WO2010110284A9 - 無線基地局及び移動通信方法 - Google Patents

無線基地局及び移動通信方法 Download PDF

Info

Publication number
WO2010110284A9
WO2010110284A9 PCT/JP2010/055019 JP2010055019W WO2010110284A9 WO 2010110284 A9 WO2010110284 A9 WO 2010110284A9 JP 2010055019 W JP2010055019 W JP 2010055019W WO 2010110284 A9 WO2010110284 A9 WO 2010110284A9
Authority
WO
WIPO (PCT)
Prior art keywords
resource
base station
radio base
allocated
scheduling request
Prior art date
Application number
PCT/JP2010/055019
Other languages
English (en)
French (fr)
Other versions
WO2010110284A1 (ja
Inventor
耕平 清嶋
石井 啓之
尚人 大久保
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/259,008 priority Critical patent/US20120093123A1/en
Priority to EP20100756080 priority patent/EP2413653A1/en
Priority to CN201080013523XA priority patent/CN102365895A/zh
Publication of WO2010110284A1 publication Critical patent/WO2010110284A1/ja
Publication of WO2010110284A9 publication Critical patent/WO2010110284A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0017Time-frequency-code in which a distinct code is applied, as a temporal sequence, to each frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0019Time-frequency-code in which one code is applied, as a temporal sequence, to all frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to a radio base station and a mobile communication method.
  • each mobile station UE is uplinked to a radio base station eNB via a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel.
  • a scheduling request (Scheduling Request, hereinafter referred to as SR) for requesting scheduling for data communication is configured to be transmitted.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a radio base station and a mobile communication method capable of appropriately allocating SR transmission resources.
  • a first feature of the present invention is a radio base station, which allocates to each mobile station as a scheduling request transmission resource for transmitting a scheduling request for requesting scheduling for uplink data communication;
  • a resource allocation unit configured to determine a frequency direction resource and a code direction resource, the resource allocation unit determining a time direction resource and a frequency direction resource to be allocated as the scheduling request transmission resource;
  • the gist of the invention is that the code direction resource to be allocated as the scheduling request transmission resource is determined.
  • a second feature of the present invention is a mobile communication method, in which a time direction resource assigned to each mobile station as a scheduling request transmission resource for transmitting a scheduling request for requesting scheduling for uplink data communication is provided.
  • Step A for determining a frequency direction resource and a code direction resource, and notifying each mobile station of the time direction resource, the frequency direction resource, and the code direction resource allocated as the scheduling request transmission resource Determining a time direction resource and a frequency direction resource to be allocated as the scheduling request transmission resource in the step A, and then determining the code direction resource to be allocated as the scheduling request transmission resource. And effect.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining an example of an SR transmission subframe allocated by the radio base station according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a PUCCH resource allocation method by the radio base station according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining resource blocks in a PUCCH resource allocated by the radio base station according to the first embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining an example of an SR transmission subframe allocated by the radio base station according to the first embodiment of the present invention.
  • FIG. 4 is a
  • FIG. 6 is a diagram for explaining a method of allocating resource blocks in PUCCH resources for transmitting CQI, A / N, and SR by the radio base station according to the first embodiment of the present invention.
  • FIG. 7 is a diagram for explaining resource blocks allocated to transmit A / N and SR among resource blocks in a PUCCH resource by the radio base station according to the first embodiment of the present invention. It is.
  • FIG. 8 illustrates resource blocks allocated to transmit CQI, A / N, and SR in a mixed manner among resource blocks in a PUCCH resource by the radio base station according to the first embodiment of the present invention. It is a figure for doing.
  • FIG. 7 is a diagram for explaining resource blocks allocated to transmit A / N and SR among resource blocks in a PUCCH resource by the radio base station according to the first embodiment of the present invention. It is.
  • FIG. 8 illustrates resource blocks allocated to transmit CQI, A / N, and SR in a mixed manner among resource blocks in a PUCCH
  • FIG. 9 is a diagram for explaining an example of code direction resources in PUCCH resources allocated by the radio base station according to the first embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a method of allocating SR transmission resources by the radio base station according to the first embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a method of allocating SR transmission resources by the radio base station according to the first embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a method of allocating SR transmission resources by the radio base station according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart showing a method of allocating SR transmission resources by the radio base station according to the first embodiment of the present invention.
  • the mobile communication system according to the present embodiment is an LTE mobile communication system.
  • the mobile station UE transmits a radio base station via the PUCCH.
  • CQI Channel Quality Indicator
  • ACK / NACK (hereinafter referred to as A / N) for downlink data, SR, etc. are transmitted. It is configured.
  • the radio base station eNB includes a resource allocation unit 11 and a notification unit 12.
  • the resource allocation unit 11 is configured to allocate a predetermined physical channel resource in each cell under the radio base station eNB.
  • the resource allocation unit 11 is configured to allocate a PUCCH resource, a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel) resource, or the like as an uplink physical channel resource in each cell under the radio base station eNB. Has been.
  • a PUCCH resource Physical Uplink Shared Channel, physical uplink shared channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the resource allocating unit 11 uses PDCCH (Physical Downlink Control Channel) resources, PDSCH (Physical Downlink Shared Channel, Physical Downlink) as downlink physical channel resources in each cell under the radio base station eNB. Shared channel) resources and the like are allocated.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel, Physical Downlink
  • the resource allocation unit 11 is configured to allocate a CQI transmission resource, an A / N transmission resource, and an SR transmission resource from among the PUCCH resources.
  • the notification unit 12 is configured to notify the resource allocated by the resource allocation unit 11 in each cell under the radio base station eNB.
  • the notification unit 12 is configured to notify each mobile station UE of a CQI transmission resource, an A / N transmission resource, and an SR transmission resource with an RRC message.
  • the resource allocation unit 11 is configured to determine a time direction resource, a frequency direction resource, and a code direction resource to be allocated as SR transmission resources to each mobile station UE.
  • the resource allocation unit 11 may be configured to determine a subframe for transmitting an SR as a time direction resource allocated to each mobile station UE as an SR transmission resource.
  • the subframe for transmitting the SR is determined by the SR transmission cycle and the offset from the head of the radio frame.
  • the resource allocation unit 11 allocates resource blocks for PUCCH in order from resource blocks at both ends in the system bandwidth, and sets resource blocks inside the resource blocks allocated as PUCCH resource blocks. , And is configured to be allocated as a PUSCH resource block.
  • a resource block (hereinafter referred to as RB) is composed of 7 OFDM symbols and 12 subcarriers.
  • each PUCCH RB is configured to perform code multiplexing. Therefore, the resource allocation unit 11 is configured to allocate time direction resources, frequency direction resources, and code direction resources as PUCCH resources.
  • the resource allocation unit 11 allocates PUCCH resources between the first half part (slot) and the second half part (slot) in one subframe by “Intra-subframe frequency hopping” as shown in FIG. It is configured as follows.
  • the resource allocation unit 11 is configured to allocate two RBs to which the same RB number is assigned as the same PUCCH RB.
  • the resource allocation unit 11 allocates the remaining RBs as AQs, in order from the RBs allocated as PUCCH RBs, to which the younger RB numbers are assigned, in order from the RBs for CQI transmission. / N transmission RBs and SR transmission RBs are allocated.
  • the PUCCH RB is a CQI transmission RB, an A / N transmission RB, and an SR transmission RB “CQI, A / N, SR mixed” RB "may be present.
  • the resource allocation unit 11 is configured to determine an RB (frequency direction resource) to be allocated as an SR transmission resource from among RBs allocated to each mobile station UE as a PUCCH RB.
  • code direction resources that can be allocated as A / N transmission resources and SR transmission resources include a plurality of (for example, three) OCs (Orthogonal Codes) and “Cyclic” in each RB. It is multiplexed by a combination (hereinafter, CS / OC) of a plurality of (for example, 12) sequences (cyclic sequence, hereinafter referred to as CS) that have a “Shift” relationship and are orthogonal to each other.
  • CS / OC a combination of a plurality of (for example, 12) sequences (cyclic sequence, hereinafter referred to as CS) that have a “Shift” relationship and are orthogonal to each other.
  • a resource index (Resource Index) is assigned to a code direction resource (CS / OC) that can be allocated as an A / N transmission resource and an SR transmission resource within one subframe.
  • CS / OC code direction resource
  • Such a resource index is configured to be continuously assigned across a plurality of RBs within one subframe.
  • the resource allocation unit 11 determines a resource index that identifies a resource (combination of RB and CS / OC) in each subframe to be allocated as an SR transmission resource, and the notification unit 12 Thus, the determined resource index is notified, and each mobile station UE is configured to transmit the SR using the SR transmission resource (in the PUCCH resource) specified by the notified resource index.
  • a code direction resource (CS / OC) that can be allocated as a CQI transmission resource and an A / N transmission resource And code direction resources (CS / OC) that can be allocated as SR transmission resources.
  • N CS (1) is the number of CSs that can be allocated as an A / N transmission resource and an SR transmission resource in a CQI, A / N, and SR mixed RB, and is a multiple of ⁇ shift.
  • ⁇ shift is the amount of “Cyclic Shift” used when CS is calculated.
  • CS code direction resources
  • RB frequency direction resource
  • CS code Within the directional resource
  • OCs orthogonal codes
  • a guard code direction resource is provided. Further, the guard code direction resource (CS) may be provided between code direction resources (CS) that can be allocated as CQI transmission resources.
  • CS code direction resource
  • CS / OC code direction resource
  • FIG. 9 shows a resource index assigned to a code direction resource (CS) that can be allocated as a CQI transmission resource in a mixed CQI, A / N, and SR RB, and an A / N transmission resource and an SR transmission resource.
  • CS code direction resource
  • the code direction resource (CS / OC) that can be allocated as an A / N transmission resource and an SR transmission resource is a dynamic scheduling delivery confirmation signal transmission resource (for Dynamic Scheduling A / N transmission).
  • Resource hereinafter DS A / N transmission resource
  • semi-persistent scheduling acknowledgment signal transmission resource Semi-Persistent Scheduling A / N transmission resource, SPS A / N transmission resource
  • SR transmission resource Can be assigned (useable).
  • semi-persistent scheduling (hereinafter referred to as SPS) is scheduling configured to periodically allocate fixed resources (for example, PDSCH resources and PDUCH resources) to the mobile station UE.
  • the dynamic scheduling (hereinafter referred to as DS) is scheduling configured to allocate resources (for example, PDSCH resources, PDUCH resources, etc.) to the mobile station UE in each subframe.
  • the SPS A / N transmission resource is a resource for transmitting A / N for downlink data transmitted via the PDSCH scheduled by the SPS, and the DS A / N transmission resource is scheduled by the DS. This is a resource for transmitting A / N for downlink data transmitted via the PDSCH.
  • the resource allocation unit 11 uses the DS A / N among the CS / OCs that can be used in the CQI, A / N, and SR mixed RBs allocated as SR transmission resources.
  • the remaining CS / OC other than the CS / OC that can be used as a transmission resource may be configured to be a CS / OC that can be used as an SPS A / N transmission resource or an SR transmission resource.
  • the number of CS / OCs required for the DS A / N transmission resource is fixedly determined by the system bandwidth. For example, when the system bandwidth is “5 MHz”, the number of CS / OCs required for the DS A / N transmission resource is “20”.
  • the resource allocation unit 11 when the resource allocation unit 11 is arranged in the order of the resource index, the CS / OC that can be used as a DS A / N transmission resource from the top resource index is used, and the remaining CS / OCs are used.
  • CS / OCs that can be used as SPS A / N transmission resources or SR transmission resources may be used.
  • the SR transmission frequency is low, interference is caused by inserting a CS / OC that can be used as an SR transmission resource between CS / OCs that can be used as an SPS A / N transmission resource. Can be reduced.
  • the resource allocation unit 11 is configured to determine the CS / OC to be allocated as the SR transmission resource after determining the subframe and RB to be allocated as the SR transmission resource.
  • the resource allocation unit 11 may be configured to determine an RB to be allocated as an SR transmission resource based on the CS / OC usage status in each RB.
  • the resource allocation unit 11 may be configured to allocate as SR transmission resources in order from the RB with the smallest number of CS / OCs in use in each subframe.
  • the resource allocation unit 11 may be configured to allocate as SR transmission resources in order from the RB having the largest number of usable CS / OCs in each subframe.
  • the resource allocation unit 11 may be configured such that a CS / OC that has been released for a certain period after being released in each subframe is a usable CS / OC.
  • the resource allocation unit 11 may be configured to allocate as SR transmission resources in order from the RB with the smallest CS / OC usage rate in each subframe.
  • the usage rate of CS / OC in each RB may be calculated based on the number of OCs).
  • W SR and W SPS A / N are weighting coefficients determined in consideration of the transmission frequency of SR and SPS A / N.
  • the resource allocation unit 11 is based on the usage status of the CS / OC used as the SPS A / N transmission resource in each RB and the usage status of the CS / OC used as the SR transmission resource.
  • the RB to be allocated as the SR transmission resource is determined.
  • the resource allocation unit 11 is the remaining CS / OC other than the CS / OC that can be used as a DS A / N transmission resource among the CS / OCs that can be used in the CQI, A / N, and SR mixed RB.
  • the CS / OCs the CS / OC assigned with the odd resource index is assigned as the SR transmission resource in order from the CS / OC assigned with the smallest resource index. Also good.
  • the CS / OC assigned with an even number of resource indexes is assigned as the SPS A / N transmission resource in order from the CS / OC assigned the largest resource index.
  • the number of CS / OCs used as SR transmission resources is larger than the number of CS / OCs used as SPS A / N transmission resources, it is the smallest.
  • the CS / OC assigned with an even number of resource indexes may be allocated in order from the CS / OC assigned with the resource index as the SR transmission resource.
  • the “resource ratio” indicating the ratio between the number of CS / OCs used as SR transmission resources and the number of CS / OCs used as SPS A / N transmission resources can be adjusted.
  • the resource index for specifying the CS / OC allocated as the SR transmission resource is as follows.
  • N start SR + 2i (i 0, 1,..., Ceil (N total / 2) ⁇ 1)
  • N start SR + 2j + 1 (j 0, 1,..., N SR -ceil (N total / 2) ⁇ 1)
  • the resource index for specifying the CS / OC allocated as the SPS A / N transmission resource is as follows.
  • N start SR is the smallest resource index of CS / OC that can be used as an SR transmission resource
  • N SR is the number of CS / OCs that can be used as an SR transmission resource
  • N total is , CQI, A / N, and the number of remaining CS / OCs other than the CS / OC that can be used as the DS A / N transmission resource among the CS / OCs that can be used in the mixed RB.
  • the CS / OC assigned with an even number of resource indexes may be allocated as SR transmission resources in order from the CS / OC assigned with the smallest resource index.
  • the CS / OC assigned with the odd resource index is assigned as the SPS A / N transmission resource in order from the CS / OC assigned with the largest resource index.
  • the resource allocation unit 11 includes the remaining CS / OCs other than the CS / OC that can be used as the DS A / N transmission resource among the CS / OCs that can be used in the CQI, A / N, and SR mixed RBs.
  • the CS / OC assigned with an even number of resource indexes may be allocated in order from the CS / OC assigned with the largest resource index as the SR transmission resource.
  • the CS / OC assigned with the odd resource index is assigned as the SPS A / N transmission resource in order from the CS / OC assigned the smallest resource index.
  • the resource allocator 11 includes the remaining CS / OCs other than the CS / OC that can be used as the DS A / N transmission resource among the CS / OCs that can be used in the CQI, A / N, and SR mixed RBs.
  • the CS / OC assigned with the odd resource index may be allocated in order from the CS / OC assigned with the largest resource index as the SR transmission resource.
  • the CS / OC assigned with the even resource index is assigned as the SPS A / N transmission resource in order from the CS / OC assigned the smallest resource index.
  • the SR transmission resources in each RB are assigned to the mobile station UE in order from the odd CS / OC in order from the CS / OC to which the smallest resource index is assigned, and then the smallest resource index is given.
  • the mobile stations UE are allocated in order from the even CS / OC in order, starting from the CS / OC.
  • the CS / OC allocated as the SR transmission resource may be allocated by round robin.
  • FIG. 12 shows a case where N start SR is an even number and the number of CS / OCs used as SR transmission resources is larger than the number of CS / OCs used as SPS A / N transmission resources.
  • An example of the allocation order of CS / OCs that can be used as resources for transmitting SRs will be described.
  • step S101 the radio base station eNB determines whether there is a free resource that can be allocated as an SR transmission resource in the PUCCH resource.
  • the radio base station eNB proceeds to the process of step S102.
  • the radio base station eNB fails to allocate the SR transmission resource. To do.
  • step S102 the radio base station eNB obtains the minimum value N min of the resource usage rate (CS / OC usage rate) in the RB including free resources that can be allocated as SR transmission resources.
  • p (k) is a resource usage rate in RB # k (kth RB).
  • the radio base station eNB increments “k” by one until the total number of RBs in the subframe is exceeded in step S105. Return to operation.
  • M k SR is the number of SR transmission resources used in the k-th RB
  • N k SR is the number of all SR transmission resources available in the k-th RB.
  • step S108 the radio base station eNB determines whether or not the nth resource (CS / OC) in RB # k is usable.
  • the radio base station eNB determines that the nth resource (CS / OC) in RB # k is usable, in step S109, the radio base station eNB uses the nth resource (in RB # k) as the SR transmission resource. CS / OC).
  • the radio base station eNB increments “n” by one in step S110, and in step S111. , “N> N k SR ” is determined.
  • the radio base station eNB when determining that "n> N k SR" holds, the process returns to the operation of step S105, if it is determined that "n> N k SR" is not established, the flow returns to the operation of step S108.
  • the radio base station eNB determines the subframe and RB to be allocated as SR transmission resources, and then determines the CS / OC to be allocated as SR transmission resources. Therefore, the influence of interference can be suppressed by reducing the number of CS / OCs allocated as SR transmission resources in the same RB.
  • the first feature of the present embodiment is a radio base station eNB, which is an SR transmission resource (scheduling request) for transmitting scheduling for uplink data communication to each mobile station UE (SR transmission resource (Subframe (time direction resource), RB (frequency direction resource), and CS / OC (code direction resource) to be allocated as scheduling request transmission resources), that is, resources in each subframe to be allocated as SR transmission resources
  • the resource allocation unit 11 is configured to determine a resource index that specifies (a combination of frequency direction resources and code direction resources), and the resource allocation unit 11 assigns subframes and RBs to be allocated as SR transmission resources. After the decision, the SR transmission And summarized in that it is configured to determine a CS / OC assigned as over scan.
  • the resource allocation unit 11 may be configured to determine an RB to be allocated as an SR transmission resource based on the usage status of CS / OC in each RB.
  • the resource allocation unit 11 may be configured to allocate as SR transmission resources in order from the RB with the smallest number of CS / OCs in use in each subframe. .
  • the resource allocation unit 11 may be configured to allocate as SR transmission resources in order from the RB having the largest number of usable CS / OCs in each subframe. .
  • the resource allocation unit 11 may be configured to allocate as SR transmission resources in order from the RB with the smallest CS / OC usage rate in each subframe.
  • the resource allocation unit 11 may be configured such that a CS / OC that has passed for a certain period of time after being released in each subframe is used as a usable CS / OC. Good.
  • SPS A / N transmission resources are scheduled by SPS (semi-persistent scheduling) and are transmitted via PDSCH (downlink data channel).
  • This is a resource for transmitting A / N (acknowledgement signal) for transmitted downlink data
  • a DS A / N transmission resource (dynamic scheduling acknowledgment signal transmission resource) is scheduled by DS (dynamic scheduling).
  • the resource allocation unit 11 is a resource for transmitting A / N for downlink data transmitted via the PDSCH, and the resource allocation unit 11 uses the DS A of the CS / OCs that can be used in the RB allocated as the SR transmission resource.
  • the remaining CS / OC except available CS / OC as transmission resource may be configured so as to SPS A / N can be used as transmission resource or SR transmission resource CS / OC.
  • the resource allocation unit 11 uses the CS / OC used as the SPS A / N transmission resource in each RB and the CS / OC used as the SR transmission resource. May be configured to determine an RB to be allocated as an SR transmission resource based on the usage status.
  • the resource allocation unit 11 is assigned the smallest resource index (number) among the remaining CS / OCs other than the CS / OC that can be used as a DS A / N transmission resource.
  • the CS / OCs to which even-numbered resource indexes (even-numbered numbers) are assigned in order from the CS / OCs that are assigned may be configured to be allocated as SR transmission resources.
  • the resource allocation unit 11 is assigned the smallest resource index (number) among the remaining CS / OCs other than the CS / OC that can be used as a DS A / N transmission resource.
  • the CS / OC assigned with an odd resource index (odd number) may be allocated in order from the CS / OC that is assigned as the SR transmission resource.
  • the resource allocation unit 11 is assigned the largest resource index (number) among the remaining CS / OCs other than the CS / OC that can be used as a DS A / N transmission resource.
  • the CS / OCs to which even-numbered resource indexes (even-numbered numbers) are assigned in order from the CS / OCs that are assigned may be configured to be allocated as SR transmission resources.
  • the resource allocation unit 11 is assigned the largest resource index (number) among the remaining CS / OCs other than the CS / OC that can be used as a DS A / N transmission resource.
  • the CS / OC assigned with an odd resource index (odd number) may be allocated in order from the CS / OC that is assigned as the SR transmission resource.
  • a second feature of the present embodiment is a mobile communication method, which is a process A for determining a subframe, an RB, and a CS / OC to be allocated as an SR transmission resource for each mobile station UE, and an SR transmission A process B for notifying each mobile station UE of subframes, RBs, and CS / OCs allocated as resources, and after determining subframes and RBs to be allocated as SR transmission resources in process A
  • the gist is to determine the CS / OC to be allocated as the SR transmission resource.
  • radio base station eNB and the mobile station UE described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, and Hard Disk). Alternatively, it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • the storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Further, such a storage medium and a processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB or the mobile station UE. Further, the storage medium and the processor may be provided as a discrete component in the radio base station eNB or the mobile station UE.
  • FIG. 13 is as follows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本発明に係る無線基地局eNBは、各移動局UEに対して、SR送信用リソースとして割り当てる時間方向リソースと周波数方向リソースとコード方向リソースとを決定するように構成されているリソース割当部11を具備し、リソース割当部11は、SR送信用リソースとして割り当てる時間方向リソース及び周波数方向リソースを決定した後、SR送信用リソースとして割り当てるコード方向リソースを決定するように構成されている。

Description

無線基地局及び移動通信方法
 本発明は、無線基地局及び移動通信方法に関する。
 3GPPで規定されているLTE(Long Term Evolution)方式の移動通信システムでは、各移動局UEは、PUCCH(Physical Uplink Control Channel、物理上り制御チャネル)を介して、無線基地局eNBに対して、上りデータ通信についてのスケジューリングを要求するスケジューリング要求(Scheduling Request、以下、SR)を送信するように構成されている。
 しかしながら、3GPPでは、各移動局UEに対するSR送信用リソースの割り当て方法について規定されていないため、上述の移動通信システムにおいて、SR送信用リソースが適切に割り当てられない場合があるという問題点があった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、SR送信用リソースを適切に割り当てることができる無線基地局及び移動通信方法を提供することを目的とする。
 本発明の第1の特徴は、無線基地局であって、各移動局に対して、上りデータ通信についてのスケジューリングを要求するスケジューリング要求を送信するためのスケジューリング要求送信用リソースとして割り当てる時間方向リソースと周波数方向リソースとコード方向リソースとを決定するように構成されているリソース割当部を具備し、前記リソース割当部は、前記スケジューリング要求送信用リソースとして割り当てる時間方向リソース及び周波数方向リソースを決定した後、該スケジューリング要求送信用リソースとして割り当てる前記コード方向リソースを決定するように構成されていることを要旨とする。
 本発明の第2の特徴は、移動通信方法であって、各移動局に対して、上りデータ通信についてのスケジューリングを要求するスケジューリング要求を送信するためのスケジューリング要求送信用リソースとして割り当てる時間方向リソースと周波数方向リソースとコード方向リソースとを決定する工程Aと、前記スケジューリング要求送信用リソースとして割り当てられた前記時間方向リソースと前記周波数方向リソースと前記コード方向リソースとを、各移動局に対して通知する工程Bとを有し、前記工程Aにおいて、前記スケジューリング要求送信用リソースとして割り当てる時間方向リソース及び周波数方向リソースを決定した後、該スケジューリング要求送信用リソースとして割り当てる前記コード方向リソースを決定することを要旨とする。
 以上説明したように、本発明によれば、SR送信用リソースを適切に割り当てることができる無線基地局及び移動通信方法を提供することができる。
図1は、本発明の第1の実施形態に係る移動通信システムの全体構成図である。 図2は、本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 図3は、本発明の第1の実施形態に係る無線基地局によって割り当てられたSR送信用サブフレームの一例について説明するための図である。 図4は、本発明の第1の実施形態に係る無線基地局によるPUCCH用リソースの割り当て方法について説明するための図である。 図5は、本発明の第1の実施形態に係る無線基地局によって割り当てられたPUCCH用リソース内のリソースブロックについて説明するための図である。 図6は、本発明の第1の実施形態に係る無線基地局によって、CQI、A/N及びSRを送信するために、PUCCH用リソース内のリソースブロックを割り当てる方法について説明するための図である。 図7は、本発明の第1の実施形態に係る無線基地局によって、PUCCH用リソース内のリソースブロックのうち、A/N及びSRを送信するために割り当てられたリソースブロックについて説明するための図である。 図8は、本発明の第1の実施形態に係る無線基地局によって、PUCCH用リソース内のリソースブロックのうち、CQI、A/N及びSRを混在して送信するため割り当てられたリソースブロックについて説明するための図である。 図9は、本発明の第1の実施形態に係る無線基地局によって割り当てられるPUCCH用リソース内のコード方向リソースの一例について説明するための図である。 図10は、本発明の第1の実施形態に係る無線基地局によって、SR送信用リソースを割り当てる方法について説明するための図である。 図11は、本発明の第1の実施形態に係る無線基地局によって、SR送信用リソースを割り当てる方法について説明するための図である。 図12は、本発明の第1の実施形態に係る無線基地局によって、SR送信用リソースを割り当てる方法について説明するための図である。 図13は、本発明の第1の実施形態に係る無線基地局によるSR送信用リソースを割り当てる方法について示すフローチャート図である。
(本発明の第1の実施形態に係る移動通信システムの構成)
 図1乃至図12を参照して、本発明の第1の実施形態に係る移動通信システムの構成について説明する。
 本実施形態に係る移動通信システムは、LTE方式の移動通信システムであって、本実施形態に係る移動通信システムでは、図1に示すように、移動局UEが、PUCCHを介して、無線基地局eNBに対して、下りリンクにおける受信品質を通知するために用いるべき受信品質を示すCQI(Channel Quality Indicator)や、下りデータに対するACK/NACK(以下、A/N)や、SR等を送信するように構成されている。
 図2に示すように、無線基地局eNBは、リソース割当部11と、通知部12とを具備している。
 リソース割当部11は、無線基地局eNB配下の各セルにおいて、所定の物理チャネル用リソースを割り当てるように構成されている。
 例えば、リソース割当部11は、無線基地局eNB配下の各セルにおいて、上り物理チャネル用リソースとして、PUCCH用リソースや、PUSCH(Physical Uplink Shared Channel、物理上り共有チャネル)用リソース等を割り当てるように構成されている。
 また、リソース割当部11は、無線基地局eNB配下の各セルにおいて、下り物理チャネル用リソースとして、PDCCH(Physical Downlink Control Channel、物理下り制御チャネル)用リソースや、PDSCH(Physical Downlink Shared Channel、物理下り共有チャネル)用リソース等を割り当てるように構成されている。
 ここで、リソース割当部11は、PUCCH用リソースの中から、CQI送信用リソースやA/N送信用リソースやSR送信用リソースを割り当てるように構成されている。
 リソース割当部11によるリソースの割り当て動作の具体例については後述する。
 通知部12は、無線基地局eNB配下の各セルにおいて、リソース割当部11によって割り当てられたリソースを通知するように構成されている。
 具体的には、通知部12は、RRCメッセージで、各移動局UEに対して、CQI送信用リソースやA/N送信用リソースやSR送信用リソースを通知するように構成されている。
 以下、リソース割当部11によるリソースの割り当て動作の具体例について説明する。
 具体的には、リソース割当部11は、各移動局UEに対してSR送信用リソースとして割り当てる時間方向リソースと周波数方向リソースとコード方向リソースを決定するように構成されている。
 図3に示すように、リソース割当部11は、各移動局UEに対してSR送信用リソースとして割り当てる時間方向リソースとして、SRを送信するサブフレームを決定するように構成されていてもよい。
 例えば、図3に示すように、SRを送信するサブフレームは、SRの送信周期及び無線フレームの先頭からのオフセットによって決定される。
 図4及び図5に示すように、リソース割当部11は、システム帯域幅における両端のリソースブロックから順に、PUCCH用リソースブロックとして割り当て、PUCCH用リソースブロックとして割り当てられたリソースブロックの内側のリソースブロックを、PUSCH用リソースブロックとして割り当てるように構成されている。
 ここで、リソースブロック(Resource Block、以下、RB)は、7OFDMシンボルと12サブキャリアとによって構成されている。
 なお、図4に示すように、各PUCCH用RBでは、コード多重が行われるように構成されている。したがって、リソース割当部11は、PUCCH用リソースとして、時間方向リソースと周波数方向リソースとコード方向リソースとを割り当てるように構成されている。
 また、リソース割当部11は、1つのサブフレーム内の前半部分(スロット)と後半部分(スロット)との間で、図4に示すような「Intra‐subframe frequency hopping」によって、PUCCH用リソースを割り当てるように構成されている。
 図5に示すように、リソース割当部11は、同一のRB番号が付与されている2個のRBを、同一のPUCCH用RBとして割り当てるように構成されている。
 図6に示すように、リソース割当部11は、PUCCH用RBとして割り当てられているRBのうち、若いRB番号が付与されているものから順に、CQI送信用RBとして割り当て、残りのRBを、A/N送信用RB及びSR送信用RBとして割り当てるように構成されている。
 なお、図6に示すように、PUCCH用RBの中には、CQI送信用RBであり、A/N送信用RBであり、かつ、SR送信用RBである「CQI、A/N、SR混在RB」が存在してもよい。
 リソース割当部11は、各移動局UEに対して、PUCCH用RBとして割り当てられているRBの中から、SR送信用リソースとして割り当てるRB(周波数方向リソース)を決定するように構成されている。
 また、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソースは、図7に示すように、各RB内で、複数(例えば、3個)のOC(Orthogonal Code)及び「Cyclic Shift」の関係にあり互いに直交する複数(例えば、12個)の系列(Cyclic Sequence、以下、CS)の組み合わせ(以下、CS/OC)によって多重されている。
 図7に示すように、かかる1サブフレーム内においてA/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)には、リソースインデックス(Resource Index)が付与されている。かかるリソースインデックスは、1サブフレーム内で、複数のRBを跨いで連続して付与されるように構成されている。
 すなわち、リソース割当部11は、SR送信用リソースとして割り当てる各サブフレーム内のリソース(RBとCS/OCとの組み合わせ)を特定するリソースインデックスを決定し、通知部12は、各移動局UEに対して、決定したリソースインデックスを通知し、各移動局UEは、通知されたリソースインデックスによって特定されるSR送信用リソース(PUCCH用リソース内)を用いて、SRを送信するように構成されている。
 また、CQI、A/N、SR混在RB#NRB (2)では、図8に示すように、CQI送信用リソースとして割り当て可能なコード方向リソース(CS/OC)と、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)とが存在する。
 ここで、「NCS (1)」は、CQI、A/N、SR混在RBにおいて、A/N送信用リソース及びSR送信用リソースとして割り当て可能なCSの数であり、Δshiftの倍数である。Δshiftは、CSを算出される際に用いられた「Cyclic Shift」の量である。
 図8の例では、A/N送信用リソース及びSR送信用リソースとして、1つの周波数方向リソース(RB)内で、4個のコード方向リソース(CS)が多重可能であり、かつ、1つのコード方向リソース(CS)内で、3個のOC(直交コード)が多重可能である。
 なお、CQI送信用リソースとして割り当て可能なコード方向リソース(CS)と、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS)との間には、干渉を避けるために、ガード用コード方向リソース(CS)が設けられている。また、CQI送信用リソースとして割り当て可能なコード方向リソース(CS)間に、かかるガード用コード方向リソース(CS)が設けられていてもよい。
 CQI送信用リソースとして割り当て可能なコード方向リソース(CS)に付与されるリソースインデックスと、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)に付与されるリソースインデックスとは、別々のものである。
 図9に、CQI、A/N、SR混在RB内で、CQI送信用リソースとして割り当て可能なコード方向リソース(CS)に付与されるリソースインデックス、及び、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)に付与されるリソースインデックスの一例を示す。
 また、図10に示すように、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)は、ダイナミックスケジューリング送達確認信号送信用リソース(Dynamic Scheduling A/N送信用リソース、以下、DS A/N送信用リソース)、セミパーシステントスケジューリング送達確認信号送信用リソース(Semi‐Persistent Scheduling A/N送信用リソース、以下、SPS A/N送信用リソース)及びSR送信用リソースとして割り当て可能(使用可能)である。
 ここで、セミパーシステントスケジューリング(以下、SPS)は、移動局UEに対して、固定的なリソース(例えば、PDSCH用リソースやPDUCH用リソース等)を周期的に割り当てるように構成されているスケジューリングであり、ダイナミックスケジューリング(以下、DS)は、移動局UEに対して、各サブフレームにおいて、リソース(例えば、PDSCH用リソースやPDUCH用リソース等)を割り当てるように構成されているスケジューリングである。
 また、SPS A/N送信用リソースは、SPSによってスケジューリングされたPDSCHを介して送信され下りデータに対するA/Nを送信するためのリソースであり、DS A/N送信用リソースは、DSによってスケジューリングされPDSCHを介して送信された下りデータに対するA/Nを送信するためのリソースである。
 具体的には、図10に示すように、リソース割当部11は、SR送信用リソースとして割り当てられたCQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCを、SPS A/N送信用リソース或いはSR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 ここで、DS A/N送信用リソースに必要なCS/OCの数は、システム帯域幅によって固定的に決定される。例えば、システム帯域幅が「5MHz」である場合には、DS A/N送信用リソースに必要なCS/OCの数は「20」である。
 また、図10に示すように、リソース割当部11は、リソースインデックスの順に並べた場合、先頭のリソースインデックスからDS A/N送信用リソースとして使用可能なCS/OCとし、残りのCS/OCを、交互に、SPS A/N送信用リソース或いはSR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 なお、SRの送信頻度が少ないため、このように、SPS A/N送信用リソースとして使用可能なCS/OCの間に、SR送信用リソースとして使用可能なCS/OCを挿入することによって、干渉を低減することができる。
 上述のように、リソース割当部11は、SR送信用リソースとして割り当てるサブフレーム及びRBを決定した後、SR送信用リソースとして割り当てるCS/OCを決定するように構成されている。
 例えば、リソース割当部11は、各RBにおけるCS/OCの使用状況に基づいて、SR送信用リソースとして割り当てるRBを決定するように構成されていてもよい。
 具体的には、リソース割当部11は、各サブフレーム内において、使用中のCS/OCの数が少ないRBから順に、SR送信用リソースとして割り当てるように構成されていてもよい。
  また、リソース割当部11は、各サブフレーム内において、使用可能なCS/OCの数が多いRBから順に、SR送信用リソースとして割り当てるように構成されていてもよい。
 ここで、リソース割当部11は、各サブフレーム内において、解放された後に一定期間経過したCS/OCを、使用可能なCS/OCとするように構成されていてもよい。
 或いは、リソース割当部11は、各サブフレーム内において、CS/OCの使用率が小さいRBから順に、SR送信用リソースとして割り当てるように構成されていてもよい。
 例えば、リソース割当部11は、(CS/OCの使用率)=(各RB内におけるリソース使用量)÷(各RB内におけるSR送信用リソース及びSPS A/N送信用リソースとして割り当て可能なCS/OCの数)によって、各RBにおけるCS/OCの使用率を算出するように構成されていてもよい。
 ここで、各RB内におけるリソース使用量は、(各RB内におけるリソース使用量)=WSR×(各RB内においてSR送信用リソースとして使用されているCS/OCの数)+WSPS A/N×(SPS A/N送信用リソースとして使用されているCS/OCの数)によって算出されてもよい。
 なお、WSR及びWSPS A/Nは、SR及びSPS A/Nの送信頻度を考慮して決定される重み付け係数である。
 すなわち、かかる場合、リソース割当部11は、各RBにおけるSPS A/N送信用リソースとして使用されているCS/OCの使用状況及びSR送信用リソースとして使用されているCS/OCの使用状況に基づいて、SR送信用リソースとして割り当てるRBを決定するように構成されている。
 この結果、同一のRB内の干渉をできるだけ抑えることができる。
 図11に示すように、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 かかる場合、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして割り当てていくように構成されている。
 ここで、図11に示すように、SR送信用リソースとして使用されるCS/OCの数が、SPS A/N送信用リソースとして使用されるCS/OCの数よりも多い場合には、最も小さいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 この結果、SR送信用リソースとして使用されるCS/OCの数とSPS A/N送信用リソースとして使用されるCS/OCの数との比率を示す「リソース比率」を調整することができる。
 図11の例において、SR送信用リソースとして割り当てられるCS/OCを特定するリソースインデックスは、以下の通りである。
 Nstart SR+2i(i=0,1,…,ceil(Ntotal/2)-1)
 Nstart SR+2j+1(j=0,1,…,NSR―ceil(Ntotal/2)-1)
 また、図11の例において、SPS A/N送信用リソースとして割り当てられるCS/OCを特定するリソースインデックスは、以下の通りである。
 Nstart SR+2j+1(j=NSR―ceil(Ntotal/2),…,floor(Ntotal/2)-1)
 ここで、Nstart SRは、SR送信用リソースとして使用可能なCS/OCの最も小さいリソースインデックスであり、NSRは、SR送信用リソースとして使用可能なCS/OCの数であり、Ntotalは、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCの数である。
 なお、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 かかる場合、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして割り当てていくように構成されている。
 また、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 かかる場合、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして割り当てていくように構成されている。
 さらに、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 かかる場合、リソース割当部11は、CQI、A/N、SR混在RB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして割り当てていくように構成されている。
 また、各RB内のSR送信用リソースは、最も小さいリソースインデックスが付与されているCS/OCから順に、奇数番目のCS/OCから順に移動局UEに割り当て、その後、最も小さいリソースインデックスが付与されているCS/OCから順に、偶数番目のCS/OCから順に移動局UEに割り当てる。
 また、上記割り当ての際、SR送信用リソースとして割り当てるCS/OCは、ラウンドロビンで割り当てるもとのしてもよい。
 図12に、Nstart SRが偶数である場合で、かつ、SR送信用リソースとして使用されるCS/OCの数がSPS A/N送信用リソースとして使用されるCS/OCの数よりも多い場合のSR送信用リソースとして使用可能なCS/OCの割り当て順序の例について示す。
(本発明の第1の実施形態に係る移動通信システムの動作)
 以下、図13を参照して、本実施形態に係る移動通信システムの動作について、具体的には、本実施形態に係る無線基地局eNBによるSR送信用リソースの割り当て動作について説明する。
 図13に示すように、ステップS101において、無線基地局eNBは、PUCCH用リソース内で、SR送信用リソースとして割り当て可能な空きリソースが存在するか否かについて判定する。
 かかる空きリソースが存在すると判定された場合、無線基地局eNBは、ステップS102の処理に進み、かかる空きリソースが存在しないと判定された場合、無線基地局eNBは、SR送信用リソースの割り当てに失敗する。
 ステップS102において、無線基地局eNBは、SR送信用リソースとして割り当て可能な空きリソースを含むRB内で、リソース使用率(CS/OCの使用率)の最小値Nminを求める。
 無線基地局eNBは、ステップS103において、「k=0」と設定し、ステップS104において、「p(k)>Nmin」が成立するか否かについて判定する。ここで、p(k)は、RB#k(k番目のRB)におけるリソース使用率である。
 無線基地局eNBは、「p(k)>Nmin」が成立すると判定した場合、ステップS105において、サブフレーム内のRBの合計数を超えるまで「k」を1つだけインクリメントし、ステップS104の動作に戻る。
 一方、無線基地局eNBは、「p(k)>Nmin」が成立しないと判定した場合、ステップS106において、かかるRB#kを、SR送信用リソースとして割り当て、ステップS107において、「n = (M SR+1) mod N SR」によって「n」を算出する。
 ここで、M SRは、k番目のRB内で使用されているSR送信用リソースの数であり、N SRは、k番目のRB内における使用可能な全SR送信用リソースの数である。
 ステップS108において、無線基地局eNBは、RB#k内のn番目のリソース(CS/OC)が使用可能であるか否かについて判定する。
 無線基地局eNBは、RB#k内のn番目のリソース(CS/OC)が使用可能であると判定した場合に、ステップS109において、SR送信用リソースとしてRB#k内のn番目のリソース(CS/OC)を割り当てる。
 一方、無線基地局eNBは、RB#k内のn番目のリソース(CS/OC)が使用可能ではないと判定した場合に、ステップS110において、「n」を1つだけインクリメントし、ステップS111において、「n>N SR」が成立するか否かについて判定する。
 無線基地局eNBは、「n>N SR」が成立すると判定した場合、ステップS105の動作に戻り、「n>N SR」が成立しないと判定した場合、ステップS108の動作に戻る。
(本発明の第1の実施形態に係る移動通信システムの作用・効果)
 本発明の第1の実施形態に係る移動通信システムによれば、無線基地局eNBにおいて、SR送信用リソースとして割り当てるサブフレーム及びRBを決定した後に、SR送信用リソースとして割り当てるCS/OCを決定するように構成されているため、同一のRB内でSR送信用リソースとして割り当てるCS/OCの数を低減することによって、干渉の影響を抑制することができる。
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。
 本実施形態の第1の特徴は、無線基地局eNBであって、各移動局UEに対して、上りデータ通信についてのスケジューリングを要求するSR(スケジューリング要求)を送信するためのSR送信用リソース(スケジューリング要求送信用リソース)として割り当てるサブフレーム(時間方向リソース)とRB(周波数方向リソース)とCS/OC(コード方向リソース)とを決定する、すなわち、SR送信用リソースとして割り当てる各サブフレーム内のリソース(周波数方向リソース及びコード方向リソースの組み合わせ)を特定するリソースインデックスを決定するように構成されているリソース割当部11を具備し、リソース割当部11は、SR送信用リソースとして割り当てるサブフレーム及びRBを決定した後、SR送信用リソースとして割り当てるCS/OCを決定するように構成されていることを要旨とする。
 本実施形態の第1の特徴において、リソース割当部11は、各RBにおけるCS/OCの使用状況に基づいて、SR送信用リソースとして割り当てるRBを決定するように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、各サブフレーム内において、使用中のCS/OCの数が少ないRBから順に、SR送信用リソースとして割り当てるように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、各サブフレーム内において、使用可能なCS/OCの数が多いRBから順に、SR送信用リソースとして割り当てるように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、各サブフレーム内において、CS/OCの使用率が小さいRBから順に、SR送信用リソースとして割り当てるように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、各サブフレーム内において、解放された後に一定期間経過したCS/OCを、使用可能なCS/OCとするように構成されていてもよい。
 本実施形態の第1の特徴において、SPS A/N送信用リソース(セミパーシステントスケジューリング送達確認信号送信用リソース)は、SPS(セミパーシステントスケジューリング)によってスケジューリングされPDSCH(下りデータチャネル)を介して送信された下りデータに対するA/N(送達確認信号)を送信するためのリソースであり、DS A/N送信用リソース(ダイナミックスケジューリング送達確認信号送信用リソース)は、DS(ダイナミックスケジューリング)によってスケジューリングされPDSCHを介して送信された下りデータに対するA/Nを送信するためのリソースであり、リソース割当部11は、SR送信用リソースとして割り当てられたRB内で使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCを、SPS A/N送信用リソース或いはSR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、各RBにおけるSPS A/N送信用リソースとして使用されているCS/OCの使用状況及びSR送信用リソースとして使用されているCS/OCの使用状況に基づいて、SR送信用リソースとして割り当てるRBを決定するように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックス(番号)が付与されているCS/OCから順に、偶数のリソースインデックス(偶数番号)が付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックス(番号)が付与されているCS/OCから順に、奇数のリソースインデックス(奇数番号)が付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックス(番号)が付与されているCS/OCから順に、偶数のリソースインデックス(偶数番号)が付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 本実施形態の第1の特徴において、リソース割当部11は、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックス(番号)が付与されているCS/OCから順に、奇数のリソースインデックス(奇数番号)が付与されているCS/OCを、SR送信用リソースとして割り当てていくように構成されていてもよい。
 本実施形態の第2の特徴は、移動通信方法であって、各移動局UEに対して、SR送信用リソースとして割り当てるサブフレームとRBとCS/OCとを決定する工程Aと、SR送信用リソースとして割り当てられたサブフレームとRBとCS/OCとを、各移動局UEに対して通知する工程Bとを有し、工程Aにおいて、SR送信用リソースとして割り当てるサブフレーム及びRBを決定した後、SR送信用リソースとして割り当てるCS/OCを決定することを要旨とする。
 なお、上述の無線基地局eNBや移動局UEの動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD‐ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNBや移動局UE内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNBや移動局UE内に設けられていてもよい。
[規則91に基づく訂正 31.08.2010] 
 尚、図13については以下のとおりである。
Figure WO-DOC-FIGURE-0104
[規則91に基づく訂正 31.08.2010] 
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (13)

  1.  各移動局に対して、上りデータ通信についてのスケジューリングを要求するスケジューリング要求を送信するためのスケジューリング要求送信用リソースとして割り当てる時間方向リソースと周波数方向リソースとコード方向リソースとを決定するように構成されているリソース割当部を具備し、
     前記リソース割当部は、前記スケジューリング要求送信用リソースとして割り当てる時間方向リソース及び周波数方向リソースを決定した後、該スケジューリング要求送信用リソースとして割り当てる前記コード方向リソースを決定するように構成されていることを特徴とする無線基地局。
  2.  前記リソース割当部は、各周波数方向リソースにおけるコード方向リソースの使用状況に基づいて、前記スケジューリング要求送信用リソースとして割り当てる周波数方向リソースを決定するように構成されていることを特徴とする請求項1に記載の無線基地局。
  3.  前記リソース割当部は、各時間方向リソース内において、使用中のコード方向リソースの数が少ない周波数方向リソースから順に、前記スケジューリング要求送信用リソースとして割り当てるように構成されていることを特徴とする請求項2に記載の無線基地局。
  4.  前記リソース割当部は、各時間方向リソース内において、使用可能なコード方向リソースの数が多い周波数方向リソースから順に、前記スケジューリング要求送信用リソースとして割り当てるように構成されていることを特徴とする請求項2に記載の無線基地局。
  5.  前記リソース割当部は、各時間方向リソース内において、コード方向リソースの使用率が小さい周波数方向リソースから順に、前記スケジューリング要求送信用リソースとして割り当てるように構成されていることを特徴とする請求項2に記載の無線基地局。
  6.  前記リソース割当部は、各周波数方向リソースにおいて、解放された後に一定期間経過したコード方向リソースを、前記使用可能なコード方向リソースとするように構成されていることを特徴とする請求項3に記載の無線基地局。
  7.  セミパーシステントスケジューリング送達確認信号送信用リソースは、セミパーシステントスケジューリングによってスケジューリングされ下りデータチャネルを介して送信された下りデータに対する送達確認信号を送信するためのリソースであり、
     ダイナミックスケジューリング送達確認信号送信用リソースは、ダイナミックスケジューリングによってスケジューリングされ下りデータチャネルを介して送信された下りデータに対する送達確認信号を送信するためのリソースであり、
     前記リソース割当部は、前記スケジューリング要求送信用リソースとして割り当てられた前記周波数方向リソース内で使用可能なコード方向リソースのうち、前記ダイナミックスケジューリング送達確認信号送信用リソースとして使用可能なコード方向リソース以外の残りのコード方向リソースを、前記セミパーシステントスケジューリング送達確認信号送信用リソース或いは該スケジューリング要求送信用リソースとして使用可能なコード方向リソースとするように構成されていることを特徴とする請求項1に記載の無線基地局。
  8.  前記リソース割当部は、各周波数方向リソースにおける前記セミパーシステントスケジューリング送達確認信号送信用リソースとして使用されているコード方向リソースの使用状況及び前記スケジューリング要求送信用リソースとして使用されているコード方向リソースの使用状況に基づいて、該スケジューリング要求送信用リソースとして割り当てる周波数方向リソースを決定するように構成されていることを特徴とする請求項7に記載の無線基地局。
  9.  前記リソース割当部は、前記残りのコード方向リソースのうち、最も小さい番号が付与されているコード方向リソースから順に、偶数番号が付与されているコード方向リソースを、前記スケジューリング要求送信用リソースとして割り当てていくように構成されていることを特徴とする請求項7に記載の無線基地局。
  10.  前記リソース割当部は、前記残りのコード方向リソースのうち、最も小さい番号が付与されているコード方向リソースから順に、奇数番号が付与されているコード方向リソースを、前記スケジューリング要求送信用リソースとして割り当てていくように構成されていることを特徴とする請求項7に記載の無線基地局。
  11.  前記リソース割当部は、前記残りのコード方向リソースのうち、最も大きい番号が付与されているコード方向リソースから順に、偶数番号が付与されているコード方向リソースを、前記スケジューリング要求送信用リソースとして割り当てていくように構成されていることを特徴とする請求項7に記載の無線基地局。
  12.  前記リソース割当部は、前記残りのコード方向リソースのうち、最も大きい番号が付与されているコード方向リソースから順に、奇数番号が付与されているコード方向リソースを、前記スケジューリング要求送信用リソースとして割り当てていくように構成されていることを特徴とする請求項7に記載の無線基地局。
  13.  各移動局に対して、上りデータ通信についてのスケジューリングを要求するスケジューリング要求を送信するためのスケジューリング要求送信用リソースとして割り当てる時間方向リソースと周波数方向リソースとコード方向リソースとを決定する工程Aと、
     前記スケジューリング要求送信用リソースとして割り当てられた前記時間方向リソースと前記周波数方向リソースと前記コード方向リソースとを、各移動局に対して通知する工程Bとを有し、
     前記工程Aにおいて、前記スケジューリング要求送信用リソースとして割り当てる時間方向リソース及び周波数方向リソースを決定した後、該スケジューリング要求送信用リソースとして割り当てる前記コード方向リソースを決定することを特徴とする移動通信方法。
PCT/JP2010/055019 2009-03-25 2010-03-24 無線基地局及び移動通信方法 WO2010110284A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/259,008 US20120093123A1 (en) 2009-03-25 2010-03-24 Radio base station and mobile communication method
EP20100756080 EP2413653A1 (en) 2009-03-25 2010-03-24 Radio base station and mobile communication method
CN201080013523XA CN102365895A (zh) 2009-03-25 2010-03-24 无线基站和移动通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009075220A JP5164903B2 (ja) 2009-03-25 2009-03-25 無線基地局及び移動通信方法
JP2009-075220 2009-03-25

Publications (2)

Publication Number Publication Date
WO2010110284A1 WO2010110284A1 (ja) 2010-09-30
WO2010110284A9 true WO2010110284A9 (ja) 2010-12-23

Family

ID=42780978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055019 WO2010110284A1 (ja) 2009-03-25 2010-03-24 無線基地局及び移動通信方法

Country Status (5)

Country Link
US (1) US20120093123A1 (ja)
EP (1) EP2413653A1 (ja)
JP (1) JP5164903B2 (ja)
CN (1) CN102365895A (ja)
WO (1) WO2010110284A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830883B2 (en) * 2010-11-16 2014-09-09 Qualcomm Incorporated Method and apparatus for improving acknowledgement/negative acknowledgement feedback
JP5883248B2 (ja) * 2011-07-27 2016-03-09 京セラ株式会社 無線通信システム、無線基地局、及び無線通信方法
CN104170493B (zh) * 2012-03-23 2018-09-07 联发科技股份有限公司 移动通信网络中分配调度请求资源的方法以及装置
EP3031262B1 (en) 2013-08-07 2020-10-07 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication
CN110999156B (zh) * 2017-08-04 2022-04-12 Lg电子株式会社 用于自主传输的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442741B (zh) * 1997-04-24 2011-04-13 株式会社Ntt都科摩 移动通信方法和移动通信系统
EP1903705B1 (en) * 2005-07-08 2013-05-22 Fujitsu Limited Radio resource assigning method and communication apparatus
JP4430052B2 (ja) * 2006-06-19 2010-03-10 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、ユーザ装置及び送信方法
ES2624999T3 (es) * 2007-08-13 2017-07-18 Godo Kaisha Ip Bridge 1 Dispositivo de transmisión radio y método de transmisión radio
KR101467567B1 (ko) * 2007-08-14 2014-12-04 엘지전자 주식회사 스케줄링 요청 신호의 전송방법
JP4558020B2 (ja) * 2007-08-14 2010-10-06 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法及び通信システム
US9036564B2 (en) * 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system

Also Published As

Publication number Publication date
US20120093123A1 (en) 2012-04-19
JP5164903B2 (ja) 2013-03-21
EP2413653A1 (en) 2012-02-01
CN102365895A (zh) 2012-02-29
JP2010232741A (ja) 2010-10-14
WO2010110284A1 (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
US10869333B2 (en) Systems and methods for mixed grant-free and grant-based uplink transmissions
US20230189330A1 (en) Method for indicating the allocated resources for a harq message in a random access procedure for a low-complexity, narrowband terminal
JP4511611B2 (ja) 無線リソース選択方法、無線基地局及び移動局
JP4410837B2 (ja) 無線リソース選択方法、移動局及び無線基地局
US11616623B2 (en) Method and apparatus for determining channel access procedure in wireless communication system
KR20200013772A (ko) 업링크 통신들을 위한 공동 자원 풀들
JP5222765B2 (ja) 無線基地局及び移動通信方法
WO2010110285A9 (ja) 無線基地局及び移動通信方法
WO2010110284A9 (ja) 無線基地局及び移動通信方法
JP5281453B2 (ja) 無線基地局及び移動通信方法
JP4828628B2 (ja) 無線リソース選択方法、移動局及び無線基地局
JP4751952B2 (ja) 移動通信方法、移動局及び無線基地局

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013523.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4033/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010756080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13259008

Country of ref document: US