WO2010108303A1 - 电容式触控面板的电路结构 - Google Patents

电容式触控面板的电路结构 Download PDF

Info

Publication number
WO2010108303A1
WO2010108303A1 PCT/CN2009/000751 CN2009000751W WO2010108303A1 WO 2010108303 A1 WO2010108303 A1 WO 2010108303A1 CN 2009000751 W CN2009000751 W CN 2009000751W WO 2010108303 A1 WO2010108303 A1 WO 2010108303A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit structure
electrode sensing
area
electrode
touch panel
Prior art date
Application number
PCT/CN2009/000751
Other languages
English (en)
French (fr)
Inventor
刘振宇
王净亦
Original Assignee
宸鸿科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鸿科技(厦门)有限公司 filed Critical 宸鸿科技(厦门)有限公司
Priority to EP09842040.9A priority Critical patent/EP2413222B1/en
Priority to KR1020117016040A priority patent/KR101322811B1/ko
Priority to JP2012501105A priority patent/JP5844726B2/ja
Priority to US13/257,311 priority patent/US9733766B2/en
Publication of WO2010108303A1 publication Critical patent/WO2010108303A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a circuit structure of a capacitive touch panel, and more particularly to a capacitive touch panel capable of reducing the impedance of a circuit structure.
  • a general capacitive touch panel is coated with a circuit structure on the surface of a transparent glass, such as an Indium Tim Oxide (ITO Layer) or an ant imony t in oxide layer (ATO Layer).
  • ITO Layer Indium Tim Oxide
  • ATO Layer ant imony t in oxide layer
  • the controller at the rear end of the touch panel calculates the ratio of the current being drawn and calculates the X-axis and Y axis.
  • a capacitive touch panel having a double-ended conductive structure, as shown in FIG. 1A, and a single-ended conductive circuit are disclosed in US Pat. No. 6,297,811.
  • the capacitive touch panel of the structure is as shown in FIG. 1B.
  • the above two types of touch panels have high resistance values due to the circuit structure (IT0), which causes the sensed signals to be too weak, affecting the problem of signal transmission, and may cause a discriminating error, thereby reducing the touch panel. Sensitivity.
  • the main object of the present invention is to overcome the defects of the circuit structure of the conventional capacitive touch panel and provide a circuit structure of a novel capacitive touch panel.
  • the technical problem to be solved is that the circuit can be effectively reduced.
  • the resistance value of the structure is very suitable for practical use.
  • Another object of the present invention is to provide a circuit structure of a novel capacitive touch panel, and the technical problem to be solved is that it can improve the accuracy of signal transmission of the touch panel, thereby further Plus is suitable for practical use.
  • the circuit structure of a capacitive touch panel according to the present invention includes at least: a plurality of sensing electrode groups, wherein each of the sensing electrode groups comprises: at least one metal wire; and a plurality of electrode sensing blocks, The electrode sensing blocks are electrically isolated, and electrically connected to the metal wires, and output at least one capacitive signal according to at least one touch position.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the foregoing circuit structure further includes a plurality of pitches which are located between any two of the electrode sensing blocks, and the pitches are equal in size.
  • the area of the electrode sensing block is an equal area
  • the circuit structure outputs the capacitance signals according to the size of the area of the electrode sensing blocks covered by the touch positions.
  • the area of the electrode sensing block is an unequal area
  • the circuit structure outputs the capacitance signals according to the area of the electrode sensing blocks covered by the touch positions. .
  • the foregoing circuit structure further includes a plurality of pitches between any two of the electrode sensing blocks, the spaces comprising a plurality of unequal distances.
  • the area of the electrode sensing block is an equal area
  • the circuit structure outputs the capacitance signals according to the size of the area of the electrode sensing blocks covered by the touch positions.
  • the area of the electrode sensing block is an unequal area
  • the circuit structure outputs the capacitance signals according to the area of the electrode sensing blocks covered by the touch positions. .
  • the electrode sensing blocks are arranged in such a manner that the left to right areas are sequentially reduced, and the spaces are arranged in such a manner that the distances from the left to the right become larger.
  • the circuit structure further includes a plurality of pitches, and the pitches are located between any two of the electrode sensing blocks, and the pitches are equal in size, and the circuit structure is covered by the touch positions.
  • the area of the electrodes sensing the size of the blocks, and outputting the capacitance signals.
  • the circuit structure further includes a plurality of pitches between the two electrode sensing blocks, the pitches including a plurality of unequal distances, and the circuit structure is included according to the touch positions.
  • the area of the electrode sensing blocks is covered, and the capacitor signals are output.
  • the electrode sensing block is composed of indium tin oxide.
  • the metal wire includes a plurality of first metal lines and a plurality of second metal lines, and each of the first metal lines is used for electrically connecting the capacitive touch panel and the electrode sensing Blocks, each of the second metal lines is for electrically connecting between any two of the electrode sensing blocks.
  • the electrode sensing block is overlapped with the metal wire.
  • the present invention provides a circuit structure of a capacitive touch panel.
  • the circuit structure of the capacitive touch panel mainly includes a plurality of metal lines and a plurality of electrode sensing blocks.
  • the electrode sensing block is electrically connected to the metal wire, and outputs a plurality of capacitive signals according to the touch position.
  • the present invention further provides a circuit structure of a capacitive touch panel, which comprises at least a plurality of metal lines, a plurality of electrode sensing blocks, and a plurality of pitches.
  • the electrode sensing blocks are electrically isolated, and the electrode sensing blocks are electrically connected to the metal lines.
