WO2010106801A1 - Image display apparatus, manufacturing method thereof, and correction method therefor - Google Patents

Image display apparatus, manufacturing method thereof, and correction method therefor Download PDF

Info

Publication number
WO2010106801A1
WO2010106801A1 PCT/JP2010/001928 JP2010001928W WO2010106801A1 WO 2010106801 A1 WO2010106801 A1 WO 2010106801A1 JP 2010001928 W JP2010001928 W JP 2010001928W WO 2010106801 A1 WO2010106801 A1 WO 2010106801A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
light emitting
image display
capacitor element
Prior art date
Application number
PCT/JP2010/001928
Other languages
French (fr)
Japanese (ja)
Inventor
白水博
小野晋也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010106801A1 publication Critical patent/WO2010106801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present invention relates to an image display device, a manufacturing method thereof, and a correction method, and more particularly to an image display device having a correctable pixel structure, a manufacturing method thereof, and a repair method thereof.
  • An organic EL display using an organic electroluminescence element (hereinafter referred to as an organic EL element) is known as an image display apparatus using a current-driven light emitting element. Since this organic EL display has the advantages of good viewing angle characteristics and low power consumption, it has attracted attention as a next-generation FPD (Flat Pan Display) candidate.
  • FPD Next-generation FPD
  • the organic EL elements constituting the pixels are arranged in a matrix.
  • a thin film transistor TFT is provided at the intersection of a plurality of scanning lines and a plurality of data lines, and a holding capacitor element (capacitor) and a gate of a driving transistor are provided on the TFT. Is connected. Then, the TFT is turned on through the selected scanning line, a data signal from the data line is input to the driving transistor and the holding capacitor element, and the light emission timing of the organic EL element is controlled by the driving transistor and the holding capacitor element.
  • the organic EL element can emit light until the next scanning (selection), so that even if the duty ratio is increased, the luminance of the display is reduced. There is nothing wrong.
  • an active matrix organic EL display in a manufacturing process that requires fine processing as the driving circuit configuration of the light emitting pixels becomes more complicated and the number of light emitting pixels increases, circuit elements and Electrical problems such as short-circuiting and opening of wiring will occur.
  • the element area of the storage capacitor element constituting the pixel drive circuit is relatively large. Therefore, this storage capacitor element is easily affected by particles or the like existing between the electrodes, and causes a short-circuit defect to increase the pixel defect rate.
  • Patent Document 1 in order to correct defective light-emitting pixels that are always in a light-emitting state due to a short circuit of a circuit element or the like and become bright spots, all the light-emitting pixel regions are connected to other non-conductive parts and wirings apart from each other. An overlapping part is provided. For the defective light emitting pixels, the non-overlapping portion is cut by irradiating the non-overlapping portion with laser. As a result, the defective pixel is blocked from transmission of electrical signals, and is darkened without being damaged by laser irradiation.
  • a pixel electrode formed in a light emitting region of each light emitting pixel has a configuration in which a plurality of cells are connected, and a defective light emitting cell is cut by cutting a part of the connection portion with a laser. Only the electrical insulation is used to darken the points.
  • the present invention has been made in view of the above problems, and provides an image display device capable of causing a defective light emitting pixel having a short-circuit defective storage capacitor element to emit light at a normal light emission timing, a manufacturing method thereof, and a correction method thereof.
  • the purpose is to do.
  • an image display device of the present invention is an image display device in which a plurality of light emitting pixels in which a light emitting layer and a drive circuit layer for driving the light emitting layer are stacked are arranged in a two-dimensional manner.
  • the drive circuit layer includes a parallel plate type capacitive element having two electrode layers facing each other in the stacking direction, and one of the two electrode layers is divided in the plane direction.
  • the plurality of electrode block layers are connected by one or more conductive wires in the same plane, and the other electrode layer of the two electrode layers is the conductive layer. It is characterized in that it is formed in a single flat plate shape common to the surface direction except for the region where the line is projected in the stacking direction.
  • the manufacturing method, and the correction method of the present invention it is possible to cut a partial region of a capacitive element composed of a plurality of electrode block layers without damaging the capacitive element and other circuit elements. . Therefore, after the above-described cutting process, a defective light emitting pixel caused by a short defect of the capacitor element can be caused to emit light at a normal light emission timing, and display quality of the light emitting panel can be improved.
  • FIG. 1A is a block diagram showing a configuration of an image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 1B is a main circuit configuration diagram of the light-emitting pixel according to Embodiment 1 of the present invention.
  • FIG. 2 is a structural cross-sectional view of the luminescent pixel according to Embodiment 1 of the present invention.
  • FIG. 3 is an electrode configuration diagram of a storage capacitor element included in the image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 4A is a diagram illustrating a state in which a predetermined electrode block layer is cut by irradiating a laser to the storage capacitor element according to Embodiment 1 of the present invention.
  • FIG. 1A is a block diagram showing a configuration of an image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 1B is a main circuit configuration diagram of the light-emitting pixel according to Embodiment 1 of the present invention.
  • FIG. 2
  • FIG. 4B is an equivalent circuit diagram of the storage capacitor element according to Embodiment 1 of the present invention.
  • FIG. 4C is a structural cross-sectional view illustrating the case where the storage capacitor element according to Embodiment 1 of the present invention is irradiated with laser from the lower surface side.
  • FIG. 5 is an electrode configuration diagram of a storage capacitor element showing a first modification according to Embodiment 1 of the present invention.
  • FIG. 6 is an electrode configuration diagram of a storage capacitor element showing a second modification according to Embodiment 1 of the present invention.
  • FIG. 7 is an electrode configuration diagram of a storage capacitor element showing a third modification according to Embodiment 1 of the present invention.
  • FIG. 8 is an operation flowchart showing a method for correcting an image display apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is an external view of a thin flat TV incorporating the image display device of the present invention.
  • An image display device is an image display device in which a plurality of light-emitting pixels in which a light-emitting layer and a drive circuit layer that drives the light-emitting layer are stacked are two-dimensionally arranged.
  • the circuit layer includes a parallel plate type capacitive element having two electrode layers facing each other in the stacking direction, and one of the two electrode layers has a plurality of electrode blocks divided in the plane direction.
  • the plurality of electrode block layers are connected by one or more conductive wires in the same plane, and the other electrode layer of the two electrode layers has the conductive wire in the stacking direction. It is characterized in that it is formed in a single flat plate shape common to the surface direction in the area excluding the projected area.
  • the electrode area of the storage capacitor element arranged in each light emitting pixel is relatively large. Therefore, the storage capacitor element causes a defect rate of the light emitting pixel to be increased by causing unnecessary particles or the like to be interposed between the electrodes and causing a short defect.
  • one of the two opposing electrode layers constituting the capacitive element has a configuration in which a plurality of electrode block layers are connected in the plane direction with the conductive wires.
  • the other layers of the two opposing electrode layers constituting the capacitor element have a single flat plate shape in the plane direction except for a part of the region.
  • the above-mentioned partial region in which the region where the conductive line irradiated with the laser exists is projected in the stacking direction, that is, the region facing the conductive line irradiated with the laser in the plane of the other layer of the two electrode layers.
  • An electrode layer is not formed on. Therefore, it is possible to avoid damaging a region constituting the capacitor element by irradiating the conductive wire with the laser. Therefore, although the capacitance decreases by the area ratio of the removed electrode block layer, the capacitance element retains a voltage corresponding to the signal voltage from the data line and causes the light emitting element to emit light at a normal light emission timing. Is possible. Therefore, the display quality of the light emitting panel is improved.
  • the conductive wire has a shape that can be cut by irradiating a part of the conductive wire with a laser.
  • the electrode block in which the short-circuit between the electrodes is generated can be excised from the capacitive element by irradiating an appropriate conductive wire with a laser and cutting the conductive wire. Therefore, the capacitor element holds a voltage corresponding to the signal voltage from the data line, and can cause the light emitting element to emit light at a normal light emission timing.
  • each of the light emitting pixels has one terminal connected to another circuit element included in the driving circuit layer, and the other terminal connected to the conductive line. It is preferable to provide a lead wire connected to the plurality of electrode block layers.
  • a defective light emitting pixel due to a capacitive element is predominantly due to a short circuit. Therefore, by removing only defective electrode blocks in which unnecessary particles or the like are generated, light emitting pixel defects caused by the capacitive elements are almost eliminated.
  • the defective electrode block can be separated from other electrode blocks and lead-out wiring by cutting a part of the conductive wire. It can be electrically insulated.
  • the normal electrode block is connected to the lead-out wiring through the uncut portion of the conductive wire, the connection between the capacitive element and other circuit elements is ensured. Therefore, the corrected capacitive element has a function as an electrostatic holding capacity of the light emitting pixel.
  • the capacitor is a storage capacitor that holds a voltage corresponding to a signal voltage applied to each of the light emitting pixels as a storage voltage.
  • the driving circuit layer a gate and one terminal of the capacitor are connected, and the holding voltage is applied to the gate to convert the holding voltage into a signal current that is a source-drain current.
  • the light emitting layer includes a light emitting element that emits light when the signal current flows.
  • the present invention can be realized not only as an image display apparatus provided with such characteristic means, but also as a method for manufacturing an image display apparatus using the characteristic means included in the image display apparatus as a step. be able to.
  • the present invention can be realized not only as an image display apparatus including such characteristic means and a manufacturing method including the characteristic means as steps, but also in the manufacturing stage or after completion of the above-described image display apparatus.
  • the conductive wire By irradiating the conductive wire with a laser, it can be realized as a method for correcting the image display device.
  • an image display device composed of an organic EL element having a top emission type anode (anode) on the bottom surface and a cathode (cathode) on the top surface
  • anode anode
  • cathode cathode
  • a plurality of light-emitting pixels in which a light-emitting layer and a drive circuit layer that drives the light-emitting layer are stacked are two-dimensionally arranged.
  • a parallel plate type capacitive element having two electrode layers facing each other in the stacking direction is provided, and one electrode layer of the two electrode layers is composed of a plurality of electrode block layers divided in the plane direction.
  • the electrode block layers are connected by one or more conductive lines in the same plane, and the other electrode layer of the two electrode layers is in a region excluding the region where the conductive lines are projected in the stacking direction. It is a single flat plate shape common in the surface direction.
  • an electrode block in which unnecessary particles or the like are generated and the electrodes are short-circuited can be separated from the capacitive element by laser irradiation of the conductive wire.
  • FIG. 1A is a block diagram showing a configuration of an image display apparatus according to Embodiment 1 of the present invention.
  • the image display device 1 in FIG. 1 includes a display panel 10 and a control circuit 20.
  • the display panel 10 includes a plurality of light emitting pixels 11, a plurality of signal lines 12 arranged for each light emitting pixel column, a plurality of scanning lines 13 arranged for each light emitting pixel row, a scanning line driving circuit 14, and a signal.
  • the light emitting pixels 11 are arranged in a matrix on the display panel 10.
  • the scanning line driving circuit 14 outputs a scanning signal to each scanning line 13 to drive circuit elements included in the light emitting pixels.
  • the signal line driving circuit 15 outputs a signal voltage and a reference voltage to the signal line 12, thereby realizing light emission of the light emitting pixel corresponding to the luminance signal.
  • the control circuit 20 controls the output timing of the scanning signal output from the scanning line driving circuit 14. Further, the control circuit 20 controls the timing at which the signal voltage output from the signal line driving circuit 15 is output.
  • FIG. 1B is a main circuit configuration diagram of the luminescent pixel according to Embodiment 1 of the present invention.
  • the light emitting pixel 11 shown in the figure includes a drive circuit layer 11A and a light emitting layer 11B.
  • the drive circuit layer 11A includes, for example, a switching transistor 21, a drive transistor 22, and a storage capacitor 23.
  • the drain electrode of the switching transistor 21 is connected to the signal line 12, the gate electrode of the switching transistor 21 is connected to the scanning line 13, and the source electrode of the switching transistor 21 is connected to the gate electrodes of the storage capacitor element 23 and the driving transistor 22.
  • the drain electrode of the drive transistor 22 is connected to the power supply Vdd, and the source electrode is connected to the anode of the light emitting layer 11B.
