WO2010109513A1 - 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法 - Google Patents

無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法 Download PDF

Info

Publication number
WO2010109513A1
WO2010109513A1 PCT/JP2009/001263 JP2009001263W WO2010109513A1 WO 2010109513 A1 WO2010109513 A1 WO 2010109513A1 JP 2009001263 W JP2009001263 W JP 2009001263W WO 2010109513 A1 WO2010109513 A1 WO 2010109513A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
subband
user data
unit
wireless communication
Prior art date
Application number
PCT/JP2009/001263
Other languages
English (en)
French (fr)
Inventor
河▲崎▼義博
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011505645A priority Critical patent/JP5278536B2/ja
Priority to CN200980158252.4A priority patent/CN102362537B/zh
Priority to KR1020117022107A priority patent/KR101307630B1/ko
Priority to EP09842131.6A priority patent/EP2413651A4/en
Priority to PCT/JP2009/001263 priority patent/WO2010109513A1/ja
Publication of WO2010109513A1 publication Critical patent/WO2010109513A1/ja
Priority to US13/238,643 priority patent/US8712458B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a wireless communication system, a base station device, a terminal device, and a wireless communication method in a wireless system.
  • LTE Long Term Term Evolution
  • 3GPP Third Generation Partnership Project
  • the transmission bandwidth is divided into subbands having the same width (for example, Non-Patent Document 1 below).
  • User data for each terminal device is transmitted using one or a plurality of subbands.
  • these subbands are arranged continuously or discontinuously on the frequency axis.
  • FIG. 10A shows an example of a subframe configuration
  • FIG. 10B shows an example of a bitmap.
  • These figures are diagrams showing an example in which the total number of subbands is 10, and the third and fourth subbands (“Y” in FIG. 10A) are used in order from the left for a certain terminal device. is there.
  • the bitmap is included in the control signal, and the resource is allocated to the control channel region of the subframe (for example, “X” in FIG. 10A).
  • FIG. 11A and FIG. 11B are diagrams showing the relationship between the radio transmission bandwidth and the subband.
  • the wireless transmission bandwidth becomes wider as compared with the case shown in FIG. 3A, the number of all subbands increases.
  • the bit map length increases, and the amount of control signal information increases as compared to the case shown in FIG.
  • FIGS. 12A to 12C are diagrams illustrating an example in which the bandwidth of each subband increases as the wireless transmission bandwidth increases while the bitmap length remains constant. 3GPP TS36.213V8.3.0
  • the size of user data varies in size, and when the amount of user data transmitted by the base station device or terminal device is sufficiently small compared to the size of the subband, the utilization efficiency of the subband decreases.
  • one of the objects of the present invention is to provide a radio communication system, a base station apparatus, a terminal apparatus, and a radio communication method in the radio communication system that improve the subband utilization efficiency.
  • Another object of the present invention is to provide a wireless communication system or the like that prevents an increase in the amount of information of allocation information indicating which terminal device uses which subband.
  • the base station device uses a first and second radio frequency bands used for the wireless communication that have different bandwidths. And the divided first or second subband is allocated for transmission of user data to the terminal apparatus or transmission of the user data from the terminal apparatus, and for each terminal apparatus
  • a scheduling unit that generates allocation information indicating which first or second subband is allocated; and a transmission unit that transmits the allocation information to the terminal device, wherein the terminal device receives the allocation information.
  • a receiving unit A receiving unit.
  • the radio frequency band used for the radio communication is divided into first and second subbands having different bandwidths, and is divided
  • the first or second subband is allocated for transmission of user data to the terminal apparatus or transmission of the user data from the terminal apparatus, and which first or second subband is assigned to each terminal apparatus
  • a scheduling unit that generates allocation information indicating whether the allocation has been allocated, and a transmission unit that transmits the allocation information to the terminal device.
  • a radio frequency band used for the radio communication is divided into first and second subbands having different bandwidths, and divided.
  • the first or second subband is allocated for transmission of user data to the terminal device or transmission of the user data from the terminal device, and which first or second subband is assigned to each terminal device.
  • a receiving unit configured to receive allocation information indicating whether a band has been allocated from the base station apparatus;
  • a radio communication method in a radio communication system that performs radio communication between a base station apparatus and a terminal apparatus, wherein the base station apparatus sets a radio frequency band used for the radio communication.
  • the first and second subbands having different bandwidths are divided, and the divided first or second subbands are transmitted to the terminal device or transmitted from the terminal device.
  • radio communication system It is possible to provide a radio communication system, a base station apparatus, a terminal apparatus, and a radio communication method in the radio communication system that improve the subband usage efficiency.
  • a wireless communication system or the like that prevents an increase in the amount of information of allocation information indicating which terminal device uses which subband.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a configuration example of the base station apparatus.
  • FIG. 3 is a diagram illustrating a configuration example of the terminal device.
  • FIG. 4 is a flowchart showing an operation example.
  • FIG. 5 is a diagram illustrating a configuration example of a subframe.
  • FIG. 6 is a diagram illustrating another configuration example of the subframe.
  • FIG. 7 is a diagram illustrating another configuration example of the base station apparatus.
  • FIG. 8 is a diagram illustrating another configuration example of the terminal device.
  • FIG. 9 is a diagram illustrating another configuration example of the terminal device.
  • FIG. 10A shows an example of a subframe configuration
  • FIG. 10B shows an example of a bitmap.
  • FIG. 11A and FIG. 11B are diagrams illustrating an example of a relationship between a wireless transmission bandwidth and a subband.
  • FIGS. 12A to 12C are diagrams showing other
  • wireless communication system 10 base station apparatus 11: subband bitmap definition information storage unit 12: scheduling unit 13: first multiplexing unit 14: second multiplexing unit 15: third multiplexing unit 17: Radio transmission unit 18: Radio reception unit 19: Movement speed estimation unit 20: Data decoding unit 21: Transmission unit 30: Terminal device 31: Radio reception unit 32: Control signal decoding unit 33: Data decoding unit 34: Channel estimation unit (or moving speed estimation unit) 35: Evaluation unit 36: Bitmap definition desired signal generation unit 37: Fourth multiplexing unit 38: Fifth multiplexing unit 39: Radio transmission unit 40: Movement speed estimation unit 41: Terminal capability information storage unit 42: Reception Part
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 1.
  • the base station apparatus 10 divides a radio frequency band used for radio communication into first and second subbands having different bandwidths.
  • the divided first or second subband is allocated for transmission of user data to the terminal device 30 or transmission of user data from the terminal device 30, and which first or second subband is assigned to each terminal device 30.
  • the terminal device 30 includes a reception unit 42 that receives the allocation information.
  • the scheduling unit 12 of the base station apparatus 10 transmits user data to the terminal apparatus 30 for each subband obtained by dividing the radio frequency band into first and second subbands having different bandwidths, or a user from the terminal apparatus 30. Assign for sending data. And the scheduling part 12 produces
  • the terminal device 30 receives the allocation information transmitted from the base station device 10.
  • the wireless communication system 1 of the present embodiment can improve the subband utilization efficiency.
  • the wireless communication system 1 of the present embodiment can prevent an increase in the amount of allocation information.
  • FIG. 2 is a diagram illustrating a configuration example of a base station apparatus (hereinafter referred to as a base station) 10 in the wireless communication system 1.
  • the base station 10 includes a subband bitmap definition information storage unit (hereinafter, definition information storage unit) 11, a scheduling unit 12, a first multiplexing unit 13, a second multiplexing unit 14, A multiplexing unit 15, a modulation unit 16, a wireless transmission unit 17, a wireless reception unit 18, a moving speed estimation unit 19, and a data decoding unit 20 are provided.
  • definition information storage unit hereinafter, definition information storage unit
  • a multiplexing unit 15 a modulation unit 16, a wireless transmission unit 17, a wireless reception unit 18, a moving speed estimation unit 19, and a data decoding unit 20 are provided.
  • the transmission unit 21 (see FIG. 1) in the first embodiment corresponds to, for example, the first to third multiplexing units 13 to 15, the modulation unit 16, and the wireless transmission unit 17.
  • the definition information storage unit 11 stores subband bitmap definition information (hereinafter, bitmap definition information).
  • the bitmap definition information is, for example, information (or allocation information) indicating which subband among one or a plurality of subbands is used for transmitting or receiving user data for each terminal device 30.
  • the subband indicates, for example, the minimum frequency band allocated for transmitting or receiving user data to a certain terminal 30 in the transmission bandwidth of the wireless communication system 1.
  • a subband includes one or more subcarriers. Details of the bitmap definition information will be described later.
  • the scheduling unit 12 generates a subframe (or scheduling information) indicating which frequency band is used to transmit or receive data or the like for each terminal device (hereinafter, “terminal”) 30, and performs third multiplexing.
  • the subframe includes a subframe in the downlink direction for transmitting data and the like from the base station 10 to the terminal 30, and a subframe in the uplink direction for transmitting data and the like from the terminal 30 to the base station 10.
  • the scheduling unit 12 generates a control signal for each terminal 30 and outputs the control signal to the first multiplexing unit 13.
