WO2010109001A1 - Elektrische batterieeinheit - Google Patents

Elektrische batterieeinheit Download PDF

Info

Publication number
WO2010109001A1
WO2010109001A1 PCT/EP2010/053971 EP2010053971W WO2010109001A1 WO 2010109001 A1 WO2010109001 A1 WO 2010109001A1 EP 2010053971 W EP2010053971 W EP 2010053971W WO 2010109001 A1 WO2010109001 A1 WO 2010109001A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery unit
unit according
heat sink
battery
receptacles
Prior art date
Application number
PCT/EP2010/053971
Other languages
English (en)
French (fr)
Inventor
Martin Michelitsch
Original Assignee
Magna Steyr Fahrzeugtechnik Ag & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna Steyr Fahrzeugtechnik Ag & Co Kg filed Critical Magna Steyr Fahrzeugtechnik Ag & Co Kg
Publication of WO2010109001A1 publication Critical patent/WO2010109001A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrical battery unit consisting of battery cells with a layered layer of cylindrical structure and a battery pack composed of such battery units.
  • Battery cells of this kind e.g. Lithium ion cells
  • Battery cells of this kind because of their layer structure of flexible coiled layers only low mechanical stability and are therefore currently provided with a supporting cell jacket in the form of a metal or plastic.
  • Each battery cell thus forms a self-contained, stable component.
  • the support structure for the battery cells must be sufficiently rigid to provide protection in the event of a crash, otherwise there is a risk of short circuit in case of excessive deformation of the cells.
  • the cell jacket is usually a cause for achieving good heat dissipation.
  • ration compensation layer between the battery cell cells, and their support is required to prevent air leakage. This means a sub-optimal heat transfer due to the large number of layers to be overcome, from the cell chemistry layer structure to the cell shell, from the cell shell to the tolerance compensation layer and from the tolerance compensation layer to the partition wall to the coolant.
  • the object of the invention is to create an electrical battery unit consisting of battery cells, each with a cylindrical layered layer structure, which overcomes the disadvantages of the prior art.
  • This object is achieved with a battery unit of the type mentioned, which is distinguished according to the invention by a heat sink of thermally conductive material with cylindrical receptacles, m is used in each case a coiled layer structure without supporting cell casing. In this way several advantages are achieved:
  • the heat sink of thermally conductive material is also the carrier of the cell chemistry layer structure.
  • Cost optimization Em separate cell casing omitted, and there is also no further Verbauvorgang for the individual battery cells longer necessary, since they are directly m integrated in the combined support and heat sink. Cooling optimization: With the elimination of the separate cell jacket for each battery cell is also unnecessary Installation of a tolerance compensation layer, whereby there are less to be overcome layers for heat transfer and a much better heat can be achieved. Safety optimization: Compared to conventional cell mantles, which have a wall thickness of less than 1 mm, the heat sink according to the invention with its cylindrical receptacles offers a considerably higher resistance to deformation when force is applied from the outside, eg in the event of a crash. This can greatly reduce the risk of short circuits and cell explosion.
  • Modular design The ability to arbitrary long changes of the heat sink and changes in the number of its recordings different requirements can be met with a uniform modular design principle.
  • the cooling body is penetrated by Kuhlstoffkanalen, which are particularly preferably parallel to and between the cylindrical receptacles. As a result, a uniform and effective cooling of the battery cells can be achieved.
  • a particularly compact construction results when the cylindrical receptacles are arranged in mutually half-offset rows.
  • a further preferred embodiment of the invention is characterized in that the heat sink is an extrusion press. profile is, in which the cylindrical receptacles and optional Kuhlstoffkanale are formed by extrusion.
  • the battery unit m any length and thus nominal power can be made simply by Ab Siemens an extruded.
  • the heat sink ausmundenden cylindrical receptacles are covered by a common, attached to the heat sink lid, whereby a mechanically stable and tightly sealed, easy to manufacture arrangement is achieved.
  • the lid can have openings for the passage of electrical connections of the rolled-up layer structures, which facilitates the electrical contacting and interconnection of the battery cells.
  • cover connects the coolant channels which emanate on one side of the heat sink with one another and / or with cover medium outside coolant connections.
  • the extruded profile is provided on its two end faces, each with a lid, whereby the Stirnmundungen the Kuhlstoffkanale of the extruded profile connected on each side according to, for. summarized and / or diverted.
  • the cylindrical receptacles are provided with an electrically insulating coating, which is preferably applied in a plastic spine method.
  • an electrically insulating coating which is preferably applied in a plastic spine method.