  • the spacing is between any two electrode sensing blocks; and the circuit structure outputs a plurality of capacitive signals according to the size of the plurality of electrode sensing blocks covered by the plurality of touch positions.
  • the present invention further provides a circuit structure of a capacitive touch panel comprising at least a plurality of metal lines, a plurality of electrode sensing blocks, and a plurality of pitches.
  • the electrode sensing blocks are electrically isolated and electrically connected to the metal wires.
  • the spacing is between any two of the electrode sensing blocks; wherein the circuit structure outputs a plurality of capacitive signals according to the spacing area covered by the plurality of touch positions.
  • the circuit structure of the capacitive touch panel of the present invention has at least the following advantages and advantages: With the circuit structure of the capacitive touch panel of the present invention, the resistance value of the circuit structure can be effectively reduced, and the touch is improved. The accuracy of the signal transmission of the panel.
  • the present invention relates to a circuit structure of a capacitive touch panel.
  • the circuit structure of the capacitive touch panel mainly includes a plurality of metal lines and a plurality of electrode sensing blocks.
  • the electrode sensing blocks are electrically isolated and electrically connected to the metal wires.
  • the circuit structure described above can reduce the resistance value of the circuit structure (IT0), further improve the problem of affecting the signal transmission, and improve the sensitivity of the touch panel.
  • the invention has significant technological advancement and has obvious positive effects, and is a novel, progressive and practical new design.
  • FIG. 1A is a schematic diagram of a circuit structure of a conventional capacitive touch panel.
  • FIG. 1B is a schematic diagram showing the circuit structure of another conventional capacitive touch panel.
  • 2A and 2B are schematic views showing a first embodiment of a circuit structure of a capacitive touch panel.
  • 3A and 3B are schematic views showing a second embodiment of a circuit structure of a capacitive touch panel.
  • 4A and 4B are schematic views showing a third embodiment of a circuit structure of a capacitive touch panel.
  • 5A and 5B are schematic views showing a fourth embodiment of a circuit structure of a capacitive touch panel.
  • Capacitive touch panel 1 02a Sensing electrode group
  • Electrode sensing block 120a Low impedance metal wire
  • first low impedance metal line 1204a second low impedance metal line
  • sensing electrode group 110b electrode sensing block
  • Electrode sensing block 120c Low impedance metal line
  • first low impedance metal line 1204c second low impedance metal line
  • Electrode sensing block 120d Low impedance metal wire
  • first low impedance metal line 1204d second low impedance metal line
  • FIG. 2A is a schematic view showing a first embodiment of a capacitive touch panel of the present invention.
  • the circuit structure 10a of the capacitive touch panel is composed of at least one sensing electrode group 102a, and each of the electrode sensing groups 102a includes a plurality of electrode sensing blocks 110a of the same area and a low-resistance metal. Line 120a.
  • the electrode sensing block 110a is electrically isolated, and electrically connected to the metal lines 120a, respectively, and has a pitch 1 30a of the same distance between the electrode sensing blocks 110a.
  • the main circuit structure is cut into a plurality of electrode sensing blocks 110a, and then a low-resistance metal line 120a is overlapped on each of the electrode sensing blocks 110a to constitute the main surface of the capacitive touch panel 10a of the present invention.
  • Circuit configuration Since the conventional circuit structure is a high-resistance electrode, signal delay is caused in signal transmission, so the circuit structure is cut into a plurality of electrodes isolated from each other.
  • the electrode sensing block 110a then using the low-resistance metal line 120a, utilizes the characteristics of the low-resistance metal line 120a, and the plurality of electrode sensing blocks 110a and the low-resistance metal line 120a are stacked to form a parallel configuration to reduce the impedance of the signal transmission. In turn, the transmission effect of the capacitive sensing signal is improved.
  • the touched electrode sensing block 110a may have different area and position.
  • the capacitance signal output calculates different touch positions according to different capacitance signal outputs.
  • the low impedance metal line of FIG. 2A may have another wiring schematic in different embodiments of the capacitive touch panel, as shown in FIG. 2B.
  • the low-resistance metal line region 120a is divided into a first low-impedance metal line 1202a and a second low-impedance metal line 1204a.
  • the first low-impedance metal line 1202a is electrically connected to the capacitive touch panel 10a and the electrode sensing block 110a
  • the second low-impedance metal line 1204a is used for electrically connecting the plurality of electrode sensing blocks. 110a.
  • the characteristics of the low-resistance metal line 120a and the plurality of electrode sensing blocks 110a of the same area are connected to reduce the impedance of the signal transmission, thereby improving the transmission effect of the capacitive sensing signal. .
  • the capacitive touch panel 1 Ob in this embodiment is also composed of at least one sensing electrode group 102b, and each of the electrode sensing groups 102b includes a plurality of electrode sensing blocks 110b and 4 of different areas.
  • the ⁇ resistance metal lines 120b are stacked to form a parallel configuration.
  • the electrode sensing blocks 110b of different areas arrange the electrode sensing blocks 110b in a proportional or equal manner, and also have the same between the electrode sensing blocks 110b.
  • the touch mechanism of the embodiment is similar to the first embodiment. When the first touch point touch 1 and the second touch point touch 2 are touched on the electrode sensing block 110b, the touch electrode sensing area is The block 110b has a different area and position and produces a different capacitive signal output.
  • the electrode sensing block 110b of FIG. 3A may have another wiring pattern of the low-resistance metal line 120b in different embodiments, as shown in FIG. 3B.
  • the low impedance metal line region 120b is divided into a first low impedance metal line 1202b and a second low impedance metal line 1204b.
