WO2010108565A1 - Trennschalter zur galvanischen gleichstromunterbrechung - Google Patents
Trennschalter zur galvanischen gleichstromunterbrechung Download PDFInfo
- Publication number
- WO2010108565A1 WO2010108565A1 PCT/EP2010/000607 EP2010000607W WO2010108565A1 WO 2010108565 A1 WO2010108565 A1 WO 2010108565A1 EP 2010000607 W EP2010000607 W EP 2010000607W WO 2010108565 A1 WO2010108565 A1 WO 2010108565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor
- arc
- switch
- electronics
- semiconductor electronics
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/59—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
- H01H2009/544—Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
- H01H2009/546—Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
Definitions
- the invention relates to a separation device for DC interruption between a DC power source and an electrical input, with a current-carrying mechanical switching contact and with a semiconductor electronics connected in parallel therewith.
- a DC power source is understood to mean, in particular, a photovoltaic generator (solar system) and an electrical device is understood in particular to be an inverter.
- a photovoltaic system or solar system with a so-called photovoltaic generator is known, which in turn consists of grouped into sub-generators solar modules, which in turn are connected in series or present in parallel strands. While a sub-generator delivers its DC power through two terminals, the DC power of the entire photovoltaic generator is fed via an inverter in an AC mains. In order to keep the cabling and power losses between the sub-generators and the central inverter low, so-called generator junction boxes are placed close to the sub-generators. The so-called DC power is usually routed via a common cable to the central inverter.
- a photovoltaic system due to the system on the one hand permanently an operating current and operating voltage in the range between 180V (DC) and 1500V (DC) supplies and on the other hand - for installation, assembly or service purposes and in particular for general personal protection - a reliable separation of the electrical components or Facilities of the effective as a DC power source photovoltaic system is desired, a corresponding separation device must be able to make an interruption under load, ie without prior shutdown of the DC power source.
- a mechanical switch switching contact
- the disadvantage is that such mechanical switching contacts are worn very quickly due to the resulting arc at the contact opening or an additional effort is required to enclose the arc and cool, which is usually done by a corresponding mechanical switch with a quenching chambers.
- hybrid switches always have an external power source for driving the semiconductor switch and for operating a semiconductor electronics, in which the semiconductor switch is used.
- the invention is based on the object, a particularly suitable separation device for DC interruption between a DC power source, in particular a photovoltaic generator, and an electrical device, in particular an inverter to specify.
- the circuit breaker suitably comprises a mechanical switching contact suitable for a short-time arc, i. is designed for an arc duration of less than 1 ms, preferably less than or equal to 500 ⁇ s.
- the mechanical switching contact (switch or separating element) is connected in parallel with semiconductor electronics, which essentially comprise at least one semiconductor switch, preferably an IGBT.
- the semiconductor electronics of the circuit breaker according to the invention has no additional energy source and is therefore with a closed mechanical switch current blocking, d. H. high impedance and thus practically without current and voltage. Since no current flows through the semiconductor electronics when the mechanical switching contacts are closed, and therefore no voltage is applied, in particular via the or each semiconductor switch, the semiconductor circuit also generates no power losses when the mechanical switch is closed. Rather, the semiconductor electronics obtains the energy required for their operation from the separation device, d. H. from the circuit breaker system itself. For this purpose, the energy of the resulting when opening the mechanical switch arc is used and used.
- a control input of the semiconductor electronics or of the semiconductor switch is connected in such a way with the mechanical switching contacts, that at opening switch, the arc voltage across the switch or via its switch contacts and the parallel semiconductor electronics as a result of the electric arc semiconductor electronics, d. H. Low impedance and thus energized switches.
- the arc current starts to commute from the mechanical switch to the semiconductor electronics.
- the corresponding arc voltage or arc genstrom charges in this case an energy storage in the form of preferably a capacitor, which discharges selectively generating a control voltage for arc-free shutdown of the semiconductor electronics.
- the predetermined period of time or time constant and thus the charging time of the energy storage or capacitor determines the arc duration.
- a timer is started during which the semiconductor electronics are controlled to block the current in an arc-free manner.
- the duration of the timer is set to a safe extinguishing and reliable cooling of the arc or -plasmas.
- the invention is based on the consideration that for a touch-safe and reliable DC interruption designed as a pure two-terminal hybrid separation device can be used when a semiconductor electronics can be used without its own auxiliary power source.
- This in turn, can be achieved by the fact that the arc energy generated when opening one of the electronics connected in parallel with the electronic switch is used to operate the electronics.
- the electronics could have an energy store which stores at least part of the arc energy, which is then available to the electronics for a certain period of operation, which should be dimensioned for a reliable erasing of the arc.
- the charging time of the energy storage and thus the arc duration is preferably set to less than 1 ms, advantageously to less than or equal to 0.5 ms.
- this period of time is short enough to reliably prevent unwanted contact erosion of the switching contacts of the mechanical switch.
- this period of time is long enough to ensure the self-supply of the semiconductor electronics for the subsequent time period determined by the timer, within which the triggering of the electronics from the low-impedance Commutation state in the high-impedance shutdown state (initial state) takes place.
- a further mechanical circuit breaker is suitably provided, which is connected in series with the parallel circuit of the mechanical switch and the semiconductor electronics.