  • the invention provides in a second aspect, a battery pack that is composed of a plurality of battery units of the type here made before ⁇ which have each deckeiau- , mixed minerale Kuhlstoffan somebody of the type mentioned, wherein the Kuhlstoffan gleiche of the battery units are connected via a preferably pluggable manifold system with one another.
  • the rated power of the battery pack can thus be modularly designed by arbitrary grouping and interconnecting of Düngsgebounden battery units are adapted to different requirements.
  • FIG. 1 shows the layer structure of a battery cell before rolling m a partial perspective view.
  • FIG. 2 shows the layer structure of FIG. 1 in the rolled-up state
  • FIG. 3 shows the heat sink of a battery unit according to the invention in perspective view
  • FIG. 4 shows the two covers of a battery unit m according to the invention in perspective view
  • FIG. 5 shows a battery unit according to the invention in perspective view
  • FIG. 6 shows a battery pack assembled from a plurality of battery units according to the invention m in perspective view.
  • Fig. 1 shows an exemplary layer structure 1 of conventional type for an electrochemical battery cell, e.g. a lithium-ion cell, of individual flexible layers 2 with interposed terminal lugs 3 for electrical contacting.
  • an electrochemical battery cell e.g. a lithium-ion cell
  • a coiled layer structure 4 with terminal lugs 3 emerging at the end is obtained, as shown in FIG.
  • the layer structure 4 has only low mechanical stability because the layers th 2 are flexible and the layer structure 4 "naked", that is, apart from a allfalligen electrical isolation m the form of a thin outer plastic coating no mecha nically ⁇ bearing cells sheath, such as a metal or plastic stoffhulse is provided.
  • the rolled-up layer structure 4 is inserted into cylindrical receptacles 5 of a heat sink 6 made of thermally conductive material, preferably metal, see Fig. 3.
  • the receptacles 5 can be drilled in the heat sink 6.
  • the heat sink 6 is a Extruded profile and the receptacles 5 are formed by tubular profile seals 7 of the extruded profile 6.
  • the receptacles 5 are preferably arranged in mutually half-staggered rows ( "dense packing").
  • the cylindrical housings 5 may additionally be provided on the inside with an electrically insulating coating to building the layer on ⁇ to isolate 4 from a metallic heat sink 6.
  • the coating is preferably applied in a plastic vortex sintering process, in which plastic granules are introduced into the individual receptacles 5 and melted by heating and allowing the heat sink 6 to rotate on the inside of the receptacles 5.
  • each Kuhlstoffkanale 8 for a coolant, eg Kuhlmannmaschine or air, provided.
  • the Kuhlstoffkanale 8 can also be drilled in any way m the heat sink 6; preferably they pass pa ⁇ Rallel to and between the cylindrical receptacles 5.
  • the Kuhlstoffkanale 8 are formed during manufacture of the heat sink 5 as an extruded through the spaces between the tube section sections 7.
  • the Kuhlstoffkanale 8 may be separated by webs 9 between the tube profile sections 7 from each other, for example, to form juxtaposed return and return ducts. In "tightest packing" of Rohrprofllabitese 8, the webs 9 can also be omitted.
  • the mouths of the receptacles 5 are covered or closed at both ends of the heat sink 6, each with a cover 10, 11. If the receptacles 5 and Kuhlstoffkanale 8 are formed by blind holes in the heat sink 6, the rear lid 11 deleted.
  • the front cover 10 is provided with openings 12 for the passage of the terminal lugs 3 and electrical connections formed therefrom.
  • One or both covers 10, 11 are provided on their inner sides with Kuhlstoffubertritten 13 for mutual connection of the Kuhlstoffkanale 8 and / or connection thereof with deckelau- dated massen Kuhlstoffan gleichen 14, 15.
  • the coolant sub-steps 13 can be formed, for example, by gaps between ring stubs 16, which extend from the openings 12 and can be placed sealingly on the pipe profile sections 8 of the heat sink 6. By webs 17 between the annular nozzle 16, any interconnection of Kuhlmit- telkanäle 8 and deflection of the coolant flowing therein can be achieved.
  • the coolant port 14 is the supply and the coolant port 15 is the discharge for coolant.
  • the coolant ports 14, 15 may also be located on different sides of the heat sink 6 and / or more than two coolant ports may be provided.
  • FIG. 5 shows a battery unit 18 assembled from twelve rolled-up layer structures 4, a heat sink 6 and two covers 10, 11.
  • the coolant connections 14, 15 of a plurality of battery units 18 can be connected to a battery pack via a preferably pluggable manifold system 19. 20 are interconnected with a common coolant circuit.
  • the size and number of receptacles 5 with the layer structures 4 and the number of battery units 18 in a battery pack 20 a wide range of power requirements are modularly covered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Elektrische Batterieeinheit (18) aus Batteriezellen mit jeweils zylinderförmig zusammengerolltem Schichtaufbau (4), mit einem Kühlkörper (6) aus wärmeleitfähigem Material mit zylindrischen Aufnahmen (5), in die jeweils ein zusammengerollter Schichtaufbau (4) ohne tragenden Zellenmantel eingesetzt ist.

