WO2010106900A1 - 透湿性隔膜材料 - Google Patents

透湿性隔膜材料 Download PDF

Info

Publication number
WO2010106900A1
WO2010106900A1 PCT/JP2010/053230 JP2010053230W WO2010106900A1 WO 2010106900 A1 WO2010106900 A1 WO 2010106900A1 JP 2010053230 W JP2010053230 W JP 2010053230W WO 2010106900 A1 WO2010106900 A1 WO 2010106900A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
permeable
flame retardant
fiber
membrane
Prior art date
Application number
PCT/JP2010/053230
Other languages
English (en)
French (fr)
Inventor
和弘 丸谷
智 山元
今井 隆
Original Assignee
ジャパンゴアテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンゴアテックス株式会社 filed Critical ジャパンゴアテックス株式会社
Priority to CN201080017073.1A priority Critical patent/CN102395419B/zh
Priority to CA2755596A priority patent/CA2755596A1/en
Priority to US13/256,671 priority patent/US9027764B2/en
Priority to EP10753395A priority patent/EP2409757A4/en
Priority to AU2010225839A priority patent/AU2010225839B2/en
Publication of WO2010106900A1 publication Critical patent/WO2010106900A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material

Definitions

  • the present invention relates to a moisture permeable membrane material useful as a heat exchange membrane, a humidifying membrane, a dehumidifying membrane, a vaporization membrane [for example, a membrane for separating water and other liquids (such as ethanol)] and the like (particularly as a heat exchange membrane) About.
  • a paper heat exchange membrane is used as the total heat exchange membrane, and the paper heat exchange membrane is impregnated with a hydrophilic flame retardant.
  • paper heat exchange membranes have low water resistance.
  • condensed water may adhere to the heat exchange membrane. Freezing of the condensed water may break the paper heat exchange membrane.
  • the flame retardant is eluted by the condensed water, and the flame retardancy and the latent heat exchange performance are lowered.
  • Patent Documents 1 and 2 In order to prevent tearing due to condensed water, it has been proposed to use a laminate in which a continuous layer of moisture-permeable resin is formed on the surface of a porous fluororesin membrane as a total heat exchange membrane (Patent Documents 1 and 2). This laminate is usually reinforced with a nonwoven fabric or the like. Patent Document 2 also discloses blending a flame retardant resin layer with a flame retardant in order to enhance the flame retardancy of the laminate.
  • Patent Document 3 it is disclosed that in a dust removal filter composed of an electrofilter and a flame retardant nonwoven fabric, a flame retardant is also blended in an adhesive for adhering them (Patent Document 3).
  • the dust removal filter has air permeability, and the moisture-permeable diaphragm material does not have air permeability. Therefore, they belong to completely different technical fields in terms of the presence or absence of air permeability.
  • An object of the present invention is to improve flame retardancy without reducing the total heat exchange characteristics of a total heat exchange membrane composed of a porous fluororesin membrane, a moisture permeable continuous resin layer, and a reinforcing fiber layer (preferably Is to achieve a flameproof level of 2 or more flame retardant as defined in JIS-Z-2150).
  • Patent Document 2 In order to increase the flame retardancy of the total heat exchange membrane composed of the porous fluororesin membrane, the moisture permeable resin continuous layer, and the reinforcing fiber layer, as shown in Patent Document 2, it is difficult to achieve the moisture permeable resin continuous layer. It is considered best to add a flame retardant. It is considered best to add a flame retardant to the fiber layer. Fluororesin is originally a non-flammable material, and it is thought that flame retardancy can be improved by making each other layer (moisture-permeable resin continuous layer, fiber layer) combined with this fluororesin flame-retardant. . Patent Document 3 also increases the flame retardancy of the laminate by flame-retarding the nonwoven fabric and the adhesive layer laminated with the nonwoven fabric.
  • the moisture-permeable diaphragm material according to the present invention includes a porous fluororesin film (particularly a porous polytetrafluoroethylene film), a moisture-permeable resin continuous layer formed on the surface of the porous fluororesin film, and these porous materials. And a fiber layer that reinforces the continuous fluororesin film and the moisture permeable resin continuous layer.
  • the fiber layer contains a flame retardant inside the fiber, and the fiber surface is treated with the flame retardant.
  • the fiber layer is desirably laminated on the moisture-permeable resin continuous layer side of the porous fluororesin film.
  • a composite film is formed in advance by laminating a moisture-permeable resin continuous layer on the surface of the porous fluororesin film. Then, the reinforcing fiber layer may be bonded to the moisture permeable resin continuous layer side of the composite membrane.
  • a non-halogen flame retardant (especially a non-halogen phosphorus flame retardant) is preferably used as the flame retardant inside the fiber surface or the fiber surface from the viewpoint of reducing the environmental load.
  • Basis weight of the fiber layer is, for example, 2 ⁇ 100g / m 2
  • the amount of the flame retardant fiber layer 1 m 2 per surface of the fibers is, for example, about 1 ⁇ 100 g.
  • the thickness of the moisture-permeable resin in the portion penetrating the inside of the porous fluororesin film is preferably about 3 to 30 ⁇ m.
  • the moisture-permeable resin polyvinyl alcohol, polyethylene oxide, polyacrylic acid, polyurethane resin, or the like can be used as appropriate.
  • the polyurethane-based resin preferably has at least one hydrophilic group selected from a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, and an oxyethylene group.
  • the moisture permeable membrane material of the present invention has, for example, an air permeability of 1000 seconds or more, a moisture permeability of 40 g / m 2 ⁇ h or more, and a flameproof grade (JIS Z 2150) of 2 or more.
  • both the fiber interior and the fiber surface of the reinforcing fiber layer laminated thereon are flame retardant, so that the total heat exchange characteristics are lowered. Without increasing the flame retardancy.
  • the moisture-permeable resin continuous layer functions as a moisture-permeable diaphragm.
  • This moisture-permeable resin continuous layer alone is difficult to maintain a thin film shape due to large swelling when wet and weak strength, and is used in combination with a porous fluororesin film.
  • a laminate composed of a porous fluororesin film and a moisture-permeable resin continuous layer is referred to as a composite film.
  • the porous fluororesin film is usually reinforced with a fiber layer because it is weak by itself, has poor handleability in subsequent processes, and lacks strength.
  • the present invention will be described while detailing each layer.
  • the moisture-permeable resin continuous layer is a nonporous film-like layer made of moisture-permeable resin, and is formed on the surface of the porous fluororesin film.
  • the moisture-permeable resin may be impregnated in part or all of the porous fluororesin.
  • the present invention is characterized in that the moisture-permeable resin continuous layer is not substantially flame-retardant despite the purpose of making the moisture-permeable diaphragm material flame-retardant.
  • the moisture-permeable resin continuous layer substantially contains a flame retardant
