WO2010108565A1 - Trennschalter zur galvanischen gleichstromunterbrechung - Google Patents

Trennschalter zur galvanischen gleichstromunterbrechung Download PDF

Info

Publication number
WO2010108565A1
WO2010108565A1 PCT/EP2010/000607 EP2010000607W WO2010108565A1 WO 2010108565 A1 WO2010108565 A1 WO 2010108565A1 EP 2010000607 W EP2010000607 W EP 2010000607W WO 2010108565 A1 WO2010108565 A1 WO 2010108565A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
arc
switch
electronics
semiconductor electronics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/000607
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael Naumann
Thomas Zitzelsperger
Frank Gerdinand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ellenberger and Poensgen GmbH
Original Assignee
Ellenberger and Poensgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2752895A priority Critical patent/CA2752895C/en
Priority to HRP20130321AT priority patent/HRP20130321T1/hr
Priority to KR1020117025219A priority patent/KR101420831B1/ko
Priority to AU2010227893A priority patent/AU2010227893B2/en
Priority to JP2012501149A priority patent/JP5469236B2/ja
Priority to ES10708895T priority patent/ES2401777T3/es
Priority to CN201080011647.4A priority patent/CN102349124B/zh
Priority to EP10708895A priority patent/EP2411990B1/de
Priority to SG2011054871A priority patent/SG174124A1/en
Priority to RU2011134639/07A priority patent/RU2482565C2/ru
Priority to PL10708895T priority patent/PL2411990T3/pl
Priority to BRPI1012338A priority patent/BRPI1012338A2/pt
Application filed by Ellenberger and Poensgen GmbH filed Critical Ellenberger and Poensgen GmbH
Publication of WO2010108565A1 publication Critical patent/WO2010108565A1/de
Priority to ZA2011/03651A priority patent/ZA201103651B/en
Priority to TN2011000306A priority patent/TN2011000306A1/fr
Priority to IL213866A priority patent/IL213866A/en
Priority to US13/240,505 priority patent/US8742828B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the AC cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts

Definitions

  • the invention relates to a separation device for DC interruption between a DC power source and an electrical input, with a current-carrying mechanical switching contact and with a semiconductor electronics connected in parallel therewith.
  • a DC power source is understood to mean, in particular, a photovoltaic generator (solar system) and an electrical device is understood in particular to be an inverter.
  • a photovoltaic system or solar system with a so-called photovoltaic generator is known, which in turn consists of grouped into sub-generators solar modules, which in turn are connected in series or present in parallel strands. While a sub-generator delivers its DC power through two terminals, the DC power of the entire photovoltaic generator is fed via an inverter in an AC mains. In order to keep the cabling and power losses between the sub-generators and the central inverter low, so-called generator junction boxes are placed close to the sub-generators. The so-called DC power is usually routed via a common cable to the central inverter.
  • a photovoltaic system due to the system on the one hand permanently an operating current and operating voltage in the range between 180V (DC) and 1500V (DC) supplies and on the other hand - for installation, assembly or service purposes and in particular for general personal protection - a reliable separation of the electrical components or Facilities of the effective as a DC power source photovoltaic system is desired, a corresponding separation device must be able to make an interruption under load, ie without prior shutdown of the DC power source.
  • a mechanical switch switching contact
  • the disadvantage is that such mechanical switching contacts are worn very quickly due to the resulting arc at the contact opening or an additional effort is required to enclose the arc and cool, which is usually done by a corresponding mechanical switch with a quenching chambers.
  • hybrid switches always have an external power source for driving the semiconductor switch and for operating a semiconductor electronics, in which the semiconductor switch is used.
  • the invention is based on the object, a particularly suitable separation device for DC interruption between a DC power source, in particular a photovoltaic generator, and an electrical device, in particular an inverter to specify.
  • the circuit breaker suitably comprises a mechanical switching contact suitable for a short-time arc, i. is designed for an arc duration of less than 1 ms, preferably less than or equal to 500 ⁇ s.
  • the mechanical switching contact (switch or separating element) is connected in parallel with semiconductor electronics, which essentially comprise at least one semiconductor switch, preferably an IGBT.
  • the semiconductor electronics of the circuit breaker according to the invention has no additional energy source and is therefore with a closed mechanical switch current blocking, d. H. high impedance and thus practically without current and voltage. Since no current flows through the semiconductor electronics when the mechanical switching contacts are closed, and therefore no voltage is applied, in particular via the or each semiconductor switch, the semiconductor circuit also generates no power losses when the mechanical switch is closed. Rather, the semiconductor electronics obtains the energy required for their operation from the separation device, d. H. from the circuit breaker system itself. For this purpose, the energy of the resulting when opening the mechanical switch arc is used and used.
  • a control input of the semiconductor electronics or of the semiconductor switch is connected in such a way with the mechanical switching contacts, that at opening switch, the arc voltage across the switch or via its switch contacts and the parallel semiconductor electronics as a result of the electric arc semiconductor electronics, d. H. Low impedance and thus energized switches.
  • the arc current starts to commute from the mechanical switch to the semiconductor electronics.
  • the corresponding arc voltage or arc genstrom charges in this case an energy storage in the form of preferably a capacitor, which discharges selectively generating a control voltage for arc-free shutdown of the semiconductor electronics.
  • the predetermined period of time or time constant and thus the charging time of the energy storage or capacitor determines the arc duration.
  • a timer is started during which the semiconductor electronics are controlled to block the current in an arc-free manner.
  • the duration of the timer is set to a safe extinguishing and reliable cooling of the arc or -plasmas.
  • the invention is based on the consideration that for a touch-safe and reliable DC interruption designed as a pure two-terminal hybrid separation device can be used when a semiconductor electronics can be used without its own auxiliary power source.
  • This in turn, can be achieved by the fact that the arc energy generated when opening one of the electronics connected in parallel with the electronic switch is used to operate the electronics.
  • the electronics could have an energy store which stores at least part of the arc energy, which is then available to the electronics for a certain period of operation, which should be dimensioned for a reliable erasing of the arc.
  • the charging time of the energy storage and thus the arc duration is preferably set to less than 1 ms, advantageously to less than or equal to 0.5 ms.
  • this period of time is short enough to reliably prevent unwanted contact erosion of the switching contacts of the mechanical switch.
  • this period of time is long enough to ensure the self-supply of the semiconductor electronics for the subsequent time period determined by the timer, within which the triggering of the electronics from the low-impedance Commutation state in the high-impedance shutdown state (initial state) takes place.
  • a further mechanical circuit breaker is suitably provided, which is connected in series with the parallel circuit of the mechanical switch and the semiconductor electronics.
  • the semiconductor electronics in addition to the preferably designed as an IGBT power or semiconductor switch comprises another power or semiconductor switch, which is preferably designed as a MOSFET (metal oxide semiconductor field-effect transistor).
  • MOSFET metal oxide semiconductor field-effect transistor
  • the almost powerless controllable and good blocking behavior with high blocking voltage IGBT is suitably connected in series with the further semiconductor switch (MOSFET) in the manner of a cascode arrangement.