  • the first low-impedance metal line 1202b is electrically connected to the capacitive touch panel 10b and the electrode sensing block 110b, and the signal is transmitted, and the low-impedance metal line 1204b is used for electrically connecting the plurality of electrode sensing blocks 110b.
  • the characteristics of the low-resistance metal line 120b and the connection of the electrode sensing blocks 110b of different areas are used to reduce the impedance of the signal transmission, thereby improving the transmission effect of the capacitive sensing signal.
  • the circuit structure 10c of the capacitive touch panel in this embodiment is also composed of at least one sensing electrode group 102c.
  • the sensing electrode group 102c includes a plurality of electrode sensing blocks 110c, a low-resistance metal line 120c, and a plurality of electrodes.
  • the spacing between the sensing blocks 110c is 1 30c, and the electrode sensing block 110c and the germanium resistance metal line 120c are in a stacked configuration to form a parallel arrangement. Therefore, the circuit structure is cut into a plurality of electrode sensing blocks 110c separated from each other, and then low.
  • Impedance metal line 120c using low impedance metal
  • the characteristics of the line 120c, and the plurality of electrode sensing blocks 110c and the low-impedance metal lines 120c are stacked to form a parallel configuration to reduce the impedance of the signal transmission, thereby improving the transmission effect of the capacitive sensing signal.
  • the difference between the first embodiment and the second embodiment is that the electrode sensing block 110c is an equal-area electrode sensing block 110c, and the spacing 130c is an unequal distance spacing 130c, and the unequal distance spacing 130c is an equal ratio. Or the way of the difference is arranged in order.
  • a low-resistance metal line 120c is also overlapped on the equal-area electrode sensing block 110c and the unequal distance 130c to complete the main circuit structure of the capacitive touch panel 10c.
  • the area of the touch sensing area is different due to the difference 130c of the electrode sensing block 110c.
  • Different touch positions and areas produce different capacitive signal outputs, and the touch effect is obtained, and the XY coordinate position of the touch point can be calculated.
  • the plurality of low-resistance metal lines 120c may be electrically connected to the circuit of each of the electrode sensing blocks 110c and the capacitive touch panel as in the connection manner of the second embodiment. Structure 10c, as shown in Figure 4B.
  • the low impedance metal line region 120c is divided into a first low impedance metal line 1202c and a second low impedance metal line 1204c.
  • the first low-impedance metal line 1202c is electrically connected to the capacitive touch panel 10c and the electrode sensing block 110c
  • the second low-impedance metal line 1204c is used for electrically connecting the plurality of electrode sensing blocks. 110c.
  • the characteristics of the low-resistance metal line 120c and the plurality of electrode sensing blocks 110c of the same area are connected to reduce the impedance of the signal transmission, thereby improving the transmission effect of the capacitive sensing signal.
  • FIG. 5A is a schematic view showing a fourth embodiment of a capacitive touch panel.
  • the circuit structure 10d of the capacitive touch panel in this embodiment is also composed of at least one sensing electrode group 102d.
  • the sensing electrode group 102d includes a plurality of electrode sensing blocks 110d and a plurality of metal lines.
  • the electrode sensing block 110d and the low-impedance metal line 120d are stacked in a parallel configuration, thereby cutting the circuit structure into a plurality of electrode sensing regions separated from each other by electrodes Block 110d, then using low-impedance metal line 120d, utilizing the characteristics of low-impedance metal line 120d, and stacking a plurality of electrode sensing blocks ll Od and low-impedance metal line 120d to form a parallel configuration to reduce the impedance of signal transmission, thereby improving Capacitive sensing signal transmission effect.
  • the electrode sensing block ll Od is an unequal-area electrode sensing block ll Od
  • the spacing 130d is an unequal distance spacing 130d.
  • different areas of the electrode sensing block ll Od The electrode sensing blocks ll Od are arranged in a proportional or equal manner, and the non-equal distances 130d are sequentially arranged in an equal or equal manner.
  • the main circuit structure of the capacitive touch panel 10d is completed by overlapping a plurality of impedance metal lines 120d on the unequal-area electrode sensing block ll Od and the unequal distance 130d.
  • the preferred embodiment is such that the area of the left to right electrode sensing block ll Od becomes smaller and the spacing 130d becomes larger (as shown in FIG. 5A and FIG. 5B).
  • the effect of the stacking effect is such that the touch area of the touch point is different when the touch operation is performed, and different capacitive sensing signals can be generated by different touch areas and positions.
  • the plurality of metal wires 120d can be electrically connected to the capacitive touch panel 10d and each of the electrode sensing blocks 110d according to the connection manner of the second embodiment, and the low-impedance metal line region 120d is divided into the first low.
  • the impedance metal line 120 2 d and the second low-resistance metal line 1204d also utilize the characteristics of the low-resistance metal line 120d, and connect a plurality of electrode sensing blocks 110d of different areas to reduce the impedance of the signal transmission, thereby increasing the capacitance. The effect of the sensing signal.
  • the capacitive touch panel in the above embodiments is a capacitive touch panel with a single-ended conductive structure.
  • the capacitive touch panel structure can also be applied to a double-ended conductive circuit.
  • the electrode sensing block is preferably composed of Indium Tim Oxide (IT0).
  • the electrode sensing block may also be composed of other chemical mixtures, such as Indium Zinc Oxide (Indium Zinc Oxide, IZO), etc., is not limited here.
  • the capacitive touch panel is preferably a single-layer capacitive touch panel.
  • the capacitive touch panel of the present invention can also be applied to a multi-layer capacitive touch.
  • the control panel is not limited here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Description