  • the moisture-permeable property of the moisture-permeable diaphragm material is lowered.
  • the flame retardant acts as a moisture permeation inhibitor when the flame retardant is uniformly dispersed throughout the continuous layer of the moisture permeable resin.
  • moisture-permeable resin examples include water-soluble resins such as polyvinyl alcohol, polyethylene oxide, and polyacrylic acid; water-insoluble moisture-permeable resins such as hydrophilic polyurethane.
  • the hydrophilic polyurethane resin is characterized in that it has a hydrophilic group such as a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, and an oxyethylene group, and is either a polyether polyurethane or a polyester polyurethane. Also good. Moreover, these prepolymers can also be used suitably. Furthermore, in order to adjust the melting point (softening point) as a resin, a cross-linking agent obtained by combining isocyanates (diisocyanates, triisocyanates, etc.) having two or more isocyanate groups or adducts thereof alone or in combination.
  • isocyanates diisocyanates, triisocyanates, etc.
  • a preferred hydrophilic polyurethane-based resin is a resin having a hydrophilic main chain (for example, trade name “Hypol” manufactured by Dow Chemical Co., Ltd.).
  • This preferred hydrophilic polyurethane-based resin has, for example, a polyether-based main chain (for example, a main chain of polyoxyethylene units), and the terminal thereof becomes an appropriate isocyanate group (for example, toluene diisocyanate group).
  • Reactive prepolymer This prepolymer is crosslinked with water, a polyfunctional amine (eg, blocked carbamate amine, etc.).
  • the thickness of the moisture-permeable resin continuous layer is not particularly limited as long as it allows total heat exchange between these gases while preventing mixing of gases separated by the moisture-permeable resin continuous layer, but is, for example, about 0.01 to 100 ⁇ m. . If it is too thin, pinholes are likely to occur.
  • the thickness of the moisture-permeable resin continuous layer is more preferably 0.05 ⁇ m or more, and particularly 0.5 ⁇ m or more. On the other hand, if the moisture-permeable resin continuous layer is too thick, moisture permeability tends to decrease.
  • the thickness of the moisture-permeable resin continuous layer is more preferably 50 ⁇ m or less, particularly 20 ⁇ m or less.
  • the moisture-permeable resin continuous layer penetrates into the porous fluororesin film because the moisture-permeable resin continuous layer can be prevented from peeling off and the durability is enhanced.
  • the thickness of the portion of the moisture permeable resin that penetrates into the inside of the porous fluororesin film is preferably 3 to 30 ⁇ m, and most preferably 5 to 20 ⁇ m, from the viewpoint of moisture permeability and durability.
  • the thickness of the said moisture-permeable resin continuous layer includes the thickness of this penetration
  • the thickness of the moisture-permeable resin continuous layer and the thickness of the intrusion portion are measured by measuring the area S of the corresponding portion (continuous layer or intrusion portion) in the cross-sectional photograph (1000 to 3000 times) of the electron microscope. This is a value calculated by dividing the area S by the length L of the corresponding portion determined based on the scale (scale indicating the length).
  • the moisture-permeable resin continuous layer may further contain a hygroscopic agent.
  • the moisture absorbing agent increases the water retention amount of the moisture permeable resin continuous layer and further increases the moisture permeability.
  • a water-soluble salt lithium salt, phosphate, etc.
  • Porous fluororesin film The porous fluororesin film functions as a holding layer for the moisture-permeable resin continuous layer.
  • the fluororesin itself is nonflammable and contributes to flame retardancy of the moisture permeable diaphragm material.
  • a preferred porous fluororesin film is a porous polytetrafluoroethylene (PTFE) film.
  • the porous PTFE membrane is formed by mixing a PTFE fine powder with a molding aid, forming a paste, removing the molding aid from the molded body, stretching at a high temperature and high speed, and further firing if necessary. Can be obtained. The details are described in, for example, Japanese Patent Publication No. 51-18991.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • the uniaxially stretched porous PTFE film there are microscopic island-like nodes (folded fold crystals) that are substantially perpendicular to the stretch direction, and interdigital fibrils that connect between the nodes (the fold crystals are formed by stretching).
  • the biaxially stretched porous PTFE film is a cobweb-like fibrous structure in which fibrils spread radially, nodes connecting the fibrils are scattered in islands, and there are many spaces divided by the fibrils and nodes. There is a micro feature in the point.
  • the biaxially stretched porous PTFE film is particularly suitable because it is easier to widen than the uniaxially stretched porous PTFE film, has a good balance of physical properties in the vertical and horizontal directions, and lowers the production cost per unit area. Used.
  • the average pore diameter of the porous fluororesin membrane is, for example, about 0.07 to 10 ⁇ m. If the average pore diameter is too small, the moisture permeability of the porous fluororesin membrane is lowered. A more preferable average pore diameter is 0.09 ⁇ m or more. On the contrary, if the average pore diameter is too large, the moisture-permeable resin continuous layer easily enters the porous fluororesin film. As a result, the solid part (non-void part) of the moisture-permeable resin layer becomes thick, the moisture transfer time becomes long, and the moisture permeability decreases. A more preferable average pore diameter is 5 ⁇ m or less.
  • the average pore diameter of the porous fluororesin film means an average value of pore diameters measured using a Coulter Porometer manufactured by Coulter Electronics.
  • the average pore diameter of the stretched porous PTFE membrane can be appropriately controlled by the stretching ratio or the like.
  • the porosity of the porous fluororesin membrane can be appropriately set according to the average pore diameter, and is, for example, about 30% or more (preferably 50% or more) or 98% or less (preferably 90% or less). Recommended.
  • the porosity of the stretched porous PTFE membrane can be adjusted as appropriate according to the stretch ratio and the like, similarly to the average pore diameter.
  • the thickness when the volume V is calculated is based on an average thickness measured with a dial thickness gauge (measured in a state where a load other than the main body spring load is applied using “SM-1201” manufactured by Teclock Co.).
  • Porosity (%) [1- (D / D standard )] ⁇ 100
  • the thickness of the porous fluororesin film is not particularly limited, but is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably about 60 ⁇ m or less. If it is too thick, the moisture permeability of the moisture permeable diaphragm material is reduced. However, if the thickness is too thin, the workability is impaired.
  • the thickness is 0.1 ⁇ m or more, preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the reinforcing fiber layer is laminated on the composite membrane in order to improve the handleability and strength of the composite membrane (porous fluororesin membrane and moisture-permeable resin continuous layer).