- the semiconductor electronics in addition to the preferably designed as an IGBT power or semiconductor switch comprises another power or semiconductor switch, which is preferably designed as a MOSFET (metal oxide semiconductor field-effect transistor).
- MOSFET metal oxide semiconductor field-effect transistor
- the almost powerless controllable and good blocking behavior with high blocking voltage IGBT is suitably connected in series with the further semiconductor switch (MOSFET) in the manner of a cascode arrangement.
- the semiconductor switches thus form a commutation path parallel to the main current path formed by the mechanical switch, to which the arc current increasingly commutates with opening of the mechanical switch and as a result of the control of the or each semiconductor switch.
- the falling during the commutation of the hybrid circuit breaker and thus on the semiconductor electronics arc voltage is between about 15V and 30V.
- the semiconductor electronics a first semiconductor switch (IGBT) and a second semiconductor switch (MOSFET), the first semiconductor switch is first controlled such that between the two semiconductor switches - so quasi on a Kaskodenmittenab- handle - one for charging the energy storage sufficient voltage in the amount of, for example, 12V (DC) can be tapped.
- This voltage is used to charge the energy storage and its stored energy in turn to drive the semiconductor switch within the semiconductor electronics to turn on the two turn on the semiconductor switch again completely, ie to control current blocking.
- the main path is galvanically opened and the commutation path parallel thereto is high-ohmic, with the result that the high DC voltage (permanently) generated by the DC source is present at, for example, greater than 1000V (DC) at the hybrid disconnector. Therefore, it must be ensured via the timing element that not only the arc extinguishes, but also the resulting plasma has cooled.
- DC 1000V
- the advantages achieved by the invention are, in particular, that no external power source or additional auxiliary power for supplying the electronics is required by the use of an autoclave hybrid separation device, the semiconductor electronics, the energy for its own power supply from the arc resulting from the opening of the mechanical switch.
- the semiconductor electronics is preferably designed as a second pole and high resistance with the mechanical switch closed, so that virtually no power losses occur in normal load operation of the hybrid separator according to the invention.
- the separating device according to the invention is preferably also provided for DC interruption in the DC voltage range up to 1500V (DC).
- this self-sufficient, hybrid disconnecting device is therefore particularly suitable for reliable and touch-proof galvanic DC interruption both between a photovoltaic system and one of its associated inverters and in connection with, for example, a fuel cell system or an accumulator (battery).
- FIG. 1 is a block diagram of the separation device according to the invention with an autarkic hybrid disconnector between a photovoltaic generator and an inverter,
- Fig. 3 in a current / voltage-time diagram, the resulting curve of switch current and voltage before, during and after extinction of an arc.
- Fig. 1 shows schematically a separation device 1, which is connected in the embodiment between a photovoltaic generator 2 and an inverter 3.
- the photovoltaic generator 2 comprises a number of solar modules 4, which are guided parallel to each other to a common generator junction box 5, which serves as a kind of energy collection point.
- the disconnecting device 1 comprises a switching contact 7, which is also referred to below as a mechanical switch, and semiconductor electronics 8 connected in parallel therewith.
- the mechanical switch 7 and the semiconductor electronics 8 form a self-sufficient hybrid disconnecting switch.
- the negative pole representing return line 9 of the separation device 1 - and thus the overall system - can be connected in a manner not shown another hybrid circuit breaker 7, 8.
- Both in the positive pole representative Hin operations mars (Hauptfpad) 6 and in the return line 9 can mechanically coupled switch contacts of another mechanical separating element 10 for a fully permanent galvanic separation or DC interruption between the photovoltaic generator 2 and the inverter 3 may be arranged.
- the semiconductor electronics 8 essentially comprises a semiconductor switch 11, which is connected in parallel to the mechanical switch 7, and a drive circuit 12 with an energy store 13 and a timer 14.
- the drive circuit 12 is preferably connected via a resistor or a resistor row R (FIG ), connected to the main current path 6.
- the gate of an IGBT preferably used as a semiconductor switch 11 forms the control input 15 of the semiconductor circuit 8. This control input 15 is guided via the drive circuit 12 to the main current path 6.
- FIG. 2 shows a comparatively detailed circuit diagram of the electronic switch 8 connected in parallel with the mechanical switch 7 of the self-sufficient hybrid disconnector. It can be seen that the first semiconductor switch (IGBT) 11a is connected in series in a cascode arrangement with a second semiconductor switch 11b in the form of a MOSFET. The cascode arrangement with the two semiconductor switches 11a, 11b thus forms, analogously to FIG. 1, the commutation path 16 parallel to the mechanical switch 7 and thus to the main current path 6.
- IGBT first semiconductor switch
- the first semiconductor switch 11 a between the DC power source 2 and the hybrid circuit breaker 7,8 is guided to the main current path 6.
- the potential U + is always greater than the potential U- on the opposite side of the switch, at which the second semiconductor switch (MOSFET) 11 b is guided to the main circuit 6.
- the positive potential U + is OV when the mechanical switch 7 is closed.
- the first semiconductor switch (IGBT) 11a is connected to a freewheeling diode D2.
- a first Zener diode D3 is connected on the anode side to the potential U- and the cathode side to the gate (control input 15) of the first semiconductor switch (IGBT) 11a.
- Another Zener diode D4 is the cathode side again with the Gate (control input 15) and the anode side connected to the emitter of the first semiconductor switch (IGBT) 11 a.