  • the control signal includes data modulation information, individual control signals including HARQ information, and bitmap definition information.
  • the scheduling unit 12 relates to the bitmap definition information, and includes the bitmap definition information stored in the definition information storage unit 11 in the read control signal.
  • the bitmap definition information may be multiplexed with the corresponding user data.
  • the scheduling unit 12 outputs bitmap definition information to the second multiplexing unit 14, and the second multiplexing unit 14 multiplexes the bitmap definition information with user data.
  • the first multiplexing unit 13 multiplexes each control signal output from the scheduling unit 12.
  • the second multiplexing unit 14 multiplexes user data for each terminal 30.
  • Each user data is transmitted from, for example, an upper device (or upper layer).
  • the third multiplexing unit 15 multiplexes the subframe information from the scheduling unit 12, the control signal output from the first multiplexing unit 13, and the data output from the second multiplexing unit 14. Turn into.
  • the modulation unit 16 modulates data output from the third multiplexing unit 15.
  • the wireless transmission unit 17 performs processing such as allocating data output from the modulation unit 16 to a predetermined frequency band and time domain based on the information of the subframe, and converts the processed signal into a wireless signal And output.
  • the radio signal is transmitted to the terminal 30 via the transmission antenna.
  • the radio receiving unit 18 converts the radio signal received from the terminal 30 via the receiving antenna into a signal before modulation.
  • the moving speed estimator 19 estimates the moving speed of the terminal 30 based on the signal output from the wireless receiver 18. For example, the moving speed estimation unit 19 estimates the moving speed based on the phase variation of the pilot signal transmitted from the terminal 30. The movement speed estimation unit 19 outputs the estimated movement speed information to the scheduling unit 12.
  • the data decoding unit 20 decodes data from the signal output from the wireless reception unit 18.
  • the data decoding unit 20 outputs a bitmap definition desired signal (hereinafter referred to as a bitmap desired signal) and the like transmitted from the terminal 30 to the scheduling unit 12 and outputs user data to the upper layer.
  • the bitmap request signal is a signal transmitted from the terminal 30 when the terminal 30 wants to change the bitmap definition information transmitted to the terminal 30, for example. Details will be described later.
  • FIG. 3 is a diagram illustrating a configuration example of the terminal 30.
  • the terminal 30 includes a radio reception unit 31, a control signal decoding unit 32, a data decoding unit 33, a channel estimation unit 34, an evaluation unit 35, and a bitmap definition desired signal generation unit (hereinafter referred to as a desired signal generation unit) 36.
  • the receiving unit 42 corresponds to, for example, the wireless receiving unit 31, the control signal decoding unit 32, and the data decoding unit 33.
  • the radio reception unit 31 receives a radio signal transmitted from the base station 10 via a reception antenna.
  • the control signal decoding unit 32 decodes the control signal with respect to the signal from the wireless reception unit 31.
  • the control signal decoding unit 32 outputs subband information indicating which subband is assigned to the terminal 30 to the data decoding unit 33 based on the bitmap definition information included in the control signal.
  • the control signal decoding unit 32 outputs the modulation method and coding rate information included in the control signal to the data decoding unit 33.
  • the data decoding unit 33 Based on the subband information, the data decoding unit 33 extracts user data addressed to the terminal 30 from the signal from the radio reception unit 31, and demodulates and decodes the user data based on the modulation information and the coding rate information, respectively. .
  • the decrypted user data is output to another processing unit of the terminal 30.
  • the data decoding unit 33 may extract the bitmap definition information from the decoded user data and output it to the control signal decoding unit 32.
  • the control signal decoding unit 32 outputs subband information based on the bitmap definition information output from the data decoding unit 33.
  • the channel estimation unit 34 performs channel estimation and downlink radio channel quality measurement necessary for demodulating the received signal based on the pilot signal transmitted from the base station 10.
  • the evaluation unit 35 determines whether or not to change the bitmap definition information based on the result of the downlink radio channel quality measurement, and outputs a notification to that effect to the desired signal generation unit 36 if it is changed. For example, the evaluation unit 35 notifies that the change is made when the estimation result is lower than the threshold value.
  • the desired signal generating unit 36 When receiving the notification of the change from the evaluation unit 35, the desired signal generating unit 36 generates a bitmap definition desired signal for requesting the change of the bitmap definition information.
  • the fourth multiplexing unit 37 multiplexes the user data and the bitmap definition desired signal output from the desired signal generation unit 36.
  • the fifth multiplexing unit 38 multiplexes the control signal and the output signal output from the fourth multiplexing unit 37.
  • the radio transmission unit 39 performs processing such as encoding, amplitude control, and modulation on the output signal output from the fifth multiplexing unit 38, converts the processed signal into a radio signal, and outputs the radio signal to the transmission antenna. To do.
  • the radio signal is transmitted to the base station 10 via the transmission antenna.
  • FIG. 4 is a flowchart showing an operation example.
  • the scheduling unit 12 of the base station 10 When the processing is started, the scheduling unit 12 of the base station 10 generates the control signal by including the initial (default) bitmap definition information stored in the definition information storage unit 11 in the control signal (S10).
  • the scheduling unit 12 may output the bitmap definition information to the second multiplexing unit 14 and multiplex it with user data.
  • FIG. 5A is a diagram illustrating an example of a subframe configuration
  • FIG. 5B is a diagram illustrating an example of bitmap definition information.
  • the width of each subband allocated to the terminal 30 is made different.
  • the example shown in FIG. 2A is an example in which two types of large and small subbands are mixed in the wireless transmission band.
  • Each bit included in the bitmap information corresponds to each subband.
  • the bitmap definition information is “100,000”, and the second subband from the left is assigned.
  • the bitmap definition information is “010000”.
  • the scheduling unit 12 creates bitmap definition information for each terminal 30.
  • two types of large and small subbands are arranged.
  • the widths of the subbands may all be different.
  • the width of the subband indicated by each bit is set between the bits.
  • the scheduling unit 12 generates allocation information indicating which subband is allocated for user data transmission for the terminal 30 with respect to the subband divided into different bandwidths in the radio transmission band. Yes.
  • the subband utilization efficiency can be increased as compared with the case where a subband having a constant width is used. Further, even if the subband widths are different, the number of bits in the bitmap definition information is not changed unless the number of all subbands is changed. Therefore, in this embodiment, it is possible to prevent an increase in the amount of bitmap definition information and further improve the subband usage efficiency.
  • the base station 10 notifies each terminal 30 of the created bitmap definition information (S11).
  • the bitmap definition information is included in the control signal or multiplexed with user data and transmitted to each terminal 30 via the wireless transmission unit 17 or the like.
  • the base station 10 determines whether or not the data amount is equal to or less than a threshold value (S12).
  • the scheduling unit 12 may input user data input to the second multiplexing unit 14, calculate the user data amount per unit time, and determine from the data amount and the threshold value.
  • the data decoding unit 33 of the terminal 30 calculates the decoded data amount per unit time and outputs it to the wireless transmission unit 39 or the like, and the scheduling unit 12 determines from the data amount transmitted from the terminal 30. Good.
  • the scheduling unit 12 When the data amount is less than or equal to the threshold (YES in S12), the scheduling unit 12 changes the subband arrangement pattern (S13). For example, when the data amount of user data transmitted to a certain terminal 30 is very small with respect to the initially allocated subband size, the scheduling unit 12 changes the subband arrangement.
  • the definition information storage unit 11 or the scheduling storage unit 12 stores a plurality of subframes or subband information whose subband arrangement has been changed.
  • the scheduling unit 12 changes the bitmap definition information by reading subframe or subband information having a subband arrangement different from that of S10.
  • the width of the subband indicated by each bit of the bitmap definition information is different between the bits, which is the same as the initial bitmap definition information set in S10.
  • the scheduling unit 12 may change the arrangement of subbands by changing the number of all subbands of the radio transmission band.
  • 6 (A) to 6 (D) are diagrams showing configuration examples of subframes having different subband arrangements.
  • the scheduling unit 12 can use the subframe shown in FIG. 6A as the initial subband, and can use the subframe shown in FIG.
  • the subband is compared with other subbands as shown in FIG. Changed to a smaller subband. Therefore, a subband having a width corresponding to the data amount is allocated, and the subband utilization efficiency can be improved.
  • the subband arrangement is changed. By doing so (for example, FIG. 6C), it becomes possible to transmit data using subbands of different frequency bands, so that it is possible to prevent reception characteristic deterioration.
  • the subband change is transmitted from the scheduling unit 12 to the terminal 30 via the third multiplexing unit 15 or the like as changed subframe information (or scheduling information).
  • the data decoding unit 33 of the terminal 30 can decode user data or the like from the base station 10 based on the changed subband information.
  • the scheduling unit 12 determines whether a bitmap definition request signal is received from the terminal 30 (S14). For example, the scheduling unit 12 determines whether or not a bitmap definition request signal is input from the data decoding unit 20.