  • the reinforcing fiber layer may be laminated on the porous fluororesin membrane side of the composite membrane, or may be laminated on the moisture permeable resin continuous layer side, but is preferably laminated on the moisture permeable resin continuous layer side. By laminating on the moisture permeable resin continuous layer side, the moisture permeable resin continuous layer can be prevented from being damaged.
  • the present invention is characterized in that both the fiber interior and the fiber surface of the reinforcing fiber layer are flame-retardant.
  • both the fiber interior and the fiber surface of the reinforcing fiber layer are flame retardant and combined with a non-flammable porous fluororesin film, the moisture permeable resin continuous layer laminated with these layers is not substantially flame retardant.
  • the flame retardancy of the moisture permeable diaphragm material can be increased.
  • the fiber in order to make the fiber surface flame-retardant, the fiber may be coated with a liquid in which a flame retardant is dispersed (or dissolved) in an appropriate solvent.
  • the coating amount per 1 m 2 of the reinforcing fiber layer is, for example, 1 g or more, preferably 3 g or more, more preferably 6 g or more.
  • the upper limit of the coating amount is not particularly limited, but if the coating amount is too large, the flame retardant may form a nonporous membrane layer and inhibit moisture permeability. For example, 100 g or less, preferably 50 g or less, and more preferably 20 g or less per 1 m 2 of the reinforcing fiber layer.
  • the coating method is not particularly limited, and the fiber may be immersed in a liquid containing a flame retardant, and a known coating method such as a dipping coating method, a kiss coating method, or a spray coating method may be appropriately employed.
  • the flame retardant that can be mixed with the resin is preferably a powdery flame retardant.
  • the powdery flame retardant is suitably used with little bleeding and stickiness.
  • a halogen flame retardant, a non-halogen flame retardant, or the like can be used as the flame retardant used for coating.
  • a phosphorus flame retardant is preferable, and examples thereof include organic phosphorus flame retardants such as phosphate ester monomers and phosphate ester condensates, ammonium polyphosphate, and phosphazene flame retardants. Even phosphorus-based flame retardants exhibit different properties depending on the phosphorus content and compound structure, such as liquid, powder, and resin, depending on the material.
  • liquid flame retardant examples include aliphatic cyclic phosphonic acid esters.
  • a powder flame retardant dispersed in water by coexisting with a surfactant examples include a powder flame retardant dispersed in water by coexisting with a surfactant. These powders also have flame retardants having no melting point (decompose) from 70 ° C., and after being coated with the dispersant, they are melted and adhered to the substrate by drying at a temperature higher than the melting point.
  • a flame retardant having no melting point may be coated with a binder resin.
  • the reinforcing fiber layer is not particularly limited as long as it is a variety of fabrics formed from fibers.
  • any of a woven fabric, a knitted fabric, a braid, and a non-woven fabric may be used, but a fabric excellent in form maintainability is preferable.
  • woven fabric, non-woven fabric, etc., especially non-woven fabric for example, woven fabric, non-woven fabric, etc., especially non-woven fabric.
  • nonwoven fabric As the nonwoven fabric, a direct spinning method (spun bond method, melt blow method, flash spinning method, etc.), a web forming method using short fibers (chemical bond method, thermal bond method, etc.) can be used as appropriate.
  • Preferred nonwoven fabrics are spunbond nonwoven fabrics and thermal bond nonwoven fabrics.
  • the basis weight of the reinforcing fiber layer is, for example, about 2 to 100 g / m 2 , preferably about 5 to 50 g / m 2 , and more preferably about 8 to 40 g / m 2 .
  • the thickness of the reinforcing fiber layer is, for example, about 0.01 to 1 mm, preferably about 0.03 to 0.5 mm, and more preferably about 0.05 to 0.3 mm.
  • the lamination method of the moisture permeable resin continuous layer, the porous fluororesin film, and the reinforcing fiber layer is not particularly limited.
  • a reinforcing fiber layer may be adhered to the composite membrane (adhesion with an adhesive, thermal adhesion, etc.).
  • a liquid containing the moisture-permeable resin is supplied to the surface of the porous fluororesin film, and the moisture-permeable resin A continuous layer may be formed.
  • the moisture permeable membrane material of the present invention obtained as described above is not a moisture permeable resin continuous layer, but flame retardants both inside and on the fiber surface of the reinforcing fiber layer laminated therewith. Good characteristics and excellent flame retardancy.
  • the air permeability of the moisture-permeable diaphragm material is, for example, 1000 seconds or more, preferably 2000 seconds or more, and more preferably 3000 seconds or more.
  • the moisture permeability of the moisture permeable diaphragm material is, for example, about 40 g / m 2 ⁇ h or more, preferably about 50 g / m 2 ⁇ h or more, and more preferably about 70 g / m 2 ⁇ h or more.
  • the upper limit of moisture permeability is not particularly limited, but may be, for example, about 200 g / m 2 ⁇ h or less, particularly about 120 g / m 2 ⁇ h or less.
  • a hydrophilic polyurethane resin (“Hypol 2000” manufactured by Dow Chemical Co., Ltd.) is applied to one side of a stretched porous PTFE membrane having a thickness of 20 ⁇ m, a porosity of 85%, and an average pore diameter of 0.2 ⁇ m, and dried to dry the PTFE membrane.
  • a 10 ⁇ m thick moisture-permeable resin continuous layer was formed on one side (composite film 1). The moisture permeable resin continuous layer partially penetrated into the PTFE membrane, and the thickness of the intrusion portion was about 5 to 8 ⁇ m.
  • a phosphorous flame retardant (trade name “Nikkafinon”) manufactured by Nikka Chemical Co., Ltd. was dissolved in water to prepare the concentrations shown in Table 1 below.
  • a spunbond nonwoven fabric (Hyme (registered trademark) H3301 manufactured by Toyobo Co., Ltd. (weight per unit area 30 g / m 2 , thickness 0.18 mm)) made of polyester fiber copolymerized with a phosphorus flame retardant After being immersed in an aqueous solution of a flame retardant, it was dehydrated with a mangle (roller) and dried (surface flame retardant nonwoven fabrics 1A to 1F). The coating amount of the flame retardant was as shown in Table 1 below.
  • Experimental Examples 2A-2F As a spunbond nonwoven fabric made of polyester fiber copolymerized with a phosphorus-based flame retardant, Toyobo Co., Ltd.'s Hyme (registered trademark) H3201 (weight per unit area 20 g / m 2 , thickness 0.12 mm) The same as in Experimental Examples 1A to 1F (moisture permeable membrane materials 2A to 2F).
  • Hyme registered trademark
  • the air permeability of the moisture permeable membrane material obtained in each experimental example was 10,000 seconds or more.
  • Other physical properties were evaluated as follows.
  • the flame retardant resin is not added to the moisture permeable resin, while the reinforcing fiber layer
  • flame retardancy can be increased without reducing moisture permeability.
  • Experimental Examples 4A to 4D when the flame retardancy is increased by adding a flame retardant to the moisture permeable resin, the moisture permeability decreases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