电容式触控面板的电路结构 技术领域
本发明涉及一种电容式触控面板的电路结构,特别是涉及一种可以降 低电路结构的阻抗的电容式触控面板。 背景技术
这几年来, 触控面板的应用是越来越广泛, 而且有渐渐取代传统鼠标 的趋势。 因为使用者无需花费许多时间去适应习惯鼠标的使用, 以手指代 替键盘、 鼠标以及触控笔的功能, 可以直觉地、 简单地浏览网页、 查看电 子邮件或操作其他应用程序等。
. 一般电容式触控面板是在透明玻璃表面镀上一层电路结构, 例如氧化 铟锡薄膜 ( Indium Tim Ox ide, ITO Layer )或氧化锑锡薄膜 ( ant imony t in oxide Layer, ATO Layer )等,当与触控面板接触时,例如像是人的手指,会 在触控面板上吸走一点微量的电流, 触控面板后端的控制器则会算出电流 被吸走的比例而算出 X轴和 Y轴。 美国专利第 6, 961, 049号揭露一种双端 导电的电路结构的电容式触控面板, 如图 1A 图所示; 以及美国专利第 6, 297, 811号揭露一种单端导电的电路结构的电容式触控面板, 如图 1B所 示。 然而, 上述的两种触控面板都有因为电路结构(IT0)的电阻值过高, 导 致感应到的讯号过于微弱,影响讯号传递的问题, 会有判别错误的情况, 进 而降低触控面板的灵敏度。
由此可见,上述现有的电容式触控面板的电路结构在结构与使用上, 显 然仍存在有不便与缺陷, 而亟待加以进一步改进。 为了解决上述存在的问 题, 相关厂商莫不费尽心思来谋求解决之道, 但长久以来一直未见适用的 设计被发展完成, 而一般产品又没有适切结构能够解决上述问题, 此显然 是相关业者急欲解决的问题。 因此如何能创设一种新型的电容式触控面板 的电路结构, 以降低电路结构的电阻值, 而使触控面板具有较精确的讯号 传递, 实属当前重要研发课题之一, 亦成为当前业界极需改进的目标。 发明内容
本发明的主要目的在于, 克服现有的电容式触控面板的电路结构存在 的缺陷, 而提供一种新型的电容式触控面板的电路结构, 所要解决的技术 问题是使其可以有效降低电路结构的电阻值, 非常适于实用。
本发明的另一目的在于,提供一种新型的电容式触控面板的电路结构,所 要解决的技术问题是使其可以提高触控面板的讯号传递的准确性, 从而更 加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据' 本发明提出的一种电容式触控面板的电路结构, 至少包含: 多条感应电极 组,其中每一该些感应电极组包含: 至少一金属线;及多个电极感应区块,该 些电极感应区块是分别为电性隔离, 且分别电性连接该些金属线, 且根据 至少一触控位置输出至少一电容讯号。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的电路结构, 其更包含多个间距, 该些间距是位于任意两个该些 电极感应区块之间, 该些间距大小相等。
前述的电路结构, 其中所述的电极感应区块的面积是为相等面积, 该 电路结构是根据该些触控位置所包覆的该些电极感应区块的面积大小, 输 出该些电容讯号。
前述的电路结构,其中所述的电极感应区块的面积是为不相等面积, 该 电路结构是根据该些触控位置所包覆的该些电极感应区块的面积大小, 输 出该些电容讯号。
前述的电路结构, 其更包含多个间距, 该些间距是位于任意两个该些 电极感应区块之间, 该些间距包含多个不相等距离。
前述的电路结构, 其中所述的电极感应区块的面积是为相等面积, 该 电路结构是根据该些触控位置所包覆的该些电极感应区块的面积大小, 输 出该些电容讯号。
前述的电路结构,其中所述的电极感应区块的面积是为不相等面积, 该 电路结构是根据该些触控位置所包覆的该些电极感应区块的面积大小, 输 出该些电容讯号。
前述的电路结构 , 其中所述的电极感应区块是以由左到右面积依序变 小的方式排列, 而该些间距是以由左到右依序距离变大的方式排列。
前述的电路结构, 其更包含多个间距, 该些间距是位于任意两个该些 电极感应区块之间, 该些间距大小相等, 该电路结构是根据该些触控位置 所包覆的该些电极感应区块的面积大小, 输出该些电容讯号。
前述的电路结构, 其更包含多个间距, 该些间距是位于两个该些电极 感应区块之间, 该些间距包含多个不等距离, 该电路结构是根据该些触控 位置所包覆的该些电极感应区块的面积大小, 输出该些电容讯号。
前述的电路结构, 其中所述的电极感应区块是由氧化铟锡所组成。
前述的电路结构, 其中所述的金属线包含多条第一金属线与多条第二 金属线, 每个该些第一金属线是用于电性连接该电容式触控面板与该电极 感应区块, 每个该些第二金属线是用于电性连接任意两个该些电极感应区 块之间。 前述的电路结构, 其中所述的电极感应区块是与该金属线叠置连接。 本发明与现有技术相比具有明显的优点和有益效果。 由以上技术方案 可知,本发明的主要技术内容如下:
为达到上述目的, 本发明提供了一种电容式触控面板的电路结构, 该 电容式触控面板的电路结构主要包含多条金属线与多个电极感应区块。 电 极感应区块电性连接金属线, 且根据触控位置输出多个电容讯号。
另夕卜,为达到上述目的, 本发明还提供了一种电容式触控面板的电路结 构,其至少包含多条金属线路、 多个电极感应区块以及多个间距。 这些电极 感应区块是分别为电性隔离, 且电极感应区块电性连接金属线路。 该间距 是位于任意两个电极感应区块之间; 而电路结构是根据多个触控位置所包 覆的多个电极感应区块的面积大小, 输出多个电容讯号。
再者,为达到上述目的, 本发明再提供了一种电容式触控面板的电路结 构,至少包含多条金属线路、 多个电极感应区块以及多个间距。 这些电极感 应区块是分别为电性隔离, 且分别电性连接金属线。 该些间距是位于任意 两个该些电极感应区块之间; 其中电路结构是根据多个触控位置所包覆的 间距面积大小, 输出多个电容讯号。
