Developments Pty. Ltd. | Genetic sequences encoding flavonoid pathway enzymes and uses therefor |
JPH05184370A (ja) * | 1992-01-14 | 1993-07-27 | Kirin Brewery Co Ltd | フラボノイド水酸化酵素遺伝子 |
WO1996025500A1 (fr) | 1995-02-17 | 1996-08-22 | Suntory Limited | Genes codant pour des proteines ayant une activite acyltransferase |
WO1996036716A1 (en) * | 1995-05-16 | 1996-11-21 | International Flower Developments Pty. Ltd. | Transgenic plants exhibiting altered flower colour and methods for producing same |
JP2002201372A (ja) | 2000-09-29 | 2002-07-19 | Suntory Ltd | 植物色素化合物及びその利用 |
WO2004020637A1 (en) | 2002-08-30 | 2004-03-11 | International Flower Developments Pty. Ltd. | Flavonoid 3',5'hydroxylase gene sequences and uses therefor |
WO2005017147A1 (ja) | 2003-08-13 | 2005-02-24 | International Flower Developments Proprietary Limited | 花色が変更されたバラの製造方法 |
JP2008253250A (ja) * | 2007-03-15 | 2008-10-23 | Ishihara Sangyo Kaisha Ltd | ツユクサのフラボノイド3’,5’−水酸化酵素遺伝子 |
WO2008156211A1 (ja) * | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボンを含むバラ及びその生産方法 |
WO2008156206A1 (ja) * | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボン及びマルビジンを含むバラ及びその生産方法 |
WO2008156214A1 (ja) * | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボン及びデルフィニジンを含むバラ及びその生産方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8165823B2 (en) * | 2005-07-15 | 2012-04-24 | Novartis Ag | Pamps, pathogen associated molecular patterns |
KR101458578B1 (ko) | 2007-03-29 | 2014-11-07 | 산토리 홀딩스 가부시키가이샤 | 표층 키메라 형질 전환 식물의 작출 방법 |
-
2010
- 2010-03-25 KR KR1020117022593A patent/KR101659525B1/ko active IP Right Grant
- 2010-03-25 CN CN2010800139531A patent/CN102365287A/zh active Pending
- 2010-03-25 WO PCT/JP2010/055262 patent/WO2010110382A1/ja active Application Filing
- 2010-03-25 BR BRPI1009803A patent/BRPI1009803A8/pt not_active Application Discontinuation
- 2010-03-25 JP JP2011506120A patent/JP5099653B2/ja active Active
- 2010-03-25 AU AU2010228224A patent/AU2010228224B2/en active Active
- 2010-03-25 MX MX2011009991A patent/MX2011009991A/es active IP Right Grant
- 2010-03-25 EP EP10756178A patent/EP2412715A4/en not_active Withdrawn
- 2010-03-25 RU RU2011143378/04A patent/RU2507206C2/ru active
- 2010-03-25 EP EP15164556.1A patent/EP2947083A1/en not_active Withdrawn
- 2010-03-25 CA CA2756087A patent/CA2756087C/en active Active
- 2010-03-25 US US13/259,749 patent/US9057076B2/en active Active
- 2010-03-26 TW TW099109119A patent/TWI493033B/zh active
-
2011
- 2011-09-25 IL IL215359A patent/IL215359A0/en unknown
- 2011-09-27 CO CO11126046A patent/CO6430465A2/es active IP Right Grant
- 2011-09-27 EC EC2011011356A patent/ECSP11011356A/es unknown
-
2012
- 2012-08-02 JP JP2012172153A patent/JP5569822B2/ja active Active
-
2014
- 2014-06-11 JP JP2014120785A patent/JP5766334B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993001290A1 (en) * | 1991-07-11 | 1993-01-21 | International Flower Developments Pty. Ltd. | Genetic sequences encoding flavonoid pathway enzymes and uses therefor |
JPH05184370A (ja) * | 1992-01-14 | 1993-07-27 | Kirin Brewery Co Ltd | フラボノイド水酸化酵素遺伝子 |
WO1996025500A1 (fr) | 1995-02-17 | 1996-08-22 | Suntory Limited | Genes codant pour des proteines ayant une activite acyltransferase |
WO1996036716A1 (en) * | 1995-05-16 | 1996-11-21 | International Flower Developments Pty. Ltd. | Transgenic plants exhibiting altered flower colour and methods for producing same |
JP2002201372A (ja) | 2000-09-29 | 2002-07-19 | Suntory Ltd | 植物色素化合物及びその利用 |
WO2004020637A1 (en) | 2002-08-30 | 2004-03-11 | International Flower Developments Pty. Ltd. | Flavonoid 3',5'hydroxylase gene sequences and uses therefor |
WO2005017147A1 (ja) | 2003-08-13 | 2005-02-24 | International Flower Developments Proprietary Limited | 花色が変更されたバラの製造方法 |
JP2008253250A (ja) * | 2007-03-15 | 2008-10-23 | Ishihara Sangyo Kaisha Ltd | ツユクサのフラボノイド3’,5’−水酸化酵素遺伝子 |
WO2008156211A1 (ja) * | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボンを含むバラ及びその生産方法 |
WO2008156206A1 (ja) * | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボン及びマルビジンを含むバラ及びその生産方法 |
WO2008156214A1 (ja) * | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボン及びデルフィニジンを含むバラ及びその生産方法 |
Non-Patent Citations (10)
Title |
---|
FUJIWARA ET AL., PLANT J., vol. 16, 1998, pages 421 - 431 |