 透湿性隔膜材料は、多孔質フッ素樹脂膜と、この多孔質フッ素樹脂膜の表面に形成された透湿性樹脂連続層と、これら多孔質フッ素樹脂膜及び透湿性樹脂連続層を補強する繊維層とから構成されており、前記繊維層は、繊維内部に難燃剤を含有し、かつ繊維表面が難燃剤で処理されている。この透湿性隔膜材料によれば、熱交換特性を低下させることなく、難燃性を高めることができる。

Description

透湿性隔膜材料
 本発明は、熱交換膜、加湿膜、除湿膜、ベーパレーション膜[例えば水と他の液体(エタノールなど)を分離するための膜]などとして(特に熱交換膜として)有用な透湿性隔膜材料に関する。
 熱交換膜は、例えば、空調システムに利用されており、室内と室外の空気を混合することなく熱交換できる。近年では、顕熱のみならず、潜熱(湿度)も交換できる全熱交換膜が使用されている。なお熱交換器がビル、工場、家屋などの建物内部に設置されることが多いことから、火災防止のために、熱交換膜も防炎性や難燃性が求められている。
 全熱交換膜には、例えば、紙製の熱交換膜が採用されており、この紙製熱交換膜には親水性の難燃剤が含浸されている。しかし、紙製熱交換膜は、耐水性が低い。例えば、熱交換器の使用状況によっては結露水が熱交換膜に付着することがある。この結露水が凍結することで紙製熱交換膜が破れることがある。また結露水によって難燃剤が溶出し、難燃性及び潜熱交換性能が低下する。
 結露水による破れを防止するため、多孔質フッ素樹脂膜の表面に透湿性樹脂の連続層を形成した積層体を全熱交換膜として使用することが提案されている(特許文献1、2)。この積層体は、通常、不織布などで補強されている。また特許文献2には、この積層体の難燃性を高めるため、透湿性樹脂層に難燃剤を配合することも開示されている。
 ところでエレクトロフィルターと難燃不織布とから構成される除塵フィルターにおいて、これらを接着する接着剤にも難燃剤を配合することが開示されている(特許文献3)。なお除塵フィルターは通気性を有しており、透湿性隔膜材料は通気性がないため、これらは通気性の有無の点で全く異なる技術分野に属している。
特開平7-133994号公報 特開2006-150323号公報 特開2002-292214号公報
 本発明の目的は、多孔質フッ素樹脂膜、透湿性樹脂連続層、及び補強用繊維層から構成される全熱交換膜の全熱交換特性を低下させることなく、難燃性を高めること(好ましくは、JIS-Z-2150で定める防炎2級以上の難燃レベルを達成すること)にある。
 多孔質フッ素樹脂膜、透湿性樹脂連続層、及び補強用繊維層から構成される全熱交換膜の難燃性を高めるには、特許文献2に示される様に、透湿性樹脂連続層に難燃剤を配合するのが最良と思料される。また繊維層にも難燃剤を配合するのが最良と思料される。フッ素樹脂は、元々、不燃性素材であり、このフッ素樹脂と組み合わせる他の層(透湿性樹脂連続層、繊維層)をそれぞれ難燃化することで、難燃性が改善できるものと思料される。特許文献3も、不織布、及びこの不織布と積層される接着剤層を難燃化することで、積層体の難燃性を高めている。
 しかし、本発明者らが検討したところ、各層を難燃化した場合には、全熱交換膜の透湿性が低下することが判明した。難燃剤としては、液体難燃剤、粉体難燃剤などが知られており、水または有機溶剤に溶解してから乾燥すると樹脂状になる難燃剤も知られている。これらを透湿性樹脂に混入することは可能であるが、液状難燃剤は使用中にブリードアウトしたり、べたつきの原因となるなどの問題があり、粉体や樹脂状難燃剤は透湿性の低下を引き起こす。そこでさらに検討したところ、繊維層を構成する繊維内部に難燃剤を含有させかつ繊維表面も難燃剤で処理する一方、透湿性樹脂連続層には実質的に難燃剤を配合しないようにすると、透湿性の低下なく難燃性が高まることを見出し、本発明を完成した。
 すなわち、本発明に係る透湿性隔膜材料は、多孔質フッ素樹脂膜(特に多孔質ポリテトラフルオロエチレン膜)と、この多孔質フッ素樹脂膜の表面に形成された透湿性樹脂連続層と、これら多孔質フッ素樹脂膜及び透湿性樹脂連続層を補強する繊維層とから構成されており、前記繊維層は、繊維内部に難燃剤を含有し、かつ繊維表面が難燃剤で処理されている。前記繊維層は、多孔質フッ素樹脂膜の透湿性樹脂連続層側に積層されているのが望ましく、例えば、多孔質フッ素樹脂膜の表面に透湿性樹脂連続層を積層して予め複合膜を形成した後、この複合膜の透湿性樹脂連続層側に補強用繊維層が接着してもよい。繊維内部、繊維表面の難燃剤としては、環境負荷低減の観点から非ハロゲン系の難燃剤(特に非ハロゲン系のリン系難燃剤)が好ましく用いられる。繊維層の目付量は、例えば、2~100g/m2であり、繊維層1m2当たりの繊維表面の難燃剤の量は、例えば、1~100g程度である。多孔質フッ素樹脂膜の内部に侵入している部分の透湿性樹脂の厚さは、3~30μm程度であるのが好ましい。透湿性樹脂としては、ポリビニルアルコール、ポリエチレンオキシド、ポリアクリル酸、ポリウレタン系樹脂などが適宜使用できる。前記ポリウレタン系樹脂は、好ましくは、水酸基、アミノ基、カルボキシル基、スルホン酸基、及びオキシエチレン基から選択される少なくとも一種の親水基を有している。本発明の透湿性隔膜材料は、例えば、通気度が1000秒以上であり、透湿度が40g/m2・h以上であり、防炎等級(JIS Z 2150)が2級以上である。
 本発明によれば、透湿性樹脂連続層を難燃化するのではなく、これと積層する補強繊維層の繊維内部と繊維表面の両方を難燃化しているため、全熱交換特性を低下させることなく、難燃性を高めることができる。
 透湿性隔膜材料は、透湿性樹脂連続層が透湿性の隔膜として機能する。この透湿性樹脂連続層は、単独では湿潤時の膨潤が大きい、強度が弱いなど薄膜形状を維持するのが困難であるため、多孔質フッ素樹脂膜と複合化して使用される。多孔質フッ素樹脂膜と透湿性樹脂連続層とからなる積層体を本明細書では、複合膜と称する。また多孔質フッ素樹脂膜は、単独ではコシが弱くて後工程の取り扱い性が悪く、また強度が不足するため、通常、繊維層で補強されている。以下、各層について詳述しつつ、本発明について説明する。
 1)透湿性樹脂連続層
 例えば全熱交換膜に使用される膜の場合、全熱(顕熱及び潜熱)交換はするが空気(炭酸ガスなど)交換が起こってはならない。よって透湿性樹脂連続層は、透湿性樹脂よりなる無孔質の膜状の層であり、多孔質フッ素樹脂膜の表面に形成される。透湿性樹脂は多孔質フッ素樹脂の一部又は全部に含浸していてもよい。本発明は、透湿性隔膜材料の難燃化を目的とするにも拘わらず、透湿性樹脂連続層を実質的に難燃化していない点に特徴がある。透湿性樹脂連続層が実質的に難燃剤を含有すると、透湿質性隔膜材料の透湿性が低下する。その理由の詳細は不明であるが、難燃剤が透湿性樹脂連続層全体に均一に分散すると、透湿阻害物質として作用するためと思料される。
 透湿性樹脂としては、ポリビニルアルコール、ポリエチレンオキシド、ポリアクリル酸などの水溶性樹脂;親水性ポリウレタンなどの非水溶性透湿性樹脂などが例示できる。
 親水性ポリウレタン系樹脂は、水酸基、アミノ基、カルボキシル基、スルホン酸基、オキシエチレン基などの親水基を有している点に特徴があり、ポリエーテル系ポリウレタン及びポリエステル系ポリウレタンのいずれであってもよい。またこれらのプレポリマーを適宜使用することもできる。さらに樹脂としての融点(軟化点)を調整するために、イソシアナート基を2個以上有するイソシアナート類(ジイソシアナート類、トリイソシアナート類など)やそのアダクト体を単独又は混合して架橋剤として使用してもよい。また、末端がイソシアナートであるプレポリマーに対しては、2官能以上のポリオール類(ジオール類、トリオール類など)や2官能以上のアミン類(ジアミン類、トリアミン類など)を硬化剤として用いることができる。透湿性を高く保つためには2官能の硬化剤が好ましい。