借由上述技术方案, 本发明电容式触控面板的电路结构至少具有下列 优点及有益效果: 藉由本发明的电容式触控面板的电路结构, 可以有效降 低电路结构的电阻值, 并提高触控面板的讯号传递的准确性。
综上所述, 本发明是有关于一种电容式触控面板的电路结构, 该电容 式触控面板的电路结构主要包含多条金属线与多个电极感应区块。 该些电 极感应区块是分别为电性隔离, 且电性连接金属线。 藉由上述的电路结构 可以降低电路结构(IT0)的电阻值, 进一步改善影响讯号传递的问题, 增进 触控面板的灵敏度。 本发明在技术上有显著的进步, 并具有明显的积极效 果,诚为一新颖、 进步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1A是传统电容式触控面板的电路结构的示意图。
图 1B图是另一传统电容式触控面板的电路结构的示意图。
图 2A与图 2B是电容式触控面板的电路结构第一实施例的示意图。 图 3A与图 3B是电容式触控面板的电路结构第二实施例的示意图。 图 4A与图 4B是电容式触控面板的电路结构第三实施例的示意图。 图 5A与图 5B是电容式触控面板的电路结构第四实施例的示意图。
1 0a: 电容式触控面板 1 02a: 感应电极组
1 10a : 电极感应区块 120a: 低阻抗金属线
1202a : 第一低阻抗金属线 1204a: 第二低阻抗金属线
1 30a: 间距 10b: 电容式触控面板
102b: 感应电极组 110b: 电极感应区块
120b: 低阻抗金属线 1202b: 第一低阻抗金属线
1204b: 第二低阻抗金属线 1 30b: 间距
10c: 电容式触控面板 1 02c: 感应电极组
110c: 电极感应区块 120c: 低阻抗金属线
1202c: 第一低阻抗金属线 1204c: 第二低阻抗金属线
120c: 低阻抗金属线 130c: 间距
l Od: 电容式触控面板 102d: 感应电极组
H Od: 电极感应区块 120d: 低阻抗金属线
1202d: 第一低阻抗金属线 1204d: 第二低阻抗金属线
1 30d: 间距 touch 1 : 第一触控点
touch 2: 第二触控点 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的电容式触控面板的电 路结构其具体实施方式、 结构、 特征及其功效, 详细说明如后。 除了如下 描述外, 本发明还可以广泛地在其他的实施例施行, 且本发明的范围并不 受实施例的限定, 其以之后的专利范围为准。 再者, 为提供更清楚的描述 及更易理解本发明, 图式内各部分并没有依照其相对尺寸绘图, 某些尺寸 与其他相关尺度相比已经被放大; 不相关的细节部分也未完全绘出, 以求 图式的简洁。
图 2A是显示本发明的电容式触控面板的第一实施例的示意图。如图 2A 所示, 该电容式触控面板的电路结构 10a是由至少一条感应电极组 102a所 组成, 而每一条电极感应组 102a 包含多个相同面积的电极感应区块 110a 与一条低阻抗金属线 120a。 电极感应区块 110a是分别为电性隔离, 且分别 电性连接金属线 120a ,而且在电极感应区块 110a之间具有相同距离的间距 1 30a。 藉由将传统的电路结构切割成多个电极感应区块 110a, 然后在每个 电极感应区块 1 10a上搭接一条低阻抗金属线 120a,以构成本发明的电容式 触控面板 10a的主要电路结构。 由于传统的电路结构为一高电阻的电极,在 讯号传递上会造成讯号延迟, 因此将电路结构切割成多个彼此电极隔离的 电极感应区块 110a, 然后采用低阻抗金属线 120a , 利用低阻抗金属线 120a 的特性, 以及多个电极感应区块 110a与低阻抗金属线 120a堆叠形成并联 的配置, 来降低讯号传递的阻抗, 进而提升电容感应讯号的传递效果。 当 第一触控点 touch 1与第二触控点 touch 2在电极感应区块 110a上进行触 控时, 会因所触控到的电极感应区块 11 0a面积与位置的不同, 而产生不同 的电容讯号输出, 根据不同的电容讯号输出计算出不同的触控位置。
另外, 图 2A的低阻抗金属线在电容式触控面板的不同实施例中可以有 另一种配线的示意图, 如图 2B所示。 不同于第二 A图的电容式触控面板的 电路结构 10a, 在图 2B的实施例中,低阻抗金属线区 120a分为第一低阻抗 金属线 1202a与第二低阻抗金属线 1204a。第一低阻抗金属线 1202a用于电 性连接电容式触控面板 10a与电极感应区块 110a , 可将讯号传出, 第二低 阻抗金属线 1204a则用于电性连接多个电极感应区块 110a。 同样利用低阻 抗金属线 120a的特性, 以及连接多个相同面积的电极感应区块 110a , 来降 低讯号传递的阻抗, 进而提升电容感应讯号的传递效果。 .
图 3A是显示本发明的电容式触控面板的第二实施例的示意图。如图 3A 所示,在该实施例中的电容式触控面板 1 Ob同样由至少一条感应电极组 102b 所组成,而每一条电极感应组 102b包含多个不同面积的电极感应区块 110b 以及 4氐阻抗金属线 120b堆叠形成并联的配置, 举例来说不同面积的电极感 应区块 110b是以等比或等差的方式将电极感应区块 110b排列, 而且在电 极感应区块 110b之间同样具有相同距离的间距 130b。在该实施例的触控机 制与第一实施例相似, 当第一触控点 touch 1与第二触控点 touch 2在电 极感应区块 110b上进行触控时, 会因触控电极感应区块 110b面积与位置 不同, 而产生不同的电容讯号输出。