  • Scheduling unit 12 changes the subband arrangement pattern when receiving a bitmap definition request signal from terminal 30 (YES in S14) (S15).
  • the change can be performed in the same manner as the process of S13.
  • the bitmap definition desired signal is generated by the evaluation unit 35 and the bitmap definition desired signal generation unit 36 based on the result of the channel estimation unit 34. For example, when the downlink radio channel quality measurement result is smaller than the threshold value, the evaluation unit 35 has a poor propagation path environment, so that the subband width is wider than the initial subband width specified by the scheduling unit 12. Notify changes.
  • the terminal 30 has a higher possibility that the width of the subband after the change is wider than the width of the initial subband by changing the arrangement pattern of the subbands. It becomes easier to apply a smaller value for the coding rate applied to the transmission signal, and therefore the probability that the terminal 30 can receive a reception signal with good reception characteristics is increased, and other reception signals are obtained by error correction or the like based on the reception signal. Can be decrypted. Therefore, the terminal 30 can improve reception characteristics.
  • the scheduling unit 12 determines whether or not the moving speed of the terminal 30 is equal to or less than a threshold (S16). The scheduling unit 12 makes a determination based on the movement speed information output from the movement speed estimation unit 19.
  • the scheduling unit 12 changes the bitmap definition information (S17).
  • the change process is the same as S13 or S15.
  • the change in the subband arrangement pattern increases the possibility that the changed subband width is wider than the initial subband width.
  • the probability that a reception signal with good reception characteristics can be received increases. Therefore, the terminal 30 can decode other received signals by error correction or the like based on the received signals, and can improve the reception characteristics as compared with the case where a sub-band of a certain width is used. .
  • FIG. 4 is a diagram illustrating an operation example in the uplink direction.
  • the scheduling unit 12 reads the bitmap definition information from the definition information storage unit 11 and performs scheduling or the like (S10).
  • the bitmap definition information is included in the control signal or multiplexed with user data and transmitted to the terminal 30.
  • the bitmap definition information is for each subband in the radio transmission bandwidth in the uplink direction (or the subframe in the uplink direction).
  • the control signal decoding unit 32 of the terminal 30 extracts subband information for the uplink direction from the bitmap definition information included in the control signal and the like, and also includes modulation method information and coding rate information in the uplink direction included in the control signal, etc. Are output to the wireless transmission unit 39, respectively.
  • the wireless transmission unit 39 performs modulation and coding based on these pieces of information, and further maps and transmits user data and the like on the frequency axis and the time axis.
  • the evaluation unit 35 requests a change of the bitmap definition information based on the output result from the channel estimation unit 34, and the desired signal generation unit 36 generates a bitmap definition desired signal based on the request.
  • the bitmap definition request signal is multiplexed with user data and transmitted to the base station 10.
  • the scheduling unit 12 of the base station 10 changes the bitmap definition, that is, the arrangement of the subbands depending on whether the amount of data per unit time in the uplink direction decoded by the data decoding unit 20 is equal to or less than the threshold (S12). Processing to change is performed (S13).
  • the data amount may be the maximum data amount that can be transmitted by the terminal 30, as in the case of the downlink.
  • the terminal 30 transmits information including the maximum data amount that can be transmitted in the control signal, and can be determined by the scheduling unit 12 of the base station 10.
  • the scheduling unit 12 changes the subband arrangement (S15).
  • the bitmap definition desired signal can also be implemented in the same manner as in the downlink, and the evaluation unit 35 notifies the generation of the desired signal based on the estimation result of the channel estimation unit 34, and the desired signal generation unit 36 generates the desired signal. And transmitted to the base station 10.
  • the scheduling unit 12 changes the subband arrangement (S17). Similarly to the case of the downlink, the moving speed of the terminal 30 is estimated by the moving speed estimating unit 19 of the base station 10 and the scheduling unit 12 can determine the moving speed based on the estimation result.
  • the subband arrangement change (S13, S15, and S17) can also be performed in the same manner as in the downlink direction.
  • the changed subframe information is transmitted from the base station 10 to the terminal 30, and the control signal decoding unit 32 of the terminal 30 outputs the subband information to the wireless transmission unit 39 from the decoded control signal and the like.
  • the wireless transmission unit 39 transmits user data and the like to the base station 10 using the changed subband.
  • the subframe specified by the bitmap definition information (B0 B1 B2) is specified by the downlink direction and the bitmap definition information (B3 B4 B6).
  • a subframe can also be represented as each subframe in the uplink direction.
  • the width of the subband indicated by each bit is set between each bit.
  • the scheduling unit 12 generates allocation information indicating which subband is allocated for user data transmission from the terminal 30 with respect to the subband divided into different bandwidths in the radio transmission band. Yes.
  • the wireless communication system 1 can increase the subband utilization efficiency.
  • the scheduling unit 12 can further improve the utilization efficiency of the subbands by changing the arrangement of the subbands having different sizes instead of being fixed. In any case, even if the subband arrangement is changed, if the number of all subbands is not changed, the number of bits of the bitmap definition information does not increase or decrease, and an increase in the amount of information of the bitmap definition information can be prevented.
  • the scheduling unit 12 may periodically change the subhand arrangement pattern.
  • the subband can be changed to a subband having a smaller width than the other subbands, thereby increasing the subband usage efficiency. Increases nature.
  • the size of the subband indicated by each bit of the bitmap definition information is changed by changing the arrangement of the subbands, the number of bits is not changed and the amount of information is not changed.
  • the scheduling unit 12 does not use four types of subframes as shown in FIGS. Two types may be used. Further, a plurality of types may be used.
  • the scheduling unit 12 may change the cycle for changing the arrangement pattern from four types to three types. For example, when the moving speed of the terminal 30 is greater than the threshold value, the scheduling unit 12 selects three types from FIG. 6 (A) to FIG. 6 (D) to FIG. 6 (A) to FIG. Use to change.
  • the scheduling unit 12 may change the subband arrangement so as to periodically change the number of all subbands in the transmission band.
  • the scheduling unit 12 may change the number of all subbands when changing the bitmap definition information (S12, S14, or S16).
  • FIG. 7 is a diagram showing another configuration example of the base station 10, and FIG. These drawings are diagrams illustrating an example in which the terminal 30 includes the moving speed estimation unit 40.
  • the moving speed estimator 40 estimates the moving speed of the terminal 40 based on the phase variation of the pilot signal received by the wireless receiver 31. For example, like the moving speed estimating unit 19 of the base station 10, the moving speed estimating unit 40 sequentially stores the received pilot signals, stores the pilot signals for a certain period, and then calculates the phase fluctuations of the pilot signals. Is estimated.
  • the estimated moving speed is transmitted to the base station 10 multiplexed with user data by the fourth multiplexing unit 37.
  • the data decoding unit 20 of the base station 10 decodes the moving speed and outputs it to the scheduling unit 12.
  • the scheduling unit 12 changes the subband arrangement pattern (S17).
  • the scheduling unit 12 may periodically change the subband arrangement pattern (FIGS.
  • the scheduling unit 12 may change the four types of subframes shown in FIGS. 6A to 6D to three types or two types of subframes according to the moving speed.
  • the moving speed estimation unit 40 may output the estimated moving speed to the evaluation unit 35.
  • the evaluation unit 35 notifies the bitmap definition desired signal generation unit 36 of the change of the bitmap definition information.
  • the scheduling unit 12 changes the subband arrangement (S15). Since the moving speed estimation unit 19 is not present in the base station 10, the base station 10 can reduce processing.
  • FIG. 9 is a diagram illustrating another configuration example of the terminal 30.
  • the terminal 30 includes a terminal capability information storage unit 41 that stores the maximum size of receivable data (the maximum amount of data that can be received) as terminal capability information.
  • the 4th multiplexing part 37 multiplexes user data etc. and terminal capability information, and outputs them.
  • the data decoding unit 20 (FIG. 2) of the base station 10 decodes the terminal capability information and outputs it to the scheduling unit 12.
  • the scheduling unit 12 performs a process of changing the subband arrangement (S13).
  • the scheduling unit 12 since the scheduling unit 12 does not need to calculate the amount of user data to be transmitted per unit time, the base station 10 can reduce processing.
  • the terminal 30 may output the terminal capability information to the fifth multiplexing unit 38 so as to be included in the control signal and transmitted.
  • the arrangement pattern is changed based on the data amount, the bitmap definition request signal, and the moving speed of the terminal 30 (S12 to S17 in FIG. 4).
  • the arrangement pattern may be changed according to the type of user data transmitted by the base station 10.
  • the scheduling unit 12 inputs user data from a host device, and changes the arrangement pattern (S13, S15, S17) when the type of the user data is voice data, FTP (File Transfer Protocol), HTTP data, or the like. You can also For example, the scheduling unit 12 can determine from the type information of the user data included in the user data, or can be determined by receiving the type information of the user data from the host device. Also in this case, the various modifications described above can be applied. Even in this example, since the arrangement of subbands is changed according to the amount of user data, the utilization efficiency of subbands can be improved.