  • the semiconductor switches thus form a commutation path parallel to the main current path formed by the mechanical switch, to which the arc current increasingly commutates with opening of the mechanical switch and as a result of the control of the or each semiconductor switch.
  • the falling during the commutation of the hybrid circuit breaker and thus on the semiconductor electronics arc voltage is between about 15V and 30V.
  • the semiconductor electronics a first semiconductor switch (IGBT) and a second semiconductor switch (MOSFET), the first semiconductor switch is first controlled such that between the two semiconductor switches - so quasi on a Kaskodenmittenab- handle - one for charging the energy storage sufficient voltage in the amount of, for example, 12V (DC) can be tapped.
  • This voltage is used to charge the energy storage and its stored energy in turn to drive the semiconductor switch within the semiconductor electronics to turn on the two turn on the semiconductor switch again completely, ie to control current blocking.
  • the main path is galvanically opened and the commutation path parallel thereto is high-ohmic, with the result that the high DC voltage (permanently) generated by the DC source is present at, for example, greater than 1000V (DC) at the hybrid disconnector. Therefore, it must be ensured via the timing element that not only the arc extinguishes, but also the resulting plasma has cooled.
  • DC 1000V
  • the advantages achieved by the invention are, in particular, that no external power source or additional auxiliary power for supplying the electronics is required by the use of an autoclave hybrid separation device, the semiconductor electronics, the energy for its own power supply from the arc resulting from the opening of the mechanical switch.
  • the semiconductor electronics is preferably designed as a second pole and high resistance with the mechanical switch closed, so that virtually no power losses occur in normal load operation of the hybrid separator according to the invention.
  • the separating device according to the invention is preferably also provided for DC interruption in the DC voltage range up to 1500V (DC).
  • this self-sufficient, hybrid disconnecting device is therefore particularly suitable for reliable and touch-proof galvanic DC interruption both between a photovoltaic system and one of its associated inverters and in connection with, for example, a fuel cell system or an accumulator (battery).
  • FIG. 1 is a block diagram of the separation device according to the invention with an autarkic hybrid disconnector between a photovoltaic generator and an inverter,
  • Fig. 3 in a current / voltage-time diagram, the resulting curve of switch current and voltage before, during and after extinction of an arc.
  • Fig. 1 shows schematically a separation device 1, which is connected in the embodiment between a photovoltaic generator 2 and an inverter 3.
  • the photovoltaic generator 2 comprises a number of solar modules 4, which are guided parallel to each other to a common generator junction box 5, which serves as a kind of energy collection point.
  • the disconnecting device 1 comprises a switching contact 7, which is also referred to below as a mechanical switch, and semiconductor electronics 8 connected in parallel therewith.
  • the mechanical switch 7 and the semiconductor electronics 8 form a self-sufficient hybrid disconnecting switch.
  • the negative pole representing return line 9 of the separation device 1 - and thus the overall system - can be connected in a manner not shown another hybrid circuit breaker 7, 8.
  • Both in the positive pole representative Hin operations mars (Hauptfpad) 6 and in the return line 9 can mechanically coupled switch contacts of another mechanical separating element 10 for a fully permanent galvanic separation or DC interruption between the photovoltaic generator 2 and the inverter 3 may be arranged.
  • the semiconductor electronics 8 essentially comprises a semiconductor switch 11, which is connected in parallel to the mechanical switch 7, and a drive circuit 12 with an energy store 13 and a timer 14.
  • the drive circuit 12 is preferably connected via a resistor or a resistor row R (FIG ), connected to the main current path 6.
  • the gate of an IGBT preferably used as a semiconductor switch 11 forms the control input 15 of the semiconductor circuit 8. This control input 15 is guided via the drive circuit 12 to the main current path 6.
  • FIG. 2 shows a comparatively detailed circuit diagram of the electronic switch 8 connected in parallel with the mechanical switch 7 of the self-sufficient hybrid disconnector. It can be seen that the first semiconductor switch (IGBT) 11a is connected in series in a cascode arrangement with a second semiconductor switch 11b in the form of a MOSFET. The cascode arrangement with the two semiconductor switches 11a, 11b thus forms, analogously to FIG. 1, the commutation path 16 parallel to the mechanical switch 7 and thus to the main current path 6.
  • IGBT first semiconductor switch
  • the first semiconductor switch 11 a between the DC power source 2 and the hybrid circuit breaker 7,8 is guided to the main current path 6.
  • the potential U + is always greater than the potential U- on the opposite side of the switch, at which the second semiconductor switch (MOSFET) 11 b is guided to the main circuit 6.
  • the positive potential U + is OV when the mechanical switch 7 is closed.
  • the first semiconductor switch (IGBT) 11a is connected to a freewheeling diode D2.
  • a first Zener diode D3 is connected on the anode side to the potential U- and the cathode side to the gate (control input 15) of the first semiconductor switch (IGBT) 11a.
  • Another Zener diode D4 is the cathode side again with the Gate (control input 15) and the anode side connected to the emitter of the first semiconductor switch (IGBT) 11 a.
  • a diode D1 is on the anode side out connected on the cathode side via a serving as energy storage capacitor 13 C against the potential U-.
  • a plurality of capacitors C form the energy storage 13.
  • Via an anode-side voltage tap 18 between the diode D1 and the energy store 13 or the capacitor C is connected to ohmic resistors R1 and R2 transistor T1 via further resistors R3 and R4 with the again guided to the control input 15 of the semiconductor electronics 8 gate of the second semiconductor switch (MOSFET) 15 connected.