 好ましい親水性ポリウレタン系樹脂は、親水性主鎖を有する樹脂(例えば、ダウケミカル社製の商品名「ハイポール」)である。この好ましい親水性ポリウレタン系樹脂は、例えば、ポリエーテル系主鎖(例えば、ポリオキシエチレン単位の主鎖)を有しており、その末端が適当なイソシアネート基(例えば、トルエンジイソシアネート基)になっている反応性プレポリマーである。このプレポリマーは、水、多官能性アミン(例えば、ブロックドカルバメートアミンなど)で架橋される。
 透湿性樹脂連続層の厚みは、透湿性樹脂連続層で隔たれた気体同士の混合を防止しつつ、これら気体間で全熱交換できる限り特に限定されないが、例えば、0.01~100μm程度である。薄すぎるとピンホールを生じやすくなる。透湿性樹脂連続層の厚みは、より好ましくは0.05μm以上、特に0.5μm以上である。一方、透湿性樹脂連続層が厚すぎると透湿性が低下しやすくなる。透湿性樹脂連続層の厚みは、より好ましくは50μm以下、特に20μm以下である。
 また透湿性樹脂連続層が多孔質フッ素樹脂膜の内部に侵入している方が、透湿性樹脂連続層の剥離を防止でき、耐久性が高まるので好ましい。多孔質フッ素樹脂膜の内部に侵入している部分の透湿性樹脂の厚さは、透湿性と耐久性の観点から、3~30μmが好ましく、5~20μmが最も好ましい。なお透湿性樹脂連続層が多孔質フッ素樹脂膜の内部に侵入している場合、前記透湿性樹脂連続層の厚みは、この侵入部分の厚みを含む。
 なお、透湿性樹脂連続層の厚さ及びその侵入部分の厚さは、電子顕微鏡の断面写真(1000~3000倍)において該当部分(連続層又は侵入部分)の面積Sを測定し、電子顕微鏡写真のスケール(長さを表す目盛り)に基づいて決定される該当部分の長さLで前記面積Sを除すことによって算出される値である。
 透湿性樹脂連続層は、さらに吸湿剤を含んでいてもよい。吸湿剤によって、透湿性樹脂連続層の保水量が高まり、透湿性が更に高まる。吸湿剤としては、水溶性の塩(リチウム塩、リン酸塩など)を用いることができる。
 2)多孔質フッ素樹脂膜
 多孔質フッ素樹脂膜は、透湿性樹脂連続層の保持層として機能する。またフッ素樹脂自体は不燃性であり、透湿性隔膜材料の難燃化に貢献する。
 好ましい多孔質フッ素樹脂膜は、多孔質ポリテトラフルオロエチレン(PTFE)膜である。多孔質PTFE膜は、PTFEのファインパウダーを成形助剤と混合して得られるペーストを成形し、該成形体から成形助剤を除去した後、高温高速度で延伸し、さらに必要に応じて焼成することにより得られる。その詳細は、例えば特公昭51-18991号公報に記載されている。なお、延伸は、1軸延伸であってもよいし、2軸延伸であってもよい。1軸延伸多孔質PTFEフィルムは、ミクロ的には延伸方向と略直交する細い島状のノード( 折り畳み結晶) が存在し、このノード間を繋ぐようなすだれ状のフィブリル(前記折り畳み結晶が延伸により溶けて引き出された直鎖状の分子束)が延伸方向に配向している点に特徴がある。一方、2軸延伸多孔質PTFEフィルムは、フィブリルが放射状に拡がり、フィブリルを繋ぐノードが島状に点在してフィブリルとノードとで分画された空間が多数存在するクモの巣状の繊維質構造となっている点にミクロ的な特徴がある。2 軸延伸多孔質PTFEフィルムは、1軸延伸多孔質PTFEフィルムよりも広幅化が容易であり、縦方向・横方向の物性バランスに優れ、単位面積あたりの生産コストが安くなるため、特に好適に用いられる。
 多孔質フッ素樹脂膜の平均細孔径は、例えば、0.07~10μm程度である。平均細孔径が小さすぎると多孔質フッ素樹脂膜の透湿性が低下する。より好ましい平均細孔径は0.09μm以上である。逆に平均細孔径が大きすぎると、多孔質フッ素樹脂膜内に透湿性樹脂連続層が入り込み易くなる。その結果、透湿性樹脂層の充実部分(非空隙部分)が厚くなり、水分の移動時間が長くなって透湿性が低下する。より好ましい平均細孔径は、5μm以下である。なお、多孔質フッ素樹脂膜の平均細孔径は、コールターエレクトロニクス社のコールターポロメーターを用いて測定した孔径の平均値を意味する。延伸多孔質PTFE膜の平均細孔径は延伸倍率等によって適宜制御できる。
 多孔質フッ素樹脂膜の空孔率は前記平均細孔径に応じて適宜設定できるが、例えば、30%以上(好ましくは50%以上)、98%以下(好ましくは90% 以下)程度であることが推奨される。なお、延伸多孔質PTFE膜の空孔率は、上記平均細孔径と同様、延伸倍率等によって適宜調整できる。
 多孔質フッ素樹脂膜の空孔率は、多孔質フッ素樹脂膜の質量Wと、空孔部を含む見かけの体積Vとを測定することによって求まる嵩密度D(D=W/V:単位はg/cm3)と、全く空孔が形成されていないときの密度Dstandard(PTFE樹脂の場合は2.2g/cm3)を用い、下記式に基づいて算出できる。なお、体積Vを算出する際の厚みは、ダイヤルシックネスゲージで測定した(テクロック社製「SM-1201」を用い、本体バネ荷重以外の荷重をかけない状態で測定した)平均厚みによる。
空孔率(%)=[1-(D/Dstandard)]×100
 多孔質フッ素樹脂膜の厚みは特に限定されないが、例えば、200μm以下、好ましくは100μm以下、さらに好ましくは60μm以下程度である。厚くなりすぎると透湿性隔膜材料の透湿能力が低下する。但し、薄くなりすぎると加工性を損なうため、例えば、0.1μm以上、好ましくは3μm以上、さらに好ましくは5μm以上とする。
 3)補強用繊維層
 補強用繊維層は、複合膜(多孔質フッ素樹脂膜及び透湿性樹脂連続層)の取り扱い性と強度を高めるため、この複合膜に積層される。補強用繊維層は、複合膜の多孔質フッ素樹脂膜側に積層してもよく、透湿性樹脂連続層側に積層してもよいが、好ましくは透湿性樹脂連続層側に積層する。透湿性樹脂連続層側に積層することで、透湿性樹脂連続層が傷つくのを防止できる。
 本発明では、前記補強用繊維層の繊維内部と繊維表面の両方を難燃化している点に特徴がある。補強用繊維層の繊維内部と繊維表面の両方を難燃化し、かつ不燃性の多孔質フッ素樹脂膜と組み合わせると、これらと積層する透湿性樹脂連続層を実質的に難燃化していなくても、透湿性隔膜材料の難燃性を高めることができる。
 繊維内部を難燃化するには、繊維内部に難燃剤を含有させればよく、例えば、繊維に難燃剤を混合(特に練り込み)したり、樹脂繊維の合成時に難燃剤を樹脂に結合(特に共重合)させればよい。内部が難燃化された繊維として、例えば、スパンボンド法で作られた不織布が市販されている。かかる市販不織布としては、東洋紡績(株)製「ハイム(登録商標)」、旭化成せんい(株)製「エルタスFR(登録商標)」などが例示できる。
 一方、繊維表面を難燃化するには、難燃剤を適当な溶媒に分散(又は溶解)した液で繊維をコーティング処理すればよい。補強用繊維層1m2当たりのコーティング量は、例えば、1g以上、好ましくは3g以上、さらに好ましくは6g以上である。コーティング量の上限は特に制限されないが、コーティング量が多すぎると、難燃剤が無孔質膜層を形成し透湿性を阻害することがある。補強用繊維層1m2当たり、例えば、100g以下、好ましくは50g以下、さらに好ましくは20g以下程度である。なおコーティング方法は特に限定されず、難燃剤を含む液に繊維を浸漬してもよく、ディッピングコート法、キスコート法、スプレーコート法などの公知のコート法を適宜採用してもよい。