  • the signal voltage supplied via the signal line 12 is written to the storage capacitor element 23.
  • the holding voltage written in the holding capacitor element 23 is held for one frame period, and the holding voltage changes the conductance of the driving transistor 22 in an analog manner, so that the driving current corresponding to the light emission gradation is changed to the light emitting layer 11B.
  • the drive current supplied to the anode of the light emitting layer 11B flows to the organic EL element 24 and the cathode of the light emitting layer 11B. Thereby, the organic EL element 24 of the light emitting layer 11B emits light and is displayed as an image.
  • the drive circuit layer 11A is not limited to the circuit configuration described above. That is, the switching transistor 21, the drive transistor 22, and the storage capacitor element 23 are circuit components necessary for flowing a drive current corresponding to the voltage value of the signal voltage to the light emitting layer 11B, but are not limited to the above-described form. Further, a case where another circuit component is added to the circuit components described above is also included in the drive circuit layer 11A according to the present invention.
  • FIG. 2 is a structural cross-sectional view of the luminescent pixel according to Embodiment 1 of the present invention.
  • the light emitting pixel 11 shown in the figure includes a substrate 100, a drive circuit layer 11A, a light emitting layer 11B, and a transparent sealing film 110.
  • the substrate 100 is, for example, a glass substrate.
  • the substrate 100 can also be a flexible substrate made of resin.
  • TFT thin film transistor
  • the substrate 100 does not need to be transparent, and a non-transparent substrate, for example, a silicon substrate can be used.
  • the drive circuit layer 11A includes a drive transistor 22 formed on the substrate 100, a storage capacitor element 23, planarization films 101 and 102, and a switching transistor 21 (not shown).
  • the driving transistor 22 is a TFT formed on the substrate 100.
  • the driving transistor 22 includes a drain electrode 220, a source electrode 221, a semiconductor layer 222 formed in contact with the source electrode 221 and the drain electrode 220, a gate insulating film 223 formed on the semiconductor layer 222, and a gate insulating film 223. It is comprised from the gate electrode 224 formed on the top.
  • the holding capacitor element 23 is a parallel plate type capacitor element sandwiched between electrode layers 231 and 232 facing each other in the stacking direction.
  • the electrode layer 231 is connected to the gate electrode 224 in the drive circuit layer 11A.
  • the electrode layer 232 is connected to the power supply Vdd.
  • the material of the electrode layer 231 is, for example, an alloy of molybdenum (Mo) and tungsten (W), and the film thickness is, for example, 150 nm.
  • Mo molybdenum
  • W tungsten
  • the film thickness is, for example, 150 nm.
  • As a material of the electrode layer 232 for example, an alloy of Mo and W / aluminum (Al) / a laminated structure of an alloy of Mo and W has a total film thickness of, for example, 150 nm.
  • An insulating layer 233 is formed between the electrode layers 231 and 232.
  • the insulating layer 233 include a silicon oxide film (SiOx) or a silicon nitride film (SiN).
  • the film thickness of the insulating layer 233 is, for example, 150 nm.
  • the insulating layer 233 may be a dielectric material in order to ensure a desired capacitance.
  • the switching transistor 21 is formed in the drive circuit layer with the same structure as that of the drive transistor 22 although it is not shown in the cross-sectional view of this structure.
  • the gate electrode 224 of the drive transistor 22 and the source electrode of the switching transistor 21 are electrically connected to each other by a wiring not shown.
  • flattening films 101 and 102 are formed so as to cover the switching transistor 21, the drive transistor 22, and the storage capacitor 23 described above.
  • planarization film 102 The flatness of the upper surface of the drive circuit layer 11A is ensured by the planarization film 102.
  • the material of the planarization films 101 and 102 is, for example, a silicon oxide film formed by a CVD method or a sputtering method.
  • the planarized films 101 and 102 are formed by planarizing the surface of the formed silicon oxide film by, for example, a CMP (Chemical Mechanical Polishing) method.
  • the light emitting layer 11B includes an anode 103, a hole injection layer 104, a hole transport layer 105, an organic light emitting layer 106, a bank layer 107, an electron injection layer 108, and a transparent cathode 109.
  • the light emitting pixel 11 shown in FIG. 2 has a top emission structure. That is, when a voltage is applied to the light emitting layer 11B, light is generated in the organic light emitting layer 106, and light is emitted upward through the transparent cathode 109 and the transparent sealing film 110. Further, the light emitted from the organic light emitting layer 106 directed downward is reflected by the anode 103, and the light is emitted upward through the transparent cathode 109 and the transparent sealing film 110.
  • the anode 103 is an electrode that is laminated on the surface of the planarizing film 102 of the drive circuit layer 11A and applies a positive voltage to the light emitting layer 11B with respect to the transparent cathode 109.
  • the anode 103 and the source electrode 221 of the drive transistor 22 are connected by a via formed in the drive circuit layer 11A.
  • an anode material constituting the anode 103 for example, Al, Ag, or an alloy thereof, which is a highly reflective metal, is preferable.
  • the thickness of the anode 103 is, for example, 100 to 300 nm.
  • the hole injection layer 104 is formed on the surface of the anode 103 and has a function of injecting holes into the organic light emitting layer 106 stably or by assisting hole generation. Thereby, the drive voltage of the light emitting layer 11B is lowered, and the lifetime of the element is extended by stabilizing the hole injection.
  • a material of the hole injection layer 104 for example, PEDOT (polyethylenedioxythiophene) can be used.
  • the hole injection layer 104 is required to have optical transparency. The greater the thickness of the hole injection layer 104, the lower the reflectivity of the hole injection layer 104. Therefore, the thickness of the hole injection layer 104 is preferably about 10 nm to 100 nm, for example.
  • the hole transport layer 105 is formed on the surface of the hole injection layer 104, efficiently transports holes injected from the hole injection layer 104 into the organic light emitting layer 106, and the organic light emitting layer 106 and hole injection. It has a function of preventing deactivation of excitons at the interface with the layer 104 and blocking electrons.
  • the hole transport layer 105 is, for example, an organic polymer material having a property of transferring generated holes by intermolecular charge transfer reaction, and examples thereof include triferamine and polyaniline. Further, the thickness of the hole transport layer 105 is, for example, about 5 to 50 nm. Further, it is preferable that a cross-linking agent is included so that the organic light-emitting layer 106 as the upper layer is not easily eluted when formed.
  • hole transport layer 105 may be omitted depending on the material of the hole injection layer 104 and the organic light emitting layer 106 which are adjacent layers.
  • the organic light emitting layer 106 is formed on the surface of the hole transport layer 105 and has a function of emitting light by generating an excited state by injecting holes and electrons and recombining them.
  • the organic light emitting layer 106 it is preferable to use a light emitting organic material that can be formed by a wet film forming method such as ink jet or spin coating. Thereby, simple and uniform film formation is possible on a large-screen substrate. Although it does not specifically limit as this material, A polymeric organic material is preferable. Features of the polymer organic material include a simple device structure, excellent film reliability, and a low-voltage driven device.
  • a polymer having a conjugated system such as an aromatic ring or a condensed ring or a ⁇ -conjugated polymer has fluorescence
  • it can be used as a polymer organic material constituting the organic light emitting layer 106.
  • the polymer light emitting material constituting the organic light emitting layer 106 include polyphenylene vinylene (PPV) or a derivative thereof (PPV derivative), polyfluorene (PFO) or a derivative thereof (PFO derivative), and a polyspirofluorene derivative. Can do. It is also possible to use polythiophene or a derivative thereof.
  • the bank layer 107 is formed on the surface of the hole injection layer 104 and has a function as a bank for forming the hole transport layer 105 and the organic light emitting layer 106 formed by a wet film formation method in a predetermined region.
  • the material used for the bank layer 107 may be either an inorganic substance or an organic substance, but the organic substance is generally more preferable because it has a higher water repellency. Examples of such materials include resins such as polyimide and polyacryl.
  • a method for patterning the bank layer 107 is not particularly limited, but it is preferable to apply a photolithography method using a photosensitive material.
  • the thickness of the bank layer 107 is, for example, about 100 to 3000 nm.
  • the electron injection layer 108 is formed on the organic light emitting layer 106, reduces the barrier for electron injection into the organic light emitting layer 106, lowers the driving voltage of the light emitting layer 11B, and suppresses exciton deactivation. Have As a result, it is possible to stabilize the electron injection and prolong the life of the device, enhance the adhesion with the transparent cathode 109, improve the uniformity of the light emitting surface, and reduce device defects.
  • the electron injection layer 108 is not particularly limited, but is preferably made of barium, aluminum, phthalocyanine, lithium fluoride, and a barium-aluminum laminate. The thickness of the electron injection layer 108 is, for example, about 2 to 50 nm.
  • the transparent cathode 109 is laminated on the surface of the electron injection layer 108, and has a function of applying a negative voltage to the light emitting layer 11B with respect to the anode 103 to inject electrons into the device (particularly the organic light emitting layer 106).
  • the transparent cathode 109 is not particularly limited, but it is preferable to use a substance and structure having a high transmittance. Thereby, a top emission organic EL element with high luminous efficiency can be realized.
  • the configuration of the transparent cathode 109 is not particularly limited, but a metal oxide layer is used.
  • the metal oxide layer is not particularly limited, and a layer made of indium tin oxide (hereinafter referred to as ITO) or indium zinc oxide (hereinafter referred to as IZO) is used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the thickness of the transparent cathode 109 is, for example, about 5 to 200 nm.
  • the transparent sealing film 110 is formed on the surface of the transparent cathode 109 and has a function of protecting the element from moisture. Further, the transparent sealing film 110 is required to be transparent.
  • the transparent sealing film 110 is made of, for example, SiN, SiON, or an organic film.
  • the thickness of the transparent sealing film 110 is, for example, about 20 to 5000 nm.
  • the image display device 1 has a function as an active matrix display device.
  • FIG. 3 is an electrode configuration diagram of a storage capacitor element included in the image display apparatus according to Embodiment 1 of the present invention. This figure includes a top view of the electrode layers 231 and 232 facing each other in the stacking direction, and a top perspective view of the storage capacitor element 23 formed by overlapping both electrodes vertically. Although not shown, an insulating layer 233 is formed between the electrode layers 231 and 232.
  • the electrode layer 232 formed in the upper part is composed of four electrode block layers 232A to 232D divided in the plane direction.
  • the electrode block layers 232A to 232D are connected by a conductive line 234 in the same plane.
  • the electrode layer 231 formed in the lower part is formed in a region excluding the region R where the conductive lines 234 are projected in the stacking direction. That is, the electrode layer 231 is not formed in the region R facing the conductive line 234. In the present embodiment, the region R is positively formed inside the region where the electrode layer 231 is formed.
  • the conductive wire 234 formed on the plane of the electrode layer 232 is irradiated with a laser, it is assumed that the laser reaches the plane of the electrode layer 231 and damages the electrode layer. The region including the region where the laser reaches the plane of the electrode layer 231 and damages the plane.
  • the storage capacitor element 23 it is possible to separate the electrode block layer, which generates unnecessary particles and the like and causes a short-circuit between the electrodes, from the capacitor element by irradiating the conductive wire 234 with laser. .
  • the electrode layer 231 is not formed in the region R facing the conductive line 234. Therefore, there is a possibility that the laser beam reaches the region R by laser irradiation to the conductive line 234 from a direction substantially perpendicular to the surface of the electrode layer 232, but the region constituting the capacitor element, that is, the electrode layer 231 is not damaged.
  • lead wirings for connecting the electrode layer 232 and other circuit elements are described.
  • the lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234.
  • a defective light emitting pixel due to a capacitive element is predominantly due to a short circuit. Therefore, by removing only one electrode block in which unnecessary particles or the like are generated, light emitting pixel defects caused by the capacitive element are almost eliminated. Therefore, according to the connection of the extraction wiring, only one electrode block among the electrode block layers 232A to 232D can be electrically insulated from the other electrode blocks and the extraction wiring. Further, even if only one of the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitive element having a normal function. Therefore, the corrected capacitive element has a function as an electrostatic holding capacity of the light emitting pixel.
  • FIG. 4A is a diagram showing a state in which a predetermined electrode block layer is cut by irradiating a laser to the storage capacitor element according to Embodiment 1 of the present invention.