  • Another Zener diode D5 with parallel resistor R5 is the cathode side to the gate and the anode side connected to the emitter of the second semiconductor switch (MOSFET) 11 b.
  • the transistor T1 On the base side, the transistor T1 is driven via a transistor T2, which in turn is connected to the base side via a resistor R6 with the example executed as Monoflopp timer 14. Base-emitter side, the transistor T2 is also connected to a further resistor R7.
  • Fig. 3 shows in a current and voltage time diagram, the course of the switch voltage U and the switch current I of the hybrid circuit breaker 7, 8 temporally before a contact opening of the mechanical switch 7 at time t "and during the duration t Lß an arc LB above the Switch 7 or its switch contacts 7a, 7b (FIG. 2) and during a specific, predetermined or set time tz G of the timer 14.
  • the mechanical switch 7 is closed, the main current path 6 is low, while the parallel commutation path 16 of the hybrid disconnector 7 , 8 high impedance and thus current blocking.
  • the current profile shown in the left half of the figure of FIG. 3 represents the current I flowing exclusively through the mechanical switch 7 up to ⁇ time t the contact opening of the switch contacts 7a and 7b.
  • the opening of the mechanical switch 7 was already at an unspecified time before the time t ⁇ ⁇ the contact opening.
  • the illustrated in the lower left half of FIG. 3 switch voltage U is practically before the contact opening time t ⁇ practically OV and increases with the opening of the switch contacts 7a, 7b of the mechanical switch 7 at time t ⁇ jumped to a characteristic of an arc LB value a typical arc voltage ULB of, for example, 20V to 30V.
  • the time t ⁇ _ B practically the arc current I divides between the main current path 6 - ie via the mechanical switch 7 - and the commutation 16 - so the semiconductor electronics 8 on.
  • the energy storage 13 is charged.
  • the time t Lß is set such that on the one hand enough energy for a reliable driving of the semiconductor electronics 8 is available, in particular for their shutdown during a period tz G following the duration of the arc representing time t ⁇ _ B -
  • the time t L ⁇ sufficiently short, so that an undesirable contact erosion or wear of the switch 7 and the switch contacts 7a, 7b is avoided.
  • the first semiconductor switch (IGBT) 11a is at least as far controlled through the resistor R (FIG. 2) that a sufficient charging voltage and a sufficient arc or charging current for the capacitors C and thus is available for the energy storage 13.
  • this is done with the corresponding circuit of the first semiconductor switch (IGBT) 11a
  • U Ab 12 V (DC)
  • the tap voltage U Ab serves to supply the drive circuit 12 of the electronics 8, which is essentially formed by the transistors T1 and T2 and the timer 14 and the energy store 13.
  • the diode D1 connected to the cascode tap 17 and the cathode side to the capacitor C prevents the return flow of the diode D1 Charging current from the capacitors C and the commutation path 16 in the direction of the potential U-.
  • the charge capacitance and thus the storage energy contained in the capacitor C is dimensioned such that the semiconductor electronics 8 carries the switch current I for a time period tzG predetermined by the timer 14.
  • the dimensioning of this time duration t ZG and thus the definition of the timing element 14 depends essentially on the application-specific or typical time periods for a complete extinction of the arc LB and after a sufficient cooling of the associated in the case of formed plasma.
  • the essential proviso here is that after the shutdown of the electronics 8 with then turn high-impedance commutation 16 and consequently current-blocking semiconductor electronics 8 on the still open mechanical switch 7 or via its switch contacts 7a, 7b no re-arc LB can arise.
  • the main current path 6 is galvanically opened at the same time as the high-resistance commutation path 16, an arc-free DC interruption between the DC power source 2 and the electrical device 3 is already established.
  • the connection between the DC power source 2 and the inverter 3 exemplified as the electrical equipment is already reliably disconnected.
  • the mechanical separating element 10 of the separating device 1 can then additionally be opened in a load-free and arc-free manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
PCT/EP2010/000607 2009-03-25 2010-02-02 Trennschalter zur galvanischen gleichstromunterbrechung Ceased WO2010108565A1 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
HRP20130321AT HRP20130321T1 (en) 2009-03-25 2010-02-02 Switch disconnector for galvanic direct current interruption
KR1020117025219A KR101420831B1 (ko) 2009-03-25 2010-02-02 갈바닉 직류 전류 일시정지를 위한 스위치 분리기
AU2010227893A AU2010227893B2 (en) 2009-03-25 2010-02-02 Switch disconnector for galvanic direct current interruption
JP2012501149A JP5469236B2 (ja) 2009-03-25 2010-02-02 ガルヴァーニ直流電流遮断用断路装置
ES10708895T ES2401777T3 (es) 2009-03-25 2010-02-02 Seccionador para la interrupción galvánica de corriente continua
CN201080011647.4A CN102349124B (zh) 2009-03-25 2010-02-02 用于电切断直流电的断路开关
EP10708895A EP2411990B1 (de) 2009-03-25 2010-02-02 Trennschalter zur galvanischen gleichstromunterbrechung
RU2011134639/07A RU2482565C2 (ru) 2009-03-25 2010-02-02 Разъединитель для гальванического прерывания постоянного тока
SG2011054871A SG174124A1 (en) 2009-03-25 2010-02-02 Switch disconnector for galvanic direct current interruption
CA2752895A CA2752895C (en) 2009-03-25 2010-02-02 Disconnecting switch for galvanic direct current interruption
BRPI1012338A BRPI1012338A2 (pt) 2009-03-25 2010-02-02 interruptor de desconexão para interrupção de corrente contínua galvânica
PL10708895T PL2411990T3 (pl) 2009-03-25 2010-02-02 Odłącznik do galwanicznego przerywania prądu stałego
ZA2011/03651A ZA201103651B (en) 2009-03-25 2011-05-19 Switch disconnector for galvanic direct current interruption
TN2011000306A TN2011000306A1 (en) 2009-03-25 2011-06-16 Switch disconnector for galvanic direct current interrruption
IL213866A IL213866A (en) 2009-03-25 2011-06-30 Disconnect switch for direct galvanic current interference
US13/240,505 US8742828B2 (en) 2009-03-25 2011-09-22 Disconnector switch for galvanic direct current interruption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202009004198.0 2009-03-25
DE202009004198U DE202009004198U1 (de) 2009-03-25 2009-03-25 Trennschalter zur galvanischen Gleichstromunterbrechung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/240,505 Continuation US8742828B2 (en) 2009-03-25 2011-09-22 Disconnector switch for galvanic direct current interruption