 樹脂と結合し得る難燃剤としては、リン系難燃剤(含リンポリオールなどの非ハロゲン系リン系難燃剤)、ハロゲン系難燃剤(含臭素ポリオール、四塩化無水フタル酸、四臭化無水フタル酸など)が例示できる。
 樹脂に混合出来る難燃剤は粉体状の難燃剤であることが好ましい。粉体状の難燃剤はブリードやべたつきも少なく好適に用いられる。コーティングに使用する難燃剤としては、ハロゲン系難燃剤、非ハロゲン系難燃剤などが使用できる。非ハロゲン系難燃剤としては、リン系難燃剤が好ましく、例えば、リン酸エステル単量体、リン酸エステル縮合体などの有機リン系難燃剤、ポリリン酸アンモニウム、フォスファゼン系難燃剤などが含まれる。リン系難燃剤でも、その性状は材料により液状、粉状、樹脂状などリン含有量、化合物構造により異なる性状を示す。液状の難燃剤としては脂肪族環式ホスホン酸エステルなどがある。また粉体難燃剤を界面活性剤と共存させることで水に分散させたものもある。これら粉体は70℃から融点のない(分解する)難燃剤もあり、分散剤をコーティング後、融点より高い温度で乾燥することにより基材に溶融付着する。融点のない難燃剤はバインダー樹脂を併用しコーティング処理を行うこともある。
 上記難燃剤のうち好ましい難燃剤は、非ハロゲン系難燃剤であり、特に好ましい難燃剤は非ハロゲン系のリン系難燃剤である。非ハロゲン系難燃剤は、環境負荷を軽減できる。
 補強用繊維層としては、繊維から形成される種々の布状物であれば特に限定されず、例えば、織物、編物、組物、不織布のいずれでもよいが、好ましくは形態維持性に優れた布(例えば、織物、不織布など。特に不織布)である。
 不織布は、紡糸直結法(スパンボンド法、メルトブロー法、フラッシュ紡糸法など)、短繊維を用いたウエブ形成法(ケミカルボンド法、サーマルボンド法など)などが適宜利用できる。好ましい不織布は、スパンボンド不織布、サーマルボンド不織布である。
 補強用繊維層の目付量は、例えば、2~100g/m2程度、好ましくは5~50g/m2程度、さらに好ましくは8~40g/m2程度である。目付量が大きいほど、難燃性が向上する。また目付量が小さいほど、全熱交換率が向上する。
 補強用繊維層の厚さは、例えば、0.01~1mm程度、好ましくは0.03~0.5mm程度、さらに好ましくは0.05~0.3mm程度である。
 透湿性樹脂連続層、多孔質フッ素樹脂膜及び補強用繊維層の積層法は特に限定されず、例えば、多孔質フッ素樹脂膜の表面に透湿性樹脂連続層を塗布等によって積層して予め複合膜を形成した後、この複合膜に補強用繊維層を接着(接着剤による接着、熱接着など)してもよい。また、多孔質フッ素樹脂膜と補強用繊維層とを接着(接着剤による接着、熱接着など)してから、透湿性樹脂を含む液を多孔質フッ素樹脂膜表面に供給して、透湿性樹脂連続層を形成してもよい。
 上記の様にして得られる本発明の透湿性隔膜材料は、透湿性樹脂連続層ではなく、これと積層する補強繊維層の繊維内部と繊維表面の両方を難燃化しているため、全熱交換特性が良好であり、かつ難燃性にも優れている。
 透湿性隔膜材料の通気度は、例えば、1000秒以上、好ましくは2000秒以上、さらに好ましくは3000秒以上である。
 透湿性隔膜材料の透湿度は、例えば、40g/m2・h以上、好ましくは50g/m2・h以上、さらに好ましくは70g/m2・h以上程度である。なお透湿度の上限は特に限定されないが、例えば、200g/m2・h以下、特に120g/m2・h以下程度であってもよい。
 透湿性隔膜材料の防炎等級(JIS Z 2150)は、例えば、2級以上、好ましくは1級である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実験例1A~1F
 厚さ20μm、空孔率85%、平均細孔径0.2μmの延伸多孔質PTFE膜の片面に親水性ポリウレタン樹脂(ダウケミカル社製「ハイポール2000」)を塗布し、乾燥することでPTFE膜の片面に厚さ10μmの透湿性樹脂連続層を形成した(複合膜1)。なお透湿性樹脂連続層はPTFE膜に一部侵入しており、侵入部の厚みは約5~8μmであった。
 日華化学(株)製リン系難燃剤(商品名「ニッカファイノン」)を水に溶解して、下記表1に示す濃度に調製した。リン系難燃剤を共重合したポリエステル繊維からなるスパンボンド不織布(東洋紡績(株)製のハイム(登録商標)H3301(目付量30g/m2、厚さ0.18mm))を、前記リン系難燃剤の水溶液に浸漬した後、マングル(ローラー)で脱水し、乾燥した(表面難燃化不織布1A~1F)。難燃剤のコーティング量は下記表1に示すとおりであった。
 複合膜1の透湿性樹脂(親水性ポリウレタン樹脂)連続層側に、表面難燃化不織布1を接着剤でラミネートした(透湿性隔膜材料1A~1F)。
 実験例2A~2F
 リン系難燃剤を共重合したポリエステル繊維からなるスパンボンド不織布として、東洋紡績(株)製のハイム(登録商標)H3201(目付量20g/m2、厚さ0.12mm)を使用する以外は、実験例1A~1Fと同様にした(透湿性隔膜材料2A~2F)。
 実験例3A~3C
 日華化学(株)製リン系難燃剤(商品名「ニッカファイノン」)に代えて三洋化成工業(株)製リン系難燃剤(商品名「ファイヤータード」)を使用する以外は、実験例2A~2Fと同様にした(透湿性隔膜材料3A~3C)。
 実験例4A~4D
 親水性ポリウレタン樹脂(ダウケミカル社製「ハイポール2000」)100質量部に、表4に示す量のリン系難燃剤(日華化学(株)製、商品名ニッカファイノン)を加えた。厚さ20μm、空孔率85%、平均細孔径0.2μmの延伸多孔質PTFE膜の片面に、前記難燃剤添加樹脂を塗布し、乾燥することでPTFE膜の片面に厚さ10μmの難燃剤含有透湿性樹脂連続層を形成した(複合膜4A~4D)。なお透湿性樹脂連続層はPTFE膜に一部侵入しており、侵入部の厚みは約5~8μmであった。
 リン系難燃剤を共重合したポリエステル繊維からなるスパンボンド不織布(東洋紡績(株)製のハイム(登録商標)H3201(目付量20g/m2、厚さ0.12mm))を複合膜4の難燃剤含有透湿性樹脂連続層側に接着剤でラミネートした(透湿性隔膜材料4A~4D)。
 各実験例で得られた透湿性隔膜材料の通気度はいずれも10000秒以上であった。また他の物性を以下のようにして評価した。
 (1)透湿性
 JIS L 1099(A-1法)に準拠して透湿性隔膜材料の透湿度を調べた。なお温度25℃、相対湿度75%の環境下で透湿度を測定した。
 (2)初期難燃性
 JIS Z 2150 A法に準拠(加熱時間10秒)して透湿性隔膜材料の難燃性を調べた。試験後の透湿性隔膜材料の炭化長を調べ、以下の基準で評価した。
 合格(防炎1級):炭化長50mm以下
 合格(防炎2級):炭化長50mm超、100mm以下
 不合格:炭化長100mm超
 (3)難燃耐久性
 透湿性隔膜材料を50℃の温水に5時間浸漬した。乾燥後、透湿性隔膜材料の難燃性を上記「(2)初期難燃性」と同様にして調べた。
 結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実験例1B、1C、1D、1E、1F、2B、2C、2D、2E、2F、3B、3Cに示されるように、透湿性樹脂に難燃剤を添加しない一方で、補強繊維層では繊維内部と繊維表面の両方を難燃化すると、透湿性を低下させることなく、難燃性を高めることができる。これに対して、実験例4A~4Dに示される様に、透湿性樹脂に難燃剤を添加することで難燃性を高める場合には、透湿性が低下していく。
 本発明の透湿性隔膜材料は、熱交換膜、加湿膜、除湿膜、ベーパレーション膜[例えば水と他の液体(エタノールなど)を分離するための膜]などとして(特に熱交換膜として)利用できる。