  • the storage capacitor element 23 is divided into electrode blocks composed of C1 to C4.
  • the electrode block C4 causes a short circuit failure, it is applied between the electrode layers 231 and 232.
  • the charge to be accumulated in the storage capacitor element 23 due to the voltage is not held by the current path formed in the electrode block C4.
  • FIG. 4B is an equivalent circuit diagram of the storage capacitor element according to Embodiment 1 of the present invention.
  • the capacitance of the storage capacitor element 23 is a value obtained by adding the capacitance of each electrode block.
  • the electrode block C4 is made electrically nonfunctional from the storage capacitor element 23 as a capacitor element. Is possible.
  • the laser beam is emitted from a direction substantially perpendicular to the film surface with respect to the two conductive lines 234L connected to the electrode block C4. Irradiated.
  • L indicates the locus of the laser beam, and the conductive line 234L is cut by the laser beam.
  • the electrode block layer 232D which is a region corresponding to the electrode block C4 in the upper electrode layer 232 is electrically insulated from other regions in the electrode layer 232.
  • the electrode that constitutes the capacitor element is not formed in the region where the conductive line 234L is projected in the stacking direction (region R in FIG. 3), an electrode layer or an insulating layer related to the capacitance holding function Will not damage.
  • the holding capacitor element 23 can function normally as a capacitor element in which the electrode blocks C1 to C3 are connected in parallel.
  • the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
  • the pattern of the electrode layers 231 and 232 may be replaced and laser processing of the electrode layer 231 formed in the lower part may be performed.
  • FIG. 4C is a structural cross-sectional view illustrating the case where the storage capacitor element according to Embodiment 1 of the present invention is irradiated with laser from the lower surface side.
  • the laser irradiation method from the lower surface shown in FIG. 4C is compared with the laser irradiation method from the upper surface shown in FIG. 4A, and the storage capacitor formed after the light emitting layer 11B is formed on the drive circuit layer 11A. This is advantageous in the modification of the element 23. This is because the laser irradiation method from the lower surface can eliminate the possibility of damaging the light emitting layer 11B due to the passage of the laser in that the laser does not pass through the light emitting layer 11B.
  • the manufacturing method of the image display device 1 of the present invention differs from the conventional manufacturing method of the image display device only in the formation process of the storage capacitor element 23.
  • the description of the same points as in the conventional method of manufacturing an image display device is omitted, and only different points will be described below.
  • an electrode layer 231 made of, for example, an alloy of Mo and W is formed at a predetermined position using a technique such as metal mask deposition, lift-off, and etching. At this time, the electrode layer 231 and the gate electrode of the switching transistor 21 are connected by a metal wiring.
  • an insulating layer 233 made of, for example, SiOx or SiN is formed on the electrode layer 231 so as to cover the electrode layer 231. At this time, the surface of the insulating layer 233 is preferably planarized as necessary.
  • an electrode layer 232 having a laminated structure of, for example, an alloy of Mo and W / an alloy of Al / Mo and W is formed on the insulating layer 233 by using a method such as metal mask deposition, lift-off, and etching. Are formed at predetermined positions.
  • the planar pattern of the electrode layer 232 is composed of a plurality of divided electrode block layer regions, and these electrode block layer regions are connected by conductive lines within the same plane.
  • the electrode layer 231 formed in the lower part is formed in a region excluding the region where the conductive line 234 is projected in the stacking direction. That is, when the electrode layer 231 is formed, the electrode layer 231 is formed using the patterning method so that the region R illustrated in FIG. 3 is included in the inner region of the electrode layer 231.
  • the storage capacitor element 23 is formed in the drive circuit layer 11A by the above manufacturing method.
  • the electrode block in which unnecessary particles or the like are generated can be separated from the capacitive element by laser irradiation of the conductive wire.
  • the electrode constituting the capacitor element is not formed in the region where the conductive line 234 is projected in the stacking direction (region R shown in FIG. 3), the region constituting the capacitor element by laser irradiation to the conductive line. Can be avoided.
  • FIG. 5 is an electrode configuration diagram of a storage capacitor element showing a first modification according to Embodiment 1 of the present invention.
  • a top view of the electrode layers 231 and 232 facing each other in the stacking direction and a top perspective view of the storage capacitor element 23 formed by overlapping both electrode layers vertically are described.
  • an insulating layer 233 is formed between the electrode layers 231 and 232.
  • the storage capacitor element 23 shown in the figure is different from the storage capacitor element shown in FIG. 3 in the connection position of the conductive line and the shape of the electrode layer 231 corresponding to the connection position.
  • description of the same points as those of the storage capacitor element illustrated in FIG. 3 will be omitted, and only the same points will be described.
  • the conductive wire 234 is disposed on the outer periphery of the electrode layer 232 and connects the electrode block layers.
  • the region where the conductive wire 234 is projected in the stacking direction is not formed, and the region is formed outside the electrode layer 231.
  • the electrode block in which unnecessary particles or the like are generated can be separated from the capacitor element by irradiating the conductive wire 234 with a laser.
  • the electrode layer is formed in a region excluding the region where the conductive line 234 is projected in the stacking direction, it is possible to avoid damaging the region forming the capacitor element by irradiating the conductive line 234 with a laser.
  • a lead-out wiring for connecting the electrode layer 232 and other circuit elements is described.
  • the lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234.
  • a defective light emitting pixel due to a capacitive element is predominantly due to a short circuit. Therefore, by removing only one electrode block in which unnecessary particles or the like are generated, light emitting pixel defects caused by the capacitive element are almost eliminated. Therefore, according to the connection of the extraction wiring, only one electrode block among the electrode block layers 232A to 232D can be electrically insulated from the other electrode blocks and the extraction wiring. Further, even if only one of the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitive element having a normal function. Therefore, the corrected capacitive element has a function as an electrostatic holding capacitive element of the light emitting pixel.
  • the conductive wire 234L connected to the electrode block C4 is irradiated with laser
  • the holding capacitor element 23 can function normally as a capacitor element in which the electrode blocks C1 to C3 are connected in parallel.
  • the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
  • the example in which the electrode layer 232 formed on the upper part is processed has been described.
  • the pattern of the electrode layers 231 and 232 is replaced, and the electrode layer 231 formed on the lower part is subjected to laser processing. Also good.
  • the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10.
  • FIG. 6 is an electrode configuration diagram of a storage capacitor element showing a second modification according to Embodiment 1 of the present invention.
  • a top view of the electrode layers 231 and 232 facing each other in the stacking direction and a top perspective view of the storage capacitor element 23 formed by overlapping both electrode layers vertically are described.
  • an insulating layer 233 is formed between the electrode layers 231 and 232.
  • the storage capacitor element 23 shown in the figure differs from the storage capacitor element shown in FIG. 3 in the formation position of the conductive line 234.
  • description of the same points as those of the storage capacitor element illustrated in FIG. 3 will be omitted, and only the same points will be described.
  • the conductive wire 234 is disposed in the region of the electrode layer 232 and on the outer peripheral portion of the region, and connects the electrode blocks.
  • the electrode layer 231 formed in the lower part is formed in a region excluding the region R where the conductive lines 234 are projected in the stacking direction. That is, the electrode layer 231 is not actively formed in the region R facing the conductive line 234. In the present embodiment, the region R is formed in the outer edge portion in the region where the electrode layer 231 is formed.
  • the electrode block layer in which unnecessary particles or the like are generated can be separated from the capacitor element by irradiating the conductive wire 234 with laser.
  • the region constituting the capacitive element that is, the electrode layer 231 is damaged by laser irradiation to the conductive wire 234 from a direction substantially perpendicular to the surface of the electrode layer 232. Can be avoided.
  • a lead-out wiring for connecting the electrode layer 232 and other circuit elements is described.
  • the lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234. Therefore, according to the connection of the extraction wiring, only one electrode block among the electrode block layers 232A to 232D can be electrically insulated from the other electrode blocks and the extraction wiring. Further, even if only one of the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitive element having a normal function. Therefore, the corrected storage capacitor element has a function as an electrostatic storage capacitor element of the light emitting pixel.
  • the conductive wire 234L connected to the electrode block C4 is held by laser irradiation.
  • the capacitive element 23 can function normally as a capacitive element in which the electrode blocks C1 to C3 are connected in parallel.
  • the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
  • the region R that is assumed to be damaged by laser irradiation is more actively included in the region of the electrode layer 231 than the storage capacitor device illustrated in FIG. Secured. Therefore, it is not necessary to secure a wiring formation region outside the periphery of the region where the electrode layer 231 is formed.
  • the storage capacitor element shown in FIG. 5 when the storage capacitor element shown in FIG. 5 is configured, it is necessary to secure a wiring area outside the periphery, and in consideration of avoiding damage to the peripheral circuit element due to laser irradiation, An interval from the storage capacitor element must be secured.
  • the configuration of the storage capacitor element 23 of the present modification the area can be saved while avoiding damage to the storage capacitor element due to laser irradiation.
  • the configuration of the storage capacitor element 23 of the present modification is excellent in the area efficiency of the capacitance to be secured as compared with the storage capacitor element shown in FIG. Hereinafter, this effect will be described.
  • FIG. 6 is an enlarged view of a portion where the region R and the conductive wire 234 overlap each other in the top perspective view of the storage capacitor element described in FIG.
  • the region R arranged in the left-right direction of the electrode layer 231 is considered so that the electrode layer 231 is not damaged by the laser irradiation to the conductive line 234 and the pattern mask shift in the overlapping process of the region R and the conductive line 234 is taken into consideration.
  • the regions R5 and R6 facing the region R secured in the storage capacitor element shown in FIG. 6 are regions facing the region R secured in the storage capacitor device shown in FIG. It is smaller than R1 and R2. Similarly, the regions R7 and R8 are smaller than the regions R3 and R4, respectively. Accordingly, since the storage capacitor element 23 shown in FIG. 6 can suppress the area of the electrode layer eroded by securing the region R, the area of the electrode layer 232 composed of a plurality of electrode block layers is reduced. On the other hand, the area efficiency of the capacitance to be secured is high.
  • the conductive wire 234 is preferably formed not on the outside of the electrode layer 232 but on the outer edge of the electrode layer 232.
  • the region R formed so that the electrode layer 231 is not damaged by laser irradiation is formed not in the outer region of the electrode layer 231 but in the outer edge region of the electrode layer 231. It is preferable.
  • the conductive line irradiated with the laser is formed on the outer periphery of the electrode layer 232 as compared with the configuration of the storage capacitor element shown in FIG. Can be shortened. Therefore, since the delay of charging / discharging by the lead-out wiring is suppressed, it is possible to improve the charge / discharge characteristics of signal charges.
  • the example in which the electrode layer 232 formed on the upper part is processed has been described.
  • the pattern of the electrode layers 231 and 232 is replaced, and the electrode layer 231 formed on the lower part is subjected to laser processing. Also good.
  • the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10.
  • FIG. 7 is an electrode configuration diagram of a storage capacitor element showing a third modification according to Embodiment 1 of the present invention. 6, similarly to FIG. 6, a top view of the electrode layers 231 and 232 facing each other in the stacking direction, and a top perspective view of the storage capacitor element 23 formed by overlapping both electrode layers vertically are described. . Although not shown, an insulating layer 233 is formed between the electrode layers 231 and 232.
  • the storage capacitor element 23 shown in the figure is different from the storage capacitor element shown in FIG. 6 in the connection position of the conductive line and the shape of the electrode layer 231 corresponding to the connection position.
  • description of the same points as those of the storage capacitor element illustrated in FIG. 6 will be omitted, and only the same points will be described.
  • the conductive wire 234 is arranged outside the region of the electrode layer 232 and around the region, and connects the electrode block layers.
  • a region where the conductive wire 234 is projected in the stacking direction is not formed, and the region is formed in the outer peripheral portion of the electrode layer 231.
  • the electrode block in which unnecessary particles or the like are generated can be separated from the capacitor element by irradiating the conductive wire 234 with a laser.
  • the electrode layer is formed in a region excluding the region where the conductive line 234 is projected in the stacking direction, it is possible to avoid damaging the region forming the capacitor element by irradiating the conductive line 234 with a laser.