Publications (1)

Publication Number Publication Date
WO2010108565A1 true WO2010108565A1 (de) 2010-09-30

Family

ID=42244204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000607 Ceased WO2010108565A1 (de) 2009-03-25 2010-02-02 Trennschalter zur galvanischen gleichstromunterbrechung

Country Status (19)

Country Link
US (1) US8742828B2 (enExample)
EP (1) EP2411990B1 (enExample)
JP (1) JP5469236B2 (enExample)
KR (1) KR101420831B1 (enExample)
CN (1) CN102349124B (enExample)
AU (1) AU2010227893B2 (enExample)
BR (1) BRPI1012338A2 (enExample)
CA (1) CA2752895C (enExample)
DE (1) DE202009004198U1 (enExample)
ES (1) ES2401777T3 (enExample)
HR (1) HRP20130321T1 (enExample)
IL (1) IL213866A (enExample)
PL (1) PL2411990T3 (enExample)
PT (1) PT2411990E (enExample)
RU (1) RU2482565C2 (enExample)
SG (1) SG174124A1 (enExample)
TN (1) TN2011000306A1 (enExample)
WO (1) WO2010108565A1 (enExample)
ZA (1) ZA201103651B (enExample)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013091689A1 (de) 2011-12-21 2013-06-27 Siemens Aktiengesellschaft Trennvorrichtung zur gleichstromunterbrechung zwischen einem photovoltaikgenerator und einer elektrischen einrichtung sowie photovoltaikanlage mit einer derartigen trennvorrichtung
JP2014522088A (ja) * 2011-08-10 2014-08-28 エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング メカトロニックな差込み接続システム
JP2014531886A (ja) * 2011-09-12 2014-11-27 エスエムエー ソーラー テクノロジー アーゲー 光起電力システムのためのセーフティデバイス
WO2015192924A1 (de) 2014-06-18 2015-12-23 Ellenberger & Poensgen Gmbh Trennschalter zur gleichstromunterbrechung
WO2017005450A1 (de) 2015-07-08 2017-01-12 Ellenberger & Poensgen Gmbh Trennvorrichtung zur gleichstromunterbrechung
DE102016123283A1 (de) 2016-12-01 2018-06-07 Innofas Gmbh Vorrichtung zum Trennen eines Bordnetzes von einer Energiequelle
DE102017204044A1 (de) * 2017-02-14 2018-08-16 Ellenberger & Poensgen Gmbh Verfahren und Spannungsvervielfacher zur Wandlung einer Eingangsspannung sowie Trennschaltung
DE202015009686U1 (de) 2014-10-24 2019-03-06 Ellenberger & Poensgen Gmbh Trennschalter zur galvanischen Gleichstromunterbrechung
DE202018006154U1 (de) 2018-03-09 2019-06-17 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs
US11127552B2 (en) 2019-04-05 2021-09-21 Eaton Intelligent Power Limited Hybrid switch assembly and circuit interrupter including the same
DE102023203234B3 (de) * 2023-04-06 2024-03-28 Ellenberger & Poensgen Gmbh Verfahren zum Betrieb eines Hybridschalters sowie ein entsprechender Hybridschalter
DE102023203236B3 (de) 2023-04-06 2024-05-23 Ellenberger & Poensgen Gmbh Ansteuerschaltung für einen Hybridschalter und Hybridschalter
US12179679B2 (en) 2020-07-03 2024-12-31 Robert Bosch Gmbh Method for securing in particular safety-relevant loads in a motor vehicle
DE102023206967A1 (de) 2023-07-21 2025-01-23 Ellenberger & Poensgen Gmbh Schaltsystem und Schutzschalter