- a diode D1 is on the anode side out connected on the cathode side via a serving as energy storage capacitor 13 C against the potential U-.
- a plurality of capacitors C form the energy storage 13.
- Via an anode-side voltage tap 18 between the diode D1 and the energy store 13 or the capacitor C is connected to ohmic resistors R1 and R2 transistor T1 via further resistors R3 and R4 with the again guided to the control input 15 of the semiconductor electronics 8 gate of the second semiconductor switch (MOSFET) 15 connected.
- Another Zener diode D5 with parallel resistor R5 is the cathode side to the gate and the anode side connected to the emitter of the second semiconductor switch (MOSFET) 11 b.
- the transistor T1 On the base side, the transistor T1 is driven via a transistor T2, which in turn is connected to the base side via a resistor R6 with the example executed as Monoflopp timer 14. Base-emitter side, the transistor T2 is also connected to a further resistor R7.
- Fig. 3 shows in a current and voltage time diagram, the course of the switch voltage U and the switch current I of the hybrid circuit breaker 7, 8 temporally before a contact opening of the mechanical switch 7 at time t "and during the duration t Lß an arc LB above the Switch 7 or its switch contacts 7a, 7b (FIG. 2) and during a specific, predetermined or set time tz G of the timer 14.
- the mechanical switch 7 is closed, the main current path 6 is low, while the parallel commutation path 16 of the hybrid disconnector 7 , 8 high impedance and thus current blocking.
- the current profile shown in the left half of the figure of FIG. 3 represents the current I flowing exclusively through the mechanical switch 7 up to ⁇ time t the contact opening of the switch contacts 7a and 7b.
- the opening of the mechanical switch 7 was already at an unspecified time before the time t ⁇ ⁇ the contact opening.
- the illustrated in the lower left half of FIG. 3 switch voltage U is practically before the contact opening time t ⁇ practically OV and increases with the opening of the switch contacts 7a, 7b of the mechanical switch 7 at time t ⁇ jumped to a characteristic of an arc LB value a typical arc voltage ULB of, for example, 20V to 30V.
- the time t ⁇ _ B practically the arc current I divides between the main current path 6 - ie via the mechanical switch 7 - and the commutation 16 - so the semiconductor electronics 8 on.
- the energy storage 13 is charged.
- the time t Lß is set such that on the one hand enough energy for a reliable driving of the semiconductor electronics 8 is available, in particular for their shutdown during a period tz G following the duration of the arc representing time t ⁇ _ B -
- the time t L ⁇ sufficiently short, so that an undesirable contact erosion or wear of the switch 7 and the switch contacts 7a, 7b is avoided.
- the first semiconductor switch (IGBT) 11a is at least as far controlled through the resistor R (FIG. 2) that a sufficient charging voltage and a sufficient arc or charging current for the capacitors C and thus is available for the energy storage 13.
- this is done with the corresponding circuit of the first semiconductor switch (IGBT) 11a
- U Ab 12 V (DC)
- the tap voltage U Ab serves to supply the drive circuit 12 of the electronics 8, which is essentially formed by the transistors T1 and T2 and the timer 14 and the energy store 13.
- the diode D1 connected to the cascode tap 17 and the cathode side to the capacitor C prevents the return flow of the diode D1 Charging current from the capacitors C and the commutation path 16 in the direction of the potential U-.
- the charge capacitance and thus the storage energy contained in the capacitor C is dimensioned such that the semiconductor electronics 8 carries the switch current I for a time period tzG predetermined by the timer 14.
- the dimensioning of this time duration t ZG and thus the definition of the timing element 14 depends essentially on the application-specific or typical time periods for a complete extinction of the arc LB and after a sufficient cooling of the associated in the case of formed plasma.
- the essential proviso here is that after the shutdown of the electronics 8 with then turn high-impedance commutation 16 and consequently current-blocking semiconductor electronics 8 on the still open mechanical switch 7 or via its switch contacts 7a, 7b no re-arc LB can arise.
- the main current path 6 is galvanically opened at the same time as the high-resistance commutation path 16, an arc-free DC interruption between the DC power source 2 and the electrical device 3 is already established.
- the connection between the DC power source 2 and the inverter 3 exemplified as the electrical equipment is already reliably disconnected.