  • a lead-out wiring for connecting the electrode layer 232 and other circuit elements is described.
  • the lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234. Therefore, according to the connection of the lead lines, only one of the electrode block layers 232A to 232D can be electrically insulated from the other electrode block layers and the lead lines. Further, even if only one electrode block layer among the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitor element having a normal function. Therefore, the corrected capacitive element has a function as an electrostatic holding capacitive element of the light emitting pixel.
  • the conductive wire 234L connected to the electrode block C4 is irradiated with laser
  • the holding capacitor element 23 can function normally as a capacitor element in which the electrode blocks C1 to C3 are connected in parallel.
  • the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
  • the example in which the electrode layer 232 formed on the upper part is processed has been described.
  • the pattern of the electrode layers 231 and 232 is replaced, and the electrode layer 231 formed on the lower part is subjected to laser processing. Also good.
  • the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10.
  • FIG. 8 is an operation flowchart showing a correction method for the image display device according to the second embodiment of the present invention.
  • the electrical characteristics of the storage capacitor element 23 are inspected for all the light emitting pixels 11, and the light emitting pixel 11 having the storage capacitor element 23 in a short-circuited state is specified (S10).
  • an array tester (Agilent: HS100) is connected to the signal line 12, a test voltage is sequentially output to each light emitting pixel 11 via the signal line 12, and the voltage is written in the storage capacitor element 23.
  • the array tester reads the voltage written in the storage capacitor element 23 through the signal line 12 at a predetermined timing. Thereby, the light emitting pixel 11 whose read voltage is less than the predetermined voltage is specified. Thereby, the pixel limiting process of the light emitting pixel having the abnormal storage capacitor element 23 is completed.
  • the storage capacitor element 23 of the specified light emitting pixel 11 is observed, and the region of the abnormal part is specified (S20). Specifically, for example, the surface irregularity shape of the region where the storage capacitor element 23 is formed is observed with a microscope. A region where conductive particles are unevenly distributed often has a convex shape. Thereby, the area limitation process of the abnormal storage capacitor element 23 is completed, and the abnormal electrode block is specified.
  • this area limitation process may be executed by an inspector, or may be executed by automatic measurement having an image recognition function.
  • a part of the conductive wire 234 connected to the electrode block layer including the specified abnormal portion is irradiated with a laser to electrically insulate the electrode block layer from other electrode block layers (S30).
  • the shape that can be cut by irradiating a part of the conductive wire 234 is closely related to the specifications of the laser used, for example, a laser using a YAG (Yttrium Aluminum Garnet) laser as a light source.
  • examples of the material of the conductive wire 234 include the above-described laminated structure of an alloy of Mo and W / aluminum (Al) / alloy of Mo and W.
  • the light emitting pixel that is abnormal when the storage capacitor element is formed can hold a voltage corresponding to the signal voltage from the signal line, and the light emitting element can emit light at a normal light emission timing. Become. Therefore, the display quality of the light emitting panel is improved.
  • the method for correcting the image display device illustrated in FIG. 8 is applied during the manufacturing process of the image display device 1 or after the manufacturing process is completed.
  • the image display device 1 may be implemented when the upper electrode layer 232 is formed or when the planarization film 102 is formed. It may be performed at the stage where the sealing film 110 is formed.
  • the image display device, the manufacturing method, and the correction method of the present invention have been described based on the embodiments. However, the image display device, the manufacturing method, and the correction method according to the present invention are limited to the above embodiments. It is not done.
  • the present invention is different from Embodiment 1 and its modified examples, and other embodiments realized by combining arbitrary components in Embodiment 2, as well as Embodiment 1 and its modified examples and Embodiment 2. Modifications obtained by various modifications conceived by those skilled in the art without departing from the spirit of the present invention, and various apparatuses incorporating the image display device according to the present invention are also included in the present invention.
  • the example in which the electrode layer 232 constituting the storage capacitor element 23 is divided into four electrode blocks has been described.
  • the number of divisions of the electrode blocks depends on the defect rate of the light emitting pixels 11 and the required number.
  • any number of divisions of 2 or more may be used.
  • the short-circuit between the electrodes due to particles unevenly distributed between the electrodes is cited as a cause of the defective storage capacitor, but the short-circuit in the present embodiment is not limited to a complete short circuit.
  • a short circuit includes a small resistance value and capacitance value such as point contact between particles.
  • the image display apparatus according to the present invention is built in a thin flat TV as shown in FIG. Thereby, a light emitting pixel that does not emit light at normal light emission timing is corrected, and a thin flat TV with improved display panel quality is realized.
  • the image display device of the present invention is useful in technical fields such as flat-screen televisions and personal computer displays that require a large screen and high resolution.
  • SYMBOLS 1 Image display apparatus 10 Display panel 11 Light emission pixel 11A Drive circuit layer 11B Light emission layer 12 Signal line 13 Scan line 14 Scan line drive circuit 15 Signal line drive circuit 20 Control circuit 21 Switching transistor 22 Drive transistor 23 Holding capacity element 24 Organic EL element DESCRIPTION OF SYMBOLS 100 Substrate 101, 102 Planarization film 103 Anode 104 Hole injection layer 105 Hole transport layer 106 Organic light emitting layer 107 Bank layer 108 Electron injection layer 109 Transparent cathode 110 Transparent sealing film 220 Drain electrode 221 Source electrode 222 Semiconductor layer 223 Gate Insulating film 224 Gate electrode 231, 232 Electrode layer 232A, 232B, 232C, 232D Electrode block layer 233 Insulating layer 234, 234L Conductive line

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are an image display apparatus in which a defective light emitting pixel having a capacitance element which is defective due to a short-circuit, a manufacturing method thereof, and a correction method therefor. An image display apparatus has a plurality of light emitting pixels which comprises a light emitting layer and a drive circuit layer superimposed thereon to drive the light emitting layer and which are arrayed in a two-dimensional arrangement. The drive circuit layer comprises a parallel plate type capacitance element (23) comprised of electrode layers (231, 232) which are opposed to each other in the superimposition direction and the electrode layer (232) is formed of a plurality of electrode block layers (232A to 232D) which are divided in a plane direction. The plurality of electrode block layers (232A to 232D) are interconnected by a conductor (234) in the same plane. The electrode layer (231) is in the form of a single common planar plate formed in an area other than an area in which the conductor (234) is projected in the superimposition direction.

Description

画像表示装置、その製造方法及び修正方法Image display device, manufacturing method thereof and correction method thereof
 本発明は、画像表示装置、その製造方法及び修正方法に関し、特に修正可能な画素構造を有する画像表示装置、その製造方法及び修理方法に関する。 The present invention relates to an image display device, a manufacturing method thereof, and a correction method, and more particularly to an image display device having a correctable pixel structure, a manufacturing method thereof, and a repair method thereof.
 電流駆動型の発光素子を用いた画像表示装置として、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す。)を用いた有機ELディスプレイが知られている。この有機ELディスプレイは、視野角特性が良好で、消費電力が少ないという利点を有するため、次世代のFPD(Flat Panal Display)候補として注目されている。 2. Description of the Related Art An organic EL display using an organic electroluminescence element (hereinafter referred to as an organic EL element) is known as an image display apparatus using a current-driven light emitting element. Since this organic EL display has the advantages of good viewing angle characteristics and low power consumption, it has attracted attention as a next-generation FPD (Flat Pan Display) candidate.
 通常、画素を構成する有機EL素子はマトリクス状に配置される。例えば、アクティブマトリクス型の有機ELディスプレイでは、複数の走査線と複数のデータ線との交点に薄膜トランジスタ(TFT:Thin Film Transistor)が設けられ、このTFTに保持容量素子(コンデンサ)及び駆動トランジスタのゲートが接続されている。そして、選択した走査線を通じてこのTFTをオンさせ、データ線からのデータ信号を駆動トランジスタ及び保持容量素子に入力し、その駆動トランジスタ及び保持容量素子によって有機EL素子の発光タイミングを制御する。この画素駆動回路の構成により、アクティブマトリクス型の有機ELディスプレイでは、次の走査(選択)まで有機EL素子を発光させることが可能であるため、デューティ比が上がってもディスプレイの輝度減少を招くようなことはない。しかしながら、アクティブマトリクス型の有機ELディスプレイに代表されるように、発光画素の駆動回路構成が複雑になるほど、また、発光画素数が増加するほど、微細加工を必要とする製造工程において、回路素子や配線の短絡や開放といった電気的な不具合が発生してしまう。 Usually, the organic EL elements constituting the pixels are arranged in a matrix. For example, in an active matrix organic EL display, a thin film transistor (TFT) is provided at the intersection of a plurality of scanning lines and a plurality of data lines, and a holding capacitor element (capacitor) and a gate of a driving transistor are provided on the TFT. Is connected. Then, the TFT is turned on through the selected scanning line, a data signal from the data line is input to the driving transistor and the holding capacitor element, and the light emission timing of the organic EL element is controlled by the driving transistor and the holding capacitor element. With this pixel drive circuit configuration, in an active matrix organic EL display, the organic EL element can emit light until the next scanning (selection), so that even if the duty ratio is increased, the luminance of the display is reduced. There is nothing wrong. However, as represented by an active matrix organic EL display, in a manufacturing process that requires fine processing as the driving circuit configuration of the light emitting pixels becomes more complicated and the number of light emitting pixels increases, circuit elements and Electrical problems such as short-circuiting and opening of wiring will occur.
 特に、有機ELパネルでは、画素駆動回路を構成する保持容量素子の素子面積が相対的に広い。従って、この保持容量素子は、電極間に存在するパーティクルなどの影響を受けやすく、ショート不良を発生させることにより画素不良率を高くする要因となっている。 In particular, in the organic EL panel, the element area of the storage capacitor element constituting the pixel drive circuit is relatively large. Therefore, this storage capacitor element is easily affected by particles or the like existing between the electrodes, and causes a short-circuit defect to increase the pixel defect rate.
 一方、画素駆動回路素子や配線の形成後に、不具合が生じた発光画素を修正する方法が提案されている。特許文献1では、回路素子の短絡等により常に発光状態となり輝点化された不良発光画素を修正するために、全ての発光画素領域に、他の導電部及び配線から離間して接続された非重畳部が設けられている。不良発光画素については、この非重畳部にレーザーを照射することにより、当該非重畳部を切断する。これにより、不良画素は、電気信号の伝達が遮断され、しかも、レーザー照射によるダメージを受けることなく滅点化される。 On the other hand, there has been proposed a method for correcting a defective light emitting pixel after formation of a pixel driving circuit element or wiring. In Patent Document 1, in order to correct defective light-emitting pixels that are always in a light-emitting state due to a short circuit of a circuit element or the like and become bright spots, all the light-emitting pixel regions are connected to other non-conductive parts and wirings apart from each other. An overlapping part is provided. For the defective light emitting pixels, the non-overlapping portion is cut by irradiating the non-overlapping portion with laser. As a result, the defective pixel is blocked from transmission of electrical signals, and is darkened without being damaged by laser irradiation.
 また、特許文献2では、各発光画素の発光領域に形成された画素電極が、複数のセルが接続された構成をとり、その接続箇所の一部をレーザーで切断することにより、不良の発光セルのみを電気絶縁して滅点化している。 Further, in Patent Document 2, a pixel electrode formed in a light emitting region of each light emitting pixel has a configuration in which a plurality of cells are connected, and a defective light emitting cell is cut by cutting a part of the connection portion with a laser. Only the electrical insulation is used to darken the points.
特開2008-203636号公報JP 2008-203636 A 特開2007-66904号公報JP 2007-66904 A
 しかしながら、画素不良率の主要因である保持容量素子のショートに対し、特許文献2に記載された構成により電流リーク箇所をレーザーなどで修正しようとすると、レーザー加工による絶縁層の変質および加工周辺部の変形で、保持容量素子の正常化が困難である。 However, when a current leak portion is corrected with a laser or the like by the configuration described in Patent Document 2 with respect to a short circuit of the storage capacitor element which is a main factor of the pixel defect rate, the alteration of the insulating layer by laser processing and the processing peripheral portion This makes it difficult to normalize the storage capacitor element.