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510512B1 (de) 2010-09-30 2015-08-15 Fronius Int Gmbh Wechselrichter
AT510502B1 (de) * 2010-09-30 2015-08-15 Fronius Int Gmbh Wechselrichter und verfahren zur trennung von photovoltaikmodulen von einem wechselrichter
DE102011016056A1 (de) * 2011-04-05 2012-10-11 Volkswagen Aktiengesellschaft Hybrides Schaltelement, Schaltungsanordnung und Verfahren zur Steuerung eines hybriden Schaltelements einer Schaltungsanordnung
DE102011078034A1 (de) * 2011-06-24 2012-12-27 Siemens Ag Schaltvorrichtung
FR2977738B1 (fr) * 2011-07-04 2015-01-16 Mersen France Sb Sas Systeme d'interruption de courant continu apte a ouvrir une ligne de courant continu a comportement inductif
PL2810289T3 (pl) * 2012-03-09 2017-04-28 Siemens Aktiengesellschaft Sposób dołączania odcinka sieci napięcia stałego przy użyciu przełącznika napięcia stałego
DE102012008614A1 (de) * 2012-04-27 2013-10-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrischer Steckverbinder zum sicheren Trennen von elektrischen Strömen unter elektrischer Gleichspannung in Stromnetzen mit bidirektionalem Stromfluss
DE102012106505A1 (de) 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Freischalteinrichtung für einen eine Gleichspannung erzeugenden Photovoltaik-Strang
DE202012007257U1 (de) 2012-07-26 2013-10-28 Ellenberger & Poensgen Gmbh Vorrichtung zum sicheren Schalten einer Photovoltaikanlage
EP2701255B1 (en) 2012-08-23 2016-05-04 General Electric Technology GmbH Circuit interruption device
EP2701254B1 (en) 2012-08-23 2020-04-08 General Electric Technology GmbH Circuit interruption device
DE102012024728A1 (de) * 2012-12-18 2014-07-03 Ellenberger & Poensgen Gmbh Verfahren und Vorrichtung zur Überwachung einer elektrischen Anlage auf einen Rückstrom
US20140217832A1 (en) * 2013-02-06 2014-08-07 Astec International Limited Disconnect switches in dc power systems
GB2510871B (en) 2013-02-15 2016-03-09 Control Tech Ltd Electrical protection device and method
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
DE102013110240B4 (de) 2013-09-17 2017-09-07 Sma Solar Technology Ag Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
DE102013114259A1 (de) 2013-12-17 2015-06-18 Eaton Electrical Ip Gmbh & Co. Kg Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen
CN104409256B (zh) * 2014-03-07 2016-08-17 广州市金矢电子有限公司 电流反馈式电子灭弧装置
JP6299507B2 (ja) * 2014-07-29 2018-03-28 オムロン株式会社 太陽光発電システムの保護装置および太陽光発電システムの保護方法
US10910817B2 (en) 2014-09-26 2021-02-02 Mitsubishi Electric Corporation DC circuit breaker
US10014680B2 (en) * 2014-12-09 2018-07-03 Electronic Systems Protection, Inc. Overvoltage notching of electricity delivered to an electrical load
EP3038226B1 (en) * 2014-12-26 2022-08-03 Fico Triad, S.A. System and method for supplying electric power
CN104616926B (zh) * 2015-02-06 2018-06-26 孙毅彪 无电弧型串联智能桥式高压断路器
CN104637723B (zh) * 2015-02-06 2018-12-28 孙毅彪 无电弧型智能桥式高压断路器
DE102015001945A1 (de) * 2015-02-16 2016-08-18 Ellenberger & Poensgen Gmbh Schutzschalter und Verfahren zu dessen Betrieb
DE102015011990A1 (de) 2015-09-14 2017-03-16 Christian Sodtke Automatisch auslösende und wieder einschaltende elektrische Freischalteinrichtung
CN105304413B (zh) * 2015-11-06 2017-11-21 沈红 消除直流器件触头电弧的方法及其装置和应用
DE102016204400A1 (de) * 2016-03-17 2017-09-21 Siemens Aktiengesellschaft Gleichspannungsschalter
DE102016106415A1 (de) 2016-04-07 2017-10-12 Eaton Electrical Ip Gmbh & Co. Kg Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen
US11538943B2 (en) 2016-09-12 2022-12-27 Phoenix Contact Gmbh & Co. Kg Photovoltaic system, direct current hybrid switching device, use and method for switching a photovoltaic string on and off
EP3330992B1 (en) * 2016-12-05 2019-11-20 ABB Schweiz AG Electrical dc switching system
BR112019014882B1 (pt) 2017-02-10 2022-03-03 Abb Schweiz Ag Montagem de forno para um processo de produção de metal
FR3067165A1 (fr) * 2017-05-30 2018-12-07 Leach International Europe Systeme d'hybridation pour courant continu haute tension
DE102017122218A1 (de) * 2017-09-26 2019-03-28 Eaton Industries (Austria) Gmbh Niederspannungs-Schutzschaltgerät
DE102017127886A1 (de) * 2017-11-24 2019-05-29 Eaton Electrical Ip Gmbh & Co. Kg Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen und Schaltgerät mit einer derartigen Schaltvorrichtung
US10629391B2 (en) 2017-12-21 2020-04-21 Eaton Intelligent Power Limited Fusible safety disconnect in solid state circuit breakers and combination motor starters
DE102019213604A1 (de) 2019-09-06 2021-03-11 Siemens Aktiengesellschaft Schutzschaltgerät, Schutzschaltsystem und Verfahren
CN111029184B (zh) * 2019-12-16 2022-03-08 广东瑞德智能科技股份有限公司 一种开关装置及具有该开关装置的烘烤装置、家用电器
FR3116391B1 (fr) * 2020-11-18 2022-12-16 Hager Electro Sas Appareillage de protection à coupure électronique
DE102020216409B4 (de) 2020-12-21 2022-08-25 Siemens Aktiengesellschaft Schutzschaltgerät und Verfahren
DE102021113589A1 (de) 2021-05-26 2022-12-01 Lisa Dräxlmaier GmbH Elektronischer stromverteiler
US20240047151A1 (en) * 2022-08-02 2024-02-08 Rockwell Automation Technologies, Inc. Hybrid circuit breaker system with integrated galvanic isolating switch
CN115967346B (zh) * 2023-01-13 2024-04-09 合肥仙湖半导体科技有限公司 一种太阳能电池组件可脱离接线盒及其电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317965A1 (de) * 1993-05-28 1994-12-01 Siemens Ag Hybrider Leistungsschalter
WO2002071429A1 (de) * 2001-03-01 2002-09-12 Tyco Electronics Amp Gmbh Elektrische schaltung zur vermeidung eines lichtbogens über einem elektrischen kontakt
DE102005040432A1 (de) 2005-08-25 2007-03-01 Rwth Aachen Strombegrenzender Schalter