Claims (13)

  1.  多孔質フッ素樹脂膜と、この多孔質フッ素樹脂膜の表面に形成された透湿性樹脂連続層と、これら多孔質フッ素樹脂膜及び透湿性樹脂連続層を補強する繊維層とから構成される透湿性隔膜材料であって、
     前記繊維層は、繊維内部に難燃剤を含有し、かつ繊維表面が難燃剤で処理されていることを特徴とする透湿性隔膜材料。
  2.  表面に透湿性樹脂連続層が形成された多孔質フッ素樹脂膜の透湿性樹脂連続層側に、前記繊維層が積層されている請求項1に記載の透湿性隔膜材料。
  3.  多孔質フッ素樹脂膜の表面に透湿性樹脂連続層を積層して予め複合膜を形成した後、この複合膜の透湿性樹脂連続層側に補強用繊維層が接着されている請求項1又は2に記載の透湿性隔膜材料。
  4.  前記多孔質フッ素樹脂膜が、多孔質ポリテトラフルオロエチレン膜である請求項1~3のいずれかに記載の透湿性隔膜材料。
  5.  前記繊維内部の難燃剤及び繊維表面の難燃剤が、非ハロゲン系難燃剤である請求項1~4のいずれかに記載の透湿性隔膜材料。
  6.  前記繊維内部の難燃剤及び繊維表面の難燃剤が、リン系難燃剤である請求項5に記載の透湿性隔膜材料。
  7.  繊維層1m2当たりの繊維表面の難燃剤の量が、1~100gである請求項1~6のいずれかに記載の透湿性隔膜材料。
  8.  繊維層の目付量が、2~100g/m2である請求項1~7のいずれかに記載の透湿性隔膜材料。
  9.  多孔質フッ素樹脂膜の内部に侵入している部分の透湿性樹脂の厚さが、3~30μmである請求項1~8のいずれかに記載の透湿性隔膜材料。
  10.  前記透湿性樹脂が、ポリビニルアルコール、ポリエチレンオキシド、ポリアクリル酸、及びポリウレタン系樹脂から選択される少なくとも一種である請求項1~9のいずれかに記載の透湿性隔膜材料。
  11.  前記透湿性樹脂が、ポリウレタン系樹脂である請求項1~9のいずれかに記載の透湿性隔膜材料。
  12.  前記ポリウレタン系樹脂が、水酸基、アミノ基、カルボキシル基、スルホン酸基、及びオキシエチレン基から選択される少なくとも一種の親水基を有している請求項10又は11に記載の透湿性隔膜材料。
  13.  通気度が1000秒以上であり、透湿度が40g/m2・h以上であり、防炎等級(JIS Z 2150)が2級以上である請求項1~12のいずれかに記載の透湿性隔膜材料。
PCT/JP2010/053230 2009-03-17 2010-03-01 透湿性隔膜材料 WO2010106900A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080017073.1A CN102395419B (zh) 2009-03-17 2010-03-01 透湿性隔膜材料
CA2755596A CA2755596A1 (en) 2009-03-17 2010-03-01 Moisture-permeable separating membrane material comprising flame retardant textile
US13/256,671 US9027764B2 (en) 2009-03-17 2010-03-01 Moisture-permeable separating membrane material
EP10753395A EP2409757A4 (en) 2009-03-17 2010-03-01 MATERIAL FOR A WATER VAPOR PERMEABLE MEMBRANE
AU2010225839A AU2010225839B2 (en) 2009-03-17 2010-03-01 Water vapor-permeable diaphragm material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-064473 2009-03-17
JP2009064473A JP2010214298A (ja) 2009-03-17 2009-03-17 透湿性隔膜材料

Publications (1)

Publication Number Publication Date
WO2010106900A1 true WO2010106900A1 (ja) 2010-09-23

Family

ID=42739564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053230 WO2010106900A1 (ja) 2009-03-17 2010-03-01 透湿性隔膜材料

Country Status (8)

Country Link
US (1) US9027764B2 (ja)
EP (1) EP2409757A4 (ja)
JP (1) JP2010214298A (ja)
KR (1) KR20110139729A (ja)
CN (1) CN102395419B (ja)
AU (1) AU2010225839B2 (ja)
CA (1) CA2755596A1 (ja)
WO (1) WO2010106900A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191680A (zh) * 2014-09-03 2014-12-10 青岛志腾工贸有限公司 适用于固体废弃物堆肥发酵过程使用的覆盖膜材料
JP7389514B1 (ja) * 2022-08-02 2023-11-30 株式会社テクノフロンティア 熱交換素子
JP7428421B1 (ja) 2022-08-23 2024-02-06 株式会社テクノフロンティア 熱交換素子