 また、特許文献1に記載された構成及び方法では、保持容量素子を他の回路素子と電気絶縁化させて無機能化することは可能であるが、不良発光画素が滅点化されるか、あるいは、発光素子を他の正常発光画素とは異なる発光タイミングで発光させてしまう。よって、不良発光画素の輝点化を修正することができても、不良発光画素を正常発光タイミングで発光させることにより発光パネルの表示品質を向上させることは不可能である。 In the configuration and method described in Patent Document 1, it is possible to make the storage capacitor element non-functional by being electrically insulated from other circuit elements. Alternatively, the light emitting element emits light at a light emission timing different from that of other normal light emitting pixels. Therefore, even if the bright spot of the defective light emitting pixel can be corrected, it is impossible to improve the display quality of the light emitting panel by causing the defective light emitting pixel to emit light at the normal light emission timing.
 本発明は、上記の課題に鑑みてなされたものであり、ショート不良の保持容量素子を有する不良発光画素を正常発光タイミングで発光させることが可能な画像表示装置、その製造方法及び修正方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an image display device capable of causing a defective light emitting pixel having a short-circuit defective storage capacitor element to emit light at a normal light emission timing, a manufacturing method thereof, and a correction method thereof. The purpose is to do.
 上記の課題を解決するために、本発明の画像表示装置は、発光層と当該発光層を駆動する駆動回路層とが積層された複数の発光画素が二次元状に配列された画像表示装置であって、前記駆動回路層は、積層方向において対向する2枚の電極層を有する平行平板型の容量素子を備え、前記2枚の電極層のうちの一方の電極層は、面方向において分割された複数の電極ブロック層からなり、前記複数の電極ブロック層は、同一面内で1以上の導電線にて接続されており、前記2枚の電極層のうちの他方の電極層は、前記導電線が積層方向に投影された領域を除く領域に、面方向において共通した1枚の平板形状に形成されていることを特徴とする。 In order to solve the above problems, an image display device of the present invention is an image display device in which a plurality of light emitting pixels in which a light emitting layer and a drive circuit layer for driving the light emitting layer are stacked are arranged in a two-dimensional manner. The drive circuit layer includes a parallel plate type capacitive element having two electrode layers facing each other in the stacking direction, and one of the two electrode layers is divided in the plane direction. The plurality of electrode block layers are connected by one or more conductive wires in the same plane, and the other electrode layer of the two electrode layers is the conductive layer. It is characterized in that it is formed in a single flat plate shape common to the surface direction except for the region where the line is projected in the stacking direction.
 本発明の画像表示装置、その製造方法及び修正方法によれば、複数の電極ブロック層から構成される容量素子の一部領域を、容量素子や他の回路素子にダメージを与えることなく切断処理できる。よって、容量素子のショート不良が原因である不良発光画素を、上記切断処理後には、正常な発光タイミングで発光素子を発光させることができ、発光パネルの表示品質を向上させることが可能となる。 According to the image display device, the manufacturing method, and the correction method of the present invention, it is possible to cut a partial region of a capacitive element composed of a plurality of electrode block layers without damaging the capacitive element and other circuit elements. . Therefore, after the above-described cutting process, a defective light emitting pixel caused by a short defect of the capacitor element can be caused to emit light at a normal light emission timing, and display quality of the light emitting panel can be improved.
図1Aは、本発明の実施の形態1に係る画像表示装置の構成を示すブロック図である。FIG. 1A is a block diagram showing a configuration of an image display apparatus according to Embodiment 1 of the present invention. 図1Bは、本発明の実施の形態1に係る発光画素の主要な回路構成図である。FIG. 1B is a main circuit configuration diagram of the light-emitting pixel according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る発光画素の構造断面図である。FIG. 2 is a structural cross-sectional view of the luminescent pixel according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る画像表示装置の有する保持容量素子の電極構成図である。FIG. 3 is an electrode configuration diagram of a storage capacitor element included in the image display apparatus according to Embodiment 1 of the present invention. 図4Aは、本発明の実施の形態1に係る保持容量素子にレーザーを照射して所定の電極ブロック層を切断する様子を示す図である。FIG. 4A is a diagram illustrating a state in which a predetermined electrode block layer is cut by irradiating a laser to the storage capacitor element according to Embodiment 1 of the present invention. 図4Bは、本発明の実施の形態1に係る保持容量素子の等価回路図である。FIG. 4B is an equivalent circuit diagram of the storage capacitor element according to Embodiment 1 of the present invention. 図4Cは、本発明の実施の形態1に係る保持容量素子に対し、下面側からレーザー照射する場合を説明する構造断面図である。FIG. 4C is a structural cross-sectional view illustrating the case where the storage capacitor element according to Embodiment 1 of the present invention is irradiated with laser from the lower surface side. 図5は、本発明の実施の形態1に係る第1の変形例を示す保持容量素子の電極構成図である。FIG. 5 is an electrode configuration diagram of a storage capacitor element showing a first modification according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1に係る第2の変形例を示す保持容量素子の電極構成図である。FIG. 6 is an electrode configuration diagram of a storage capacitor element showing a second modification according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1に係る第3の変形例を示す保持容量素子の電極構成図である。FIG. 7 is an electrode configuration diagram of a storage capacitor element showing a third modification according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態2に係る画像表示装置の修正方法を示す動作フローチャートである。FIG. 8 is an operation flowchart showing a method for correcting an image display apparatus according to Embodiment 2 of the present invention. 図9は、本発明の画像表示装置を内蔵した薄型フラットTVの外観図である。FIG. 9 is an external view of a thin flat TV incorporating the image display device of the present invention.
 本発明の一態様に係る画像表示装置は、発光層と当該発光層を駆動する駆動回路層とが積層された複数の発光画素が二次元状に配列された画像表示装置であって、前記駆動回路層は、積層方向において対向する2枚の電極層を有する平行平板型の容量素子を備え、前記2枚の電極層のうちの一方の電極層は、面方向において分割された複数の電極ブロック層からなり、前記複数の電極ブロック層は、同一面内で1以上の導電線にて接続されており、前記2枚の電極層のうちの他方の電極層は、前記導電線が積層方向に投影された領域を除く領域に、面方向において共通した1枚の平板形状に形成されていることを特徴とする。 An image display device according to an aspect of the present invention is an image display device in which a plurality of light-emitting pixels in which a light-emitting layer and a drive circuit layer that drives the light-emitting layer are stacked are two-dimensionally arranged. The circuit layer includes a parallel plate type capacitive element having two electrode layers facing each other in the stacking direction, and one of the two electrode layers has a plurality of electrode blocks divided in the plane direction. The plurality of electrode block layers are connected by one or more conductive wires in the same plane, and the other electrode layer of the two electrode layers has the conductive wire in the stacking direction. It is characterized in that it is formed in a single flat plate shape common to the surface direction in the area excluding the projected area.
 有機EL素子を発光素子とする画素表示装置においては、各発光画素に配置された保持容量素子の電極面積が相対的に広い。従って、この保持容量素子は、不要なパーティクルなどが電極間に介在してショート不良を発生させることにより発光画素の不良率を高くする要因となっている。 In a pixel display device using an organic EL element as a light emitting element, the electrode area of the storage capacitor element arranged in each light emitting pixel is relatively large. Therefore, the storage capacitor element causes a defect rate of the light emitting pixel to be increased by causing unnecessary particles or the like to be interposed between the electrodes and causing a short defect.
 この構成によれば、容量素子を構成する、対向する2枚の電極層の一方の層は、複数の電極ブロック層が導電線にて面方向に接続された構成をとっている。一方、容量素子を構成する、対向する2枚の電極層の他層は、一部領域を除き、面方向において共通した一枚の平板形状である。これにより、不要なパーティクルなどが2枚の電極層の間に発生した場合、当該パーティクルなどと接触している電極ブロックを、導電線へのレーザー照射により容量素子から切り離すことが可能となる。しかも、レーザー照射された導電線の存在する領域を積層方向に投影した上記一部領域、つまり、2枚の電極層の他方の層の平面内にあってレーザー照射された導電線と対向する領域、には電極層が形成されていない。よって、導電線へのレーザー照射により、容量素子を構成する領域を損傷させることを回避できる。よって、上記容量素子は、切除された電極ブロック層の面積比だけ静電容量は減少するものの、データ線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光素子を発光させることが可能となる。よって、発光パネルの表示品質が向上する。 According to this configuration, one of the two opposing electrode layers constituting the capacitive element has a configuration in which a plurality of electrode block layers are connected in the plane direction with the conductive wires. On the other hand, the other layers of the two opposing electrode layers constituting the capacitor element have a single flat plate shape in the plane direction except for a part of the region. Thus, when unnecessary particles or the like are generated between the two electrode layers, the electrode block in contact with the particles or the like can be separated from the capacitor element by laser irradiation of the conductive wire. In addition, the above-mentioned partial region in which the region where the conductive line irradiated with the laser exists is projected in the stacking direction, that is, the region facing the conductive line irradiated with the laser in the plane of the other layer of the two electrode layers. An electrode layer is not formed on. Therefore, it is possible to avoid damaging a region constituting the capacitor element by irradiating the conductive wire with the laser. Therefore, although the capacitance decreases by the area ratio of the removed electrode block layer, the capacitance element retains a voltage corresponding to the signal voltage from the data line and causes the light emitting element to emit light at a normal light emission timing. Is possible. Therefore, the display quality of the light emitting panel is improved.
 また、本発明の一態様に係る画像表示装置において、前記導電線は、当該導電線の一部にレーザーを照射することにより切断可能な形状を有することが好ましい。 In the image display device according to one embodiment of the present invention, it is preferable that the conductive wire has a shape that can be cut by irradiating a part of the conductive wire with a laser.
 これにより、電極間ショートが発生している電極ブロックを、適切な導電線にレーザー照射して当該導電線を切断することにより容量素子から切除することが可能となる。よって、容量素子は、データ線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光素子を発光させることが可能となる。 Thereby, the electrode block in which the short-circuit between the electrodes is generated can be excised from the capacitive element by irradiating an appropriate conductive wire with a laser and cutting the conductive wire. Therefore, the capacitor element holds a voltage corresponding to the signal voltage from the data line, and can cause the light emitting element to emit light at a normal light emission timing.
 また、本発明の一態様に係る画像表示装置において、前記発光画素のそれぞれは、一方の端子が前記駆動回路層を構成する他の回路素子に接続され、他方の端子が前記導電線を介して前記複数の電極ブロック層に接続された引出配線を備えることが好ましい。 In the image display device according to one embodiment of the present invention, each of the light emitting pixels has one terminal connected to another circuit element included in the driving circuit layer, and the other terminal connected to the conductive line. It is preferable to provide a lead wire connected to the plurality of electrode block layers.
 通常の画像表示装置における発光画素の不良率から推定して、容量素子を要因とした不良発光画素においては、1カ所のみのショートによる場合が支配的である。従って、不要なパーティクルなどが発生した不良の電極ブロックのみを除外することにより、容量素子が原因である発光画素不良は殆ど解消される。 Estimated from the defective rate of light emitting pixels in a normal image display device, a defective light emitting pixel due to a capacitive element is predominantly due to a short circuit. Therefore, by removing only defective electrode blocks in which unnecessary particles or the like are generated, light emitting pixel defects caused by the capacitive elements are almost eliminated.
 この構成によれば、引出配線は導電線を介して各電極ブロック層に接続されているので、不良の電極ブロックを、上記導電線の一部を切断することにより他の電極ブロック及び引出配線から電気絶縁させることが可能となる。また、正常な電極ブロックは、上記導電線の切断されていない部分を介して引出配線と接続されているので、容量素子と他の回路素子との接続は確保される。よって修正後の容量素子は、発光画素の静電保持容量としての機能を有する。 According to this configuration, since the lead-out wiring is connected to each electrode block layer via the conductive wire, the defective electrode block can be separated from other electrode blocks and lead-out wiring by cutting a part of the conductive wire. It can be electrically insulated. In addition, since the normal electrode block is connected to the lead-out wiring through the uncut portion of the conductive wire, the connection between the capacitive element and other circuit elements is ensured. Therefore, the corrected capacitive element has a function as an electrostatic holding capacity of the light emitting pixel.
 また、本発明の一態様に係る画像表示装置において、具体的には、前記容量素子は、前記発光画素ごとに与えられた信号電圧に応じた電圧を保持電圧として保持する保持容量素子であり、前記駆動回路層は、さらに、ゲートと前記容量素子の一方の端子とが接続され、ゲートに前記保持電圧が印加されることにより、前記保持電圧をソース-ドレイン間電流である信号電流に変換する駆動トランジスタを備え、前記発光層は、前記信号電流が流れることにより発光する発光素子を備えることが好ましい。 In the image display device according to one aspect of the present invention, specifically, the capacitor is a storage capacitor that holds a voltage corresponding to a signal voltage applied to each of the light emitting pixels as a storage voltage. In the driving circuit layer, a gate and one terminal of the capacitor are connected, and the holding voltage is applied to the gate to convert the holding voltage into a signal current that is a source-drain current. Preferably, the light emitting layer includes a light emitting element that emits light when the signal current flows.
 また、本発明は、このような特徴的な手段を備える画像表示装置として実現することができるだけでなく、画像表示装置に含まれる特徴的な手段をステップとする画像表示装置の製造方法として実現することができる。 Further, the present invention can be realized not only as an image display apparatus provided with such characteristic means, but also as a method for manufacturing an image display apparatus using the characteristic means included in the image display apparatus as a step. be able to.
 また、本発明は、このような特徴的な手段を備える画像表示装置及び特徴的な手段をステップとする製造方法として実現することができるだけでなく、上述した画像表示装置の製造段階または完成後において、導電線にレーザー照射することにより、画像表示装置を修正する方法として実現することができる。 In addition, the present invention can be realized not only as an image display apparatus including such characteristic means and a manufacturing method including the characteristic means as steps, but also in the manufacturing stage or after completion of the above-described image display apparatus. By irradiating the conductive wire with a laser, it can be realized as a method for correcting the image display device.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態および各図面において、同じ構成要素には同じ符号を付し説明する。また、以下では、上面発光方式の陽極(アノード)を下面に、また、陰極(カソード)を上面とする有機EL素子からなる画像表示装置を例に説明するが、これに限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments and drawings, the same components will be described with the same reference numerals. In the following, an image display device composed of an organic EL element having a top emission type anode (anode) on the bottom surface and a cathode (cathode) on the top surface will be described as an example. However, the present invention is not limited to this.
 (実施の形態1)
 本実施の形態におけるアクティブマトリクス型の画像表示装置は、発光層と当該発光層を駆動する駆動回路層とが積層された複数の発光画素が二次元状に配列されており、駆動回路層は、積層方向において対向する2枚の電極層を有する平行平板型の容量素子を備え、当該2枚の電極層の一方の電極層は、面方向において分割された複数の電極ブロック層からなり、当該複数の電極ブロック層は、同一面内で1以上の導電線にて接続されており、当該2枚の電極層のうち他方の電極層は、導電線が積層方向に投影された領域を除く領域に、面方向において共通した1枚の平板形状となっている。これにより、不要なパーティクルなどが発生し電極間ショートしている電極ブロックを、導電線へのレーザー照射により容量素子から切り離すことが可能となる。しかも、レーザー照射により、容量素子を構成する領域を損傷させることを回避できる。よって、レーザー照射後は、データ線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光素子を発光させることが可能となる。よって、発光パネルの表示品質が向上する。
(Embodiment 1)
In the active matrix image display device in this embodiment, a plurality of light-emitting pixels in which a light-emitting layer and a drive circuit layer that drives the light-emitting layer are stacked are two-dimensionally arranged. A parallel plate type capacitive element having two electrode layers facing each other in the stacking direction is provided, and one electrode layer of the two electrode layers is composed of a plurality of electrode block layers divided in the plane direction. The electrode block layers are connected by one or more conductive lines in the same plane, and the other electrode layer of the two electrode layers is in a region excluding the region where the conductive lines are projected in the stacking direction. It is a single flat plate shape common in the surface direction. As a result, an electrode block in which unnecessary particles or the like are generated and the electrodes are short-circuited can be separated from the capacitive element by laser irradiation of the conductive wire. In addition, it is possible to avoid damaging a region constituting the capacitor element by laser irradiation. Therefore, after the laser irradiation, a voltage corresponding to the signal voltage from the data line is held, and the light emitting element can emit light at a normal light emission timing. Therefore, the display quality of the light emitting panel is improved.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1Aは、本発明の実施の形態1に係る画像表示装置の構成を示すブロック図である。同図における画像表示装置1は、表示パネル10と、制御回路20とを備える。表示パネル10は、複数の発光画素11と、発光画素列ごとに配置された複数の信号線12と、発光画素行ごとに配置された複数の走査線13と、走査線駆動回路14と、信号線駆動回路15とを備える。 FIG. 1A is a block diagram showing a configuration of an image display apparatus according to Embodiment 1 of the present invention. The image display device 1 in FIG. 1 includes a display panel 10 and a control circuit 20. The display panel 10 includes a plurality of light emitting pixels 11, a plurality of signal lines 12 arranged for each light emitting pixel column, a plurality of scanning lines 13 arranged for each light emitting pixel row, a scanning line driving circuit 14, and a signal. A line driving circuit 15.
 発光画素11は、表示パネル10上に、マトリクス状に配置されている。 The light emitting pixels 11 are arranged in a matrix on the display panel 10.
 走査線駆動回路14は、各走査線13へ走査信号を出力することにより、発光画素の有する回路素子を駆動する。 The scanning line driving circuit 14 outputs a scanning signal to each scanning line 13 to drive circuit elements included in the light emitting pixels.
 信号線駆動回路15は、信号線12へ信号電圧及び基準電圧を出力することにより、輝度信号に対応した発光画素の発光を実現する。 The signal line driving circuit 15 outputs a signal voltage and a reference voltage to the signal line 12, thereby realizing light emission of the light emitting pixel corresponding to the luminance signal.
 制御回路20は、走査線駆動回路14から出力される走査信号の出力タイミングを制御する。また、制御回路20は、信号線駆動回路15から出力される信号電圧を出力するタイミングを制御する。 The control circuit 20 controls the output timing of the scanning signal output from the scanning line driving circuit 14. Further, the control circuit 20 controls the timing at which the signal voltage output from the signal line driving circuit 15 is output.
 図1Bは、本発明の実施の形態1に係る発光画素の主要な回路構成図である。同図に記載された発光画素11は、駆動回路層11A及び発光層11Bで構成されている。駆動回路層11Aは、例えば、スイッチングトランジスタ21と、駆動トランジスタ22と、保持容量素子23とを備える。そして、スイッチングトランジスタ21のドレイン電極は信号線12に、スイッチングトランジスタ21のゲート電極は走査線13に、さらに、スイッチングトランジスタ21のソース電極は、保持容量素子23及び駆動トランジスタ22のゲート電極に接続されている。また、駆動トランジスタ22のドレイン電極は電源Vddに接続され、ソース電極は発光層11Bのアノードに接続されている。 FIG. 1B is a main circuit configuration diagram of the luminescent pixel according to Embodiment 1 of the present invention. The light emitting pixel 11 shown in the figure includes a drive circuit layer 11A and a light emitting layer 11B. The drive circuit layer 11A includes, for example, a switching transistor 21, a drive transistor 22, and a storage capacitor 23. The drain electrode of the switching transistor 21 is connected to the signal line 12, the gate electrode of the switching transistor 21 is connected to the scanning line 13, and the source electrode of the switching transistor 21 is connected to the gate electrodes of the storage capacitor element 23 and the driving transistor 22. ing. The drain electrode of the drive transistor 22 is connected to the power supply Vdd, and the source electrode is connected to the anode of the light emitting layer 11B.
 この構成において、走査線13に走査信号が入力され、スイッチングトランジスタ21をオン状態にすると、信号線12を介して供給された信号電圧が保持容量素子23に書き込まれる。そして、保持容量素子23に書き込まれた保持電圧は、1フレーム期間を通じて保持され、この保持電圧により、駆動トランジスタ22のコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が発光層11Bのアノードに供給される。さらに、発光層11Bのアノードに供給された駆動電流は、発光層11Bの有機EL素子24及びカソードへと流れる。これにより、発光層11Bの有機EL素子24が発光し画像として表示される。 In this configuration, when a scanning signal is input to the scanning line 13 and the switching transistor 21 is turned on, the signal voltage supplied via the signal line 12 is written to the storage capacitor element 23. The holding voltage written in the holding capacitor element 23 is held for one frame period, and the holding voltage changes the conductance of the driving transistor 22 in an analog manner, so that the driving current corresponding to the light emission gradation is changed to the light emitting layer 11B. To the anode. Further, the drive current supplied to the anode of the light emitting layer 11B flows to the organic EL element 24 and the cathode of the light emitting layer 11B. Thereby, the organic EL element 24 of the light emitting layer 11B emits light and is displayed as an image.
 なお、駆動回路層11Aは、上述した回路構成に限定されない。つまり、スイッチングトランジスタ21、駆動トランジスタ22及び保持容量素子23は、信号電圧の電圧値に応じた駆動電流を発光層11Bに流すために必要な回路構成要素であるが、上述した形態に限定されない。また、上述した回路構成要素に、別の回路構成要素が付加される場合も、本発明に係る駆動回路層11Aに含まれる。 The drive circuit layer 11A is not limited to the circuit configuration described above. That is, the switching transistor 21, the drive transistor 22, and the storage capacitor element 23 are circuit components necessary for flowing a drive current corresponding to the voltage value of the signal voltage to the light emitting layer 11B, but are not limited to the above-described form. Further, a case where another circuit component is added to the circuit components described above is also included in the drive circuit layer 11A according to the present invention.
 図2は、本発明の実施の形態1に係る発光画素の構造断面図である。同図に記載された発光画素11は、基板100と、駆動回路層11Aと、発光層11Bと、透明封止膜110とを備える。 FIG. 2 is a structural cross-sectional view of the luminescent pixel according to Embodiment 1 of the present invention. The light emitting pixel 11 shown in the figure includes a substrate 100, a drive circuit layer 11A, a light emitting layer 11B, and a transparent sealing film 110.
 基板100は、例えば、ガラス基板である。また、基板100は、樹脂からなるフレキシブル基板を用いることも可能である。基板100は、駆動回路層11Aとともに、薄膜トランジスタ(TFT)基板を構成する。なお、図2に記載されたようなトップエミッション構造の場合には、基板100は透明である必要はないので、非透明の基板、例えば、シリコン基板を用いることもできる。 The substrate 100 is, for example, a glass substrate. The substrate 100 can also be a flexible substrate made of resin. The substrate 100, together with the drive circuit layer 11A, constitutes a thin film transistor (TFT) substrate. In the case of the top emission structure as shown in FIG. 2, the substrate 100 does not need to be transparent, and a non-transparent substrate, for example, a silicon substrate can be used.
 駆動回路層11Aは、基板100の上に形成された駆動トランジスタ22と、保持容量素子23と、平坦化膜101及び102と、図示していないスイッチングトランジスタ21とを備える。 The drive circuit layer 11A includes a drive transistor 22 formed on the substrate 100, a storage capacitor element 23, planarization films 101 and 102, and a switching transistor 21 (not shown).
 駆動トランジスタ22は、基板100の上に形成されたTFTである。駆動トランジスタ22は、ドレイン電極220、ソース電極221、ソース電極221及びドレイン電極220に接触して形成された半導体層222、半導体層222の上に形成されたゲート絶縁膜223、及びゲート絶縁膜223の上に形成されたゲート電極224から構成される。 The driving transistor 22 is a TFT formed on the substrate 100. The driving transistor 22 includes a drain electrode 220, a source electrode 221, a semiconductor layer 222 formed in contact with the source electrode 221 and the drain electrode 220, a gate insulating film 223 formed on the semiconductor layer 222, and a gate insulating film 223. It is comprised from the gate electrode 224 formed on the top.
 保持容量素子23は、積層方向において対向する電極層231及び232で挟まれた平行平板型の容量素子である。電極層231は、駆動回路層11A内においてゲート電極224と接続されている。また、電極層232は電源Vddに接続されている。電極層231の材料としては、例えば、モリブデン(Mo)とタングステン(W)との合金であり、膜厚は、例えば、150nmである。電極層232の材料としては、例えば、MoとWとの合金/アルミニウム(Al)/MoとWとの合金の積層構造であり、合計膜厚は、例えば、150nmである。 The holding capacitor element 23 is a parallel plate type capacitor element sandwiched between electrode layers 231 and 232 facing each other in the stacking direction. The electrode layer 231 is connected to the gate electrode 224 in the drive circuit layer 11A. The electrode layer 232 is connected to the power supply Vdd. The material of the electrode layer 231 is, for example, an alloy of molybdenum (Mo) and tungsten (W), and the film thickness is, for example, 150 nm. As a material of the electrode layer 232, for example, an alloy of Mo and W / aluminum (Al) / a laminated structure of an alloy of Mo and W has a total film thickness of, for example, 150 nm.
 電極層231及び232の間には、絶縁層233が形成されている。絶縁層233としては、例えば、シリコン酸化膜(SiOx)、または、シリコン窒化膜(SiN)などが挙げられる。また、絶縁層233の膜厚は、例えば、150nmである。なお、絶縁層233は、所望の静電容量を確保するため、誘電体材料であってもよい。 An insulating layer 233 is formed between the electrode layers 231 and 232. Examples of the insulating layer 233 include a silicon oxide film (SiOx) or a silicon nitride film (SiN). The film thickness of the insulating layer 233 is, for example, 150 nm. Note that the insulating layer 233 may be a dielectric material in order to ensure a desired capacitance.
 また、スイッチングトランジスタ21は、本構造断面図には記載されていないが、駆動トランジスタ22と同様の構造にて駆動回路層内に形成されている。図1Bの回路構成図を実現するため、駆動トランジスタ22のゲート電極224とスイッチングトランジスタ21のソース電極とは図示されていない配線によって互いに電気的に接続されている。 The switching transistor 21 is formed in the drive circuit layer with the same structure as that of the drive transistor 22 although it is not shown in the cross-sectional view of this structure. In order to realize the circuit configuration diagram of FIG. 1B, the gate electrode 224 of the drive transistor 22 and the source electrode of the switching transistor 21 are electrically connected to each other by a wiring not shown.
 基板100の上には、上述したスイッチングトランジスタ21、駆動トランジスタ22及び保持容量素子23を覆うように平坦化膜101及び102が形成されている。 On the substrate 100, flattening films 101 and 102 are formed so as to cover the switching transistor 21, the drive transistor 22, and the storage capacitor 23 described above.
 駆動回路層11Aは、平坦化膜102により、その上面の平担性が確保されている。なお、平坦化膜101及び102の材料としては、例えば、CVD法やスパッタリング法などによるシリコン酸化膜である。この形成されたシリコン酸化膜の表面を、例えば、CMP(Chemical Mechanical Polishing)法などにより平坦化することにより平坦化膜101及び102が形成される。 The flatness of the upper surface of the drive circuit layer 11A is ensured by the planarization film 102. Note that the material of the planarization films 101 and 102 is, for example, a silicon oxide film formed by a CVD method or a sputtering method. The planarized films 101 and 102 are formed by planarizing the surface of the formed silicon oxide film by, for example, a CMP (Chemical Mechanical Polishing) method.
 発光層11Bは、陽極103と、正孔注入層104と、正孔輸送層105と、有機発光層106と、バンク層107と、電子注入層108と、透明陰極109とを備える。 The light emitting layer 11B includes an anode 103, a hole injection layer 104, a hole transport layer 105, an organic light emitting layer 106, a bank layer 107, an electron injection layer 108, and a transparent cathode 109.
 図2に記載された発光画素11は、トップエミッション構造を有している。つまり、発光層11Bに電圧を印加すると、有機発光層106で光が生じ、透明陰極109及び透明封止膜110を通じて光が上方に出射する。また、有機発光層106で生じた光のうち下方に向かったものは、陽極103で反射され、透明陰極109及び透明封止膜110を通じて光が上方に出射する。 The light emitting pixel 11 shown in FIG. 2 has a top emission structure. That is, when a voltage is applied to the light emitting layer 11B, light is generated in the organic light emitting layer 106, and light is emitted upward through the transparent cathode 109 and the transparent sealing film 110. Further, the light emitted from the organic light emitting layer 106 directed downward is reflected by the anode 103, and the light is emitted upward through the transparent cathode 109 and the transparent sealing film 110.
 陽極103は、駆動回路層11Aの平坦化膜102の表面上に積層され、透明陰極109に対して正の電圧を発光層11Bに印加する電極である。陽極103と駆動トランジスタ22のソース電極221とは駆動回路層11A内に形成されたビアで接続されている。陽極103を構成する陽極材料としては、例えば、反射率の高い金属であるAl、Ag、またはそれらの合金が好ましい。また、陽極103の厚さは、例えば、100~300nmである。 The anode 103 is an electrode that is laminated on the surface of the planarizing film 102 of the drive circuit layer 11A and applies a positive voltage to the light emitting layer 11B with respect to the transparent cathode 109. The anode 103 and the source electrode 221 of the drive transistor 22 are connected by a via formed in the drive circuit layer 11A. As an anode material constituting the anode 103, for example, Al, Ag, or an alloy thereof, which is a highly reflective metal, is preferable. The thickness of the anode 103 is, for example, 100 to 300 nm.
 正孔注入層104は、陽極103の表面上に形成され、正孔を安定的に、又は正孔の生成を補助して、有機発光層106へ正孔を注入する機能を有する。これにより、発光層11Bの駆動電圧が低電圧化され、正孔注入の安定化により素子が長寿命化される。正孔注入層104の材料としては、例えばPEDOT(ポリエチレンジオキシチオフェン)などを用いることができる。また、正孔注入層104には、正孔注入性の他に、光透過性が要求される。正孔注入層104の膜厚が大きくなるほど、正孔注入層104の反射率は低下するので、正孔注入層104の膜厚は、例えば、10nm~100nm程度にすることが好ましい。 The hole injection layer 104 is formed on the surface of the anode 103 and has a function of injecting holes into the organic light emitting layer 106 stably or by assisting hole generation. Thereby, the drive voltage of the light emitting layer 11B is lowered, and the lifetime of the element is extended by stabilizing the hole injection. As a material of the hole injection layer 104, for example, PEDOT (polyethylenedioxythiophene) can be used. In addition to the hole injection property, the hole injection layer 104 is required to have optical transparency. The greater the thickness of the hole injection layer 104, the lower the reflectivity of the hole injection layer 104. Therefore, the thickness of the hole injection layer 104 is preferably about 10 nm to 100 nm, for example.
 正孔輸送層105は、正孔注入層104の表面上に形成され、正孔注入層104から注入された正孔を有機発光層106内へ効率良く輸送し、有機発光層106と正孔注入層104との界面での励起子の失活防止をし、さらには電子をブロックする機能を有する。正孔輸送層105としては、例えば、生じた正孔を分子間の電荷移動反応により伝達する性質を有する有機高分子材料であり、例えば、トリフェルアミン、ポリアニリンなどが挙げられる。また、正孔輸送層105の厚さは、例えば、5~50nm程度である。また、上層である有機発光層106を形成する際に、これに溶出しにくいよう、架橋剤を含むことが好ましい。 The hole transport layer 105 is formed on the surface of the hole injection layer 104, efficiently transports holes injected from the hole injection layer 104 into the organic light emitting layer 106, and the organic light emitting layer 106 and hole injection. It has a function of preventing deactivation of excitons at the interface with the layer 104 and blocking electrons. The hole transport layer 105 is, for example, an organic polymer material having a property of transferring generated holes by intermolecular charge transfer reaction, and examples thereof include triferamine and polyaniline. Further, the thickness of the hole transport layer 105 is, for example, about 5 to 50 nm. Further, it is preferable that a cross-linking agent is included so that the organic light-emitting layer 106 as the upper layer is not easily eluted when formed.
 なお、正孔輸送層105は、その隣接層である正孔注入層104や有機発光層106の材料により、省略される場合がある。 Note that the hole transport layer 105 may be omitted depending on the material of the hole injection layer 104 and the organic light emitting layer 106 which are adjacent layers.
 有機発光層106は、正孔輸送層105の表面上に形成され、正孔と電子が注入され再結合されることにより励起状態が生成され発光する機能を有する。 The organic light emitting layer 106 is formed on the surface of the hole transport layer 105 and has a function of emitting light by generating an excited state by injecting holes and electrons and recombining them.
 有機発光層106としては、インクジェットやスピンコートのような湿式成膜法で成膜できる発光性の有機材料を用いることが好ましい。これにより、大画面の基板に対して、簡易で均一な成膜が可能となる。この材料としては、特に限定されるものではないが、高分子有機材料が好ましい。高分子有機材料の特徴としては、デバイス構造が簡単であること、膜の信頼性に優れ、低電圧駆動のデバイスであることも挙げることができる。 As the organic light emitting layer 106, it is preferable to use a light emitting organic material that can be formed by a wet film forming method such as ink jet or spin coating. Thereby, simple and uniform film formation is possible on a large-screen substrate. Although it does not specifically limit as this material, A polymeric organic material is preferable. Features of the polymer organic material include a simple device structure, excellent film reliability, and a low-voltage driven device.
 芳香環または縮合環のような共役系を持った高分子あるいはπ共役系高分子は蛍光性を有することから、有機発光層106を構成する高分子有機材料として用いることができる。有機発光層106を構成する高分子発光材料としては、例えば、ポリフェニレンビニレン(PPV)またはその誘導体(PPV誘導体)、ポリフルオレン(PFO)またはその誘導体(PFO誘導体)、ポリスピロフルオレン誘導体などを挙げることができる。また、ポリチオフェンまたはその誘導体を用いることも可能である。 Since a polymer having a conjugated system such as an aromatic ring or a condensed ring or a π-conjugated polymer has fluorescence, it can be used as a polymer organic material constituting the organic light emitting layer 106. Examples of the polymer light emitting material constituting the organic light emitting layer 106 include polyphenylene vinylene (PPV) or a derivative thereof (PPV derivative), polyfluorene (PFO) or a derivative thereof (PFO derivative), and a polyspirofluorene derivative. Can do. It is also possible to use polythiophene or a derivative thereof.
 バンク層107は、正孔注入層104の表面上に形成され、湿式成膜法を用いて形成される正孔輸送層105及び有機発光層106を所定の領域に形成するバンクとしての機能を有する。バンク層107に用いられる材料は、無機物質および有機物質のいずれであってもよいが、有機物質の方が、一般的に、撥水性が高いので、より好ましく用いることができる。このような材料の例としては、ポリイミド、ポリアクリルなどの樹脂が挙げられる。バンク層107のパターニングの方法としては、特に限定されるものではないが、感光性の材料を用いたフォトリソグラフィ法を適用することが好ましい。バンク層107の厚さは、例えば、100~3000nm程度である。 The bank layer 107 is formed on the surface of the hole injection layer 104 and has a function as a bank for forming the hole transport layer 105 and the organic light emitting layer 106 formed by a wet film formation method in a predetermined region. . The material used for the bank layer 107 may be either an inorganic substance or an organic substance, but the organic substance is generally more preferable because it has a higher water repellency. Examples of such materials include resins such as polyimide and polyacryl. A method for patterning the bank layer 107 is not particularly limited, but it is preferable to apply a photolithography method using a photosensitive material. The thickness of the bank layer 107 is, for example, about 100 to 3000 nm.
 電子注入層108は、有機発光層106の上に形成され、有機発光層106への電子注入の障壁を低減し発光層11Bの駆動電圧を低電圧化すること、励起子失活を抑制する機能を有する。これにより、電子注入を安定化し素子を長寿命化すること、透明陰極109との密着を強化し発光面の均一性を向上させ素子欠陥を減少させることが可能となる。電子注入層108は、特に限定されるものではないが、好ましくはバリウム、アルミニウム、フタロシアニン、フッ化リチウム、さらに、バリウム-アルミニウム積層体などからなる。電子注入層108の厚さは、例えば、2~50nm程度である。 The electron injection layer 108 is formed on the organic light emitting layer 106, reduces the barrier for electron injection into the organic light emitting layer 106, lowers the driving voltage of the light emitting layer 11B, and suppresses exciton deactivation. Have As a result, it is possible to stabilize the electron injection and prolong the life of the device, enhance the adhesion with the transparent cathode 109, improve the uniformity of the light emitting surface, and reduce device defects. The electron injection layer 108 is not particularly limited, but is preferably made of barium, aluminum, phthalocyanine, lithium fluoride, and a barium-aluminum laminate. The thickness of the electron injection layer 108 is, for example, about 2 to 50 nm.