EP1881511A1 (en) * 2006-07-20 2008-01-23 Ansaldo Ricerche S.p.A. Hybrid switch
DE202008010312U1 (de) 2008-07-31 2008-10-02 Phoenix Solar Ag Photovoltaische Anlage und Generatoranschlusskasten in einer photovoltaischen Anlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519246A (ja) * 1974-07-15 1976-01-24 Tokyo Shibaura Electric Co Chokuryushadansochi
JPS5293808A (en) 1976-02-02 1977-08-06 Hitachi Ltd Steam turbine controller
JP3441813B2 (ja) * 1994-10-05 2003-09-02 アルプス電気株式会社 機械式スイッチの接点間アークの消去装置
KR100434153B1 (ko) * 2002-04-12 2004-06-04 엘지산전 주식회사 하이브리드 직류 전자 접촉기
DE10225259B3 (de) 2002-06-07 2004-01-22 Sma Regelsysteme Gmbh Elektrischer Steckverbinder
US7646178B1 (en) * 2009-05-08 2010-01-12 Fradella Richard B Broad-speed-range generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317965A1 (de) * 1993-05-28 1994-12-01 Siemens Ag Hybrider Leistungsschalter
WO2002071429A1 (de) * 2001-03-01 2002-09-12 Tyco Electronics Amp Gmbh Elektrische schaltung zur vermeidung eines lichtbogens über einem elektrischen kontakt
DE102005040432A1 (de) 2005-08-25 2007-03-01 Rwth Aachen Strombegrenzender Schalter
EP1881511A1 (en) * 2006-07-20 2008-01-23 Ansaldo Ricerche S.p.A. Hybrid switch
DE202008010312U1 (de) 2008-07-31 2008-10-02 Phoenix Solar Ag Photovoltaische Anlage und Generatoranschlusskasten in einer photovoltaischen Anlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAN GELDER P ET AL: "Zero volt switching hybrid DC circuit breakers", INDUSTRY APPLICATIONS CONFERENCE, 2000. CONFERENCE RECORD OF THE 2000 IEEE 8-12 OCTOBER 2000, PISCATAWAY, NJ, USA,IEEE, vol. 5, 8 October 2000 (2000-10-08), pages 2923 - 2927, XP010521702, ISBN: 978-0-7803-6401-1 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522088A (ja) * 2011-08-10 2014-08-28 エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング メカトロニックな差込み接続システム
JP2014531886A (ja) * 2011-09-12 2014-11-27 エスエムエー ソーラー テクノロジー アーゲー 光起電力システムのためのセーフティデバイス
WO2013091689A1 (de) 2011-12-21 2013-06-27 Siemens Aktiengesellschaft Trennvorrichtung zur gleichstromunterbrechung zwischen einem photovoltaikgenerator und einer elektrischen einrichtung sowie photovoltaikanlage mit einer derartigen trennvorrichtung
WO2015192924A1 (de) 2014-06-18 2015-12-23 Ellenberger & Poensgen Gmbh Trennschalter zur gleichstromunterbrechung
DE102014008706A1 (de) 2014-06-18 2015-12-24 Ellenberger & Poensgen Gmbh Trennschalter zur Gleichstromunterbrechung
EP3855465A1 (de) 2014-06-18 2021-07-28 Ellenberger & Poensgen GmbH Trennschalter zur gleichstromunterbrechung
US10931093B2 (en) 2014-06-18 2021-02-23 Ellenberger & Poensgen Gmbh Disconnect switch for interupption dc circuit between DC power source and load
DE202015009686U1 (de) 2014-10-24 2019-03-06 Ellenberger & Poensgen Gmbh Trennschalter zur galvanischen Gleichstromunterbrechung
US10607792B2 (en) 2014-10-24 2020-03-31 Ellenberger & Poensgen Gmbh Disconnecting device for galvanic direct current interruption
DE202016008754U1 (de) 2015-07-08 2019-06-11 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung
DE102015212802A1 (de) 2015-07-08 2017-01-12 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung
US10483072B2 (en) 2015-07-08 2019-11-19 Ellenberger & Poensgen Gmbh Interrupter device for interrupting a direct current
WO2017005450A1 (de) 2015-07-08 2017-01-12 Ellenberger & Poensgen Gmbh Trennvorrichtung zur gleichstromunterbrechung
WO2018099961A1 (de) 2016-12-01 2018-06-07 Innofas Gmbh Vorrichtung zum trennen eines bordnetzes von einer energiequelle
DE102016123283A1 (de) 2016-12-01 2018-06-07 Innofas Gmbh Vorrichtung zum Trennen eines Bordnetzes von einer Energiequelle
WO2018162133A1 (de) 2017-02-14 2018-09-13 Ellenberger & Poensgen Gmbh Verfahren und spannungsvervielfacher zur wandlung einer eingangsspannung sowie trennschaltung
DE102017204044A1 (de) * 2017-02-14 2018-08-16 Ellenberger & Poensgen Gmbh Verfahren und Spannungsvervielfacher zur Wandlung einer Eingangsspannung sowie Trennschaltung
US11108320B2 (en) 2017-02-14 2021-08-31 Ellenberger & Poensgen Gmbh Method and voltage multiplier for converting an input voltage, and disconnector
DE102018203636B3 (de) 2018-03-09 2019-07-04 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs
WO2019170317A1 (de) 2018-03-09 2019-09-12 Ellenberger & Poensgen Gmbh Trennvorrichtung zur gleichstromunterbrechung eines strompfads, und bordnetz eines kraftfahrzeugs
DE202018006154U1 (de) 2018-03-09 2019-06-17 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs
US11322319B2 (en) 2018-03-09 2022-05-03 Ellenberger & Poensgen Gmbh Disconnecting device for interrupting a direct current of a current path, and on-board electrical system of a motor vehicle
US11127552B2 (en) 2019-04-05 2021-09-21 Eaton Intelligent Power Limited Hybrid switch assembly and circuit interrupter including the same
US12179679B2 (en) 2020-07-03 2024-12-31 Robert Bosch Gmbh Method for securing in particular safety-relevant loads in a motor vehicle
DE102023203234B3 (de) * 2023-04-06 2024-03-28 Ellenberger & Poensgen Gmbh Verfahren zum Betrieb eines Hybridschalters sowie ein entsprechender Hybridschalter
DE102023203236B3 (de) 2023-04-06 2024-05-23 Ellenberger & Poensgen Gmbh Ansteuerschaltung für einen Hybridschalter und Hybridschalter
EP4443461A1 (de) 2023-04-06 2024-10-09 Ellenberger & Poensgen GmbH Verfahren zum betrieb eines hybridschalters
WO2024208475A1 (de) 2023-04-06 2024-10-10 Ellenberger & Poensgen Gmbh Ansteuerschaltung eines hybridschalters
DE102023206967A1 (de) 2023-07-21 2025-01-23 Ellenberger & Poensgen Gmbh Schaltsystem und Schutzschalter