MITSUHARA ET AL., PLANT VELL. PHYSIOL., vol. 37, 1996, pages 45 - 59 |
See also references of EP2412715A4 |
SUZUKI ET AL., MOLECULAR BREEDING, vol. 6, 2000, pages 239 - 246 |
TANAKA ET AL., PLANT CELL PHYSIOL., vol. 36, 1995, pages 1023 - 1031 |
TANAKA ET AL., PLANT CELL PHYSIOL., vol. 37, 1996, pages 711 - 716 |
TETRAHEDRON, vol. 62, 2006, pages 9661 - 9670 |
TIMOTHY A.H. ET AL.: "Genetics and biochemistry of anthocyanin biosynthesis", THE PLANT CELL, vol. 7, no. 7, 1995, pages 1071 - 1083, XP002406599 * |
Y FUKUI ET AL.: "Two novel blue pigments with ellagitannin moiety, rosacyanins A1 and A2, isolated from the petals of Rosa hybrida", TETRAHEDRON, vol. 26, no. 41, 2006, pages 9661 - 9670, XP025002732 * |
YANISCH-PERRON, C. ET AL., GENE, vol. 33, 1985, pages 103 - 119 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178385A1 (ja) * | 2014-05-19 | 2015-11-26 | サントリーホールディングス株式会社 | バラ色素化合物の新規な用途 |
KR20170007812A (ko) | 2014-05-19 | 2017-01-20 | 산토리 홀딩스 가부시키가이샤 | 장미 색소 화합물의 신규 용도 |
JPWO2015178385A1 (ja) * | 2014-05-19 | 2017-04-20 | サントリーホールディングス株式会社 | バラ色素化合物の新規な用途 |
US10105313B2 (en) | 2014-05-19 | 2018-10-23 | Suntory Holdings Limited | Uses of rose pigment compounds |
JP2020007363A (ja) * | 2014-05-19 | 2020-01-16 | サントリーホールディングス株式会社 | バラ色素化合物の新規な用途 |
WO2020203217A1 (ja) | 2019-03-29 | 2020-10-08 | サントリーホールディングス株式会社 | Ltbp-1発現促進用組成物及びltbp-1発現促進作用を有する物質のスクリーニング方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2947083A1 (en) | 2015-11-25 |
CA2756087C (en) | 2017-04-18 |
CO6430465A2 (es) | 2012-04-30 |
EP2412715A1 (en) | 2012-02-01 |
JP5766334B2 (ja) | 2015-08-19 |
TWI493033B (zh) | 2015-07-21 |
JPWO2010110382A1 (ja) | 2012-10-04 |
AU2010228224A1 (en) | 2011-10-13 |
KR101659525B1 (ko) | 2016-09-23 |
TW201038736A (en) | 2010-11-01 |
JP5569822B2 (ja) | 2014-08-13 |
IL215359A0 (en) | 2011-12-29 |
JP2014210786A (ja) | 2014-11-13 |
RU2011143378A (ru) | 2013-05-10 |
ECSP11011356A (es) | 2011-11-30 |
AU2010228224B2 (en) | 2015-09-17 |
KR20120018741A (ko) | 2012-03-05 |
BRPI1009803A8 (pt) | 2017-02-14 |
CN102365287A (zh) | 2012-02-29 |
CA2756087A1 (en) | 2010-09-30 |
JP2013014589A (ja) | 2013-01-24 |
US9057076B2 (en) | 2015-06-16 |
EP2412715A4 (en) | 2012-09-26 |
JP5099653B2 (ja) | 2012-12-19 |
RU2507206C2 (ru) | 2014-02-20 |
US20120011771A1 (en) | 2012-01-19 |
MX2011009991A (es) | 2011-12-08 |
BRPI1009803A2 (pt) | 2015-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7514597B2 (en) | Glycosyltransferase gene | |
JP5697040B2 (ja) | デルフィニジンを花弁に含有するキク植物を生産する方法 | |
KR101318414B1 (ko) | 수식된 안토시아닌을 꽃잎에 함유하는 국화 식물을 생산하는 방법 | |
CA2550507A1 (en) | Method for producing yellow flower by controlling flavonoid synthetic pathway | |
JP5766334B2 (ja) | 青いバラに含まれる新規化合物 | |
EP1816193B1 (en) | Lignan glycosidase and utilization of the same | |
EP2992006B1 (en) | Novel protein and gene related to flavonoid o-methyltransferase (fomt) and their uses therefore | |
JP5638807B2 (ja) | リグナン水酸化酵素 | |
WO2011142019A1 (ja) | リグナンメチル化酵素をコードする遺伝子およびその用途 | |
JP5502347B2 (ja) | リグナンメチル化酵素をコードする遺伝子およびその用途 | |
MXPA06001621A (es) | Proceso para producir rosas con color modificado |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080013953.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10756178 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7041/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010756178 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2756087 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010228224 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011506120 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13259749 Country of ref document: US Ref document number: MX/A/2011/009991 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20117022593 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 0141511 Country of ref document: KE |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11126046 Country of ref document: CO |
|
ENP | Entry into the national phase |
Ref document number: 2010228224 Country of ref document: AU Date of ref document: 20100325 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2011143378 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1009803 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1009803 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110927 |