另外, 图 3A的电极感应区块 110b在不同的实施例中, 同样可以有另 一种低阻抗金属线 120b的配线方式,如图 3B所示。该低阻抗金属线区 120b 分为第一低阻抗金属线 1202b与第二低阻抗金属线 1204b。第一低阻抗金属 线 1202b用于电性连接电容式触控面板 10b与电极感应区块 110b, 可将讯 号传出,第 低阻抗金属线 1204b则用于电性连接多个电极感应区块 110b。 同样利用低阻抗金属线 120b的特性, 以及连接多个不同面积的电极感应区 块 110b , 来降低讯号传递的阻抗, 进而提升电容感应讯号的传递效果。
图 4A是显示电容式触控面板的第三实施例的示意图。 在该实施例中的 电容式触控面板的电路结构 10c同样由至少一条感应电极组 102c所组成,该 感应电极组 102c包含多个电极感应区块 110c、 一条低阻抗金属线 120c以 及多条电极感应区块 110c之间的间距 1 30c, 电极感应区块 110c与氐阻抗 金属线 120c是以堆叠形成并联的配置因此将电路结构切割成多个彼此电极 隔离的电极感应区块 110c , 然后采用低阻抗金属线 120c, 利用低阻抗金属 线 120c的特性, 以及多个电极感应区块 110c与低阻抗金属线 120c堆叠形 成并联的配置, 来降低讯号传递的阻抗, 进而提升电容感应讯号的传递效 果。 不同于第一实施例与第二实施例的地方在于电极感应区块 110c为等面 积的电极感应区块 110c, 而间距 130c为不等距离的间距 130c, 不等距离 的间距 130c是以等比或等差的方式依序排列。 而在等面积的电极感应区块 110c与不等距离的间距 130c上同样搭接一条低阻抗金属线 120c, 完成该 电容式触控面板 10c的主要电路结构。 当第一触控点 touch 1与第二触控 点 touch 2在电极感应区块 110c上进行触控时, 会因电极感应区块 110c 的间距 130c不同, 使得触控接触的面积不同,藉由不同触控位置与面积,而 产生不同的电容讯号输出, 进而得到触控的效果, 可计算出该触控点的 XY 座标位置。 另外, 在此需要说明的是, 在不同实施例中, 多条低阻抗金属 线 120c也可以如第二实施例的连接方式电性连接每个电极感应区块 110c 与电容式触控面板的电路结构 10c, 如图 4B所示。低阻抗金属线区 120c分 为第一低阻抗金属线 1202c与第二低阻抗金属线 1204c。第一低阻抗金属线 1202c用于电性连接电容式触控面板 10c与电极感应区块 110c, 可将讯号 传出,第二低阻抗金属线 1204c则用于电性连接多个电极感应区块 110c。同 样利用低阻抗金属线 120c的特性, 以及连接多个相同面积的电极感应区块 110c , 来降低讯号传递的阻抗, 进而提升电容感应讯号的传递效果。
图 5A是显示电容式触控面板的第四实施例的示意图。 如图 5A所示, 在 该实施例中的电容式触控面板的电路结构 10d 同样由至少一条感应电极组 102d所组成, 该感应电极组 102d包含多个电极感应区块 110d、 多条金属 线 120d以及多条电极感应区块 l l Od之间的间距 130d, 电极感应区块 110d 与低阻抗金属线 120d系以堆叠形成并联的配置, 因此将电路结构切割成多 个彼此电极隔离的电极感应区块 110d, 然后采用低阻抗金属线 120d, 利用 低阻抗金属线 120d的特性, 以及多个电极感应区块 l l Od与低阻抗金属线 120d堆叠形成并联的配置, 来降低讯号传递的阻抗, 进而提升电容感应讯 号的传递效果。 不同于上述的实施例的地方在于电极感应区块 l l Od为不等 面积的电极感应区块 l l Od,而间距 130d为不等距离的间距 130d, 举例来说 不同面积的电极感应区块 l l Od是以等比或等差的方式将电极感应区块 l l Od 排列, 而不等距离的间距 130d是以等比或等差的方式依序排列。 在不等面 积的电极感应区块 l l Od与不等距离的间距 130d上同样搭接一条^ ί氐阻抗金 属线 120d,完成该电容式触控面板 10d的主要电路结构。藉由电极感应区块 l l Od 面积跟间距两种配置的变化,其较佳实施例如由左至右电极感应区块 l l Od的面积变小而间距 130d变大(如图 5A、 图 5B所示)的加叠效果,使得 触控操作时, 触控点的接触面积不同, 藉由不同的触控面积跟位置可以产 生出不同的电容感应讯号。 另夕卜,在此需要说明的是, 在不同实施例中, 如 图 5B所示, 多条金属线 120d也可以如第二实施例的连接方式电性连接电 容式触控面板 10d与每个电极感应区块 110d,其低阻抗金属线区 120d分为 第一低阻抗金属线 1202d与第二低阻抗金属线 1204d,同样利用低阻抗金属 线 120d的特性, 以及连接多个不同面积的电极感应区块 110d, 来降 ^氐讯号 传递的阻抗, 进而提升电容感应讯号的传递效果。
在上述实施例中的电容式触控面板皆为单端导电的电路结构的电容式 触控面板, 然而在不同的实施例中, 该电容式触控面板结构也可以应用于 双端导电的电路结构的电容式触控面板。 电极感应区块较佳是由氧化铟锡 ( Indium Tim Oxide, IT0 )所组成, 然而在不同实施例中, 电极感应区块 也可以其他化学混合物所组成, 例如铟锌氧化物(Indium Zinc Oxide, IZO) 等, 在此并不局限。 另外, 在此需要说明的是, 电容式触控面板较佳是为 单层电容式触控面板, 然而在不同实施例中, 本发明的电容式触控面板也 可以应用于多层电容式触控面板, 在此并不局限。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。