Also Published As

Publication number Publication date
US20120007657A1 (en) 2012-01-12
RU2482565C2 (ru) 2013-05-20
CN102349124A (zh) 2012-02-08
JP5469236B2 (ja) 2014-04-16
BRPI1012338A2 (pt) 2016-03-29
JP2012521620A (ja) 2012-09-13
AU2010227893A1 (en) 2011-07-28
CA2752895C (en) 2017-05-16
PT2411990E (pt) 2013-03-18
CA2752895A1 (en) 2010-09-30
CN102349124B (zh) 2015-01-07
TN2011000306A1 (en) 2012-12-17
IL213866A (en) 2013-04-30
AU2010227893B2 (en) 2015-02-12
DE202009004198U1 (de) 2010-08-12
EP2411990B1 (de) 2013-01-23
EP2411990A1 (de) 2012-02-01
KR101420831B1 (ko) 2014-07-18
IL213866A0 (en) 2011-07-31
SG174124A1 (en) 2011-10-28
ZA201103651B (en) 2012-01-25
ES2401777T3 (es) 2013-04-24
RU2011134639A (ru) 2013-04-27
KR20110129979A (ko) 2011-12-02
HRP20130321T1 (en) 2013-05-31
US8742828B2 (en) 2014-06-03
PL2411990T3 (pl) 2013-06-28

Similar Documents

Publication Publication Date Title
EP2411990B1 (de) Trennschalter zur galvanischen gleichstromunterbrechung
EP3158571B1 (de) Trennschalter zur gleichstromunterbrechung
EP3320553B1 (de) Trennvorrichtung zur gleichstromunterbrechung
DE102011109920B4 (de) Mechatronisches Mehrfachstecksystem
EP3072143B1 (de) Vorrichtung zum schalten eines gleichstroms
DE102016219098B4 (de) Batterie-Trenneinrichtung
DE102011083693B3 (de) Gleichspannungs-Leitungsschutzschalter
DE3717491A1 (de) Elektronischer leistungstrennschalter
EP3210226B1 (de) Trennschalter zur galvanischen gleichstromunterbrechung
EP2511956B1 (de) Drei-Schalter Überspannungsschutz für eine Photovoltaikanlage
DE102018203636B3 (de) Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs
EP2789068B1 (de) Schaltungsanordnung zur reduktion der stromstärke in einer hochspannungs-gleichstrom-übertragungsleitung, hochspannungs-gleichstrom-übertragungsanlage und verfahren zum reduzieren der stromstärke eines elektrischen stromes
WO2013091689A1 (de) Trennvorrichtung zur gleichstromunterbrechung zwischen einem photovoltaikgenerator und einer elektrischen einrichtung sowie photovoltaikanlage mit einer derartigen trennvorrichtung
DE102024128671B3 (de) Hybridschalter und Verfahren zum Steuern eines Hybridschalters
DE3317942A1 (de) Schaltungsanordnung
DE3442932A1 (de) Verfahren zum schutz von ladegeraeten, schaltschraenken oder verbrauchern in photovoltaischen energieversorgungsanlagen gegen direkten blitzschlag oder dergleichen
DE102020134773A1 (de) Leistungsschalter für gleichströme

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011647.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10708895

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010708895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012501149

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010227893

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010227893

Country of ref document: AU

Date of ref document: 20100202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2752895

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6878/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011134639

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20117025219

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1012338

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1012338

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110923