Description

Elektrische Batterieeinheit
Die vorliegende Erfindung betrifft eine elektrische Batte- rieeinheit aus Batteriezellen mit [jeweils zylinderförmig zusammengerolltem Schichtaufbau sowie ein Batteriepack, das aus solchen Batterieeinheiten zusammengesetzt ist.
Batteriezellen dieser Art, z.B. Lithiumionenzellen, haben wegen ihres Schichtaufbaus aus flexiblen zusammengerollten Schichten nur geringe mechanische Stabilität und werden daher derzeit mit einem tragenden Zellenmantel in Form einer Metalloder Kunststoffhulse versehen. Jede Batteriezelle bildet so einen in sich abgeschlossenen, stabilen Bauteil.
Wenn solche Bauteile in größerer Anzahl zu einer elektrischen Batterieeinheit zusammengefaßt werden, z.B. als Energiespeicher für Hybrid- oder Elektrofahrzeuge, müssen die einzelnen Zellen nicht nur mechanisch zusammengehalten, sondern wegen der hohen Energiedichte auch entsprechend gekühlt werden, beispielsweise durch Hindurchleiten von Kuhlflussigkeit oder Kuhlluft durch die Batterieeinheit. Dadurch ergeben sich gleich mehrere Probleme.
Einerseits muß die Haltestruktur für die Batteriezellen ausreichend steif sein, um im Falle eines Crashs Schutz zu bieten, da sonst die Gefahr eines Kurzschlusses bei übermäßiger Deformation der Zellen besteht. Anderseits ist wegen unvermeidlicher Fertigungstoleranzen der Zellenmantel zur Erreichung eines guten Warmeabtransports üblicherweise eine ToIe- ranzausgleichsschicht zwischen den Batteriezellen-Zellenman™ teln und ihrer Halterung notig, um Luftemschlυsse zu vermeiden. Dies bedeutet einen suboptimalen Warmetransfer wegen der großen Anzahl von zu überwindenden Schichten, und zwar vom Zellchemie-Schichtaufbau zum Zellenmantel, vom Zellenmantel zur Toleranzausgleichsschicht und von der Toleranzausgleichs- schicht zur Trennwand zum Kuhlmittel.
Die Erfindung setzt sich zum Ziel, eine elektrische Batte- πeemheit aus Batteriezellen mit jeweils zylinderförmig zusammengerolltem Schichtaufbau zu schaffen, welche die Nachteile des Standes der Technik überwindet. Dieses Ziel wird mit einer Batterieeinheit der genannten Art erreicht, die sich gemäß der Erfindung durch einen Kühlkörper aus warmeleitfahigem Material mit zylindrischen Aufnahmen auszeichnet, m die jeweils ein zusammengerollter Schichtaufbau ohne tragenden Zellenmantel eingesetzt ist. Auf diese Weise werden gleich mehrere Vorteile erzielt:
Gewichtsoptimierung: Der Kühlkörper aus warmeleitfahigem Material ist zugleich Trager des Zellchemie-Schichtauf- baus .
Kostenoptimierung: Em gesonderter Zellenmantel entfallt, und es ist auch kein weiterer Verbauvorgang für die einzelnen Batteriezellen mehr notwendig, da sie direkt m den kombinierten Trag- und Kühlkörper integriert sind. Kuhlungsoptimierung: Mit dem Entfall des gesonderten Zellenmantels für jede Batteriezelle erübrigt sich auch der Einbau einer Toleranzausgleichsschicht, wodurch es weniger zu überwindende Schichten für den Wärmeübergang gibt und eine wesentlich bessere Wärmezufuhr erreicht werden kann. Sicherheitsoptimierung: Im Vergleich zu herkömmlichen ZeI- lenmanteln, die eine Wandstarke von weniger als 1 mm haben, bietet der erfmdungsgemaße Kühlkörper mit seinen zylindrischen Aufnahmen einen wesentlich höheren Widerstand gegen eine Verformung bei Krafteinwirkung von außen, z.B. im Falle eines Crash. Dadurch kann die Gefahr von Kurzschlüssen und einer Explosion der Zellen enorm reduziert werden.
Modulare Bauweise: Durch die Möglichkeit zu beliebigen Langenanderungen des Kühlkörpers und Änderungen in der Anzahl seiner Aufnahmen können unterschiedliche Anforderungen mit einem einheitlichen modularen Konstruktionsprinzip erfüllt werden.
Gemäß einer bevorzugten Ausfuhrungsform der Erfindung ist der Kühlkörper von Kuhlmittelkanalen durchsetzt, welche besonders bevorzugt parallel zu und zwischen den zylindrischen Aufnahmen verlaufen. Dadurch kann eine gleichmäßige und wirksame Kühlung der Batteriezellen erreicht werden.
Ein besonders kompakter Aufbau ergibt sich, wenn die zylindrischen Aufnahmen in zueinander halb versetzten Reihen angeordnet sind.
Eine weitere bevorzugte Ausfuhrungsform der Erfindung zeichnet sich dadurch aus, dafh der Kühlkörper ein Strangpreß- profil ist, in welchem die zylindrischen Aufnahmen und optionalen Kuhlmittelkanale durch Strangpressen ausgebildet sind. Dadurch kann die Batterieeinheit m beliebiger Lange und damit Nennleistung einfach durch Ablangen eines Strangpreßprofils gefertigt werden.
Besonders gunstig ist es, wenn die Aufnahmen von in dichter Packung nebenemanderliegenden Rohrprofllabschnitten des Strangpreßprofils gebildet sind, deren Zwischenräume die Kuhlmittelkanale bilden. Dies ergibt ein Strangpreßprofil, das durch seinen wabenartigen Aufbau hohe mechanische Festigkeit hat und durch seine zwischen den Waben verteilten Kuhlmittelkanale auch eine hohe Warmeabfuhrleistung erreicht.
Bevorzugt sind die auf einer Seite des Kühlkörpers ausmundenden zylindrischen Aufnahmen von einem gemeinsamen, am Kühlkörper befestigten Deckel überdeckt, wodurch eine mechanisch stabile und dicht abgeschlossene, einfach zu fertigende Anordnung erreicht wird.
Gemäß einem weiteren bevorzugten Merkmal kann der Deckel Offnungen für den Durchtritt von elektrischen Anschlüssen der zusammengerollten Schichtaufbauten aufweisen, was die elektrische Kontaktierung und Verschaltung der Batteriezellen erleichtert .
Besonders gunstig ist es ferner, wenn der Deckel die auf einer Seite des Kühlkörpers ausmundenden Kuhlmittelkanale untereinander und/oder mit deckelaußenseitigen Kuhlmittelan- schlussen verbindet. Durch entsprechende Ausgestaltung der De- ckelinnenseite kann so auf einfache Weise eine beliebige vor- defmierbare Fluidverschaltung und -speisυng der Kuhlmittelka- nale erreicht werden.
Bei Verwendung eines stranggepreßten Kühlkörpers ist es besonders günstig, wenn das Strangpreßprofil auf seinen beiden Stirnseiten mit je einem Deckel versehen ist, wodurch die Stirnmundungen der Kuhlmittelkanale des Strangpreßprofils auf jeder Seite entsprechend verschaltet, z.B. zusammengefaßt und/oder umgelenkt, werden können.
Gemäß einer weiteren bevorzugten Ausfuhrungsform der Erfindung sind die zylindrischen Aufnahmen mit einer elektrisch isolierenden Beschichtung versehen, die bevorzugt in einem Kunststoff-Wirbelsmterverfahren aufgebracht ist. Mit Hilfe eines derart „vorisolierten" Kühlkörpers kann auf eine zusatz¬ liche elektrische Isolierung der eingesetzten Zellchemie- Schichtaufbauten verzichtet werden, was die Fertigung weiter vereinfacht.
Die Erfindung schafft in einem zweiten Aspekt auch ein Batteriepack, das aus mehreren Batterieeinheiten der hier vor¬ gestellten Art zusammengesetzt ist, welche jeweils deckeiau- ßenseitige Kuhlmittelanschlüsse der genannten Art haben, wobei die Kuhlmittelanschlusse der Batterieeinheiten über ein bevorzugt steckbares Verteilerrohrsystem untereinander verbunden sind. Die Nennleistung des Batteriepacks kann auf diese Weise modular durch beliebiges Gruppieren und Verschalten von erfin- dυngsgemaßen Batterieeinheiten an unterschiedliche Anforderungen angepaßt werden.
Die Erfindung wird nachstehend anhand eines in den beigeschlossenen Zeichnungen dargestellten Ausfuhrungsbeispieles naher erläutert. In den Zeichnungen zeigt:
Fig. 1 den Schichtaufbau einer Batteriezelle vor dem Zusammenrollen m einer teilweisen Perspektivansicht;
Fig. 2 den Schichtaufbau von Fig. 1 in zusammengerolltem Zustand;
Fig. 3 den Kühlkörper einer erfindungsgemaßen Batterieein- heit in der Perspektivansicht;
Fig. 4 die beiden Deckel einer erfmdungsgemaßen Batterieeinheit m der Perspektivansicht;
Fig. 5 eine Batterieeinheit gemäß der Erfindung in der Perspektivansicht; und
Fig. 6 ein aus mehreren Batterieeinheiten zusammengebautes Batteriepack gemäß der Erfindung m der Perspektivansicht.
Fig. 1 zeigt einen beispielhaften Schichtaufbau 1 üblicher Art für eine elektrochemische Batteriezelle, z.B. eine Li- thium-Ionen-Zelle, aus einzelnen flexiblen Schichten 2 mit zwischengelegten Anschlußfahnen 3 zur elektrischen Kontaktie- rung. Durch Zusammenrollen des Schichtaufbaus 1 wird ein zusammengerollter Schichtaufbau 4 mit endseitig austretenden Anschlußfahnen 3 erhalten, wie in Fig. 2 gezeigt.
In diesem zusammengerollten Zustand besitzt der Schichtaufbau 4 nur geringe mechanische Stabilität, weil die Schich- ten 2 flexibel sind und der Schichtaufbau 4 „nackt" ist, d.h. abgesehen von einer allfalligen elektrischen Isolierung m Form einer äußeren dünnen Kunststoffbeschichtung kein mecha¬ nisch tragender Zellenmantel, wie eine Metall- oder Kunst- stoffhulse, vorgesehen ist.
In diesem „nackten" Zustand wird der zusammengerollte Schichtaufbau 4 in zylindrische Aufnahmen 5 eines Kühlkörpers 6 aus warmeleitfahigem Material, bevorzugt Metall, eingesetzt, siehe Fig. 3. Die Aufnahmen 5 können in den Kühlkörper 6 gebohrt sein. Bevorzugt ist der Kühlkörper 6 jedoch ein Strang- preßprofil und die Aufnahmen 5 werden von Rohrprofllabschmt- ten 7 des Strangpreßprofils 6 gebildet.
Die Aufnahmen 5 sind bevorzugt in zueinander halb versetzten Reihen angeordnet („dichteste Packung"). Die zylindrischen Aufnahmen 5 können zusätzlich innenseitig mit einer elektrisch isolierenden Beschichtung versehen werden, um die Schichtauf¬ bauten 4 gegenüber einem metallischen Kühlkörper 6 zu isolieren. Die Beschichtung wird bevorzugt in einem Kunststoff- Wirbelsinterverfahren aufgebracht, bei welchem Kunststoffgra- nulat in die einzelnen Aufnahmen 5 eingebracht wird und durch Erwarmen und Rotierenlassen des Kühlkörpers 6 auf die Innenseite der Aufnahmen 5 aufschmilzt.