Claims

权 利 要 求
1、 一种电容式触控面板的电路结构, 其特征在于至少包含: 至少一条感应电极组, 其中该感应电极组包含:
至少一条金属线; 及
多个电极感应区块, 该些电极感应区块是分别为电性隔离, 且分 别电性连接该些金属线, 且根据至少一触控位置输出至少一电容讯号。
2、 根据权利要求 1所述的电路结构,其特征在于其更包含多个间距,该 些间距是位于任意两个该些电极感应区块之间, 该些间距大小相等。
3、 根据权利要求 2所述的电路结构, 其特征在于其中所述的电极感应 区块的面积是为相等面积, 该电路结构是根据该些触控位置所包覆的该些 电极感应区块的面积大小, 输出该些电容讯号。
4、 根据权利要求 2所述的电路结构, 其特征在于其中所述的电极感应 区块的面积是为不相等面积, 该电路结构是根据该些触控位置所包覆的该 些电极感应区块的面积大小, 输出该些电容讯号。
5、 根据权利要求 1所述的电路结构,其特征在于其更包含多个间距,该 些间距是位于任意两个该些电极感应区块之间, 该些间距包含多个不相等 距离。 -
6、 根据权利要求 5所述的电路结构, 其特征在于其中所述的电极感应 区块的面积是为相等面积, 该电路结构是根据该些触控位置所包覆的该些 电极感应区块的面积大小, 输出该些电容讯号。
7、 根据权利要求 5所述的电路结构, 其特征在于其中所述的电极感应 区块的面积是为不相等面积, 该电路结构是根据该些触控位置所包覆的该 些电极感应区块的面积大小, 输出该些电容讯号。
8、 根据权利要求 7所述的电路结构, 其特征在于其中所述的电极感应 区块是以由左到右面积依序变小的方式排列, 而该些间距是以由左到右依 序距离变大的方式排列。
9、 根据权利要求 1所述的电路结构,其特征在于其更包含多个间距,该 些间距是位于任意两个该些电极感应区块之间, 该些间距大小相等, 该电 路结构是根据该些触控位置所包覆的该些电极感应区块的面积大小, 输出 该些电容讯号。
10、 根据权利要求 1 所述的电路结构,其特征在于其更包含多个间距,该 些间距是位于两个该些电极感应区块之间,该些间距包含多个不等距离, 该 电路结构是根据该些触控位置所包覆的该些电极感应区块的面积大小, 输 出该些电容讯号。
11、 根据权利要求 1 所述的电路结构, 其特征在于其中所述的电极感 应区块是由氧化铟锡所组成。
12、 根据权利要求 1 所述的电路结构, 其特征在于其中所述的金属线 包含多条第一金属线与多条第二金属线, 每个该些第一金属线是用于电性 连接该电容式触控面板与该电极感应区块, 每个该些第二金属线是用于电 性连接任意两个该些电极感应区块之间。
13、 根据权利要求 1 所述的电路结构, 其特征在于其中所述的电极感 应区块是与该金属线叠置连接。
PCT/CN2009/000751 2009-03-24 2009-07-02 电容式触控面板的电路结构 WO2010108303A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09842040.9A EP2413222B1 (en) 2009-03-24 2009-07-02 Circuit structure of capacitive touch panel
KR1020117016040A KR101322811B1 (ko) 2009-03-24 2009-07-02 정전용량성 터치 패널용 회로 구조
JP2012501105A JP5844726B2 (ja) 2009-03-24 2009-07-02 静電容量式タッチパネルの回路構造
US13/257,311 US9733766B2 (en) 2009-03-24 2009-07-02 Touch-sensing circuit structure for a capacitive touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101293969A CN101847065B (zh) 2009-03-24 2009-03-24 电容式触控面板的电路结构
CN200910129396.9 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010108303A1 true WO2010108303A1 (zh) 2010-09-30

Family

ID=41112360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000751 WO2010108303A1 (zh) 2009-03-24 2009-07-02 电容式触控面板的电路结构

Country Status (7)