- the mechanical separating element 10 of the separating device 1 can then additionally be opened in a load-free and arc-free manner.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Arc-Extinguishing Devices That Are Switches (AREA)
- Keying Circuit Devices (AREA)
- Inverter Devices (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
Claims
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10708895A EP2411990B1 (de) | 2009-03-25 | 2010-02-02 | Trennschalter zur galvanischen gleichstromunterbrechung |
RU2011134639/07A RU2482565C2 (ru) | 2009-03-25 | 2010-02-02 | Разъединитель для гальванического прерывания постоянного тока |
ES10708895T ES2401777T3 (es) | 2009-03-25 | 2010-02-02 | Seccionador para la interrupción galvánica de corriente continua |
CN201080011647.4A CN102349124B (zh) | 2009-03-25 | 2010-02-02 | 用于电切断直流电的断路开关 |
JP2012501149A JP5469236B2 (ja) | 2009-03-25 | 2010-02-02 | ガルヴァーニ直流電流遮断用断路装置 |
CA2752895A CA2752895C (en) | 2009-03-25 | 2010-02-02 | Disconnecting switch for galvanic direct current interruption |
PL10708895T PL2411990T3 (pl) | 2009-03-25 | 2010-02-02 | Odłącznik do galwanicznego przerywania prądu stałego |
SG2011054871A SG174124A1 (en) | 2009-03-25 | 2010-02-02 | Switch disconnector for galvanic direct current interruption |
BRPI1012338A BRPI1012338A2 (pt) | 2009-03-25 | 2010-02-02 | interruptor de desconexão para interrupção de corrente contínua galvânica |
KR1020117025219A KR101420831B1 (ko) | 2009-03-25 | 2010-02-02 | 갈바닉 직류 전류 일시정지를 위한 스위치 분리기 |
AU2010227893A AU2010227893B2 (en) | 2009-03-25 | 2010-02-02 | Switch disconnector for galvanic direct current interruption |
ZA2011/03651A ZA201103651B (en) | 2009-03-25 | 2011-05-19 | Switch disconnector for galvanic direct current interruption |
TN2011000306A TN2011000306A1 (en) | 2009-03-25 | 2011-06-16 | Switch disconnector for galvanic direct current interrruption |
IL213866A IL213866A (en) | 2009-03-25 | 2011-06-30 | Disconnect switch for direct galvanic current interference |
US13/240,505 US8742828B2 (en) | 2009-03-25 | 2011-09-22 | Disconnector switch for galvanic direct current interruption |
HRP20130321AT HRP20130321T1 (en) | 2009-03-25 | 2013-04-10 | Switch disconnector for galvanic direct current interruption |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202009004198.0 | 2009-03-25 | ||
DE202009004198U DE202009004198U1 (de) | 2009-03-25 | 2009-03-25 | Trennschalter zur galvanischen Gleichstromunterbrechung |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/240,505 Continuation US8742828B2 (en) | 2009-03-25 | 2011-09-22 | Disconnector switch for galvanic direct current interruption |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010108565A1 true WO2010108565A1 (de) | 2010-09-30 |
Family
ID=42244204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/000607 WO2010108565A1 (de) | 2009-03-25 | 2010-02-02 | Trennschalter zur galvanischen gleichstromunterbrechung |
Country Status (19)
Country | Link |
---|---|
US (1) | US8742828B2 (de) |
EP (1) | EP2411990B1 (de) |
JP (1) | JP5469236B2 (de) |
KR (1) | KR101420831B1 (de) |
CN (1) | CN102349124B (de) |
AU (1) | AU2010227893B2 (de) |
BR (1) | BRPI1012338A2 (de) |
CA (1) | CA2752895C (de) |
DE (1) | DE202009004198U1 (de) |
ES (1) | ES2401777T3 (de) |
HR (1) | HRP20130321T1 (de) |
IL (1) | IL213866A (de) |
PL (1) | PL2411990T3 (de) |
PT (1) | PT2411990E (de) |
RU (1) | RU2482565C2 (de) |
SG (1) | SG174124A1 (de) |
TN (1) | TN2011000306A1 (de) |
WO (1) | WO2010108565A1 (de) |
ZA (1) | ZA201103651B (de) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013091689A1 (de) | 2011-12-21 | 2013-06-27 | Siemens Aktiengesellschaft | Trennvorrichtung zur gleichstromunterbrechung zwischen einem photovoltaikgenerator und einer elektrischen einrichtung sowie photovoltaikanlage mit einer derartigen trennvorrichtung |
JP2014522088A (ja) * | 2011-08-10 | 2014-08-28 | エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング | メカトロニックな差込み接続システム |
JP2014531886A (ja) * | 2011-09-12 | 2014-11-27 | エスエムエー ソーラー テクノロジー アーゲー | 光起電力システムのためのセーフティデバイス |
WO2015192924A1 (de) | 2014-06-18 | 2015-12-23 | Ellenberger & Poensgen Gmbh | Trennschalter zur gleichstromunterbrechung |
WO2017005450A1 (de) | 2015-07-08 | 2017-01-12 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur gleichstromunterbrechung |
WO2018099961A1 (de) | 2016-12-01 | 2018-06-07 | Innofas Gmbh | Vorrichtung zum trennen eines bordnetzes von einer energiequelle |