Zwischen den Aufnahmen 5 sind jeweils Kuhlmittelkanale 8 für ein Kuhlmittel, z.B. Kuhlflussigkeit oder Luft, vorgesehen. Die Kuhlmittelkanale 8 können ebenfalls in beliebiger Art m den Kühlkörper 6 gebohrt sein; bevorzugt verlaufen sie pa~ rallel zu und zwischen den zylindrischen Aufnahmen 5. Insbesondere werden die Kuhlmittelkanale 8 bei Fertigung des Kühlkörpers 5 als Strangpreßprofil durch die Zwischenräume zwischen den Rohrprofilabschnitten 7 gebildet.
Die Kuhlmittelkanale 8 können durch Stege 9 zwischen den Rohrprofilabschnitten 7 voneinander getrennt sein, beispielsweise um nebenemanderliegende Hin- und Ruckstromungskanale zu bilden. Bei „dichtester Packung" der Rohrprofllabschnitte 8 können die Stege 9 auch entfallen.
Gemäß den Fig. 4 und 5 sind die Mundungen der Aufnahmen 5 zu beiden Stirnseiten des Kühlkörpers 6 mit jeweils einem Deckel 10, 11 überdeckt bzw. abgeschlossen. Wenn die Aufnahmen 5 und Kuhlmittelkanale 8 durch Sackbohrungen im Kühlkörper 6 gebildet sind, entfallt der rückwärtige Deckel 11.
Der vordere Deckel 10 ist mit Offnungen 12 für den Durchtritt der Anschlußfahnen 3 bzw. daraus gebildeter elektrischer Anschlüsse versehen.
Einer oder beide Deckel 10, 11 sind auf ihren Innenseiten mit Kuhlmittelubertritten 13 zur gegenseitigen Verbindung der Kuhlmittelkanale 8 und/oder Verbindung derselben mit deckelau- ßenseitigen Kuhlmittelanschlussen 14, 15 versehen. Die Kuhl- mittelubertritte 13 können beispielsweise durch Zwischenräume zwischen Ringstutzen 16 gebildet sein, welche von den Offnungen 12 ausgehen und abdichtend auf die Rohrprofllabschnitte 8 des Kühlkörpers 6 aufsetzbar sind. Durch Stege 17 zwischen den Ringstutzen 16 kann eine beliebige Verschaltung der Kuhlmit- telkanäle 8 und Umlenkung des darin strömenden Kühlmittels erreicht werden.
In dem gezeigten Beispiel stellt der Kühlmittelanschluß 14 die Zufuhr und der Kühlmittelanschluß 15 die Abfuhr für Kühlmittel dar. Die Kühlmittelanschlüsse 14, 15 können auch auf verschiedenen Seiten des Kühlkörpers 6 liegen und/oder es können mehr als zwei Kühlmittelanschlüsse vorgesehen werden.
Fig. 5 zeigt eine aus zwölf zusammengerollten Schichtaufbauten 4, einem Kühlkörper 6 und zwei Deckeln 10, 11 zusammengebaute Batterieeinheit 18.
Gemäß Fig. 6 können die Kühlmittelanschlusse 14, 15 mehrerer Batterieeinheiten 18 über ein bevorzugt steckbares Verteilerrohrsystem 19 zu einem Batteriepack. 20 mit einem gemeinsamen Kühlmittelkreislauf zusammengeschaltet werden.
Wie ersichtlich, kann durch einfaches Variieren der Länge des Kühlkörpers 6, z.B. durch Ablängen eines entsprechenden Strangpreßprofils, der Größe und Anzahl der Aufnahmen 5 mit den Schichtaufbauten 4 sowie der Anzahl von Batterieeinheiten 18 in einem Batteriepack 20 ein großes Spektrum von Leistungsanforderungen modular abgedeckt werden.
Die Erfindung ist nicht auf die dargestellten Ausführungsformen beschränkt, sondern umfaßt alle Varianten und Modifikationen, die in den Rahmen der angeschlossenen Ansprüche fallen.