Country Link
US (1) US9733766B2 (zh)
EP (1) EP2413222B1 (zh)
JP (2) JP5844726B2 (zh)
KR (1) KR101322811B1 (zh)
CN (1) CN101847065B (zh)
DE (1) DE202009008923U1 (zh)
WO (1) WO2010108303A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681718A (zh) * 2011-01-11 2012-09-19 刘鸿达 触控式感应元件及导电电极结构
CN103901650A (zh) * 2012-12-25 2014-07-02 上海天马微电子有限公司 一种内嵌式触控显示装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023356A (ko) * 2002-01-18 2002-03-28 문상목 오이를 이용한 주류의 제조방법
US8550991B2 (en) * 2009-03-04 2013-10-08 Dong Sik Nam Touch panel sensor
KR101439100B1 (ko) * 2009-11-05 2014-11-03 (주)티메이 정전용량 터치패널
JP5495924B2 (ja) * 2010-04-27 2014-05-21 京セラ株式会社 ラインスキャン方式の静電容量タッチパネル、およびこれを備えた表示装置
JP5358528B2 (ja) * 2010-07-21 2013-12-04 信越ポリマー株式会社 静電容量式センサシート
JP5445438B2 (ja) * 2010-12-15 2014-03-19 Smk株式会社 静電容量式タッチパネル
US20130321324A1 (en) * 2012-06-01 2013-12-05 Touch Turns Llc System for reducing finger-coupled noise in capacitive touch sensors
CN103530003A (zh) * 2012-07-06 2014-01-22 奕力科技股份有限公司 电容式触控面板装置
TWI467457B (zh) * 2012-08-06 2015-01-01 Chunghwa Picture Tubes Ltd 觸控面板及其驅動方法
CN103268174B (zh) * 2012-09-20 2016-09-28 厦门天马微电子有限公司 电容式触控模组和电容式触控屏
CN102955634A (zh) * 2012-10-12 2013-03-06 华映视讯(吴江)有限公司 触控面板及其驱动方法
CN103472951B (zh) 2013-09-13 2016-10-05 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
TWI505167B (zh) * 2014-02-10 2015-10-21 Quanta Comp Inc 電容式觸控面板
CN103885604B (zh) * 2014-03-27 2018-02-06 珠海市智迪科技股份有限公司 超薄触摸式键盘按键及其按键控制方法
CN104216594A (zh) * 2014-09-25 2014-12-17 福州智创触控技术有限公司 一种低阻抗电容触摸屏及其制作方法
KR20160092360A (ko) * 2015-01-27 2016-08-04 삼성전자주식회사 스타일러스 펜 및 터치 패널
CN104699357B (zh) * 2015-04-01 2018-01-09 上海天马微电子有限公司 一种电子设备、触摸显示面板以及触控显示基板
CN105446533B (zh) * 2015-11-19 2018-08-31 业成光电(深圳)有限公司 触控面板之线路结构
CN109525233A (zh) * 2017-09-19 2019-03-26 上海欧郡自动化科技有限公司 一种自助贩卖机及其电容触摸按键装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188391B1 (en) * 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
US6297811B1 (en) 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
US6961049B2 (en) 2002-06-21 2005-11-01 3M Innovative Properties Company Capacitive touch sensor architecture with unique sensor bar addressing
CN201078769Y (zh) * 2007-04-27 2008-06-25 宸鸿光电科技股份有限公司 电容式触控板的触控图型结构
CN101261379A (zh) * 2008-02-01 2008-09-10 信利半导体有限公司 电容式触摸屏及包含该触摸屏的触摸显示器件
CN101334702A (zh) * 2007-06-28 2008-12-31 触控科技有限公司 透明触控面板装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589599B1 (fr) * 1985-10-31 1991-01-11 Morin Francois Terminal de tele-ecriture
US4980519A (en) * 1990-03-02 1990-12-25 The Board Of Trustees Of The Leland Stanford Jr. Univ. Three dimensional baton and gesture sensor
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
SE0302711L (sv) 2003-10-13 2005-03-22 Anders Swedin Beröringskänslig bildskärmsenhet, samt metod för avkänning av en beröring på bildskärmsenheten
US7382139B2 (en) * 2004-06-03 2008-06-03 Synaptics Incorporated One layer capacitive sensing apparatus having varying width sensing elements
JP2007240479A (ja) 2006-03-13 2007-09-20 Fujikura Ltd 静電容量式位置検出装置
DE202007005237U1 (de) 2006-04-25 2007-07-05 Philipp, Harald, Southampton Hybrides kapazitives Berührungsbildschirmelement
US7688080B2 (en) * 2006-07-17 2010-03-30 Synaptics Incorporated Variably dimensioned capacitance sensor elements
JP2008097283A (ja) 2006-10-11 2008-04-24 Hosiden Corp タッチパネル入力装置
US20080136787A1 (en) 2006-12-11 2008-06-12 I-Hau Yeh Touchpad having Single Layer Layout
US7973771B2 (en) * 2007-04-12 2011-07-05 3M Innovative Properties Company Touch sensor with electrode array
JP4260198B2 (ja) * 2007-04-03 2009-04-30 シャープ株式会社 携帯情報端末及び携帯電話機
TW200842681A (en) * 2007-04-27 2008-11-01 Tpk Touch Solutions Inc Touch pattern structure of a capacitive touch panel
JP5060845B2 (ja) * 2007-06-27 2012-10-31 株式会社ジャパンディスプレイイースト 画面入力型画像表示装置
KR100915655B1 (ko) * 2007-07-25 2009-09-04 에이디반도체(주) 정전용량센서를 이용하는 터치스크린
JP2009122969A (ja) * 2007-11-15 2009-06-04 Hitachi Displays Ltd 画面入力型画像表示装置
KR20090060626A (ko) * 2007-12-10 2009-06-15 삼성전자주식회사 광원 모듈과 이의 구동 방법 및 이를 포함하는 표시 장치
US8115751B2 (en) * 2008-12-30 2012-02-14 Young Fast Optoelectronics Co., Ltd. Capacitive touch sensing assembly
CN201403089Y (zh) * 2009-03-24 2010-02-10 宸鸿科技(厦门)有限公司 电容式触控面板的电路结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188391B1 (en) * 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
US6297811B1 (en) 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
US6961049B2 (en) 2002-06-21 2005-11-01 3M Innovative Properties Company Capacitive touch sensor architecture with unique sensor bar addressing
CN201078769Y (zh) * 2007-04-27 2008-06-25 宸鸿光电科技股份有限公司 电容式触控板的触控图型结构
CN101334702A (zh) * 2007-06-28 2008-12-31 触控科技有限公司 透明触控面板装置
CN101261379A (zh) * 2008-02-01 2008-09-10 信利半导体有限公司 电容式触摸屏及包含该触摸屏的触摸显示器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681718A (zh) * 2011-01-11 2012-09-19 刘鸿达 触控式感应元件及导电电极结构
CN103901650A (zh) * 2012-12-25 2014-07-02 上海天马微电子有限公司 一种内嵌式触控显示装置

Also Published As

Publication number Publication date
DE202009008923U1 (de) 2009-09-24
EP2413222A1 (en) 2012-02-01
US20120012450A1 (en) 2012-01-19
KR101322811B1 (ko) 2013-10-28
EP2413222A4 (en) 2013-07-03
CN101847065B (zh) 2013-01-23
EP2413222B1 (en) 2018-09-12
JP2012521586A (ja) 2012-09-13
CN101847065A (zh) 2010-09-29
JP3154177U (ja) 2009-10-08
JP5844726B2 (ja) 2016-01-20
US9733766B2 (en) 2017-08-15
KR20110104027A (ko) 2011-09-21

Similar Documents

Publication Publication Date Title
WO2010108303A1 (zh) 电容式触控面板的电路结构
TWI694359B (zh) 觸摸感測器
TWI468820B (zh) 觸控感測元件
TWM417607U (en) Touch panel device with dual sensing interface
TWI470526B (zh) 觸控裝置
TWI703475B (zh) 觸控感測器
US8907919B2 (en) Sensing structure of touch panel
TWI628560B (zh) 觸控處理器
KR20160117719A (ko) 터치 센서 장치
TW201642100A (zh) 觸控感測器
TWM516747U (zh) 觸控面板
TW201800919A (zh) 透明電極及包括其之電子裝置
TWI409684B (zh) 電容式觸控結構及其製造方法
CN201403089Y (zh) 电容式触控面板的电路结构
US20160132180A1 (en) Capacitive Touch Circuit and Touch Sensor and Capacitive Touch System Using The Same
CN106126002B (zh) 一种单层多点触摸功能片及触摸坐标获取方法
TWI442299B (zh) 電容式觸控板的電極結構
US9733771B2 (en) Touch panel
KR20190111871A (ko) 터치 센서
TWI399683B (zh) 電容式觸控面板之電路結構
US20150253902A1 (en) Structure and the associated manufacturing process for a single-sided multi-layer mutual capacitance touch panel
KR20130005093A (ko) 단일 금속박막 터치패널 및 제조방법
TWM505005U (zh) 觸控面板
TWI399685B (zh) 電阻式觸控面板
KR102146460B1 (ko) 터치 센서 및 이를 포함하는 화상 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009842040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13257311

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012501105

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE