WO2010110285A9 - 無線基地局及び移動通信方法 - Google Patents

無線基地局及び移動通信方法 Download PDF

Info

Publication number
WO2010110285A9
WO2010110285A9 PCT/JP2010/055020 JP2010055020W WO2010110285A9 WO 2010110285 A9 WO2010110285 A9 WO 2010110285A9 JP 2010055020 W JP2010055020 W JP 2010055020W WO 2010110285 A9 WO2010110285 A9 WO 2010110285A9
Authority
WO
WIPO (PCT)
Prior art keywords
resource
semi
mobile station
persistent scheduling
sps
Prior art date
Application number
PCT/JP2010/055020
Other languages
English (en)
French (fr)
Other versions
WO2010110285A1 (ja
Inventor
耕平 清嶋
石井 啓之
尚人 大久保
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP10756081.5A priority Critical patent/EP2413654A4/en
Priority to US13/259,030 priority patent/US8724569B2/en
Priority to CN201080013622.8A priority patent/CN102365896B/zh
Publication of WO2010110285A1 publication Critical patent/WO2010110285A1/ja
Publication of WO2010110285A9 publication Critical patent/WO2010110285A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0017Time-frequency-code in which a distinct code is applied, as a temporal sequence, to each frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0019Time-frequency-code in which one code is applied, as a temporal sequence, to all frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to a radio base station and a mobile communication method.
  • each mobile station UE performs semi-translation to a radio base station eNB via a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel.
  • SPS Semi-Persistent Scheduling
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel, downlink data channel
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a radio base station and a mobile communication method capable of appropriately assigning SPS A / N transmission resource candidates.
  • a radio base station configured to allocate a semi-persistent scheduling acknowledgment signal transmission resource candidate to a first mobile station when setting up a semi-persistent scheduling bearer.
  • the semi-persistent scheduling acknowledgment signal transmission resource candidate is transmitted to the downlink data transmitted by the first mobile station through the downlink data channel scheduled by the semi-persistent scheduling.
  • the resource allocation unit is configured to transmit the first mobile station Semi-persistent scale
  • the semi-persistent scheduling acknowledgment signal transmission resource candidate is allocated to the first mobile station based on the allocated number of the predetermined resource consisting of the combination of the frequency direction resource and the code direction resource in the Turing Acknowledgment Signal transmission period.
  • the resource allocating unit selects the resource for the downlink data from among the semi-persistent scheduling acknowledgment signal transmission resource candidates.
  • the gist is that it is configured to select a resource for transmitting the delivery confirmation signal.
  • a second feature of the present invention is a mobile communication system, comprising: a step A of assigning a semi-persistent scheduling delivery confirmation signal transmission resource candidate to a first mobile station when setting up a semi-persistent scheduling bearer.
  • the semi-persistent scheduling acknowledgment signal transmission resource candidate includes the first mobile station for downlink data scheduled by semi-persistent scheduling and transmitted via a downlink data channel.
  • a resource candidate for transmitting the semi-persistent scheduling acknowledgment signal is allocated to the first mobile station based on an allocation number of a predetermined resource including a combination of a frequency direction resource and a code direction resource in a transmission period, and the downlink data
  • the step of selecting a resource for transmitting an acknowledgment signal for the downlink data from the semi-persistent scheduling acknowledgment signal transmission resource candidates is further included. It is summarized as having.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining SPS A / N transmission timing in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a PUCCH resource allocation method by the radio base station according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining resource blocks in a PUCCH resource allocated by the radio base station according to the first embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining SPS A / N transmission timing in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining
  • FIG. 6 is a diagram for explaining a method of allocating resource blocks in PUCCH resources for transmitting CQI, A / N, and SR by the radio base station according to the first embodiment of the present invention.
  • FIG. 7 is a diagram for explaining resource blocks allocated to transmit A / N and SR among resource blocks in a PUCCH resource by the radio base station according to the first embodiment of the present invention. It is.
  • FIG. 8 illustrates resource blocks allocated to transmit CQI, A / N, and SR in a mixed manner among resource blocks in a PUCCH resource by the radio base station according to the first embodiment of the present invention. It is a figure for doing.
  • FIG. 7 is a diagram for explaining resource blocks allocated to transmit A / N and SR among resource blocks in a PUCCH resource by the radio base station according to the first embodiment of the present invention. It is.
  • FIG. 8 illustrates resource blocks allocated to transmit CQI, A / N, and SR in a mixed manner among resource blocks in a PUCCH
  • FIG. 9 is a diagram for explaining an example of the frequency direction and code direction resources in the PUCCH resource allocated by the radio base station according to the first embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a method of allocating SPS A / N transmission resources by the radio base station according to the first embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a method of allocating SPS A / N transmission resources by the radio base station according to the first embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a method of allocating SPS A / N transmission resources by the radio base station according to the first embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a method of allocating SPS A / N transmission resource candidates by the radio base station according to the first embodiment of the present invention.
  • FIG. 14 is a diagram for explaining a method of allocating SPS A / N transmission resource candidates by the radio base station according to the first embodiment of the present invention.
  • FIG. 15 is a diagram for explaining a method of allocating SPS A / N transmission resource candidates by the radio base station according to the first embodiment of the present invention.
  • FIG. 16 is a diagram for explaining a method of allocating SPS A / N transmission resource candidates by the radio base station according to the first embodiment of the present invention.
  • FIG. 17 is a flowchart showing the operation of the radio base station according to the first embodiment of the present invention.
  • FIG. 18 is a flowchart showing an operation of the radio base station according to the first embodiment of the present invention.
  • FIG. 19 is a flowchart showing the operation of the radio base station according to the first embodiment of the present invention.
  • FIG. 20 is a flowchart showing the operation of the radio base station according to the first embodiment of the present invention.
  • the mobile communication system according to the present embodiment is an LTE mobile communication system.
  • the mobile station UE transmits a radio base station via the PUCCH.
  • Scheduling for CQI Channel Quality Indicator
  • ACK / NACK hereinafter, A / N
  • a scheduling request hereinafter referred to as SR or the like for requesting is transmitted.
  • the radio base station eNB includes a resource allocation unit 11 and a notification unit 12.
  • the resource allocation unit 11 is configured to allocate a predetermined physical channel resource in each cell under the radio base station eNB.
  • the resource allocation unit 11 is configured to allocate a PUCCH resource, a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel) resource, or the like as an uplink physical channel resource in each cell under the radio base station eNB. Has been.
  • a PUCCH resource Physical Uplink Shared Channel, physical uplink shared channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the resource allocation unit 11 is configured to allocate PDCCH (Physical Downlink Control Channel, physical downlink control channel) resources, PDSCH resources, and the like as downlink physical channel resources in each cell under the radio base station eNB. Has been.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the resource allocation unit 11 is configured to allocate a CQI transmission resource, an A / N transmission resource, and an SR transmission resource from among the PUCCH resources.
  • the notification unit 12 is configured to notify the resource allocated by the resource allocation unit 11 in each cell under the radio base station eNB.
  • the notification unit 12 is configured to notify each mobile station UE of a CQI transmission resource, an A / N transmission resource, and an SR transmission resource with an RRC message.
  • the mobile station UE is operating in the intermittent reception mode and configured to receive downlink data scheduled by the SPS.
  • “On Duration (intermittent reception period)” is set in the mobile station UE, and the mobile station UE is scheduled by the SPS only through “On Duration” via the PDSCH. It is configured to receive the transmitted downlink data.
  • the mobile station UE is configured to transmit the SPS A / N for the downlink data after a predetermined timing (for example, 4 subframes) from the reception timing of the downlink data.
  • a predetermined timing for example, 4 subframes
  • the reception timing of the downlink data “On Duration” is arbitrary in the mobile station UE, there is a possibility that the transmission timings of the SPS A / N in the plurality of mobile stations UE collide.
  • the resource allocation unit 11 allocates a predetermined number (for example, four) of SPS A / N transmission resource candidates to the mobile station UE when setting up the SPS bearer, and then When the downlink data is scheduled by the SPS, a resource for transmitting the SPS A / N for the downlink data is selected from the SPS A / N transmission resource candidates.
  • a predetermined number for example, four
  • the SPS A / N transmission resource candidate is a predetermined timing (for example, 4 subframes) from the downlink data reception timing of the downlink data scheduled by the mobile station UE and transmitted via the PDSCH.
  • a resource candidate consisting of a combination of a frequency direction resource and a code direction resource for transmitting SPS A / N later.
  • the resource allocation unit 11 allocates resource blocks for PUCCH in order from resource blocks at both ends in the system bandwidth, and sets resource blocks inside the resource blocks allocated as PUCCH resource blocks. , And is configured to be allocated as a PUSCH resource block.
  • a resource block (hereinafter referred to as RB) is composed of 7 OFDM symbols and 12 subcarriers.
  • each PUCCH RB is configured to perform code multiplexing. Therefore, the resource allocation unit 11 is configured to allocate time direction resources, frequency direction resources, and code direction resources as PUCCH resources.
  • the resource allocation unit 11 allocates PUCCH resources between the first half part (slot) and the second half part (slot) in one subframe by “Intra-subframe frequency hopping” as shown in FIG. It is configured as follows.
  • the resource allocation unit 11 is configured to allocate two RBs to which the same RB number is assigned as the same PUCCH RB.