DE102017204044A1 (de) * | 2017-02-14 | 2018-08-16 | Ellenberger & Poensgen Gmbh | Verfahren und Spannungsvervielfacher zur Wandlung einer Eingangsspannung sowie Trennschaltung |
DE202015009686U1 (de) | 2014-10-24 | 2019-03-06 | Ellenberger & Poensgen Gmbh | Trennschalter zur galvanischen Gleichstromunterbrechung |
DE202018006154U1 (de) | 2018-03-09 | 2019-06-17 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs |
US11127552B2 (en) | 2019-04-05 | 2021-09-21 | Eaton Intelligent Power Limited | Hybrid switch assembly and circuit interrupter including the same |
DE102023203234B3 (de) | 2023-04-06 | 2024-03-28 | Ellenberger & Poensgen Gmbh | Verfahren zum Betrieb eines Hybridschalters sowie ein entsprechender Hybridschalter |
DE102023203236B3 (de) | 2023-04-06 | 2024-05-23 | Ellenberger & Poensgen Gmbh | Ansteuerschaltung für einen Hybridschalter und Hybridschalter |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT510512B1 (de) | 2010-09-30 | 2015-08-15 | Fronius Int Gmbh | Wechselrichter |
AT510502B1 (de) * | 2010-09-30 | 2015-08-15 | Fronius Int Gmbh | Wechselrichter und verfahren zur trennung von photovoltaikmodulen von einem wechselrichter |
DE102011016056A1 (de) * | 2011-04-05 | 2012-10-11 | Volkswagen Aktiengesellschaft | Hybrides Schaltelement, Schaltungsanordnung und Verfahren zur Steuerung eines hybriden Schaltelements einer Schaltungsanordnung |
DE102011078034A1 (de) * | 2011-06-24 | 2012-12-27 | Siemens Ag | Schaltvorrichtung |
FR2977738B1 (fr) * | 2011-07-04 | 2015-01-16 | Mersen France Sb Sas | Systeme d'interruption de courant continu apte a ouvrir une ligne de courant continu a comportement inductif |
EP2810289B1 (de) * | 2012-03-09 | 2016-05-04 | Siemens Aktiengesellschaft | Verfahren zum zuschalten eines gleichspannungsnetzabschnitts mittels eines gleichspannungsschalters |
DE102012008614A1 (de) * | 2012-04-27 | 2013-10-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Elektrischer Steckverbinder zum sicheren Trennen von elektrischen Strömen unter elektrischer Gleichspannung in Stromnetzen mit bidirektionalem Stromfluss |
DE102012106505A1 (de) | 2012-07-18 | 2014-01-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Freischalteinrichtung für einen eine Gleichspannung erzeugenden Photovoltaik-Strang |
DE202012007257U1 (de) | 2012-07-26 | 2013-10-28 | Ellenberger & Poensgen Gmbh | Vorrichtung zum sicheren Schalten einer Photovoltaikanlage |
EP2701255B1 (de) | 2012-08-23 | 2016-05-04 | General Electric Technology GmbH | Stromkreisunterbrechungsvorrichtung |
EP2701254B1 (de) | 2012-08-23 | 2020-04-08 | General Electric Technology GmbH | Stromkreisunterbrechungsvorrichtung |
DE102012024728A1 (de) * | 2012-12-18 | 2014-07-03 | Ellenberger & Poensgen Gmbh | Verfahren und Vorrichtung zur Überwachung einer elektrischen Anlage auf einen Rückstrom |
US20140217832A1 (en) * | 2013-02-06 | 2014-08-07 | Astec International Limited | Disconnect switches in dc power systems |
GB2510871B (en) | 2013-02-15 | 2016-03-09 | Control Tech Ltd | Electrical protection device and method |
US9054530B2 (en) | 2013-04-25 | 2015-06-09 | General Atomics | Pulsed interrupter and method of operation |
DE102013110240B4 (de) | 2013-09-17 | 2017-09-07 | Sma Solar Technology Ag | Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung |
DE102013114259A1 (de) | 2013-12-17 | 2015-06-18 | Eaton Electrical Ip Gmbh & Co. Kg | Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen |
CN104409256B (zh) | 2014-03-07 | 2016-08-17 | 广州市金矢电子有限公司 | 电流反馈式电子灭弧装置 |
JP6299507B2 (ja) * | 2014-07-29 | 2018-03-28 | オムロン株式会社 | 太陽光発電システムの保護装置および太陽光発電システムの保護方法 |
WO2016047209A1 (ja) | 2014-09-26 | 2016-03-31 | 三菱電機株式会社 | 直流遮断器 |
US10014680B2 (en) * | 2014-12-09 | 2018-07-03 | Electronic Systems Protection, Inc. | Overvoltage notching of electricity delivered to an electrical load |
EP3038226B1 (de) * | 2014-12-26 | 2022-08-03 | Fico Triad, S.A. | System und Verfahren zur Stromversorgung |
CN104637723B (zh) * | 2015-02-06 | 2018-12-28 | 孙毅彪 | 无电弧型智能桥式高压断路器 |
CN104616926B (zh) * | 2015-02-06 | 2018-06-26 | 孙毅彪 | 无电弧型串联智能桥式高压断路器 |
DE102015001945A1 (de) | 2015-02-16 | 2016-08-18 | Ellenberger & Poensgen Gmbh | Schutzschalter und Verfahren zu dessen Betrieb |
DE102015011990A1 (de) | 2015-09-14 | 2017-03-16 | Christian Sodtke | Automatisch auslösende und wieder einschaltende elektrische Freischalteinrichtung |
CN105304413B (zh) * | 2015-11-06 | 2017-11-21 | 沈红 | 消除直流器件触头电弧的方法及其装置和应用 |
DE102016204400A1 (de) * | 2016-03-17 | 2017-09-21 | Siemens Aktiengesellschaft | Gleichspannungsschalter |
DE102016106415A1 (de) * | 2016-04-07 | 2017-10-12 | Eaton Electrical Ip Gmbh & Co. Kg | Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen |
WO2018046653A1 (de) | 2016-09-12 | 2018-03-15 | Phoenix Contact Gmbh & Co. Kg | Photovoltaik-anlage, gleichstrom-hybrid-schalteinrichtung, verwendung und verfahren zum an- und abschalten eines photovoltaik-strangs |
EP3330992B1 (de) * | 2016-12-05 | 2019-11-20 | ABB Schweiz AG | Elektrisches gleichstromschaltsystem |
BR112019014882B1 (pt) | 2017-02-10 | 2022-03-03 | Abb Schweiz Ag | Montagem de forno para um processo de produção de metal |
FR3067165A1 (fr) * | 2017-05-30 | 2018-12-07 | Leach International Europe | Systeme d'hybridation pour courant continu haute tension |
DE102017122218A1 (de) * | 2017-09-26 | 2019-03-28 | Eaton Industries (Austria) Gmbh | Niederspannungs-Schutzschaltgerät |
DE102017127886A1 (de) * | 2017-11-24 | 2019-05-29 | Eaton Electrical Ip Gmbh & Co. Kg | Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen und Schaltgerät mit einer derartigen Schaltvorrichtung |
US10629391B2 (en) | 2017-12-21 | 2020-04-21 | Eaton Intelligent Power Limited | Fusible safety disconnect in solid state circuit breakers and combination motor starters |
DE102019213604A1 (de) * | 2019-09-06 | 2021-03-11 | Siemens Aktiengesellschaft | Schutzschaltgerät, Schutzschaltsystem und Verfahren |
CN111029184B (zh) * | 2019-12-16 | 2022-03-08 | 广东瑞德智能科技股份有限公司 | 一种开关装置及具有该开关装置的烘烤装置、家用电器 |
DE102020208401A1 (de) | 2020-07-03 | 2022-01-05 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Absicherung insbesondere sicherheitsrelevanter Verbraucher in einem Kraftfahrzeug |
FR3116391B1 (fr) * | 2020-11-18 | 2022-12-16 | Hager Electro Sas | Appareillage de protection à coupure électronique |
DE102020216409B4 (de) * | 2020-12-21 | 2022-08-25 | Siemens Aktiengesellschaft | Schutzschaltgerät und Verfahren |
DE102021113589A1 (de) | 2021-05-26 | 2022-12-01 | Lisa Dräxlmaier GmbH | Elektronischer stromverteiler |
US20240047151A1 (en) * | 2022-08-02 | 2024-02-08 | Rockwell Automation Technologies, Inc. | Hybrid circuit breaker system with integrated galvanic isolating switch |
CN115967346B (zh) * | 2023-01-13 | 2024-04-09 | 合肥仙湖半导体科技有限公司 | 一种太阳能电池组件可脱离接线盒及其电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4317965A1 (de) * | 1993-05-28 | 1994-12-01 | Siemens Ag | Hybrider Leistungsschalter |
WO2002071429A1 (de) * | 2001-03-01 | 2002-09-12 | Tyco Electronics Amp Gmbh | Elektrische schaltung zur vermeidung eines lichtbogens über einem elektrischen kontakt |
DE102005040432A1 (de) | 2005-08-25 | 2007-03-01 | Rwth Aachen | Strombegrenzender Schalter |
EP1881511A1 (de) * | 2006-07-20 | 2008-01-23 | Ansaldo Ricerche S.p.A. | Hybridschalter |
DE202008010312U1 (de) | 2008-07-31 | 2008-10-02 | Phoenix Solar Ag | Photovoltaische Anlage und Generatoranschlusskasten in einer photovoltaischen Anlage |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS519246A (ja) * | 1974-07-15 | 1976-01-24 | Tokyo Shibaura Electric Co | Chokuryushadansochi |
JPS5293808A (en) | 1976-02-02 | 1977-08-06 | Hitachi Ltd | Steam turbine controller |
JP3441813B2 (ja) * | 1994-10-05 | 2003-09-02 | アルプス電気株式会社 | 機械式スイッチの接点間アークの消去装置 |
KR100434153B1 (ko) * | 2002-04-12 | 2004-06-04 | 엘지산전 주식회사 | 하이브리드 직류 전자 접촉기 |
DE10225259B3 (de) | 2002-06-07 | 2004-01-22 | Sma Regelsysteme Gmbh | Elektrischer Steckverbinder |
US7646178B1 (en) * | 2009-05-08 | 2010-01-12 | Fradella Richard B | Broad-speed-range generator |
-
2009
- 2009-03-25 DE DE202009004198U patent/DE202009004198U1/de not_active Expired - Lifetime
-
2010
- 2010-02-02 EP EP10708895A patent/EP2411990B1/de active Active
- 2010-02-02 RU RU2011134639/07A patent/RU2482565C2/ru not_active IP Right Cessation
- 2010-02-02 PL PL10708895T patent/PL2411990T3/pl unknown
- 2010-02-02 CN CN201080011647.4A patent/CN102349124B/zh active Active
- 2010-02-02 WO PCT/EP2010/000607 patent/WO2010108565A1/de active Application Filing
- 2010-02-02 CA CA2752895A patent/CA2752895C/en active Active
- 2010-02-02 PT PT107088957T patent/PT2411990E/pt unknown
- 2010-02-02 KR KR1020117025219A patent/KR101420831B1/ko active IP Right Grant
- 2010-02-02 SG SG2011054871A patent/SG174124A1/en unknown
- 2010-02-02 ES ES10708895T patent/ES2401777T3/es active Active
- 2010-02-02 BR BRPI1012338A patent/BRPI1012338A2/pt not_active IP Right Cessation
- 2010-02-02 AU AU2010227893A patent/AU2010227893B2/en active Active
- 2010-02-02 JP JP2012501149A patent/JP5469236B2/ja active Active
-
2011