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096128A1 (en) * 2006-02-23 2007-08-30 Nv Bekaert Sa A filter plate for use in a filter stack
JP2010214298A (ja) * 2009-03-17 2010-09-30 Japan Gore Tex Inc 透湿性隔膜材料
CN103069246B (zh) 2010-06-24 2016-02-03 北狄空气应对加拿大公司 液体-空气膜能量交换器
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
JP2012176361A (ja) * 2011-02-25 2012-09-13 Sumitomo Electric Fine Polymer Inc 多孔質複層フィルター
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US20140262125A1 (en) * 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US9238194B2 (en) * 2014-03-31 2016-01-19 Uop Llc Nanoporous macrocycle-containing cross-linked polymeric membranes for separations
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
US9802384B2 (en) * 2014-11-07 2017-10-31 W. L. Gore & Associates, Inc. Fire retardant laminates
TW201640727A (zh) 2015-02-04 2016-11-16 博隆能源股份有限公司 二氧化碳分離器,包含其之燃料電池系統及燃料電池系統之操作方法
US10173178B1 (en) 2015-04-27 2019-01-08 Bloom Energy Corporation Carbon dioxide separator membrane structure, method of manufacturing same, and carbon dioxide separator including same
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
CN107850335B (zh) 2015-05-15 2021-02-19 北狄空气应对加拿大公司 利用液-气式膜能量交换器进行液体冷却
EP3314188B1 (en) 2015-06-26 2021-05-12 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
SG10201913897RA (en) 2016-03-08 2020-03-30 Nortek Air Solutions Canada Inc Systems and methods for providing cooling to a heat load
JP6836443B2 (ja) * 2017-03-29 2021-03-03 旭化成株式会社 気体分離膜
US11892193B2 (en) 2017-04-18 2024-02-06 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
WO2019097885A1 (ja) * 2017-11-16 2019-05-23 三菱電機株式会社 全熱交換素子および全熱交換器
CN110743378A (zh) * 2019-10-29 2020-02-04 吉金学 改性湿膜及其制备方法和制作空调外机换热装置的应用
JP7196129B2 (ja) * 2020-03-31 2022-12-26 株式会社ダイセル 積層体
CN112999883B (zh) * 2021-03-11 2022-05-17 浙江工业大学 一种通过原位生长ZIFs纳米颗粒制备全热交换膜的方法及所制备的膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133994A (ja) * 1993-11-09 1995-05-23 Japan Gore Tex Inc 熱交換膜
EP0917902A1 (en) 1996-08-09 1999-05-26 Daikin Industries, Limited Filter medium and air filter unit
EP1652663A2 (en) 2004-11-01 2006-05-03 Japan Gore-Tex, Inc. Membrane, method of making the same and heat exchanger comprising said membrane
JP2007064508A (ja) * 2005-08-29 2007-03-15 Rengo Co Ltd 全熱交換器用シート

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513817C3 (de) 1975-03-27 1986-11-13 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Schaumstoff-Formkörpern kompakter Randzone und zelligem Kern
US5502147A (en) 1993-12-21 1996-03-26 Bayer Corporation Aliphatic rim elastomers
IN1997CH00157A (ja) 1996-10-01 2006-06-09 Recticel
KR100771910B1 (ko) 2001-09-28 2007-11-01 주식회사 엘지이아이 탈형성이 우수한 경질 폴리우레탄 폼 조성물
JP3920691B2 (ja) * 2002-04-12 2007-05-30 日華化学株式会社 難燃加工剤、難燃加工方法、及び難燃加工物
CA2507209C (en) * 2002-11-29 2011-08-30 Neworld Fibers, Llc Methods, systems and compositions for fire retarding substrates
CN1182175C (zh) 2002-12-12 2004-12-29 拜耳(中国)有限公司 生产硬质聚氨酯泡沫用组合多元醇
US7871946B2 (en) * 2003-10-09 2011-01-18 Kuraray Co., Ltd. Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
CN101242889A (zh) * 2005-07-18 2008-08-13 戈尔企业控股股份有限公司 多孔ptfe材料以及由其生产的制品
US9782947B2 (en) * 2007-05-25 2017-10-10 W. L. Gore & Associates, Inc. Fire resistant laminates and articles made therefrom
JP5156504B2 (ja) * 2008-06-25 2013-03-06 日本ゴア株式会社 複合膜及びそれを用いた水分量調整モジュール
JP2010214298A (ja) * 2009-03-17 2010-09-30 Japan Gore Tex Inc 透湿性隔膜材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133994A (ja) * 1993-11-09 1995-05-23 Japan Gore Tex Inc 熱交換膜
EP0661502A2 (en) 1993-11-09 1995-07-05 Japan Gore-Tex, Inc. A heat and moisture exchange device
EP0917902A1 (en) 1996-08-09 1999-05-26 Daikin Industries, Limited Filter medium and air filter unit
EP1652663A2 (en) 2004-11-01 2006-05-03 Japan Gore-Tex, Inc. Membrane, method of making the same and heat exchanger comprising said membrane
JP2006150323A (ja) * 2004-11-01 2006-06-15 Japan Gore Tex Inc 隔膜およびその製法、並びに該隔膜を備えた熱交換器
JP2007064508A (ja) * 2005-08-29 2007-03-15 Rengo Co Ltd 全熱交換器用シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2409757A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191680A (zh) * 2014-09-03 2014-12-10 青岛志腾工贸有限公司 适用于固体废弃物堆肥发酵过程使用的覆盖膜材料
JP7389514B1 (ja) * 2022-08-02 2023-11-30 株式会社テクノフロンティア 熱交換素子
JP7428421B1 (ja) 2022-08-23 2024-02-06 株式会社テクノフロンティア 熱交換素子

Also Published As

Publication number Publication date
AU2010225839B2 (en) 2014-01-09
JP2010214298A (ja) 2010-09-30
US9027764B2 (en) 2015-05-12
KR20110139729A (ko) 2011-12-29
CA2755596A1 (en) 2010-09-23
CN102395419A (zh) 2012-03-28
CN102395419B (zh) 2014-06-11
US20120067812A1 (en) 2012-03-22
AU2010225839A1 (en) 2011-11-03
EP2409757A4 (en) 2013-02-27
EP2409757A1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2010106900A1 (ja) 透湿性隔膜材料
WO2012018089A1 (ja) 隔膜およびこれを用いた熱交換器
CN102076401B (zh) 复合膜和使用该复合膜的湿度调节模块
US9517433B2 (en) Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same
US5743775A (en) Laminate for restraining organic vapors, aerosols, and biological agents
JP3165154B2 (ja) 難燃性で防水性でありかつ透湿性のラミネート
JP2006150323A (ja) 隔膜およびその製法、並びに該隔膜を備えた熱交換器
JP6117503B2 (ja) 透湿防水膜
WO2011058854A1 (ja) 全熱交換器及びそれに用いる仕切板の製造方法
WO2007116567A1 (ja) 全熱交換器
US20230375282A1 (en) Partition plate, total heat exchange element and total heat exchanger including partition plate, and method for producing partition plate
JPS6130609B2 (ja)
US20060205299A1 (en) Polyurethane/polyalkylamine polymer compositions and process for making same
US20060205893A1 (en) Barrier films of polyurethane/polyalkylamine polymer compositions and processes for making same
US20060205300A1 (en) Laminates made from polyurethane/polyalkylamine polymer compositions and processes for making same
JPS63275783A (ja) 自己呼吸性を有する複合シ−ト状物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017073.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2755596

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010753395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010753395

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024148

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010225839

Country of ref document: AU

Date of ref document: 20100301

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13256671

Country of ref document: US