  • the resource allocation unit 11 allocates the remaining RBs as AQs, in order from the RBs allocated as PUCCH RBs, to which the younger RB numbers are assigned, in order from the RBs for CQI transmission. / N transmission RBs and SR transmission RBs are allocated.
  • the PUCCH RB is a CQI transmission RB, an A / N transmission RB, and an SR transmission RB “CQI, A / N, SR mixed” RB "may be present.
  • the resource allocation unit 11 determines an RB (frequency direction resource) that can be allocated as an A / N transmission resource and an SR transmission resource from among RBs allocated as PUCCH RBs to each mobile station UE. Is configured to do.
  • code direction resources that can be allocated as A / N transmission resources and SR transmission resources include a plurality of (for example, three) OCs (Orthogonal Codes) and “Cyclic” in each RB. It is multiplexed by a combination (hereinafter, CS / OC) of a plurality of (for example, 12) sequences (cyclic sequence, hereinafter referred to as CS) that have a “Shift” relationship and are orthogonal to each other.
  • CS / OC a combination of a plurality of (for example, 12) sequences (cyclic sequence, hereinafter referred to as CS) that have a “Shift” relationship and are orthogonal to each other.
  • a resource index (Resource Index) is assigned to a code direction resource (CS / OC) that can be allocated as an A / N transmission resource and an SR transmission resource within one subframe.
  • CS / OC code direction resource
  • Such a resource index is configured to be continuously assigned across a plurality of RBs within one subframe.
  • a code direction resource (CS / OC) that can be allocated as a CQI transmission resource and an A / N transmission resource And code direction resources (CS / OC) that can be allocated as SR transmission resources.
  • N CS (1) is the number of CSs that can be allocated as an A / N transmission resource and an SR transmission resource in a CQI, A / N, and SR mixed RB, and is a multiple of ⁇ shift.
  • ⁇ shift is the amount of “Cyclic Shift” used when CS is calculated.
  • CS code direction resources
  • RB frequency direction resource
  • CS code Within the directional resource
  • OCs orthogonal codes
  • a guard code direction resource is provided. Further, the guard code direction resource (CS) may be provided between code direction resources (CS) that can be allocated as CQI transmission resources.
  • CS code direction resource
  • CS / OC code direction resource
  • FIG. 9 shows resource indexes assigned to code direction resources (CS) that can be allocated as CQI transmission resources in the PUCCH transmission RB, and code direction resources that can be allocated as A / N transmission resources and SR transmission resources.
  • CS code direction resources
  • the code direction resource (CS / OC) that can be allocated as an A / N transmission resource and an SR transmission resource is a dynamic scheduling delivery confirmation signal transmission resource (for Dynamic Scheduling A / N transmission).
  • Resource hereinafter, DS A / N transmission resource
  • SPS A / N transmission resource can be allocated (can be used).
  • SPS is scheduling configured to periodically allocate fixed resources (for example, PDSCH resources, PUSCH resources, etc.) to the mobile station UE, and is based on dynamic scheduling (hereinafter referred to as DS).
  • DS dynamic scheduling
  • the DS A / N transmission resource is a resource for transmitting A / N for downlink data scheduled by the DS and transmitted via the PDSCH.
  • the resource allocation unit 11 can be used as a DS A / N transmission resource among CS / OCs that can be used as an A / N transmission resource and an SR transmission resource.
  • the remaining CS / OC other than CS / OC may be configured to be a CS / OC that can be used as an SPS A / N transmission resource or an SR transmission resource.
  • the number of CS / OCs required for the DS A / N transmission resource is fixedly determined by the system bandwidth. For example, when the system bandwidth is “5 MHz”, the number of CS / OCs required for the DS A / N transmission resource is “20”.
  • the resource allocation unit 11 when the resource allocation unit 11 is arranged in the order of the resource index, the CS / OC that can be used as a DS A / N transmission resource from the top resource index is used, and the remaining CS / OCs are used.
  • CS / OCs that can be used as SPS A / N transmission resources or SR transmission resources may be used.
  • the SR transmission frequency is low, interference is caused by inserting a CS / OC that can be used as an SR transmission resource between CS / OCs that can be used as an SPS A / N transmission resource. Can be reduced.
  • the resource allocation unit 11 is a CS / OC that can be used as an A / N transmission resource and an SR transmission resource, but is not a CS / OC that can be used as a DS A / N transmission resource. If the smallest resource index among the remaining CS / OCs is an odd number, the CS / OCs to which the odd resource index is assigned in order from the CS / OC to which the resource index is assigned are changed to SR transmission resources. It may be configured to be a CS / OC that can be used as:
  • the resource allocation unit 11 among the CS / OCs that can be used as A / N transmission resources and SR transmission resources, the remaining CS / OCs other than the CS / OC that can be used as DS A / N transmission resources. From among the OCs, the CS / OCs to which the even number of resource indexes are assigned in order from the CS / OC to which the largest resource index is assigned are made CS / OCs that can be used as SPS A / N transmission resources. It is configured.
  • SPS A it is configured so that a predetermined number of CS / OCs that can be used as SR transmission resources in order from the CS / OC assigned the smallest resource index among the CS / OCs used as / N transmission resources. May be.
  • CS / OCs used as SR transmission resources may be configured to be a CS / OC that can be used as an SPS A / N transmission resource in order from the CS / OC assigned the largest resource index among the OCs.
  • the “resource ratio” indicating the ratio between the number of CS / OCs usable as SR transmission resources and the number of CS / OCs usable as SPS A / N transmission resources can be adjusted.
  • the resource index for specifying the CS / OC that can be used as the SR transmission resource is as follows.
  • N start SR + 2i (i 0, 1,..., Ceil (N total / 2) ⁇ 1)
  • N start SR + 2j + 1 (j 0, 1,..., N SR -ceil (N total / 2) ⁇ 1)
  • the resource index for specifying the CS / OC that can be used as the SPS A / N transmission resource is as follows.
  • N start SR is the smallest resource index of CS / OC that can be used as an SR transmission resource
  • N SR is the number of CS / OCs that can be used as an SR transmission resource
  • N total is The number of remaining CS / OCs other than the CS / OC that can be used as the DS A / N transmission resource among the CS / OCs that can be used as the A / N transmission resource and the SR transmission resource.
  • the CS / OC assigned with an even number of resource indexes is made the CS / OC usable as the SR transmission resource in order from the CS / OC assigned with the smallest resource index. May be.
  • the resource allocation unit 11 among the CS / OCs that can be used as A / N transmission resources and SR transmission resources, the remaining CS / OCs other than the CS / OC that can be used as DS A / N transmission resources. From among the OCs, the CS / OCs to which the odd resource index is assigned in order from the CS / OC to which the largest resource index is assigned are made CS / OCs that can be used as SPS A / N transmission resources. It is configured.
  • the CS / OC assigned with an even number of resource index is made the CS / OC that can be used as the SR transmission resource in order from the CS / OC assigned with the largest resource index. May be.
  • the resource allocation unit 11 among the CS / OCs that can be used as A / N transmission resources and SR transmission resources, the remaining CS / OCs other than the CS / OC that can be used as DS A / N transmission resources. From among the OCs, the CS / OCs to which the odd resource index is assigned in order from the CS / OC to which the smallest resource index is assigned to be used as the SPS A / N transmission resource. It is configured.
  • the CS / OCs to which the odd resource index is assigned in order from the CS / OC to which the largest resource index is assigned are configured as CS / OCs that can be used as SR transmission resources. May be.
  • FIG. 12 shows a case where N start SR is an even number, and the number of CS / OCs usable as SR transmission resources is larger than the number of CS / OCs usable as SPS A / N transmission resources.
  • An example of the CS / OC allocation order that can be used as the SR transmission resource and the SPS A / N transmission resource will be described.
  • the resource allocating unit 11 transmits SPS A / N transmission from predetermined resources including a combination of RB (frequency direction resource) and CS / OC (code direction resource) that can be used as SPS A / N transmission resources. It is configured to determine trusted resource candidates.
  • the resource allocating unit 11 allocates SPS A / N transmission resource candidates to the mobile station UE based on the number of predetermined resources that are combinations of frequency direction resources and code direction resources. It is configured.
  • the resource allocation unit 11 performs SPS A / N transmission of the mobile station UE from predetermined resources that are combinations of RB and CS / OC that can be used as SPS A / N transmission resources.
  • predetermined resources that are combinations of RB and CS / OC that can be used as SPS A / N transmission resources.
  • a predetermined number of resources with a small number of allocations may be selected during the period, and the resources may be allocated to the mobile station UE as SPS A / N transmission resource candidates.
  • the SPS A / N transmission period of each mobile station UE is a period obtained by delaying the “On Duration (intermittent reception period)” of each mobile station UE by a predetermined timing (for example, 4 subframes).
  • the predetermined resource allocation number is the total number of other mobile stations UE to which the predetermined resource is allocated as an SPS A / N transmission resource candidate in each subframe of the SPS A / N transmission period of the mobile station UE. Indicates.
  • the resource allocation unit 11 performs “On Duration (intermittent reception period)” that overlaps at least partly with the “On Duration (intermittent reception period)” of the mobile station UE in time. ”To the mobile stations UE1 to UE4 (second mobile station) based on the resources allocated as SPS A / N transmission resource candidates. Configured to assign.
  • the mobile stations UE1 to UE4 are operating in the intermittent reception mode and configured to receive downlink data scheduled by the SPS.
  • resources 0, 1, 2, and 3 are assigned as SPS A / N transmission resource candidates to the mobile station UE1, and SPS A / N transmission is performed to the mobile station UE2.
  • Resources 0, 2, 3, and 5 are allocated as resource candidates, and resources 2, 3, 4, and 5 are allocated to the mobile station UE3 as resource candidates for SPS A / N transmission.
  • Resources 0, 1, 3, and 4 are allocated to the station UE4 as SPS A / N transmission resource candidates.
  • the total number of allocated resources in each subframe in the SPS A / N transmission period corresponding to “On Duration (intermittent reception period)” of the mobile station UE is as follows.
  • a predetermined number for example, four
  • the resource allocating unit 11 determines whether the mobile station UE is based on the total number of allocated predetermined resource groups.