- 2011-05-19 ZA ZA2011/03651A patent/ZA201103651B/en unknown
- 2011-06-16 TN TN2011000306A patent/TN2011000306A1/fr unknown
- 2011-06-30 IL IL213866A patent/IL213866A/en not_active IP Right Cessation
- 2011-09-22 US US13/240,505 patent/US8742828B2/en active Active
-
2013
- 2013-04-10 HR HRP20130321AT patent/HRP20130321T1/hr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4317965A1 (de) * | 1993-05-28 | 1994-12-01 | Siemens Ag | Hybrider Leistungsschalter |
WO2002071429A1 (de) * | 2001-03-01 | 2002-09-12 | Tyco Electronics Amp Gmbh | Elektrische schaltung zur vermeidung eines lichtbogens über einem elektrischen kontakt |
DE102005040432A1 (de) | 2005-08-25 | 2007-03-01 | Rwth Aachen | Strombegrenzender Schalter |
EP1881511A1 (de) * | 2006-07-20 | 2008-01-23 | Ansaldo Ricerche S.p.A. | Hybridschalter |
DE202008010312U1 (de) | 2008-07-31 | 2008-10-02 | Phoenix Solar Ag | Photovoltaische Anlage und Generatoranschlusskasten in einer photovoltaischen Anlage |
Non-Patent Citations (1)
Title |
---|
VAN GELDER P ET AL: "Zero volt switching hybrid DC circuit breakers", INDUSTRY APPLICATIONS CONFERENCE, 2000. CONFERENCE RECORD OF THE 2000 IEEE 8-12 OCTOBER 2000, PISCATAWAY, NJ, USA,IEEE, vol. 5, 8 October 2000 (2000-10-08), pages 2923 - 2927, XP010521702, ISBN: 978-0-7803-6401-1 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014522088A (ja) * | 2011-08-10 | 2014-08-28 | エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング | メカトロニックな差込み接続システム |
JP2014531886A (ja) * | 2011-09-12 | 2014-11-27 | エスエムエー ソーラー テクノロジー アーゲー | 光起電力システムのためのセーフティデバイス |
WO2013091689A1 (de) | 2011-12-21 | 2013-06-27 | Siemens Aktiengesellschaft | Trennvorrichtung zur gleichstromunterbrechung zwischen einem photovoltaikgenerator und einer elektrischen einrichtung sowie photovoltaikanlage mit einer derartigen trennvorrichtung |
WO2015192924A1 (de) | 2014-06-18 | 2015-12-23 | Ellenberger & Poensgen Gmbh | Trennschalter zur gleichstromunterbrechung |
DE102014008706A1 (de) | 2014-06-18 | 2015-12-24 | Ellenberger & Poensgen Gmbh | Trennschalter zur Gleichstromunterbrechung |
EP3855465A1 (de) | 2014-06-18 | 2021-07-28 | Ellenberger & Poensgen GmbH | Trennschalter zur gleichstromunterbrechung |
US10931093B2 (en) | 2014-06-18 | 2021-02-23 | Ellenberger & Poensgen Gmbh | Disconnect switch for interupption dc circuit between DC power source and load |
DE202015009686U1 (de) | 2014-10-24 | 2019-03-06 | Ellenberger & Poensgen Gmbh | Trennschalter zur galvanischen Gleichstromunterbrechung |
US10607792B2 (en) | 2014-10-24 | 2020-03-31 | Ellenberger & Poensgen Gmbh | Disconnecting device for galvanic direct current interruption |
DE102015212802A1 (de) | 2015-07-08 | 2017-01-12 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur Gleichstromunterbrechung |
DE202016008754U1 (de) | 2015-07-08 | 2019-06-11 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur Gleichstromunterbrechung |
WO2017005450A1 (de) | 2015-07-08 | 2017-01-12 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur gleichstromunterbrechung |
US10483072B2 (en) | 2015-07-08 | 2019-11-19 | Ellenberger & Poensgen Gmbh | Interrupter device for interrupting a direct current |
WO2018099961A1 (de) | 2016-12-01 | 2018-06-07 | Innofas Gmbh | Vorrichtung zum trennen eines bordnetzes von einer energiequelle |
DE102016123283A1 (de) | 2016-12-01 | 2018-06-07 | Innofas Gmbh | Vorrichtung zum Trennen eines Bordnetzes von einer Energiequelle |
DE102017204044A1 (de) * | 2017-02-14 | 2018-08-16 | Ellenberger & Poensgen Gmbh | Verfahren und Spannungsvervielfacher zur Wandlung einer Eingangsspannung sowie Trennschaltung |
US11108320B2 (en) | 2017-02-14 | 2021-08-31 | Ellenberger & Poensgen Gmbh | Method and voltage multiplier for converting an input voltage, and disconnector |
WO2018162133A1 (de) | 2017-02-14 | 2018-09-13 | Ellenberger & Poensgen Gmbh | Verfahren und spannungsvervielfacher zur wandlung einer eingangsspannung sowie trennschaltung |
DE102018203636B3 (de) | 2018-03-09 | 2019-07-04 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs |
WO2019170317A1 (de) | 2018-03-09 | 2019-09-12 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur gleichstromunterbrechung eines strompfads, und bordnetz eines kraftfahrzeugs |
DE202018006154U1 (de) | 2018-03-09 | 2019-06-17 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs |
US11322319B2 (en) | 2018-03-09 | 2022-05-03 | Ellenberger & Poensgen Gmbh | Disconnecting device for interrupting a direct current of a current path, and on-board electrical system of a motor vehicle |
US11127552B2 (en) | 2019-04-05 | 2021-09-21 | Eaton Intelligent Power Limited | Hybrid switch assembly and circuit interrupter including the same |
DE102023203234B3 (de) | 2023-04-06 | 2024-03-28 | Ellenberger & Poensgen Gmbh | Verfahren zum Betrieb eines Hybridschalters sowie ein entsprechender Hybridschalter |
DE102023203236B3 (de) | 2023-04-06 | 2024-05-23 | Ellenberger & Poensgen Gmbh | Ansteuerschaltung für einen Hybridschalter und Hybridschalter |
EP4443461A1 (de) | 2023-04-06 | 2024-10-09 | Ellenberger & Poensgen GmbH | Verfahren zum betrieb eines hybridschalters |
WO2024208475A1 (de) | 2023-04-06 | 2024-10-10 | Ellenberger & Poensgen Gmbh | Ansteuerschaltung eines hybridschalters |
Also Published As
Publication number | Publication date |
---|---|
DE202009004198U1 (de) | 2010-08-12 |
HRP20130321T1 (en) | 2013-05-31 |
CA2752895A1 (en) | 2010-09-30 |
EP2411990A1 (de) | 2012-02-01 |
JP5469236B2 (ja) | 2014-04-16 |
BRPI1012338A2 (pt) | 2016-03-29 |
ZA201103651B (en) | 2012-01-25 |
CN102349124B (zh) | 2015-01-07 |
SG174124A1 (en) | 2011-10-28 |
PL2411990T3 (pl) | 2013-06-28 |
KR20110129979A (ko) | 2011-12-02 |
RU2011134639A (ru) | 2013-04-27 |
RU2482565C2 (ru) | 2013-05-20 |
CN102349124A (zh) | 2012-02-08 |
US8742828B2 (en) | 2014-06-03 |
PT2411990E (pt) | 2013-03-18 |
IL213866A (en) | 2013-04-30 |
EP2411990B1 (de) | 2013-01-23 |
JP2012521620A (ja) | 2012-09-13 |
US20120007657A1 (en) | 2012-01-12 |
TN2011000306A1 (en) | 2012-12-17 |
ES2401777T3 (es) | 2013-04-24 |
IL213866A0 (en) | 2011-07-31 |
CA2752895C (en) | 2017-05-16 |
AU2010227893A1 (en) | 2011-07-28 |
AU2010227893B2 (en) | 2015-02-12 |
KR101420831B1 (ko) | 2014-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2411990B1 (de) | Trennschalter zur galvanischen gleichstromunterbrechung | |
EP3158571B1 (de) | Trennschalter zur gleichstromunterbrechung | |
EP3320553B1 (de) | Trennvorrichtung zur gleichstromunterbrechung | |
EP3072143B1 (de) | Vorrichtung zum schalten eines gleichstroms | |
DE102011109920B4 (de) | Mechatronisches Mehrfachstecksystem | |
DE102011083693B3 (de) | Gleichspannungs-Leitungsschutzschalter | |
DE3717491A1 (de) | Elektronischer leistungstrennschalter | |
DE19719919A1 (de) | Anordnung zum Schutz von elektrischen Einrichtungen | |
WO2016062427A1 (de) | Trennschalter zur galvanischen gleichstromunterbrechung | |
DE102012008614A1 (de) | Elektrischer Steckverbinder zum sicheren Trennen von elektrischen Strömen unter elektrischer Gleichspannung in Stromnetzen mit bidirektionalem Stromfluss | |
DE102016202661A1 (de) | Vorrichtung zum Schalten eines Gleichstroms in einem Pol eines Gleichspannungsnetzes | |
EP2511956B1 (de) | Drei-Schalter Überspannungsschutz für eine Photovoltaikanlage | |
DE102018203636B3 (de) | Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs | |
EP2789068A1 (de) | Schaltungsanordnung zur reduktion der stromstärke in einer hochspannungs-gleichstrom-übertragungsleitung, hochspannungs-gleichstrom-übertragungsanlage und verfahren zum reduzieren der stromstärke eines elektrischen stromes | |
WO2013091689A1 (de) | Trennvorrichtung zur gleichstromunterbrechung zwischen einem photovoltaikgenerator und einer elektrischen einrichtung sowie photovoltaikanlage mit einer derartigen trennvorrichtung | |
DE3317942A1 (de) | Schaltungsanordnung | |
DE102020134773A1 (de) | Leistungsschalter für gleichströme | |
DE3442932A1 (de) | Verfahren zum schutz von ladegeraeten, schaltschraenken oder verbrauchern in photovoltaischen energieversorgungsanlagen gegen direkten blitzschlag oder dergleichen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080011647.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10708895 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2010708895 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012501149 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010227893 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2010227893 Country of ref document: AU Date of ref document: 20100202 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2752895 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6878/CHENP/2011 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011134639 Country of ref document: RU Kind code of ref document: A Ref document number: 20117025219 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1012338 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1012338 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110923 |