Claims

Patentansprüche :
1. Elektrische Batterieeinheit aus Batteriezellen mit jeweils zylinderförmig zusammengerolltem Schichtaufbau, gekennzeichnet durch einen Kühlkörper (6) aus warmeleitfähigem Material mit zylindrischen Aufnahmen (5), in die jeweils ein zusammengerollter Schichtaufbau (4) ohne tragenden Zellenmantel eingesetzt ist.
2. Batterieeinheit nach Anspruch 1, dadurch gekennzeich¬ net, daß der Kühlkörper (6} von Kuhlmittelkanalen {8) durch¬ setzt ist.
3. Batterieeinheit nach Anspruch 2, dadurch gekennzeichnet, daß die Kuhlmittelkanale (8) parallel zu und zwischen den zylindrischen Aufnahmen (5} verlaufen.
4. Batterieeinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die zylindrischen Aufnahmen (5) m zueinander halb versetzten Reihen angeordnet sind.
5. Batterieeinheit nach einem der Ansprüche 1 bis A1 dadurch gekennzeichnet, daß der Kühlkörper (6) ein Strangpreß™ profil ist, in welchem die zylindrischen Aufnahmen (5) und optionalen Kuhlmittelkanale (8) durch Strangpressen ausgebildet sind.
6. Batterieeinheit nach Anspruch 5, dadurch gekennzeichnet, daß die Aufnahmen (5) von m dichter Packung nebeneinanderliegenden Rohrprofilabschnitten (7) des Strangpreßprofils gebildet sind, deren Zwischenräume die Kuhlmittelkanale (8) bilden.
7. Batterieeinheit nach einem der Ansprüche 1 bis 6, da¬ durch gekennzeichnet, daß die auf einer Seite des Kühlkörpers (6) ausmündenden zylindrischen Aufnahmen (5) von einem gemeinsamen, am Kühlkörper befestigten Deckel (10, 11) überdeckt sind.
8. Batterieeinheit nach Anspruch 7, dadurch gekennzeichnet, daß der Deckel (10, 11) Offnungen (12) für den Durchtritt von elektrischen Anschlüssen (3} der zusammengerollten Schichtaufbauten (4) aufweist.
9. Batterieeinheit nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Deckel (10, 11) die auf einer Seite des Kühlkörpers (6) ausmundenden Kuhlmittelkanale (8) untereinander und/oder mit deckelaußenseitigen Kuhlrmttelanschlussen (14, 15) verbindet.
10. Batterieeinheit nach Anspruch 5 oder 6 xn Verbindung mit einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das Strangpreßprofil auf seinen beiden Stirnseiten mit je einem Deckel (10, 11) versehen ist.
11. Batterieeinheit nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die zylindrischen Aufnahmen (5) mit einer elektrisch isolierenden Beschichtung versehen sind, die bevorzugt xn einem Kunststoff-Wirbelsmterverfahren aufgebracht ist.
12. Batteriepack, zusammengesetzt aus mehreren Batterieeinheiten nach einem der Ansprüche 1 bis 11 mit jeweils de- ckelaußenseitigen Kuhlmittelanschlussen nach Anspruch 9, dadurch gekennzeichnet, daß die Kuhlmittelanschlusse (14, 15) der Batterieeinheiten (18) über ein bevorzugt steckbares Ver- teilerrohrsystem (19) untereinander verbunden sind.
PCT/EP2010/053971 2009-03-27 2010-03-26 Elektrische batterieeinheit WO2010109001A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015332 2009-03-27
DE102009015332.2 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109001A1 true WO2010109001A1 (de) 2010-09-30

Family

ID=42119017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053971 WO2010109001A1 (de) 2009-03-27 2010-03-26 Elektrische batterieeinheit

Country Status (1)

Country Link
WO (1) WO2010109001A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011012631A1 (de) * 2011-02-15 2012-08-16 Sew-Eurodrive Gmbh & Co. Kg Anordnung mit einem Gehäuse
CN102931374A (zh) * 2011-08-08 2013-02-13 三星Sdi株式会社 可充电电池及其制造方法
CN111684620A (zh) * 2018-11-29 2020-09-18 株式会社Lg化学 包括电池模块的电池组
EP3764454A4 (de) * 2018-09-18 2021-06-02 Lg Chem, Ltd. Batteriemodul
GB2577258B (en) * 2018-09-18 2022-09-21 Mclaren Automotive Ltd Battery cell tray

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346151A (en) * 1980-12-29 1982-08-24 The Gates Rubber Company Multicell sealed rechargeable battery
WO1999036972A1 (en) * 1998-01-19 1999-07-22 Johnson Controls Technology Company Battery case for thin metal film cells
DE10064648A1 (de) * 1999-12-28 2001-07-19 Honda Motor Co Ltd Aufladeelementvorrichtung
DE10238235A1 (de) * 2002-08-21 2004-03-04 Daimlerchrysler Ag Elektrochemischer Energiespeicher mit Wärmeaustauscherstruktur und mehreren elektrochemischen Speicherzellen
EP1835251A1 (de) * 2006-02-22 2007-09-19 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
EP1906126A2 (de) * 2006-09-25 2008-04-02 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
DE102007010744A1 (de) * 2007-02-27 2008-08-28 Daimler Ag Batteriezelle und Zellverbund einer Batterie
EP1990860A1 (de) * 2007-05-07 2008-11-12 Valeo Klimasysteme GmbH Antriebsbatteriebaugruppes eines Elektro-, Brennstoffzellen- oder Hybridfahrzeugs

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346151A (en) * 1980-12-29 1982-08-24 The Gates Rubber Company Multicell sealed rechargeable battery
WO1999036972A1 (en) * 1998-01-19 1999-07-22 Johnson Controls Technology Company Battery case for thin metal film cells
DE10064648A1 (de) * 1999-12-28 2001-07-19 Honda Motor Co Ltd Aufladeelementvorrichtung
DE10238235A1 (de) * 2002-08-21 2004-03-04 Daimlerchrysler Ag Elektrochemischer Energiespeicher mit Wärmeaustauscherstruktur und mehreren elektrochemischen Speicherzellen
EP1835251A1 (de) * 2006-02-22 2007-09-19 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
EP1906126A2 (de) * 2006-09-25 2008-04-02 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
DE102007010744A1 (de) * 2007-02-27 2008-08-28 Daimler Ag Batteriezelle und Zellverbund einer Batterie
EP1990860A1 (de) * 2007-05-07 2008-11-12 Valeo Klimasysteme GmbH Antriebsbatteriebaugruppes eines Elektro-, Brennstoffzellen- oder Hybridfahrzeugs

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011012631A1 (de) * 2011-02-15 2012-08-16 Sew-Eurodrive Gmbh & Co. Kg Anordnung mit einem Gehäuse
DE102011012631B4 (de) * 2011-02-15 2020-11-12 Sew-Eurodrive Gmbh & Co Kg Energiespeicher
CN102931374A (zh) * 2011-08-08 2013-02-13 三星Sdi株式会社 可充电电池及其制造方法
EP2557609A1 (de) * 2011-08-08 2013-02-13 Samsung SDI Co., Ltd. Wieder aufladbare Batterie und Herstellungsverfahren dafür
US9178188B2 (en) 2011-08-08 2015-11-03 Samsung Sdi Co., Ltd. Rechargeable battery with collector plates having insulators and conductors
EP3764454A4 (de) * 2018-09-18 2021-06-02 Lg Chem, Ltd. Batteriemodul
GB2577258B (en) * 2018-09-18 2022-09-21 Mclaren Automotive Ltd Battery cell tray
CN111684620A (zh) * 2018-11-29 2020-09-18 株式会社Lg化学 包括电池模块的电池组
EP3754745A4 (de) * 2018-11-29 2021-06-09 Lg Chem, Ltd. Batteriepack mit batteriemodul
CN111684620B (zh) * 2018-11-29 2022-12-06 株式会社Lg新能源 包括电池模块的电池组及包括其的电子装置及车辆
US11621452B2 (en) 2018-11-29 2023-04-04 Lg Energy Solution, Ltd. Battery pack including battery module

Similar Documents

Publication Publication Date Title
DE102011017375B4 (de) Elektrische Batterieeinheit und Batteriepack
DE10223782B4 (de) Batterie mit wenigstens einer elektrochemischen Speicherzelle und einer Kühleinrichtung und Verwendung einer Batterie
EP2497145B1 (de) Energiespeichervorrichtung
EP1835251B1 (de) Vorrichtung zur Kühlung elektrischer Elemente
DE102008034699B4 (de) Batterie mit mehreren Batteriezellen
DE102014101358B4 (de) Verfahren zum Herstellen eines plattenförmigen Wärmetauschers, plattenförmiger Wärmetauscher und Verbund mit plattenförmigen Wärmetauschern
EP2165379B1 (de) Elektrochemische energiespeichereinheit
EP2502291B1 (de) Batterie mit einer mehrzahl von batteriezellen
DE102018133006A1 (de) Elektrospeicher und fahrzeug mit einem elektrospeicher
WO2010109001A1 (de) Elektrische batterieeinheit
WO2008104375A2 (de) Batteriezelle und zellverbund einer batterie
EP3378111A1 (de) Batterieanordnung
DE102013113797A1 (de) Etagenelement, Seitenteil und Kühlmodul sowie Verfahren zum Herstellen eines Kühlmoduls
DE102013223092B4 (de) Batteriemodulbaugruppe und Verfahren zu deren Herstellung
DE112016004706T5 (de) Vorrichtung umfassend batteriezellen und ein verfahren zum zusammenbauen
DE102005010039A1 (de) Flexible Brennstoffzelle
DE102020202306A1 (de) Batteriemodul für ein Hochvolt-Batteriesystem
EP1429406B1 (de) Rahmenelemente für monopolare Brennstoffzellenstacks
DE102018009182A1 (de) Batteriezelle
DE102012207995A1 (de) Kühleinrichtung sowie Energiespeicher mit einer Kühleinrichtung
WO2011012203A1 (de) Batterieeinzelzelle mit einem gehäuse
EP3648222A1 (de) Batteriezelle
DE102006045433B3 (de) Kernaufbau eines rechteckigen sekundären Lithium-Akkus
DE10212438C1 (de) Zwangsgekühlte Hochstromzuführung
DE102021207402A1 (de) Hochvoltbatteriesystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10710585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10710585

Country of ref document: EP

Kind code of ref document: A1