  • An SPS A / N transmission resource candidate may be allocated.
  • the resource allocating unit 11 is a predetermined resource belonging to a resource group with a small number of allocations in the SPS A / N transmission period, out of predetermined resources composed of combinations of RB and CS / OC that can be used as SPS A / N transmission resources It may be configured to select a number of resources and allocate such resources as SPS A / N transmission resource candidates to the mobile station UE.
  • the number of allocations of the predetermined resource group is the number of other movements in which the resources belonging to the predetermined resource group are allocated as SPS A / N transmission resource candidates in each subframe of the SPS A / N transmission period of the UE.
  • the resource allocation unit 11 temporally overlaps “On Duration (intermittent reception period)” of the mobile station UE at least partially with “On Duration (intermittent reception period)”. Based on the allocation number in the SPS A / N transmission period of the resource group to which the resources allocated as SPS A / N transmission resource candidates to the mobile stations UE0 to UE6 (second mobile station) having " It is configured to allocate SPS A / N transmission resource candidates to the station UE.
  • resources belonging to resource group 0 are allocated to mobile station UE0 as SPS A / N transmission resource candidates, and SPS A / N transmission resource candidates are assigned to mobile station UE1.
  • resources belonging to resource group 1 are allocated
  • resources belonging to resource group 0 are allocated to mobile station UE2 as SPS A / N transmission resource candidates
  • mobile station UE3 is
  • Resources belonging to resource group 2 are allocated as SPS A / N transmission resource candidates
  • resources belonging to resource group 0 are allocated to mobile station UE4 as SPS A / N transmission resource candidates.
  • As a candidate for SPS A / N transmission resource for mobile station UE5 Is allocated to the resources belonging to the resource group 3, to the mobile station UE 6, the SPS A / N transmission resource candidates are allocated resources belonging to the resource group 2.
  • the total number of allocation numbers of each resource group in each subframe in the SPS A / N transmission period corresponding to the “On Duration (intermittent reception period)” of the mobile station UE is as follows.
  • the resource allocation unit 11 allocates resources belonging to the resource group 4 to the mobile station UE as SPS A / N transmission resource candidates.
  • the resource allocation unit 11 determines a resource index that identifies a resource (a combination of RB and CS / OC) to be allocated as an SPS A / N transmission resource candidate in the SPS A / N transmission period of each mobile station UE.
  • the notification unit 12 is configured to notify the determined resource index to each mobile station UE.
  • the resource allocation unit 11 selects a resource for transmitting the SPS A / N for the downlink data from among the SPS A / N transmission resource candidates. It is configured.
  • the resource allocation unit 11 identifies a resource (SPS A / N transmission resource) for transmitting the SPS A / N for the downlink data from among the SPS A / N transmission resource candidates.
  • the index is selected, and the notification unit 12 is configured to notify the selected resource index to each mobile station UE.
  • the resource allocation unit 11 selects a resource that is not used by other mobile stations UE in the same A / N transmission subframe from among the SPS A / N transmission resource candidates.
  • each mobile station UE is configured to be allocated as an SPS A / N transmission resource.
  • Each mobile station UE receives, using a SPS A / N transmission resource (in the PUCCH resource) specified by the notified resource index after a predetermined timing (for example, 4 subframes) from the reception timing of downlink data. Configured to transmit SPS A / N for the downlink data.
  • the resource allocation unit 11 may be configured to release the SPS A / N transmission resource candidate and the SPS A / N transmission resource when the SPS bearer is released.
  • “k” is an index for identifying a resource
  • “s” is an index for identifying a subframe
  • “f OD (i)” is the allocation target mobile station UE. This is the number of resources i allocated in the SPS A / N transmission period corresponding to “On Duration (intermittent reception period)”
  • “N resource ” is the number of resources that can be allocated as SPS A / N transmission resources.
  • subframes within the SPS A / N transmission period corresponding to the “On Duration (intermittent reception period)” of the mobile station UE to be allocated are “s start OD ” to “s end OD ”.
  • step S102 the radio base station eNB calculates “f s (k)” that is the number of allocated resources k in the subframe s, and adds “f s (k)” to “f OD (k)”.
  • f s (k) the number of allocated resources k in the subframe s
  • “u” is an index that identifies the mobile station UE.
  • step S202 the radio base station eNB determines whether “s start u ⁇ s ⁇ s end u ” is satisfied. When it is determined that “s start u ⁇ s ⁇ s end u ” is established, the radio base station eNB proceeds to step S203, and when it is determined that “s start u ⁇ s ⁇ s end u ” is not satisfied, step S208 is performed. Proceed to
  • the subframes in the SPS A / N transmission period corresponding to the “On Duration (intermittent reception period)” of the mobile station u are “s start u ” to “s end u ”.
  • R j u is information for identifying a resource allocated to the mobile station u as an SPS A / N transmission resource candidate.
  • step S207 the radio base station eNB increases “f s (k)” by “1”, and proceeds to step S208.
  • N ue is the number of mobile stations UE to which SPS A / N transmission resource candidates are already assigned.
  • the radio base station eNB increases “s” by “1” in step S104, and returns to step S102.
  • the radio base station eNB increases “k” by “1” in step S106, and returns to step S102.
  • the resource specified by “f s (k)” corresponding to “i” is assigned as an SPS A / N transmission resource candidate for the mobile station UE to be assigned.
  • g OD (i) is the number of resource groups i allocated in the SPS A / N transmission period corresponding to “On Duration (intermittent reception period)” of the mobile station UE to be allocated
  • N group is the number of resource groups to which resources that can be allocated as SPS A / N transmission resources belong.
  • step S202 the radio base station eNB calculates “g s (k)”, which is the number of resource groups k allocated in the subframe s, and adds “g s (k)” to “g OD (k)”. .
  • g s (k) the number of resource groups k allocated in the subframe s
  • step S402 the radio base station eNB determines whether “s start u ⁇ s ⁇ s end u ” is satisfied. If the radio base station eNB determines that “s start u ⁇ s ⁇ s end u ” is satisfied, the process proceeds to step S403. If it is determined that “s start u ⁇ s ⁇ s end u ” is not satisfied, step S405 is performed. Proceed to
  • G u is information for identifying a resource group assigned to the mobile station u as an SPS A / N transmission resource candidate.
  • step S404 the radio base station eNB increases “g s (k)” by “1”, and proceeds to step S405.
  • the radio base station eNB increases “s” by “1” in step S304, and returns to step S302.
  • the radio base station eNB increases “k” by “1” in step S306, and returns to step S302.
  • the resource belonging to “g s (k)” corresponding to “i” is assigned as an SPS A / N transmission resource candidate for the mobile station UE to be assigned.
  • the SPS A / N transmission resource candidates are set. Allocation, when downlink data is scheduled by the SPS in the SPS transmission bearer, the SPS A / N transmission resource is configured to be allocated from among the SPS A / N transmission resource candidates. A situation in which SPS A / Ns transmitted between UEs collide can be avoided.
  • the first feature of the present embodiment is a radio base station eNB, which allocates SPS A / N transmission resource candidates to a mobile station UE (first mobile station) when setting up an SPS bearer.
  • the SPS A / N transmission resource candidate includes the configured resource allocating unit 11, and the mobile station UE receives downlink data from the downlink data reception timing scheduled by the SPS and transmitted via the PDSCH.
  • the gist is that the resource for transmitting the SPS A / N for the downlink data is selected from the trusted resource candidates.
  • the SPS A / N transmission period of the mobile station UE is a period obtained by delaying the “On Duration (intermittent reception period)” of the mobile station UE by a predetermined timing (for example, 4 subframes). There may be.
  • the number of predetermined resources allocated is determined by assigning the predetermined resource as a SPS A / N transmission period transmission resource candidate in each subframe of the SPS A / N transmission period of the mobile station UE. It may be the total number of other mobile stations.
  • the resource allocation unit 11 temporally transmits to the mobile stations UE1 to UE4 (second mobile stations) having an intermittent reception period that overlaps at least partially with the intermittent reception period of the mobile station UE.
  • the SPS A / N transmission resource candidate may be allocated to the mobile station UE based on the resources allocated as the SPS A / N transmission resource candidate.
  • the allocation number of the predetermined resource is the allocation number of resources belonging to the predetermined resource group in the SPS A / N transmission period of the mobile station UE, and the resource allocation unit 11 It may be configured to allocate SPS A / N transmission resource candidates in units.
  • the predetermined resource group transmits SPS A / N transmissions to the mobile stations UE0 to UE6 that have an intermittent reception period that at least partially overlaps the intermittent reception period of the mobile station UE in time. It may be a resource group to which a resource assigned as a trusted resource candidate belongs.
  • a second feature of the present embodiment is a mobile communication method, which includes a step A of assigning an SPS A / N transmission resource candidate to a mobile station UE when an SPS bearer is set up.
  • N transmission resource candidates are frequency direction resources for the mobile station UE to transmit SPS A / N after a predetermined timing from the downlink data reception timing to the downlink data scheduled by the SPS and transmitted via the PDSCH.
  • a code direction resource and in step A, based on the allocated number of predetermined resources consisting of a combination of a frequency direction resource and a code direction resource in the SPS A / N transmission period of the mobile station UE
  • the SPS A / N transmission resource candidate is allocated to the mobile station UE, and the downlink data But if it is scheduled by the SPS, from the SPS A / N transmission resource candidate, and summarized in that further comprising the step B of selecting resources for transmitting SPS A / N for the downlink data.
  • radio base station eNB and the mobile station UE described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, and Hard Disk). Alternatively, it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • the storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Further, such a storage medium and a processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB or the mobile station UE. Further, the storage medium and the processor may be provided as a discrete component in the radio base station eNB or the mobile station UE.
  • FIG. 17 is as follows.
  • FIG. 18 is as follows.
  • FIG. 19 is as follows.
  • FIG. 20 is as follows.

Abstract

本発明に係る無線基地局eNBは、SPS用ベアラの設定時に、移動局UEに対してSPS A/N送信用リソース候補を割り当てるリソース割当部11を具備し、SPS A/N送信用リソース候補は、移動局UEがSPSによってスケジューリングされPDSCHを介して送信された下りデータに対して下りデータの受信タイミングから所定タイミング後にSPS A/Nを送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、リソース割当部11は移動局UEのSPS A/N送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てる。

Description

無線基地局及び移動通信方法
 本発明は、無線基地局及び移動通信方法に関する。
 3GPPで規定されているLTE(Long Term Evolution)方式の移動通信システムでは、各移動局UEは、PUCCH(Physical Uplink Control Channel、物理上り制御チャネル)を介して、無線基地局eNBに対して、セミパーシステントスケジューリング(Semi‐Persistent Scheduling、以下、SPS)によってスケジューリングされPDSCH(Physical Downlink Shared Channel、物理下り共有チャネル、下りデータチャネル)を介して送信された下りデータに対して、下りデータの受信タイミングから所定タイミング(例えば、4サブフレーム)後に送達確認信号(SPS A/N)を送信するように構成されている。
 しかしながら、3GPPでは、各移動局UEに対するSPS A/N送信用リソース候補の割り当て方法について規定されていないため、上述の移動通信システムにおいて、SPS A/N送信用リソース候補が適切に割り当てられない場合があるという問題点があった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、SPS A/N送信用リソース候補を適切に割り当てることができる無線基地局及び移動通信方法を提供することを目的とする。
 本発明の第1の特徴は、無線基地局であって、セミパーシステントスケジューリング用ベアラの設定時に、第1移動局に対して、セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てるように構成されているリソース割当部を具備し、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補は、前記第1移動局が、セミパーシステントスケジューリングによってスケジューリングされ下りデータチャネルを介して送信された下りデータに対して、該下りデータの受信タイミングから所定タイミング後に送達確認信号を送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、前記リソース割当部は、前記第1移動局のセミパーシステントスケジューリング送達確認信号送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、前記第1移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てるように構成されており、前記下りデータが、前記セミパーシステントスケジューリングによってスケジューリングされた場合に、前記リソース割当部は、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補の中から、該下りデータに対する送達確認信号を送信するためのリソースを選択するように構成されていることを要旨とする。
 本発明の第2の特徴は、移動通信システムであって、 セミパーシステントスケジューリング用ベアラの設定時に、第1移動局に対して、セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てる工程Aを有し、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補は、前記第1移動局が、セミパーシステントスケジューリングによってスケジューリングされ下りデータチャネルを介して送信された下りデータに対して、該下りデータの受信タイミングから所定タイミング後に送達確認信号を送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、前記工程Aにおいて、前記第1移動局のセミパーシステントスケジューリング送達確認信号送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、前記第1移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当て、前記下りデータが、前記セミパーシステントスケジューリングによってスケジューリングされた場合に、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補の中から、該下りデータに対する送達確認信号を送信するためのリソースを選択する工程Bを更に有することを要旨とする。
 以上説明したように、本発明によれば、SPS A/N送信用リソースを適切に割り当てることができる無線基地局及び移動通信方法を提供することができる。
図1は、本発明の第1の実施形態に係る移動通信システムの全体構成図である。 図2は、本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 図3は、本発明の第1の実施形態に係る移動通信システムにおけるSPS A/Nの送信タイミングについて説明するための図である。 図4は、本発明の第1の実施形態に係る無線基地局によるPUCCH用リソースの割り当て方法について説明するための図である。 図5は、本発明の第1の実施形態に係る無線基地局によって割り当てられたPUCCH用リソース内のリソースブロックについて説明するための図である。 図6は、本発明の第1の実施形態に係る無線基地局によって、CQI、A/N及びSRを送信するために、PUCCH用リソース内のリソースブロックを割り当てる方法について説明するための図である。 図7は、本発明の第1の実施形態に係る無線基地局によって、PUCCH用リソース内のリソースブロックのうち、A/N及びSRを送信するために割り当てられたリソースブロックについて説明するための図である。 図8は、本発明の第1の実施形態に係る無線基地局によって、PUCCH用リソース内のリソースブロックのうち、CQI、A/N及びSRを混在して送信するため割り当てられたリソースブロックについて説明するための図である。 図9は、本発明の第1の実施形態に係る無線基地局によって割り当てられるPUCCH用リソース内の周波数方向及びコード方向リソースの一例について説明するための図である。 図10は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソースを割り当てる方法について説明するための図である。 図11は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソースを割り当てる方法について説明するための図である。 図12は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソースを割り当てる方法について説明するための図である。 図13は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソース候補を割り当てる方法について説明するための図である。 図14は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソース候補を割り当てる方法について説明するための図である。 図15は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソース候補を割り当てる方法について説明するための図である。 図16は、本発明の第1の実施形態に係る無線基地局によって、SPS A/N送信用リソース候補を割り当てる方法について説明するための図である。 図17は、本発明の第1の実施形態に係る無線基地局の動作を示すフローチャート図である。 図18は、本発明の第1の実施形態に係る無線基地局の動作を示すフローチャート図である。 図19は、本発明の第1の実施形態に係る無線基地局の動作を示すフローチャート図である。 図20は、本発明の第1の実施形態に係る無線基地局の動作を示すフローチャート図である。
(本発明の第1の実施形態に係る移動通信システムの構成)
 図1乃至図16を参照して、本発明の第1の実施形態に係る移動通信システムの構成について説明する。
 本実施形態に係る移動通信システムは、LTE方式の移動通信システムであって、本実施形態に係る移動通信システムでは、図1に示すように、移動局UEが、PUCCHを介して、無線基地局eNBに対して、下りリンクにおける受信品質を通知するために用いるべき受信品質を示すCQI(Channel Quality Indicator)や、下りデータに対するACK/NACK(以下、A/N)や、上りデータ通信についてのスケジューリングを要求するスケジューリング要求(Scheduling Request、以下、SR)等を送信するように構成されている。
 図2に示すように、無線基地局eNBは、リソース割当部11と、通知部12とを具備している。
 リソース割当部11は、無線基地局eNB配下の各セルにおいて、所定の物理チャネル用リソースを割り当てるように構成されている。
 例えば、リソース割当部11は、無線基地局eNB配下の各セルにおいて、上り物理チャネル用リソースとして、PUCCH用リソースや、PUSCH(Physical Uplink Shared Channel、物理上り共有チャネル)用リソース等を割り当てるように構成されている。
 また、リソース割当部11は、無線基地局eNB配下の各セルにおいて、下り物理チャネル用リソースとして、PDCCH(Physical Downlink Control Channel、物理下り制御チャネル)用リソースや、PDSCH用リソース等を割り当てるように構成されている。
 ここで、リソース割当部11は、PUCCH用リソースの中から、CQI送信用リソースやA/N送信用リソースやSR送信用リソースを割り当てるように構成されている。
 リソース割当部11によるリソースの割り当て動作の具体例については後述する。
 通知部12は、無線基地局eNB配下の各セルにおいて、リソース割当部11によって割り当てられたリソースを通知するように構成されている。
 具体的には、通知部12は、RRCメッセージで、各移動局UEに対して、CQI送信用リソースやA/N送信用リソースやSR送信用リソースを通知するように構成されている。
 以下、リソース割当部11によるリソースの割り当て動作の具体例について説明する。
 本実施形態に係る移動通信システムでは、移動局UEが、間欠受信モードで動作しており、SPSによってスケジューリングされた下りデータを受信するように構成されている例について説明する。
 図3に示すように、かかる移動局UEには、「On Duration(間欠受信期間)」が設定されており、かかる移動局UEは、「On Duration」においてのみ、SPSによってスケジューリングされPDSCHを介して送信された下りデータを受信するように構成されている。
 その後、かかる移動局UEは、かかる下りデータの受信タイミングから所定タイミング(例えば、4サブフレーム)後に、かかる下りデータに対するSPS A/Nを送信するように構成されている。
 ここで、移動局UEにおいて、かかる下りデータの「On Duration」における受信タイミングが任意であるため、複数の移動局UEにおけるSPS A/Nの送信タイミングが衝突する可能性がある。
 かかる事態を避けるために、リソース割当部11は、SPS用ベアラの設定時に、移動局UEに対して、所定数(例えば、4個)のSPS A/N送信用リソース候補を割り当てておき、その後、下りデータが、SPSによってスケジューリングされた場合に、SPS A/N送信用リソース候補の中から、かかる下りデータに対するSPS A/Nを送信するためのリソースを選択するように構成されている。
 ここで、SPS A/N送信用リソース候補は、移動局UEが、SPSによってスケジューリングされPDSCHを介して送信された下りデータに対して、かかる下りデータの受信タイミングから所定タイミング(例えば、4サブフレーム)後にSPS A/Nを送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補である。
 以下、かかるSPS A/N送信用リソース候補として割り当て可能なリソースについて説明する。
 図4及び図5に示すように、リソース割当部11は、システム帯域幅における両端のリソースブロックから順に、PUCCH用リソースブロックとして割り当て、PUCCH用リソースブロックとして割り当てられたリソースブロックの内側のリソースブロックを、PUSCH用リソースブロックとして割り当てるように構成されている。
 ここで、リソースブロック(Resource Block、以下、RB)は、7OFDMシンボルと12サブキャリアとによって構成されている。
 なお、図4に示すように、各PUCCH用RBでは、コード多重が行われるように構成されている。したがって、リソース割当部11は、PUCCH用リソースとして、時間方向リソースと周波数方向リソースとコード方向リソースとを割り当てるように構成されている。
 また、リソース割当部11は、1つのサブフレーム内の前半部分(スロット)と後半部分(スロット)との間で、図4に示すような「Intra‐subframe frequency hopping」によって、PUCCH用リソースを割り当てるように構成されている。
 図5に示すように、リソース割当部11は、同一のRB番号が付与されている2個のRBを、同一のPUCCH用RBとして割り当てるように構成されている。
 図6に示すように、リソース割当部11は、PUCCH用RBとして割り当てられているRBのうち、若いRB番号が付与されているものから順に、CQI送信用RBとして割り当て、残りのRBを、A/N送信用RB及びSR送信用RBとして割り当てるように構成されている。
 なお、図6に示すように、PUCCH用RBの中には、CQI送信用RBであり、A/N送信用RBであり、かつ、SR送信用RBである「CQI、A/N、SR混在RB」が存在してもよい。
 リソース割当部11は、各移動局UEに対して、PUCCH用RBとして割り当てられているRBの中から、A/N送信用リソース及びSR送信用リソースとして割り当て可能なRB(周波数方向リソース)を決定するように構成されている。
 また、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソースは、図7に示すように、各RB内で、複数(例えば、3個)のOC(Orthogonal Code)及び「Cyclic Shift」の関係にあり互いに直交する複数(例えば、12個)の系列(Cyclic Sequence、以下、CS)の組み合わせ(以下、CS/OC)によって多重されている。
 図7に示すように、かかる1サブフレーム内においてA/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)には、リソースインデックス(Resource Index)が付与されている。かかるリソースインデックスは、1サブフレーム内で、複数のRBを跨いで連続して付与されるように構成されている。
 また、CQI、A/N、SR混在RB#NRB (2)では、図8に示すように、CQI送信用リソースとして割り当て可能なコード方向リソース(CS/OC)と、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)とが存在する。
 ここで、「NCS (1)」は、CQI、A/N、SR混在RBにおいて、A/N送信用リソース及びSR送信用リソースとして割り当て可能なCSの数であり、Δshiftの倍数である。Δshiftは、CSを算出される際に用いられた「Cyclic Shift」の量である。
 図8の例では、A/N送信用リソース及びSR送信用リソースとして、1つの周波数方向リソース(RB)内で、4個のコード方向リソース(CS)が多重可能であり、かつ、1つのコード方向リソース(CS)内で、3個のOC(直交コード)が多重可能である。
 なお、CQI送信用リソースとして割り当て可能なコード方向リソース(CS)と、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS)との間には、干渉を避けるために、ガード用コード方向リソース(CS)が設けられている。また、CQI送信用リソースとして割り当て可能なコード方向リソース(CS)間に、かかるガード用コード方向リソース(CS)が設けられていてもよい。
 CQI送信用リソースとして割り当て可能なコード方向リソース(CS)に付与されるリソースインデックスと、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)に付与されるリソースインデックスとは、別々のものである。
 図9に、PUCCH送信用RBにおけるCQI送信用リソースとして割り当て可能なコード方向リソース(CS)に付与されるリソースインデックス、及び、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)に付与されるリソースインデックスの一例を示す。
 また、図10に示すように、A/N送信用リソース及びSR送信用リソースとして割り当て可能なコード方向リソース(CS/OC)は、ダイナミックスケジューリング送達確認信号送信用リソース(Dynamic Scheduling A/N送信用リソース、以下、DS A/N送信用リソース)、SPS A/N送信用リソース及びSR送信用リソースとして割り当て可能(使用可能)である。
 ここで、SPSは、移動局UEに対して、固定的なリソース(例えば、PDSCH用リソースやPUSCH用リソース等)を周期的に割り当てるように構成されているスケジューリングであり、ダイナミックスケジューリング(以下、DS)は、移動局UEに対して、各サブフレームにおいて、リソース(例えば、PDSCH用リソースやPUSCH用リソース等)を割り当てるように構成されているスケジューリングである。
 また、DS A/N送信用リソースは、DSによってスケジューリングされPDSCHを介して送信された下りデータに対するA/Nを送信するためのリソースである。
 具体的には、図10に示すように、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCを、SPS A/N送信用リソース或いはSR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 ここで、DS A/N送信用リソースに必要なCS/OCの数は、システム帯域幅によって固定的に決定される。例えば、システム帯域幅が「5MHz」である場合には、DS A/N送信用リソースに必要なCS/OCの数は「20」である。
 また、図10に示すように、リソース割当部11は、リソースインデックスの順に並べた場合、先頭のリソースインデックスからDS A/N送信用リソースとして使用可能なCS/OCとし、残りのCS/OCを、交互に、SPS A/N送信用リソース或いはSR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 なお、SRの送信頻度が少ないため、このように、SPS A/N送信用リソースとして使用可能なCS/OCの間に、SR送信用リソースとして使用可能なCS/OCを挿入することによって、干渉を低減することができる。
 図11に示すように、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが奇数である場合、当該リソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 かかる場合、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして使用可能なCS/OCとするように構成されている。
 ここで、図11に示すように、SR送信用リソースとして使用されるCS/OCの数が、SPS A/N送信用リソースとして使用されるCS/OCの数よりも多い場合には、SPS A/N送信用リソースとして使用されるCS/OCのうち最も小さいリソースインデックスが付与されているCS/OCから順に、所定数をSR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 或いは、SR送信用リソースとして使用されるCS/OCの数が、SPS A/N送信用リソースとして使用されるCS/OCの数よりも少ない場合には、SR送信用リソースとして使用されるCS/OCのうち最も大きいリソースインデックスが付与されているCS/OCから順に、所定数をSPS A/N送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 この結果、SR送信用リソースとして使用可能なCS/OCの数とSPS A/N送信用リソースとして使用可能なCS/OCの数との比率を示す「リソース比率」を調整することができる。
 図11の例において、SR送信用リソースとして使用可能なCS/OCを特定するリソースインデックスは、以下の通りである。
 Nstart SR+2i(i=0,1,…,ceil(Ntotal/2)-1)
 Nstart SR+2j+1(j=0,1,…,NSR―ceil(Ntotal/2)-1)
 また、図11の例において、SPS A/N送信用リソースとして使用可能なCS/OCを特定するリソースインデックスは、以下の通りである。
 Nstart SR+2j+1(j=NSR―ceil(Ntotal/2),…,floor(Ntotal/2)-1)
 ここで、Nstart SRは、SR送信用リソースとして使用可能なCS/OCの最も小さいリソースインデックスであり、NSRは、SR送信用リソースとして使用可能なCS/OCの数であり、Ntotalは、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCの数である。
 なお、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 かかる場合、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして使用可能なCS/OCとするように構成されている。
 また、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 かかる場合、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして使用可能なCS/OCとするように構成されている。
 さらに、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も大きいリソースインデックスが付与されているCS/OCから順に、奇数のリソースインデックスが付与されているCS/OCを、SR送信用リソースとして使用可能なCS/OCとするように構成されていてもよい。
 かかる場合、リソース割当部11は、A/N送信用リソース及びSR送信用リソースとして使用可能なCS/OCのうち、DS A/N送信用リソースとして使用可能なCS/OC以外の残りのCS/OCのうち、最も小さいリソースインデックスが付与されているCS/OCから順に、偶数のリソースインデックスが付与されているCS/OCを、SPS A/N送信用リソースとして使用可能なCS/OCとするように構成されている。
 図12に、Nstart SRが偶数である場合で、かつ、SR送信用リソースとして使用可能なCS/OCの数がSPS A/N送信用リソースとして使用可能なCS/OCの数よりも多い場合のSR送信用リソース及びSPS A/N送信用リソースとして使用可能なCS/OCの割り当て順序の例について示す。
 ここで、リソース割当部11は、SPS A/N送信用リソースとして使用可能なRB(周波数方向リソース)及びCS/OC(コード方向リソース)の組み合わせからなる所定リソースの中から、SPS A/N送信用リソース候補を決定するように構成されている。
 具体的には、リソース割当部11は、周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てるように構成されている。
 例えば、図13に示すように、リソース割当部11は、SPS A/N送信用リソースとして使用可能なRB及びCS/OCの組み合わせからなる所定リソースの中から、移動局UEのSPS A/N送信期間において、割当数の少ない所定数のリソースを選択し、移動局UEに対して、かかるリソースを、SPS A/N送信用リソース候補として割り当てるように構成されていてもよい。
 ここで、各移動局UEのSPS A/N送信期間は、各移動局UEの「On Duration(間欠受信期間)」を、所定タイミング(例えば、4サブフレーム)だけ遅らせた期間である。
 また、所定リソースの割当数は、当該移動局UEのSPS A/N送信期間の各サブフレームにおいて、所定リソースがSPS A/N送信用リソース候補として割り当てられている他の移動局UEの合計数を示す。
 より具体的には、図14に示すように、リソース割当部11は、時間的に移動局UEの「On Duration(間欠受信期間)」と少なくとも一部で重複する「On Duration(間欠受信期間)」を有する移動局UE1乃至UE4(第2移動局)に対してSPS A/N送信用リソース候補として割り当てられているリソースに基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てるように構成されている。
 なお、図14の例では、移動局UE1乃至UE4が、間欠受信モードで動作しており、SPSによってスケジューリングされた下りデータを受信するように構成されているものとする。
 図14の例では、移動局UE1に対して、SPS A/N送信用リソース候補として、リソース0、1、2、3が割り当てられており、移動局UE2に対して、SPS A/N送信用リソース候補として、リソース0、2、3、5が割り当てられており、移動局UE3に対して、SPS A/N送信用リソース候補として、リソース2、3、4、5が割り当てられており、移動局UE4に対して、SPS A/N送信用リソース候補として、リソース0、1、3、4が割り当てられている。
 したがって、移動局UEの「On Duration(間欠受信期間)」に対応するSPS A/N送信期間における各サブフレームにおける各リソースの割当数の合計値は、以下の通りとなる。
・ リソース0: 2+2+3+3+2+2=14
・ リソース1: 2+2+2+2+1+1=10
・ リソース2: 2+2+3+3+1+1=12
・ リソース3: 3+3+4+4+2+2=18
・ リソース4: 2+2+2+2+1+1=10
・ リソース5: 1+1+2+2+1+1=8
 その結果、リソース割当部11は、移動局UEに対して、リソース1、2、4、5を、SPS A/N送信用リソース候補として割り当てる。
 また、図15に示すように、所定数(例えば、4個)のリソースを1つのリソースグループとし、リソース割当部11は、所定リソースグループの割当数の合計に基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てるように構成されていてもよい。
 例えば、リソース割当部11は、SPS A/N送信用リソースとして使用可能なRB及びCS/OCの組み合わせからなる所定リソースの中から、SPS A/N送信期間において割当数の少ないリソースグループに属する所定数のリソースを選択し、移動局UEに対して、かかるリソースを、SPS A/N送信用リソース候補として割り当てるように構成されていてもよい。
 ここで、所定リソースグループの割当数は、当該UEのSPS A/N送信期間の各サブフレームにおいて、かかる所定リソースグループに属するリソースがSPS A/N送信用リソース候補として割り当てられている他の移動局UEの合計数である。
 より具体的には、図16に示すように、リソース割当部11は、時間的に移動局UEの「On Duration(間欠受信期間)」と少なくとも一部で重複する「On Duration(間欠受信期間)」を有する移動局UE0乃至UE6(第2移動局)に対してSPS A/N送信用リソース候補として割り当てられているリソースが属するリソースグループのSPS A/N送信期間における割当数に基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てるように構成されている。
 図16の例では、移動局UE0に対して、SPS A/N送信用リソース候補として、リソースグループ0に属するリソースが割り当てられており、移動局UE1に対して、SPS A/N送信用リソース候補として、リソースグループ1に属するリソースが割り当てられており、移動局UE2に対して、SPS A/N送信用リソース候補として、リソースグループ0に属するリソースが割り当てられており、移動局UE3に対して、SPS A/N送信用リソース候補として、リソースグループ2に属するリソースが割り当てられており、移動局UE4に対して、SPS A/N送信用リソース候補として、リソースグループ0に属するリソースが割り当てられており、移動局UE5に対して、SPS A/N送信用リソース候補として、リソースグループ3に属するリソースが割り当てられており、移動局UE6に対して、SPS A/N送信用リソース候補として、リソースグループ2に属するリソースが割り当てられている。
 したがって、移動局UEの「On Duration(間欠受信期間)」に対応するSPS A/N送信期間における各サブフレームにおける各リソースグループの割当数の合計値は、以下の通りとなる。
・ リソースグループ0: 2+2+3+3+2+1=13
・ リソースグループ1: 1+1+1+1+1+1=6
・ リソースグループ2: 1+2+2+2+2+2=11
・ リソースグループ3: 1+1+1+1+0+0=4
 その結果、リソース割当部11は、移動局UEに対して、リソースグループ4に属するリソースを、SPS A/N送信用リソース候補として割り当てる。
 このように、リソース割当部11は、各移動局UEのSPS A/N送信期間において、SPS A/N送信用リソース候補として割り当てるリソース(RB及びCS/OCの組み合わせ)を特定するリソースインデックスを決定し、通知部12は、各移動局UEに対して、決定したリソースインデックスを通知するように構成されている。
 その後、リソース割当部11は、下りデータが、SPSによってスケジューリングされた場合に、SPS A/N送信用リソース候補の中から、かかる下りデータに対するSPS A/Nを送信するためのリソースを選択するように構成されている。
 すなわち、かかる場合、リソース割当部11は、SPS A/N送信用リソース候補の中から、かかる下りデータに対するSPS A/Nを送信するためのリソース(SPS A/N送信用リソース)を特定するリソースインデックスを選択し、通知部12は、各移動局UEに対して、選択したリソースインデックスを通知するように構成されている。
 具体的には、リソース割当部11は、リソース割当部11は、SPS A/N送信用リソース候補の中から、同じA/N送信サブフレームにおいて、他の移動局UEが使用しないリソースを選択して、各移動局UEに対して、SPS A/N送信用リソースとして割り当てるように構成されている。
 各移動局UEは、下りデータの受信タイミングから所定タイミング(例えば、4サブフレーム)後に、通知されたリソースインデックスによって特定されるSPS A/N送信用リソース(PUCCH用リソース内)を用いて、受信した下りデータに対するSPS A/Nを送信するように構成されている。
 ここで、リソース割当部11は、SPS用ベアラが解放された場合に、SPS A/N送信用リソース候補及びSPS A/N送信用リソースを解放するように構成されていてもよい。
(本発明の第1の実施形態に係る移動通信システムの動作)
 以下、図17乃至図20を参照して、本実施形態に係る移動通信システムの動作について、具体的には、本実施形態に係る無線基地局eNBによるSPS A/N送信用リソース候補の割り当て動作について説明する。
 第1に、図17及び図18を参照して、かかる動作例1について説明する。
 図17に示すように、ステップS101において、無線基地局eNBは、「k=0」、「s=sstart OD」、「fOD(i)=0(i=0,1,…,Nresource‐1)」とする。
 ここで、「k」は、リソースを特定するためのインデックスであり、「s」は、サブフレームを特定するためのインデックスであり、「fOD(i)」は、割り当て対象の移動局UEの「On Duration(間欠受信期間)」に対応するSPS A/N送信期間におけるリソースiの割当数であり、「Nresource」は、SPS A/N送信用リソースとして割り当て可能なリソースの数である。
 また、割り当て対象の移動局UEの「On Duration(間欠受信期間)」に対応するSPS A/N送信期間内のサブフレームは、「sstart OD」から「send OD」である。
 ステップS102において、無線基地局eNBは、サブフレームsにおけるリソースkの割当数である「f(k)」を算出し、「fOD(k)」に「f(k)」を加える。以下、図18を参照して、「f(k)」の算出方法について説明する。
 図18に示すように、ステップS201において、無線基地局eNBは、「u=0」、「f(k)=0」とする。ここで、「u」は、移動局UEを特定するインデックスである。
 ステップS202において、無線基地局eNBは、「sstart ≦s≦send 」が成立するか否かについて判定する。無線基地局eNBは、「sstart ≦s≦send 」が成立すると判定した場合、ステップS203に進み、「sstart ≦s≦send 」が成立しないと判定した場合、ステップS208に進む。
 ここで、移動局uの「On Duration(間欠受信期間)」に対応するSPS A/N送信期間内のサブフレームは、「sstart 」から「send 」である。
 無線基地局eNBは、ステップS203において、「j=0」とし、ステップS204において、「k=R 」が成立するか否かについて判定する。無線基地局eNBは、「k=R 」が成立すると判定した場合、ステップS207に進み、「k=R 」が成立しないと判定した場合、ステップS205に進む。
 ここで、「R 」は、移動局uに対してSPS A/N送信用リソース候補として割り当てられたリソースを識別する情報である。
 無線基地局eNBは、ステップS205において、「j」を「1」だけ増加させ、ステップS206において、「j=4」が成立するか否かについて判定する。無線基地局eNBは、「j=4」が成立すると判定した場合、ステップS208に進み、「j=4」が成立しないと判定した場合、ステップS204に戻る。
 一方、無線基地局eNBは、ステップS207において、「f(k)」を「1」だけ増加させ、ステップS208に進む。
 ステップS208において、無線基地局eNBは、「u=Nue‐1」が成立するか否かについて判定する。無線基地局eNBは、「u=Nue‐1」が成立すると判定した場合、本動作を終了し、図17の動作に戻り、「u=Nue‐1」が成立しないと判定した場合、ステップS209に戻り、「u」を「1」だけ増加させる。
 ここで、「Nue」は、既に、SPS A/N送信用リソース候補が割り当てられている移動局UEの数である。
 ステップS103において、無線基地局eNBは、「s=send OD」が成立するか否かについて判定する。無線基地局eNBは、「s=send OD」が成立すると判定した場合、ステップS105に進み、「s=send OD」が成立しないと判定した場合、ステップS104に進む。
 無線基地局eNBは、ステップS104において、「s」を「1」だけ増加させ、ステップS102に戻る。
 ステップS105において、無線基地局eNBは、「k=Nresource‐1」が成立するか否かについて判定する。無線基地局eNBは、「k=Nresource‐1」が成立すると判定した場合、ステップS107に進み、「k=Nresource‐1」が成立しないと判定した場合、ステップS106に進む。
 無線基地局eNBは、ステップS106において、「k」を「1」だけ増加させ、ステップS102に戻る。
 ステップS107において、無線基地局eNBは、「i(=0,1,…,Nresource‐1)の中から、小さい4つの「fOD(i)」に対応する「i」を選択し、選択した「i」に対応する「f(k)」によって特定されるリソースを、割り当て対象の移動局UEに対するSPS A/N送信用リソース候補として割り当てる。
 第2に、図19及び図20を参照して、かかる動作例2について説明する。
 図19に示すように、ステップS301において、無線基地局eNBは、「k=0」、「s=sstart OD」、「gOD(i)=0(i=0,1,…,Ngroup‐1)」とする。
 ここで、「gOD(i)」は、割り当て対象の移動局UEの「On Duration(間欠受信期間)」に対応するSPS A/N送信期間におけるリソースグループiの割当数であり、「Ngroup」は、SPS A/N送信用リソースとして割り当て可能なリソースが属するリソースグループの数である。
 ステップS202において、無線基地局eNBは、サブフレームsにおけるリソースグループkの割当数である「g(k)」を算出し、「gOD(k)」に「g(k)」を加える。以下、図20を参照して、「g(k)」の算出方法について説明する。
 図20に示すように、ステップS401において、無線基地局eNBは、「u=0」、「g(k)=0」とする。
 ステップS402において、無線基地局eNBは、「sstart ≦s≦send 」が成立するか否かについて判定する。無線基地局eNBは、「sstart ≦s≦send 」が成立すると判定した場合、ステップS403に進み、「sstart ≦s≦send 」が成立しないと判定した場合、ステップS405に進む。
 無線基地局eNBは、ステップS403において、「k=G」が成立するか否かについて判定する。無線基地局eNBは、「k=G」が成立すると判定した場合、ステップS404に進み、「k=G」が成立しないと判定した場合、ステップS405に進む。
 ここで、「G」は、移動局uに対してSPS A/N送信用リソース候補として割り当てられたリソースグループを識別する情報である。
 無線基地局eNBは、ステップS404において、「g(k)」を「1」だけ増加させ、ステップS405に進む。
 ステップS405において、無線基地局eNBは、「u=Nue‐1」が成立するか否かについて判定する。無線基地局eNBは、「u=Nue‐1」が成立すると判定した場合、本動作を終了し、図19の動作に戻り、「u=Nue‐1」が成立しないと判定した場合、ステップS404において、「u」を「1」だけ増加させる。
 ステップS303において、無線基地局eNBは、「s=send OD」が成立するか否かについて判定する。無線基地局eNBは、「s=send OD」が成立すると判定した場合、ステップS305に進み、「s=send OD」が成立しないと判定した場合、ステップS304に進む。
 無線基地局eNBは、ステップS304において、「s」を「1」だけ増加させ、ステップS302に戻る。
 ステップS305において、無線基地局eNBは、「k=Ngroup‐1」が成立するか否かについて判定する。無線基地局eNBは、「k=Ngroup‐1」が成立すると判定した場合、ステップS307に進み、「k=Ngroup‐1」が成立しないと判定した場合、ステップS306に進む。
 無線基地局eNBは、ステップS306において、「k」を「1」だけ増加させ、ステップS302に戻る。
 ステップS307において、無線基地局eNBは、「i(=0,1,…,Ngroup‐1)の中から、小さい4つの「gOD(i)」に対応する「i」を選択し、選択した「i」に対応する「g(k)」に属するリソースを、割り当て対象の移動局UEに対するSPS A/N送信用リソース候補として割り当てる。
(本発明の第1の実施形態に係る移動通信システムの作用・効果)
 本発明の第1の実施形態に係る移動通信システムによれば、無線基地局eNBにおいて、各移動局UEに対して、SPS用ベアラが設定された際に、SPS A/N送信用リソース候補を割り当て、SPS送信用ベアラにおいて下りデータがSPSによってスケジューリングされた際に、SPS A/N送信用リソース候補の中からSPS A/N送信用リソースを割り当てるように構成されているため、複数の移動局UEの間で送信されるSPS A/Nが衝突するという事態を回避することができる。
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。
 本実施形態の第1の特徴は、無線基地局eNBであって、SPS用ベアラの設定時に、移動局UE(第1移動局)に対して、SPS A/N送信用リソース候補を割り当てるように構成されているリソース割当部11を具備し、SPS A/N送信用リソース候補は、移動局UEが、SPSによってスケジューリングされPDSCHを介して送信された下りデータに対して、下りデータの受信タイミングから所定タイミング(例えば、4サブフレーム)後にSPS A/Nを送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、リソース割当部11は、移動局UEのSPS A/N送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てるように構成されており、下りデータが、SPSによってスケジューリングされた場合に、リソース割当部11は、SPS A/N送信用リソース候補の中から、下りデータに対するSPS A/Nを送信するためのリソースを選択するように構成されていることを要旨とする。
 本実施形態の第1の特徴において、移動局UEのSPS A/N送信期間は、移動局UEの「On Duration(間欠受信期間)」を所定タイミング(例えば、4サブフレーム)だけ遅らせた期間であってもよい。
 本実施形態の第1の特徴において、所定リソースの割当数は、移動局UEのSPS A/N送信期間の各サブフレームにおいて、所定リソースがSPS A/N送信期間送信用リソース候補として割り当てられている他の移動局の合計数であってもよい。
 本実施形態の第1の特徴において、リソース割当部11は、時間的に移動局UEの間欠受信期間と少なくとも一部で重複する間欠受信期間を有する移動局UE1乃至UE4(第2移動局)に対してSPS A/N送信用リソース候補として割り当てられているリソースに基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当てるように構成されていてもよい。
 本実施形態の第1の特徴において、所定リソースの割当数は、移動局UEのSPS A/N送信期間における所定リソースグループに属しているリソースの割当数であり、リソース割当部11は、リソースグループ単位で、SPS A/N送信用リソース候補を割り当てるように構成されていてもよい。
 本実施形態の第1の特徴において、所定リソースグループは、時間的に移動局UEの間欠受信期間と少なくとも一部で重複する間欠受信期間を有する移動局UE0乃至UE6に対してSPS A/N送信用リソース候補として割り当てられているリソースが属するリソースグループであってもよい。
 本実施形態の第2の特徴は、移動通信方法であって、SPS用ベアラの設定時に、移動局UEに対して、SPS A/N送信用リソース候補を割り当てる工程Aを有し、SPS A/N送信用リソース候補は、移動局UEが、SPSによってスケジューリングされPDSCHを介して送信された下りデータに対して、下りデータの受信タイミングから所定タイミング後にSPS A/Nを送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、工程Aにおいて、移動局UEのSPS A/N送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、移動局UEに対してSPS A/N送信用リソース候補を割り当て、下りデータが、SPSによってスケジューリングされた場合に、SPS A/N送信用リソース候補の中から、下りデータに対するSPS A/Nを送信するためのリソースを選択する工程Bを更に有することを要旨とする。
 なお、上述の無線基地局eNBや移動局UEの動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD‐ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNBや移動局UE内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNBや移動局UE内に設けられていてもよい。
[規則91に基づく訂正 31.08.2010] 
 尚、図17については以下のとおりである。 
Figure WO-DOC-FIGURE-0135
[規則91に基づく訂正 31.08.2010] 
 また、図18については以下のとおりである。
Figure WO-DOC-FIGURE-0136
[規則91に基づく訂正 31.08.2010] 
 図19については以下のとおりである。
Figure WO-DOC-FIGURE-0137
[規則91に基づく訂正 31.08.2010] 
 図20については以下のとおりである。
Figure WO-DOC-FIGURE-0138
[規則91に基づく訂正 31.08.2010] 
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (7)

  1.  セミパーシステントスケジューリング用ベアラの設定時に、第1移動局に対して、セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てるように構成されているリソース割当部を具備し、
     前記セミパーシステントスケジューリング送達確認信号送信用リソース候補は、前記第1移動局が、セミパーシステントスケジューリングによってスケジューリングされ下りデータチャネルを介して送信された下りデータに対して、該下りデータの受信タイミングから所定タイミング後に送達確認信号を送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、
     前記リソース割当部は、前記第1移動局のセミパーシステントスケジューリング送達確認信号送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、該第1移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てるように構成されており、
     前記下りデータが、前記セミパーシステントスケジューリングによってスケジューリングされた場合に、前記リソース割当部は、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補の中から、該下りデータに対する送達確認信号を送信するためのリソースを選択するように構成されていることを特徴とする無線基地局。
  2.  前記セミパーシステントスケジューリング送達確認信号送信期間は、前記第1移動局の間欠受信期間を前記所定タイミングだけ遅らせた期間であることを特徴とする請求項1に記載の無線基地局。
  3.  前記所定リソースの割当数は、前記第1の移動局の前記セミパーシステントスケジューリング送達確認信号送信期間の各サブフレームにおいて、所定リソースが前記セミパーシステントスケジューリング送達確認信号送信用リソース候補として割り当てられている他の移動局の合計数であることを特徴とする請求項1又は2に記載の無線基地局。
  4.  前記リソース割当部は、時間的に前記第1移動局の間欠受信期間と少なくとも一部で重複する間欠受信期間を有する第2移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補として割り当てられているリソースに基づいて、該第1移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てるように構成されていることを特徴とする請求項1乃至3のいずれか一項に記載の無線基地局。
  5.  前記所定リソースの割当数は、前記第1の移動局の前記セミパーシステントスケジューリング送達確認信号送信期間における所定リソースグループに属しているリソースの割当数であり、
     前記リソース割当部は、リソースグループ単位で、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てるように構成されていることを特徴とする請求項1に記載の無線基地局。
  6.  前記所定リソースグループは、時間的に前記第1移動局の間欠受信期間と少なくとも一部で重複する間欠受信期間を有する第2移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補として割り当てられているリソースが属するリソースグループであることを特徴とする請求項1に記載の無線基地局。
  7.  セミパーシステントスケジューリング用ベアラの設定時に、第1移動局に対して、セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当てる工程Aを有し、
     前記セミパーシステントスケジューリング送達確認信号送信用リソース候補は、前記第1移動局が、セミパーシステントスケジューリングによってスケジューリングされ下りデータチャネルを介して送信された下りデータに対して、該下りデータの受信タイミングから所定タイミング後に送達確認信号を送信するための周波数方向リソースとコード方向リソースとの組み合わせからなるリソースの候補であり、
     前記工程Aにおいて、前記第1移動局のセミパーシステントスケジューリング送達確認信号送信期間における周波数方向リソースとコード方向リソースとの組み合わせからなる所定リソースの割当数に基づいて、前記第1移動局に対して前記セミパーシステントスケジューリング送達確認信号送信用リソース候補を割り当て、
     前記下りデータが、前記セミパーシステントスケジューリングによってスケジューリングされた場合に、前記セミパーシステントスケジューリング送達確認信号送信用リソース候補の中から、該下りデータに対する送達確認信号を送信するためのリソースを選択する工程Bを更に有することを特徴とする移動通信方法。
PCT/JP2010/055020 2009-03-25 2010-03-24 無線基地局及び移動通信方法 WO2010110285A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10756081.5A EP2413654A4 (en) 2009-03-25 2010-03-24 RADIO BASE STATION AND MOBILE COMMUNICATION PROCESS
US13/259,030 US8724569B2 (en) 2009-03-25 2010-03-24 Radio base station and mobile communication method
CN201080013622.8A CN102365896B (zh) 2009-03-25 2010-03-24 无线基站以及移动通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-075221 2009-03-25
JP2009075221A JP5205320B2 (ja) 2009-03-25 2009-03-25 無線基地局及び移動通信方法

Publications (2)

Publication Number Publication Date
WO2010110285A1 WO2010110285A1 (ja) 2010-09-30
WO2010110285A9 true WO2010110285A9 (ja) 2010-12-23

Family

ID=42780979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055020 WO2010110285A1 (ja) 2009-03-25 2010-03-24 無線基地局及び移動通信方法

Country Status (5)

Country Link
US (1) US8724569B2 (ja)
EP (1) EP2413654A4 (ja)
JP (1) JP5205320B2 (ja)
CN (1) CN102365896B (ja)
WO (1) WO2010110285A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634364B2 (en) * 2010-04-20 2014-01-21 Qualcomm Incorporated Semi-persistent scheduling grants in heterogeneous networks
WO2013038525A1 (ja) 2011-09-14 2013-03-21 富士通株式会社 無線端末および基地局
IN2012DE00756A (ja) * 2012-03-15 2015-08-21 Nokia Siemens Network Oy
WO2014009483A1 (en) * 2012-07-11 2014-01-16 Nokia Siemens Networks Oy Uplink control channel resource allocation for semi-persistent scheduling of user equipment
US20140269475A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Apparatus and method for optimizing uplink semi-persistent scheduling activation
US11012939B2 (en) * 2014-01-08 2021-05-18 Huawei Technologies Co., Ltd. System and method for always on connections in wireless communications system
CN109547174B (zh) * 2017-08-10 2022-05-24 华为技术有限公司 一种时间配置的方法、网络设备及ue

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773897A (zh) * 2004-11-10 2006-05-17 北京三星通信技术研究有限公司 动态时频和码序列的资源分配方法及装置
KR100963551B1 (ko) * 2005-07-08 2010-06-16 후지쯔 가부시끼가이샤 무선 자원 할당 방법, 통신 장치
JP5116758B2 (ja) 2007-03-19 2013-01-09 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局及び無線通信システム並びに通信制御方法
JP4558020B2 (ja) 2007-08-14 2010-10-06 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法及び通信システム
HUE057017T2 (hu) * 2007-08-20 2022-04-28 Blackberry Ltd Rendszer és eljárás DRX vezérlésre és NACK/ACK-ra
US8717979B2 (en) * 2007-10-25 2014-05-06 Telefonaktiebolaget Lm Ericsson (Publ) Multiplexing multiple unsolicited grant service (UGS) users onto a same radio resource
CN102067500B (zh) * 2008-03-20 2014-01-15 诺基亚公司 通信系统中的用于持久分配的分组的新数据指示符
US9036564B2 (en) * 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system

Also Published As

Publication number Publication date
CN102365896A (zh) 2012-02-29
EP2413654A4 (en) 2016-08-31
EP2413654A1 (en) 2012-02-01
US20120063399A1 (en) 2012-03-15
CN102365896B (zh) 2014-09-17
JP2010232742A (ja) 2010-10-14
JP5205320B2 (ja) 2013-06-05
WO2010110285A1 (ja) 2010-09-30
US8724569B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP4511611B2 (ja) 無線リソース選択方法、無線基地局及び移動局
EP2606703B1 (en) Method and apparatus for determining when to use contention-based access for transmitting data in a wireless network
EP2606698B1 (en) Method and apparatus for using contention-based resource zones for transmitting data in a wireless network
KR101151205B1 (ko) 무선리소스 선택방법, 이동국 및 무선기지국
JP6629727B2 (ja) リソース割当方法およびデバイス
KR101144099B1 (ko) 이동통신방법, 이동국 및 무선기지국
US20120044878A1 (en) Method and apparatus for providing contention-based resource zones in a wireless network
JP5075859B2 (ja) 無線基地局
WO2010110285A9 (ja) 無線基地局及び移動通信方法
JP5222765B2 (ja) 無線基地局及び移動通信方法
JP5164903B2 (ja) 無線基地局及び移動通信方法
JP5281453B2 (ja) 無線基地局及び移動通信方法
JP4828628B2 (ja) 無線リソース選択方法、移動局及び無線基地局
JP2010178385A (ja) 移動通信方法、移動局及び無線基地局

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013622.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4097/KOLNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010756081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010756081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13259030

Country of ref document: US