Abstract

 基地局装置と端末装置との間で無線通信を行う無線通信システムにおいて、前記基地局装置は、前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成するスケジューリング部と、前記割り当て情報を前記端末装置に送信する送信部と、前記端末装置は、前記割り当て情報を受信する受信部とを備える。

Description

無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
 本発明は、無線通信システム、基地局装置、端末装置、及び無線システムにおける無線通信方法に関する。
 標準化団体3GPPで仕様が策定されていて、2010年から2011年以降に商用化が想定されている次世代移動体通信システムの一つであるLTE(Long Term Evolution)システムにおいて、ダウンリンク方向の無線伝送帯域幅は同じ幅のサブバンドに分割される(例えば、以下の非特許文献1)。各端末装置向けのユーザデータは、1つまたは複数のサブバンドを用いて送信される。ある端末装置向けのユーザデータが複数のサブバンドに割り当てられた場合、これらのサブバンドは周波数軸上において連続または非連続で配置される。
 LTEシステムにおいて、あるユーザデータに対してどのサブバンドを用いているかの情報はビットマップとして表現される。図10(A)はサブフレームの構成例、同図(B)はビットマップの例をそれぞれ示す図である。これらの図は、全サブバンド数が10あり、ある端末装置に対して左から順に3番目と4番目のサブバンド(図10(A)の「Y」)が使用される例を示す図である。なお、ビットマップは制御信号に含まれ、サブフレームの制御チャネル領域にそのリソースが割り当てられる(例えば、図10(A)の「X」)。 
 図11(A)及び同図(B)は無線伝送帯域幅とサブバンドとの関係を示す図である。無線伝送帯域幅が同図(A)に示す場合と比較して広くなると、全サブバンドの数が増加する。全サブバンドの数が増加すると、ビットマップ長が増え、制御信号の情報量が同図(A)に示す場合と比較して多くなる。これを解消するため、LTEシステムでは、無線伝送帯域が広くなると、各サブバンドの帯域幅もそれに応じて広げるようにし、ビットマップ長が増えないようにしている。図12(A)~同図(C)は、ビットマップ長は一定のままで、無線伝送帯域幅が広くなると、各サブバンドの帯域幅がそれに応じて広くなる例を示す図である。
3GPP TS36.213V8.3.0
 しかし、ユーザデータのサイズは大小さまざまであり、基地局装置または端末装置が送信するユーザデータのデータ量がサブバンドの大きさと比較して十分小さいとき、当該サブバンドの利用効率が低下する。
 そこで、本発明の目的の一つは、サブバンドの利用効率を向上させるようにした無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法を提供することにある。 
 また、本発明の他の目的の一つは、どの端末装置がどのサブバンドを使用するかを示す割り当て情報の情報量の増大を防止するようにした無線通信システム等を提供することにある。
 一態様によれば、基地局装置と端末装置との間で無線通信を行う無線通信システムにおいて、前記基地局装置は、前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成するスケジューリング部と、前記割り当て情報を前記端末装置に送信する送信部とを備え、前記端末装置は、前記割り当て情報を受信する受信部を備える。
 また、他の態様によれば、端末装置と無線通信を行う基地局装置において、前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成するスケジューリング部と、前記割り当て情報を前記端末装置に送信する送信部とを備える。
 さらに、他の態様によれば、基地局装置と無線通信を行う端末装置において、前記無線通信に用いられる無線周波数帯域が帯域幅の異なる第1及び第2のサブバンドに分割され、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当てられ、前記端末装置ごとにどの前記第1または第2のサブバンドが割り当てられたかを示す割り当て情報を前記基地局装置から受信する受信部を備える。
 さらに、他の態様によれば、基地局装置と端末装置との間で無線通信を行う無線通信システムにおける無線通信方法であって、前記基地局装置は、前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成し、前記基地局装置は、前記割り当て情報を前記端末装置に送信し、前記端末装置は、前記割り当て情報を受信する。 
 サブバンドの利用効率を向上させるようにした無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法を提供することができる。また、どの端末装置がどのサブバンドを使用するかを示す割り当て情報の情報量の増大を防止するようにした無線通信システム等を提供することができる。
図1は無線通信システムの構成例を示す図である。 図2は基地局装置の構成例を示す図である。 図3は端末装置の構成例を示す図である。 図4は動作例を示すフローチャートである。 図5はサブフレームの構成例を示す図である。 図6はサブフレームの他の構成例を示す図である。 図7は基地局装置の他の構成例を示す図である。 図8は端末装置の他の構成例を示す図である。 図9は端末装置の他の構成例を示す図である。 図10(A)はサブフレームの構成例、図10(B)はビットマップの例をそれぞれ示す図である。 図11(A)及び同図(B)は無線伝送帯域幅とサブバンドとの関係の例を示す図である。 図12(A)~同図(C)は無線伝送帯域幅とサブバンドとの関係の他の例を示す図である。
符号の説明
1:無線通信システム         10:基地局装置
11:サブバンドビットマップ定義情報記憶部
12:スケジューリング部       13:第1の多重化部
14:第2の多重化部         15:第3の多重化部
17:無線送信部           18:無線受信部
19:移動速度推定部         20:データ復号部
21:送信部             30:端末装置
31:無線受信部           32:制御信号復号部 
33:データ復号部          34:チャネル推定部(または移動速度推定部)
35:評価部             36:ビットマップ定義希望信号生成部
37:第4の多重化部         38:第5の多重化部
39:無線送信部           40:移動速度推定部
41:端末能力情報記憶部       42:受信部
 本発明を実施するための形態について以下説明する。
 <第1の実施例>
 第1の実施例について説明する。図1は無線通信システム1の構成例を示す図である。基地局装置と端末装置との間で無線通信を行う無線通信システム1において、基地局装置10は、無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された第1または第2のサブバントを端末装置30へのユーザデータの送信または端末装置30からのユーザデータの送信のために割り当て、端末装置30ごとにどの第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成するスケジューリング部12と、割り当て情報を端末装置30に送信する送信部21とを備え、端末装置30は、割り当て情報を受信する受信部42を備える。
 基地局装置10のスケジューリング部12は、無線周波数帯域が帯域幅の異なる第1及び第2のサブバンドに分割された各サブバンドを端末装置30へのユーザデータの送信または端末装置30からのユーザデータの送信のために割り当てる。そして、スケジューリング部12は、どの第1または第2のサブバンドをユーザデータの送信のために割り当てたかを示す割り当て情報を生成する。送信部21はこの割り当て情報を端末装置30に送信する。
 端末装置30は、基地局装置10から送信された割り当て情報を受信する。
 ユーザデータの送信のために割り当てられる第1または第2のサブバンドは各々帯域幅が異なるため、ユーザデータのデータ量が第1または第2のサブバンドの帯域幅と比較して十分小さくなる場合が、一定幅の場合と比較して少なくなる。従って、本実施例の無線通信システム1はサブバンドの利用効率を高めることができる。
 また、基地局装置10と端末装置30が帯域幅の異なるサブバンドを用いても、全サブバンドの数に変更がなければ割り当て情報の情報量は変わらない。よって、本実施例の無線通信システム1は割り当て情報の情報量の増大を防止できる。 
 <第2の実施例>
 図2は無線通信システム1における基地局装置(以下、基地局)10の構成例を示す図である。基地局10は、サブバンドビットマップ定義情報記憶部(以下、定義情報記憶部)11と、スケジューリング部12と、第1の多重化部13と、第2の多重化部14と、第3の多重化部15と、変調部16と、無線送信部17と、無線受信部18と、移動速度推定部19と、データ復号部20とを備える。
 第1の実施例における送信部21(図1参照)は、例えば、第1~第3の多重化部13~15、変調部16、及び無線送信部17に対応する。
 定義情報記憶部11はサブバンドビットマップ定義情報(以下、ビットマップ定義情報)を記憶する。ビットマップ定義情報は、例えば、各端末装置30向けのユーザデータを1または複数のサブバンドのうちどのサブバンドを用いて送信または受信するのかを示す情報(または割り当て情報)である。また、サブバンドは、例えば、無線通信システム1の伝送帯域幅のうち、ある端末30に対してユーザデータを送信または受信するために割り当てられた最少の周波数帯域を示すものである。サブバンドは一または複数のサブキャリアを含む。ビットマップ定義情報の詳細は後述する。
 スケジューリング部12は、端末装置(以下、端末)30ごとにどの時間領域でどの周波数帯域を用いてデータ等を送信または受信するかを示すサブフレーム(またはスケジューリング情報)を生成し、第3の多重化部15に出力する。サブフレームには、基地局10から端末30へデータ等を送信するダウンリンク方向のサブフレームと、端末30から基地局10へデータ等を送信するアップリンク方向のサブフレームとがある。
 また、スケジューリング部12は、端末30ごとに制御信号を生成して第1の多重化部13に出力する。制御信号は、データの変調情報、HARQ情報等を含む個別制御信号、さらにビットマップ定義情報などが含まれる。スケジューリング部12は、ビットマップ定義情報に関し、定義情報記憶部11に記憶されたビットマップ定義情報を読み出し制御信号に含めるようする。なお、ビットマップ定義情報は対応するユーザデータに多重化されてもよい。この場合、スケジューリング部12は第2の多重化部14にビットマップ定義情報を出力し、第2の多重化部14はビットマップ定義情報をユーザデータと多重化する。
 第1の多重化部13は、スケジューリング部12から出力された各制御信号を多重化する。
 第2の多重化部14は、各端末30向けのユーザデータを多重化する。各ユーザデータは、例えば上位装置(または上位層)から送信される。
 第3の多重化部15は、スケジューリング部12からのサブフレームの情報と、第1の多重化部13から出力された制御信号と、第2の多重化部14から出力されたデータとを多重化する。
 変調部16は、第3の多重化部15から出力されたデータ等を変調する。
 無線送信部17は、サブフレームの情報に基づいて、変調部16から出力されたデータ等を予め決められた周波数帯域及び時間領域に割り当てる等の処理を行い、処理後の信号を無線信号に変換して出力する。無線信号は送信アンテナを介して端末30に送信される。
 無線受信部18は、受信アンテナを介して受信した端末30からの無線信号を変調前の信号に変換する。
 移動速度推定部19は、無線受信部18から出力された信号に基づいて端末30の移動速度を推定する。例えば、移動速度推定部19は端末30から送信されるパイロット信号の位相変動に基づいて移動速度を推定する。移動速度推定部19は推定した移動速度情報をスケジューリング部12に出力する。
 データ復号部20は無線受信部18から出力された信号からデータを復号する。データ復号部20は端末30から送信されたビットマップ定義希望信号(以下、ビットマップ希望信号)等をスケジューリング部12に出力し、ユーザデータを上位層に出力する。ビットマップ希望信号は、端末30に送信されたビットマップ定義情報に対して、例えば端末30が変更したいときに端末30から送信される信号である。詳細は後述する。
 図3は端末30の構成例を示す図である。端末30は、無線受信部31と、制御信号復号部32と、データ復号部33と、チャネル推定部34と、評価部35と、ビットマップ定義希望信号生成部(以下、希望信号生成部)36と、第4の多重化部37と、第5の多重化部38と、無線送信部39とを備える。
 第1の実施例における受信部42(図1参照)は、例えば、無線受信部31、制御信号復号部32、及びデータ復号部33に対応する。
 無線受信部31は、基地局10から送信された無線信号を、受信アンテナを介して受信する。
 制御信号復号部32は無線受信部31からの信号に対して制御信号を復号する。制御信号復号部32は、制御信号に含まれるビットマップ定義情報に基づいて、端末30に対してどのサブバンドが割り当てられているかを示すサブバンド情報をデータ復号部33に出力する。また、制御信号復号部32は制御信号に含まれる変調方法及び符号化率情報をデータ復号部33に出力する。
 データ復号部33は、サブバンド情報に基づいて、無線受信部31からの信号に対して端末30あてのユーザデータを取り出し、変調情報及び符号化率情報に基づいてユーザデータをそれぞれ復調及び復号する。復号されたユーザデータは端末30の他の処理部に出力される。
 なお、ユーザデータにビットマップ定義情報が含まれている場合、データ復号部33は復号後のユーザデータからビットマップ定義情報を取り出し、制御信号復号部32に出力するようにしてもよい。この場合、制御信号復号部32はデータ復号部33から出力されたビットマップ定義情報に基づいてサブバンド情報を出力することになる。
 チャネル推定部34は、基地局10から送信されたパイロット信号に基づいて、受信信号復調のために必要なチャネル推定とダウンリンク無線回線品質測定を行う。
 評価部35は、ダウンリンク無線回線品質測定の結果に基づいて、ビットマップ定義情報の変更を行うか否かを判定し、変更する場合はその旨の通知を希望信号生成部36に出力する。評価部35は、例えば推定結果が閾値よりも低いときに変更する旨を通知する。
 希望信号生成部36は、評価部35から変更する旨の通知を受けると、ビットマップ定義情報の変更を要求するビットマップ定義希望信号を生成する。
 第4の多重化部37は、ユーザデータと、希望信号生成部36から出力されたビットマップ定義希望信号とを多重化する。
 第5の多重化部38は、制御信号と、第4の多重化部37から出力された出力信号とを多重化する。
 無線送信部39は、第5の多重化部38から出力された出力信号に対して符号化、振幅制御、変調等の処理を行い、処理後の信号を無線信号に変換して送信アンテナに出力する。当該無線信号は、送信アンテナを介して基地局10に送信される。
 次に動作について説明する。まず、ダウンリンク方向の動作について説明する。
 図4は動作例を示すフローチャートである。処理が開始されると、基地局10のスケジューリング部12は、定義情報記憶部11に記憶された初期(デフォルト)のビットマップ定義情報を制御信号に含めて制御信号を生成する(S10)。スケジューリング部12は、ビットマップ定義情報を第2の多重化部14に出力しユーザデータと多重させるようにしてもよい。
 図5(A)はサブフレームの構成例、同図(B)はビットマップ定義情報の例をそれぞれ示す図である。本実施例において端末30に割り当てられる各サブバンドの幅は異なるようにしている。同図(A)に示す例は、大小2種類のサブバンドが無線伝送帯域内において交互に混在する例である。ビットマップ情報に含まれる各ビットは、各サブバンドに対応する。例えば、ある端末向けのユーザデータとして、同図(A)中、一番左のサブバンドが割り当てられた場合、ビットマップ定義情報は「100000」、左から2番目のサブバンドが割り当てられた場合、ビットマップ定義情報は「010000」となる。スケジューリング部12は、端末30ごとにビットマップ定義情報を作成する。なお、図5(A)に示す例は大小2種類のサブバンドが配置されているが、例えば各サブバンドの幅が全て異なるようにしてもよい。
 このように、本実施例では、各端末30向けのデータの送信に使用されるサブバンドを指定するために使用されるビットマップ定義情報において、各ビットが指し示すサブバンドの幅を各ビット間で異なるようにしている。あるいは、スケジューリング部12は、無線伝送帯域が異なる帯域幅に分割されたサブバンドに対して、端末30向けのユーザデータ送信のためにどのサブバンドが割り当てられているかを示す割り当て情報を生成している。
 これにより、例えば、ある端末30向けのユーザデータ量が他の端末向けのユーザデータ量より小さい場合、他のサブバンドと比較して幅の小さいサブバンドが割り当てられる可能性が、サブバンドの大きさが一定の場合と比較して高くなる。また、ユーザデータ量が他の端末向けのユーザデータ量より大きい場合、他のサブバンドと比較して幅の大きいサブバンドが割り当てられる可能性も高くなる。従って、本実施例の場合は、一定幅のサブバンドを使用する場合と比較して、サブバンドの利用効率を高くすることができる。さらに、サブバンドの幅が異なる場合でも全サブバンド数に変更がなければビットマップ定義情報のビット数に変更がない。よって、本実施例では、ビットマップ定義情報の情報量の増大を防止し、さらにサブバンドの利用効率を向上させることができる。
 図4に戻り、基地局10は、作成したビットマップ定義情報を各端末30に通知する(S11)。ビットマップ定義情報は制御信号に含まれ、またはユーザデータと多重化されて、無線送信部17等を介して各端末30に送信される。
 次いで、基地局10はデータ量が閾値以下か否かを判定する(S12)。例えば、スケジューリング部12は、第2の多重化部14に入力されるユーザデータを入力し、単位時間あたりのユーザデータ量を計算し、当該データ量と閾値とから判定してもよい。例えば、端末30のデータ復号部33は復号した単位時間あたりのデータ量を計算し、それを無線送信部39等に出力し、スケジューリング部12は端末30から送信されたデータ量から判定してもよい。
 データ量が閾値以下のとき(S12でYES)、スケジューリング部12はサブバンドの配置パターンを変更する(S13)。例えば、ある端末30へ送信されるユーザデータのデータ量が初期に割り当てられたサブバンドの大きさに対して非常に小さい場合、スケジューリング部12はサブバンドの配置を変更する。
 例えば、定義情報記憶部11またはスケジューリング記憶部12にはサブバンドの配置が変更された複数のサブフレームまたはサブバンド情報を記憶する。スケジューリング部12は、S10とは異なるサブバンドの配置を有するサブフレームまたはサブバンド情報を読み出すことでビットマップ定義情報を変更する。この場合、ビットマップ定義情報の各ビットが指し示すサブバンドの幅がビット間で異なる点は、S10で設定した初期のビットマップ定義情報と同様である。さらに、スケジューリング部12は、無線伝送帯域の全サブバンドの数を変更してサブバンドの配置を変更するにようにしてもよい。
 図6(A)~同図(D)はサブバンドの配置が互いに異なるサブフレームの構成例を示す図である。例えば、スケジューリング部12は、初期のサブバンドとして図6(A)に示すサブフレームを用い、S13の処理により同図(B)に示すサブフレームを用いることもできる。
 これにより、例えば、同図(A)中、ある端末30について左から2番目のサブバンドが割り当てられた場合、当該サブバンドは同図(B)に示すように他のサブバンドと比較して小さい幅のサブバンドに変更される。よって、データ量に応じた幅のサブバンドが割り当てられて、サブバンドの利用効率を高めることができる。また、例えば図6(B)の左から2番目のサブバンドを用いてある端末30のデータ送信に使用する場合、当該サブバンド内の周波数で受信特性が劣化した場合、サブバンドの配置を変更することで(例えば図6(C))、異なる周波数帯のサブバンドによりデータ送信が可能になるため、受信特性劣化を防止することもできる。
 なお、サブバンドの変更は、変更されたサブフレーム情報(またはスケジューリング情報)としてスケジューリング部12から第3の多重化部15等を介して端末30に送信される。端末30のデータ復号部33は、変更されたサブバンド情報に基づいて基地局10からのユーザデータ等を復号等することができる。
 図4に戻り、データ量が閾値以下のとき(S12でYES)、スケジューリング部12は端末30からビットマップ定義希望信号を受信したか否かを判定する(S14)。スケジューリング部12は、例えばデータ復号部20からビットマップ定義希望信号が入力されたか否かで判定する。
 スケジューリング部12は、端末30からビットマップ定義希望信号を受信した場合(S14でYES)、サブバンドの配置パターンを変更する(S15)。変更は、S13の処理と同様に行うことができる。
 ビットマップ定義希望信号は、チャネル推定部34の結果に基づいて評価部35とビットマップ定義希望信号生成部36により生成される。評価部35は、例えばダウンリンク無線回線品質測定結果が閾値より小さいとき、伝搬路環境があまりよくないため、サブバンドの幅をスケジューリング部12が指定した初期のサブバンドの幅よりも広くなるように変更を通知する。端末30は、サブバンドの配置パターンの変更により、変更後のサブバンドの幅が初期のサブバンドの幅よりも広げられる可能性が高くなる。伝送信号に適用する符号化率をより小さい値を適用しやすくなり、したがって、端末30は受信特性のよい受信信号を受信できる確率が高まり、当該受信信号に基づいて誤り訂正等によりその他の受信信号を復号することができる。よって、端末30は受信特性を向上させることができる。
 スケジューリング部12は、端末30からビットマップ定義希望情報を受信しない場合(S14でNO)、端末30の移動速度が閾値以下か否かを判定する(S16)。スケジューリング部12は、移動速度推定部19から出力された移動速度情報に基づいて判定する。
 移動速度が閾値より大きいとき(S16でNO)、スケジューリング部12はビットマップ定義情報を変更する(S17)。変更の処理はS13またはS15と同様である。
 例えば、端末30の移動速度が閾値より大きいとき(例えば高速移動)、サブバンドの配置パターンの変更により、変更後のサブバンドの幅は初期のサブバンドの幅よりも広くなる可能性が高くなり、S15の場合と同様に、受信特性のよい受信信号を受信できる確率が高まる。よって、端末30は、当該受信信号に基づいて誤り訂正等によりその他の受信信号を復号等することができ、一定幅のサブバンドを用いた場合と比較して、受信特性を向上させることができる。
 一方、移動速度が閾値以下のとき(S16でYES)、処理はS12に移行し、基地局10はS12以降の処理を繰り返すことになる。
 次にアップリンク方向の動作について説明する。図4はアップリンク方向の動作例も示す図である。スケジューリング部12は、定義情報記憶部11からビットマップ定義情報を読み出して、スケジューリング等を行う(S10)。ビットマップ定義情報は制御信号に含まれ、あるいはユーザデータと多重化されて端末30に送信される。この場合のビットマップ定義情報は、アップリンク方向での無線伝送帯域幅(あるいはアップリンク方向のサブフレーム)内での各サブバンドに対するものとなる。
 端末30の制御信号復号部32は制御信号等に含まれるビットマップ定義情報からアップリンク方向に対するサブバンド情報を取り出し、また、制御信号に含まれるアップリンク方向の変調方法情報及び符号化率情報等を取り出し、それぞれ無線送信部39に出力する。無線送信部39は、これらの情報に基づいて、変調や符号化を行い、さらにユーザデータ等を周波数軸上及び時間軸上にマッピングして送信する。
 一方、評価部35は、チャネル推定部34からの出力結果に基づいてビットマップ定義情報の変更を要求し、希望信号生成部36はその要求に基づいてビットマップ定義希望信号を生成する。ビットマップ定義希望信号はユーザデータ等と多重化されて基地局10に送信される。
 基地局10のスケジューリング部12は、データ復号部20で復号されたアップリンク方向の単位時間あたりのデータ量が閾値以下か否かにより(S12)、ビットマップ定義の変更、すなわちサブバンドの配置を変更する処理を行う(S13)。データ量はダウンリンクの場合と同様に、端末30の送信可能な最大データ量でもよい。例えば、端末30は送信可能な最大データ量の情報を制御信号に含めて送信し、基地局10のスケジューリング部12で判定できる。
 また、スケジューリング部12は、データ復号部20で復号されたユーザデータにビットマップ定義希望信号が含まれている場合(S14でYES)、サブバンドの配置を変更する(S15)。ビットマップ定義希望信号もダウンリンクの場合と同様に実施でき、チャネル推定部34の推定結果に基づいて評価部35が当該希望信号の生成を通知し、希望信号生成部36で当該希望信号が生成され、基地局10に送信される。
 さらに、スケジューリング部12は、移動速度推定部19で推定した端末30の移動速度等が閾値より大きい場合(S16でYES)、サブバンドの配置を変更する(S17)。移動速度についても、ダウンリンクの場合と同様に、基地局10の移動速度推定部19で端末30の移動速度を推定し、スケジューリング部12はその推定結果により判定できる。
 サブバンドの配置の変更(S13,S15,及びS17)についても、ダウンリンク方向と同様に行うことができる。変更後は、変更後のサブフレームの情報が基地局10から端末30に送信され、端末30の制御信号復号部32は復号等した制御信号等からサブバンド情報を無線送信部39に出力する。無線送信部39は変更後のサブバンドによりユーザデータ等を基地局10に送信する。
 なお、図5(A)に示すサブフレームの構成例において、例えばビットマップ定義情報(B0 B1 B2)により指定されるサブフレームはダウンリンク方向、ビットマップ定義情報(B3 B4 B6)により指定されるサブフレームはアップリンク方向の各サブフレームととして表すこともできる。
 アップリンク方向についても、本実施例では、各端末30からのデータ送信に使用されるサブバンドを指定するために使用されるビットマップ定義情報において、各ビットが指し示すサブバンドの幅を各ビット間で異なるようにしている。あるいは、スケジューリング部12は、無線伝送帯域が異なる帯域幅に分割されたサブバンドに対して、端末30からのユーザデータ送信のためにどのサブバンドが割り当てられているかを示す割り当て情報を生成している。
 これにより、例えば、端末30から送信されるユーザデータのデータ量が他の端末から送信されるデータ量より小さいときに、幅が一定のサブバンドを用いる場合と比較して、他のサブバンドと比較して幅の小さいサブバンドが割り当てられる場合もある。従って、本無線通信システム1は、サブバンドの利用効率を高めることができる。また、スケジューリング部12は、大きさの異なるサブバンドの配置を固定ではなく変更するようにすることで、さらにサブバンドの利用効率を高めることができる。いずれの場合でも、サブバンドの配置が変更されても全サブバンド数に変更がなければビットマップ定義情報のビット数に増減はなく、ビットマップ定義情報の情報量の増大を防止できる。
 <その他の実施例>
 サブバンドの配置の変更は種々の変形例がある。例えば、S12,S14,及びS16の処理に関わらず、図6(A)~同図(D)に示すように、スケジューリング部12はサブハンドの配置パターンを周期的に異ならせるようにしてもよい。かかる変更により、例えば、ある端末30向けのユーザデータ量が他と比較して小さい場合に、他のサブバンドと比較して小さな幅のサブバンドに変更されて、サブバンドの利用効率を高める可能性が高くなる。サブバンドの配置の変更により、ビットマップ定義情報の各ビットが示すサブバンドの大きさが変更されるもののビット数は変更されず、情報量は変わらない。
 また、スケジューリング部12は、周期的に変更する場合でも、図6(A)~同図(D)に示すように4種類のサブフレームを用いるのではなく、このうち3種類を用いても、2種類のものを用いてもよい。さらに、複数種類のものを用いてもよい。
 さらに、スケジューリング部12は、ビットマップ定義情報を変更する場合(S12、S14、及びS16)に、4種類から3種類等、配置パターンを変化させる周期を変えるようにしてもよい。例えば、スケジューリング部12は、端末30の移動速度が閾値より大きいときに、図6(A)~同図(D)の4種類から同図(A)~同図(C)までの3種類を用いて変更する。
 さらに、スケジューリング部12は、周期的に伝送帯域内の全サブバンドの個数を変更するようにサブバンドの配置を変更してもよい。またスケジューリング部12は、ビットマップ定義情報を変更する場合(S12,S14,またはS16)に、全サブバンドの個数を変更するようにしてもよい。
 図7は基地局10、図8は端末30の他の構成例をそれぞれ示す図である。これらの図は、端末30に移動速度推定部40を備えた例を示す図である。
 移動速度推定部40は無線受信部31で受信したパイロット信号の位相変動に基づいて端末40の移動速度を推定する。例えば、移動速度推定部40は、基地局10の移動速度推定部19と同様に、受信したパイロット信号を順次記憶し、一定期間記憶した後、パイロット信号の位相変動を計算等することにより移動速度を推定する。推定した移動速度は、第4の多重化部37でユーザデータと多重化された基地局10に送信される。基地局10のデータ復号部20は移動速度を復号してスケジューリング部12に出力する。スケジューリング部12は移動速度が閾値より大きいとき(S16でYES)、サブバンドの配置パターンを変更する(S17)。スケジューリング部12は、サブバンドの配置パターンを周期的に変更してもよいし(図6(A)~図6(D))、移動速度に応じて配置パターンを変化させる周期を変えるようにしてもよい。例えば、スケジューリング部12は、図6(A)~同図(D)に示す4種類のサブフレームから、移動速度に応じて3種類または2種類のサブフレームに変更させるようにしてもよい。
 移動速度推定部40は推定した移動速度を評価部35に出力するようにしてもよい。この場合、評価部35は移動速度が閾値より大きいとき、ビットマップ定義情報の変更をビットマップ定義希望信号生成部36に通知する。スケジューリング部12はビットマップ定義希望信号を端末30から受信した場合に(S14でYES)、サブバンドの配置を変更する(S15)。移動速度推定部19が基地局10にないため、基地局10は処理軽減を図ることができる。
 図9は端末30の他の構成例を示す図である。端末30は、受信可能なデータの最大サイズ(受信可能な最大データ量)を端末能力情報として記憶する端末能力情報記憶部41を備える。第4の多重化部37は、ユーザデータ等と端末能力情報とを多重化して出力する。基地局10のデータ復号部20(図2)は端末能力情報を復号しスケジューリング部12に出力する。スケジューリング部12は、受信可能なデータの最大データ量が閾値以下のとき(S12でYES)、サブバンドの配置を変更する処理(S13)を行う。この場合、スケジューリング部12は送信するユーザデータの単位時間あたりのデータ量を計算する必要がないため、基地局10は処理軽減を図ることができる。なお、端末30は端末能力情報を第5の多重化部38に出力させて、制御信号に含めて送信するようにしてもよい。
 上述した例において、データ量、ビットマップ定義希望信号、端末30の移動速度に基づいて配置パターンを変更させるようにした(図4のS12~S17)。例えば、基地局10が送信するユーザデータの種別に応じて配置パターンを変更させるようにしてもよい。例えば、スケジューリング部12は、ユーザデータを上位装置から入力し、ユーザデータの種別が音声データ、FTP(File Transfer Protocol)、HTTPデータなどの場合、配置パターンを変更(S13,S15,S17)したりすることもできる。例えば、スケジューリング部12はユーザデータに含まれるユーザデータの種別情報から判定することもできるし、上位装置からユーザデータの種別情報を通知されて判定することもできる。この場合も、上述した種々の変形例を適用できる。この例の場合でも、ユーザデータ量に応じてサブバンドの配置が変更されるため、サブバンドの利用効率を向上させることができる。

Claims (13)

  1.  基地局装置と端末装置との間で無線通信を行う無線通信システムにおいて、
     前記基地局装置は、
     前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成するスケジューリング部と、
     前記割り当て情報を前記端末装置に送信する送信部とを備え、
     前記端末装置は、
     前記割り当て情報を受信する受信部を備えることを特徴とする無線通信システム。
  2.  前記スケジューリング部は、前記端末装置へのユーザデータのデータ量または前記端末装置からの前記ユーザデータのデータ量に基づいて、前記無線周波数帯域内における前記第1及び第2のサブバンドの配置を変更し、変更した前記第1または第2のサブバンドを前記ユーザデータの送信のために割り当てることを特徴とする請求項1記載の無線通信システム。
  3.  前記端末装置は、さらに、前記第1及び第2のサブバンドの配置の変更を要求する要求信号を生成し、当該要求信号を送信する送信部と、
     前記基地局装置は、さらに、前記要求信号を受信する受信部とを備え、
     前記スケジューリング部は、前記要求信号に応じて、前記無線周波数帯域内における前記第1及び第2のサブバンドの配置を変更し、変更した前記第1または第2のサブバンドを前記ユーザデータの送信のために割り当てることを特徴とする請求項1記載の無線通信システム。
  4.  前記端末装置は、さらに、前記基地局装置から送信されたパイロット信号に基づいてチャネル推定を行うチャネル推定部を備え、
     前記端末装置の送信部は、前記チャネル推定部から出力された推定結果に基づいて前記要求信号を生成することを特徴とする請求項3記載の無線通信システム。
  5.  前記スケジューリング部は、前記端末装置の移動速度に基づいて、前記無線周波数帯域内における前記第1及び第2のサブバンドの配置を変更し、変更した前記第1または第2のサブバンドを前記ユーザデータの送信のために割り当てることを特徴とする請求項1記載の無線通信システム。
  6.  前記スケジューリング部は、前記無線周波数帯域内における前記第1及び第2のサブバンドの配置を単位送信区間ごとに変更し、変更した前記第1または前記第2のサブバンドを前記ユーザデータの送信のために割り当てることを特徴とする請求項1記載の無線通信システム。
  7.  前記スケジューリング部は、前記第1及び第2のサブバンドの配置を単位送信区間ごとにかつ一定周期で変更することを特徴とする請求項6記載の無線通信システム。
  8.  前記スケジューリング部は、前記端末装置の移動速度に応じて、前記第1及び第2のサブバンドの配置を変更する周期を変えることを特徴とする請求項7記載の無線通信システム。
  9.  前記スケジューリング部は、前記端末装置に送信するデータの種別または前記端末装置が送信するデータの種別に基づいて、前記無線周波数帯域内における前記第1及び第2のサブバンドの配置を変更し、変更した前記第1または第2のサブバンドを前記ユーザデータの送信のために割り当てることを特徴とする請求項1記載の無線通信システム。
  10.  前記スケジューリング部は、前記端末装置が受信できるまたは前記端末装置が送信できる前記ユーザデータの最大データ量に基づいて、前記無線周波数帯域内における前記第1及び第2のサブバンドの配置を変更し、変更した前記第1または第2のサブバンドを前記ユーザデータの送信のために割り当てることを特徴とする請求項1記載の無線通信システム。
  11.  端末装置と無線通信を行う基地局装置において、
     前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成するスケジューリング部と、
     前記割り当て情報を前記端末装置に送信する送信部と、
     を備えることを特徴とする基地局装置。
  12.  基地局装置と無線通信を行う端末装置において、
     前記無線通信に用いられる無線周波数帯域が帯域幅の異なる第1及び第2のサブバンドに分割され、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当てられ、前記端末装置ごとにどの前記第1または第2のサブバンドが割り当てられたかを示す割り当て情報を前記基地局装置から受信する受信部
     を備えることを特徴とする端末装置。
  13.  基地局装置と端末装置との間で無線通信を行う無線通信システムにおける無線通信方法であって、
     前記基地局装置は、前記無線通信に用いられる無線周波数帯域を帯域幅の異なる第1及び第2のサブバンドに分割し、分割された前記第1または第2のサブバンドを前記端末装置へのユーザデータの送信または前記端末装置からの前記ユーザデータの送信のために割り当て、前記端末装置ごとにどの前記第1または第2のサブバンドを割り当てたかを示す割り当て情報を生成し、
     前記基地局装置は、前記割り当て情報を前記端末装置に送信し、
     前記端末装置は、前記割り当て情報を受信する、
     ことを特徴とする無線通信方法。
PCT/JP2009/001263 2009-03-23 2009-03-23 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法 WO2010109513A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011505645A JP5278536B2 (ja) 2009-03-23 2009-03-23 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
CN200980158252.4A CN102362537B (zh) 2009-03-23 2009-03-23 无线通信系统、基站装置、终端装置以及无线通信系统中的无线通信方法
KR1020117022107A KR101307630B1 (ko) 2009-03-23 2009-03-23 무선 통신 시스템, 기지국 장치, 단말 장치, 및 무선 통신 시스템에 있어서의 무선 통신 방법
EP09842131.6A EP2413651A4 (en) 2009-03-23 2009-03-23 RADIO COMMUNICATION SYSTEM, BASE STATION DEVICE, TERMINAL AND RADIO COMMUNICATION METHOD IN RADIO COMMUNICATION SYSTEM
PCT/JP2009/001263 WO2010109513A1 (ja) 2009-03-23 2009-03-23 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
US13/238,643 US8712458B2 (en) 2009-03-23 2011-09-21 Radio communication system, base station apparatus, terminal apparatus, and radio communication method for radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001263 WO2010109513A1 (ja) 2009-03-23 2009-03-23 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/238,643 Continuation US8712458B2 (en) 2009-03-23 2011-09-21 Radio communication system, base station apparatus, terminal apparatus, and radio communication method for radio communication system

Publications (1)

Publication Number Publication Date
WO2010109513A1 true WO2010109513A1 (ja) 2010-09-30

Family

ID=42780228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001263 WO2010109513A1 (ja) 2009-03-23 2009-03-23 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法

Country Status (6)

Country Link
US (1) US8712458B2 (ja)
EP (1) EP2413651A4 (ja)
JP (1) JP5278536B2 (ja)
KR (1) KR101307630B1 (ja)
CN (1) CN102362537B (ja)
WO (1) WO2010109513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536343A (ja) * 2016-11-01 2019-12-12 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてnr搬送波のサブバンドアグリゲーションを構成する方法及び装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2603090T3 (es) * 2006-11-01 2017-02-23 Fujitsu Limited Sistema de comunicaciones inalámbricas
KR101678610B1 (ko) * 2010-07-27 2016-11-23 삼성전자주식회사 롱텀 채널 정보를 기반으로 다중 노드 간 서브밴드 별 협력 통신을 수행하는 방법 및 장치
KR102606781B1 (ko) * 2016-09-02 2023-11-27 삼성전자 주식회사 무선 통신 시스템에서 효율적인 데이터 송수신 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044002A (ja) * 2000-07-21 2002-02-08 Telecommunication Advancement Organization Of Japan 通信方法
WO2005109787A1 (ja) * 2004-05-10 2005-11-17 Ntt Docomo, Inc. パケット送信制御装置及びパケット送信制御方法
WO2007108473A1 (ja) * 2006-03-20 2007-09-27 Matsushita Electric Industrial Co., Ltd. 無線通信システム、無線送信装置、および再送方法
WO2007119591A1 (ja) * 2006-03-31 2007-10-25 Matsushita Electric Industrial Co., Ltd. 無線通信基地局装置および無線通信移動局装置
JP2007300505A (ja) * 2006-05-01 2007-11-15 Ntt Docomo Inc 送信装置および受信装置並びにランダムアクセス制御方法
JP2008289114A (ja) * 2007-02-02 2008-11-27 Ntt Docomo Inc 移動通信システム、基地局装置、ユーザ装置及び方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610234B (zh) * 2003-01-07 2012-04-25 高通股份有限公司 无线多载波通信系统的导频传输方法与装置
US20070002898A1 (en) 2005-06-13 2007-01-04 Nokia Corporation Flexible bandwidth communication system and method using a common physical layer technology platform
EP1999982B1 (en) * 2006-03-20 2018-08-29 BlackBerry Limited Method&system for fractional frequency reuse in a wireless communication network
KR101221821B1 (ko) * 2006-04-21 2013-01-14 삼성전자주식회사 주파수 분할 다중 접속 시스템에서 자원 할당 정보 시그널링 방법
US8867453B2 (en) * 2006-04-24 2014-10-21 Samsung Electronics Co., Ltd. System and method for subcarrier allocation signaling in a multicarrier wireless network
CN101473687B (zh) * 2006-06-19 2012-03-28 株式会社Ntt都科摩 基站以及调度方法
US10084627B2 (en) * 2006-07-10 2018-09-25 Qualcomm Incorporated Frequency hopping in an SC-FDMA environment
JP5046706B2 (ja) * 2007-03-28 2012-10-10 日本無線株式会社 基地局装置
US8160022B2 (en) 2007-04-27 2012-04-17 Hitachi, Ltd. Wireless communication system, wireless base station, wireless terminal and communication control method of the wireless communication system
JP2008295032A (ja) * 2007-04-27 2008-12-04 Hitachi Communication Technologies Ltd 無線通信システム、無線基地局、無線端末および無線通信システムにおける通信制御方法
EP3125451B1 (en) * 2007-06-18 2017-08-16 Mitsubishi Electric Corporation Wireless communication transmitter and receiver
US8239635B2 (en) * 2009-09-30 2012-08-07 Oracle America, Inc. System and method for performing visible and semi-visible read operations in a software transactional memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044002A (ja) * 2000-07-21 2002-02-08 Telecommunication Advancement Organization Of Japan 通信方法
WO2005109787A1 (ja) * 2004-05-10 2005-11-17 Ntt Docomo, Inc. パケット送信制御装置及びパケット送信制御方法
WO2007108473A1 (ja) * 2006-03-20 2007-09-27 Matsushita Electric Industrial Co., Ltd. 無線通信システム、無線送信装置、および再送方法
WO2007119591A1 (ja) * 2006-03-31 2007-10-25 Matsushita Electric Industrial Co., Ltd. 無線通信基地局装置および無線通信移動局装置
JP2007300505A (ja) * 2006-05-01 2007-11-15 Ntt Docomo Inc 送信装置および受信装置並びにランダムアクセス制御方法
JP2008289114A (ja) * 2007-02-02 2008-11-27 Ntt Docomo Inc 移動通信システム、基地局装置、ユーザ装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2413651A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536343A (ja) * 2016-11-01 2019-12-12 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてnr搬送波のサブバンドアグリゲーションを構成する方法及び装置
US11317397B2 (en) 2016-11-01 2022-04-26 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in NR carrier in wireless communication system

Also Published As

Publication number Publication date
KR20110119819A (ko) 2011-11-02
JPWO2010109513A1 (ja) 2012-09-20
EP2413651A4 (en) 2014-12-31
KR101307630B1 (ko) 2013-09-12
CN102362537A (zh) 2012-02-22
JP5278536B2 (ja) 2013-09-04
EP2413651A1 (en) 2012-02-01
CN102362537B (zh) 2015-05-06
US20120009967A1 (en) 2012-01-12
US8712458B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
JP6796811B2 (ja) 通信装置、通信方法及び集積回路
JP4716907B2 (ja) サブバンド通知方法及び端末装置
CN107710842B (zh) 传输上行数据的方法和设备
WO2009096387A1 (ja) 無線通信システム、移動局、基地局および無線通信方法
JP5386493B2 (ja) 無線通信装置及び無線通信システム
US8837271B1 (en) Method and system for sharing a downlink resource block among multiple users
US20120082055A1 (en) Communication system, transmitting station, mobile station, and communication method
US8135396B2 (en) Wireless communication terminal and method
JP5278536B2 (ja) 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
CN110313205B (zh) 一种通信方法及设备
US20220124691A1 (en) Message transmission method and apparatus, terminal, and base station
JP2008042861A (ja) 通信システム、端末装置、基地局、及び通信方法
WO2008108567A1 (en) Method and system for transmitting/receiving signal in a communication system
JPWO2018128042A1 (ja) 通信装置、端末および通信方法
US10630337B2 (en) Radio communication apparatus, radio communication system, and transmission method
JP2008283475A (ja) 無線通信システム、基地局装置、および無線端末
CN114128158A (zh) 基站、发送方法及接收方法
JP4947143B2 (ja) 送受信装置
CN107409007A (zh) 用于调度终端设备的方法和网络设备
JP4973726B2 (ja) 無線通信システムにおけるデータ割り当て方法、及び無線通信システム
JP2006303894A (ja) 無線通信装置および無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158252.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011505645

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117022107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009842131

Country of ref document: EP