 透明陰極109は、電子注入層108の表面上に積層され、陽極103に対して負の電圧を発光層11Bに印加し、電子を素子内(特に有機発光層106)に注入する機能を有する。透明陰極109としては、特に限定されるものではないが、透過率の高い物質および構造を用いることが好ましい。これにより、発光効率が高いトップエミッション有機EL素子を実現することができる。透明陰極109の構成としては、特に限定されるものではないが、金属酸化物層が用いられる。この金属酸化物層としては、特に限定されるものではないが、インジウム錫酸化物(以下、ITOと記す)、あるいはインジウム亜鉛酸化物(以下、IZOと記す)からなる層が用いられる。また、透明陰極109の厚さは、例えば、5~200nm程度である。 The transparent cathode 109 is laminated on the surface of the electron injection layer 108, and has a function of applying a negative voltage to the light emitting layer 11B with respect to the anode 103 to inject electrons into the device (particularly the organic light emitting layer 106). The transparent cathode 109 is not particularly limited, but it is preferable to use a substance and structure having a high transmittance. Thereby, a top emission organic EL element with high luminous efficiency can be realized. The configuration of the transparent cathode 109 is not particularly limited, but a metal oxide layer is used. The metal oxide layer is not particularly limited, and a layer made of indium tin oxide (hereinafter referred to as ITO) or indium zinc oxide (hereinafter referred to as IZO) is used. The thickness of the transparent cathode 109 is, for example, about 5 to 200 nm.
 透明封止膜110は、透明陰極109の表面上に形成され、水分から素子を保護する機能を有する。また、透明封止膜110は、透明であることが要求される。透明封止膜110は、例えば、SiN、SiON、または有機膜からなる。また、透明封止膜110の厚さは、例えば、20~5000nm程度である。 The transparent sealing film 110 is formed on the surface of the transparent cathode 109 and has a function of protecting the element from moisture. Further, the transparent sealing film 110 is required to be transparent. The transparent sealing film 110 is made of, for example, SiN, SiON, or an organic film. The thickness of the transparent sealing film 110 is, for example, about 20 to 5000 nm.
 以上説明した発光画素11の構造により、画像表示装置1は、アクティブマトリクス型の表示装置としての機能を有する。 Due to the structure of the light emitting pixels 11 described above, the image display device 1 has a function as an active matrix display device.
 次に、本発明の主要な構成要素である保持容量素子23の構造及び機能について説明する。図3は、本発明の実施の形態1に係る画像表示装置の有する保持容量素子の電極構成図である。同図には、積層方向において対向する電極層231及び232の上面図、ならびに両電極が上下に重なり合って形成された保持容量素子23の上面透視図が記載されている。なお、図示していないが、両電極層231及び232の間には、絶縁層233が形成されている。 Next, the structure and function of the storage capacitor element 23 which is a main component of the present invention will be described. FIG. 3 is an electrode configuration diagram of a storage capacitor element included in the image display apparatus according to Embodiment 1 of the present invention. This figure includes a top view of the electrode layers 231 and 232 facing each other in the stacking direction, and a top perspective view of the storage capacitor element 23 formed by overlapping both electrodes vertically. Although not shown, an insulating layer 233 is formed between the electrode layers 231 and 232.
 上部に形成された電極層232は、面方向において分割された4つの電極ブロック層232A~232Dからなる。電極ブロック層232A~232Dは、同一面内で導電線234にて接続されている。 The electrode layer 232 formed in the upper part is composed of four electrode block layers 232A to 232D divided in the plane direction. The electrode block layers 232A to 232D are connected by a conductive line 234 in the same plane.
 一方、下部に形成された電極層231は、導電線234が積層方向に投影された領域Rを除く領域に形成されている。つまり、導電線234と対向する領域Rには、電極層231が形成されていない。本実施の形態では、領域Rは、電極層231が形成された領域内部に、積極的に形成されている。また、電極層232の平面上に形成された導電線234にレーザー照射した際、当該レーザーが電極層231の平面上に到達して、電極層を損傷させることが想定されるが、領域Rは、電極層231の平面上に当該レーザーが到達して当該平面を損傷させる領域を包含する領域である。 On the other hand, the electrode layer 231 formed in the lower part is formed in a region excluding the region R where the conductive lines 234 are projected in the stacking direction. That is, the electrode layer 231 is not formed in the region R facing the conductive line 234. In the present embodiment, the region R is positively formed inside the region where the electrode layer 231 is formed. In addition, when the conductive wire 234 formed on the plane of the electrode layer 232 is irradiated with a laser, it is assumed that the laser reaches the plane of the electrode layer 231 and damages the electrode layer. The region including the region where the laser reaches the plane of the electrode layer 231 and damages the plane.
 上述した保持容量素子23の構成によれば、不要なパーティクルなどが発生し電極間ショートの原因となっている電極ブロック層を、導電線234へのレーザー照射により容量素子から切り離すことが可能となる。また、導電線234と対向する領域Rには電極層231が形成されていない。よって、電極層232の面に対して略垂直な方向からの導電線234へのレーザー照射により、当該レーザーは領域Rには到達する可能性があるが、容量素子を構成する領域、つまり電極層231を損傷させることはない。 According to the configuration of the storage capacitor element 23 described above, it is possible to separate the electrode block layer, which generates unnecessary particles and the like and causes a short-circuit between the electrodes, from the capacitor element by irradiating the conductive wire 234 with laser. . In addition, the electrode layer 231 is not formed in the region R facing the conductive line 234. Therefore, there is a possibility that the laser beam reaches the region R by laser irradiation to the conductive line 234 from a direction substantially perpendicular to the surface of the electrode layer 232, but the region constituting the capacitor element, that is, the electrode layer 231 is not damaged.
 また、図3の上面透視図には、電極層232と他の回路素子とを接続するための引出配線が記載されている。この引出配線は、導電線234を介して4つの前記電極ブロック層232A~232Dに接続されている。 Further, in the top perspective view of FIG. 3, lead wirings for connecting the electrode layer 232 and other circuit elements are described. The lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234.
 通常の画像表示装置における発光画素の不良率から推定して、容量素子を要因とした不良発光画素においては、1カ所のみのショートによる場合が支配的である。従って、不要なパーティクルなどが発生した一の電極ブロックのみを除外することにより、容量素子が原因である発光画素不良は殆ど解消される。よって上記引出配線の接続によれば、電極ブロック層232A~232Dのうち一の電極ブロックのみを他の電極ブロック及び引出配線から電気絶縁させることが可能となる。また、電極ブロック層232A~232Dのうち一の電極ブロックのみを電気的に切断しても、引出配線は正常機能を有する容量素子から切断されることがない。よって修正後の容量素子は、発光画素の静電保持容量としての機能を有する。 Estimated from the defective rate of light emitting pixels in a normal image display device, a defective light emitting pixel due to a capacitive element is predominantly due to a short circuit. Therefore, by removing only one electrode block in which unnecessary particles or the like are generated, light emitting pixel defects caused by the capacitive element are almost eliminated. Therefore, according to the connection of the extraction wiring, only one electrode block among the electrode block layers 232A to 232D can be electrically insulated from the other electrode blocks and the extraction wiring. Further, even if only one of the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitive element having a normal function. Therefore, the corrected capacitive element has a function as an electrostatic holding capacity of the light emitting pixel.
 図4Aは、本発明の実施の形態1に係る保持容量素子にレーザーを照射して所定の電極ブロック層を切断する様子を示す図である。同図に記載されたように、保持容量素子23は、C1~C4からなる電極ブロックに分割されている。ここで、例えば、電極ブロックC4の絶縁層に導電性のパーティクル等が上下電極ブロック層にわたって偏在し電極ブロックC4がショート不良の原因となっている場合、電極層231及び232の間に印加された電圧により保持容量素子23に蓄積されるべき電荷が、電極ブロックC4に形成された電流パスにより保持されない。 FIG. 4A is a diagram showing a state in which a predetermined electrode block layer is cut by irradiating a laser to the storage capacitor element according to Embodiment 1 of the present invention. As shown in the figure, the storage capacitor element 23 is divided into electrode blocks composed of C1 to C4. Here, for example, when conductive particles or the like are unevenly distributed over the upper and lower electrode block layers in the insulating layer of the electrode block C4 and the electrode block C4 causes a short circuit failure, it is applied between the electrode layers 231 and 232. The charge to be accumulated in the storage capacitor element 23 due to the voltage is not held by the current path formed in the electrode block C4.
 図4Bは、本発明の実施の形態1に係る保持容量素子の等価回路図である。電極ブロックC4が短絡されていない場合には、保持容量素子23の静電容量は、各電極ブロックの静電容量を加算した値となる。ここで、同図に記載されたように、電極ブロックC4の両電極ブロック層が短絡されている場合には、容量素子としての保持容量素子23から電極ブロックC4を電気的に無機能化させることが可能である。具体的には、図4A下段に示された保持容量素子23の上面透視図において、電極ブロックC4に接続された2箇所の導電線234Lに対し、膜面に対して略垂直な方向からレーザーが照射される。図4A上段において、Lはレーザー光線の軌跡を示し、導電線234Lはレーザー光により切断されている。 FIG. 4B is an equivalent circuit diagram of the storage capacitor element according to Embodiment 1 of the present invention. When the electrode block C4 is not short-circuited, the capacitance of the storage capacitor element 23 is a value obtained by adding the capacitance of each electrode block. Here, as shown in the figure, when both the electrode block layers of the electrode block C4 are short-circuited, the electrode block C4 is made electrically nonfunctional from the storage capacitor element 23 as a capacitor element. Is possible. Specifically, in the top perspective view of the storage capacitor element 23 shown in the lower part of FIG. 4A, the laser beam is emitted from a direction substantially perpendicular to the film surface with respect to the two conductive lines 234L connected to the electrode block C4. Irradiated. In the upper part of FIG. 4A, L indicates the locus of the laser beam, and the conductive line 234L is cut by the laser beam.
 これにより、上方の電極層232における電極ブロックC4に相当する領域である電極ブロック層232Dは、電極層232における他の領域から電気絶縁される。また、このとき、導電線234Lが積層方向に投影された領域(図3記載の領域R)には、容量素子を構成する電極が形成されていないので、容量保持機能に関わる電極層や絶縁層を損傷させない。 Thereby, the electrode block layer 232D which is a region corresponding to the electrode block C4 in the upper electrode layer 232 is electrically insulated from other regions in the electrode layer 232. At this time, since the electrode that constitutes the capacitor element is not formed in the region where the conductive line 234L is projected in the stacking direction (region R in FIG. 3), an electrode layer or an insulating layer related to the capacitance holding function Will not damage.
 このレーザー照射により、保持容量素子23は、電極ブロックC1~C3が並列接続された容量素子として正常に機能することが可能となる。 By this laser irradiation, the holding capacitor element 23 can function normally as a capacitor element in which the electrode blocks C1 to C3 are connected in parallel.
 よって、保持容量素子23は、切除された電極ブロックC4の面積比だけ静電容量値は減少するものの、信号線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光層11Bを発光させることが可能となる。よって、従来の修正方法にあったような、不良発光画素を常時輝点化または常時滅点化する場合に比べて、発光パネルの表示品質が向上する。 Therefore, although the capacitance value is reduced by the area ratio of the removed electrode block C4, the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
 なお、ここでは上部に形成された電極層232を加工する例を挙げたが、電極層231及び232のパターンを入れ替えて、下部に形成された電極層231のレーザー加工を行っても良い。 In addition, although the example which processes the electrode layer 232 formed in the upper part was given here, the pattern of the electrode layers 231 and 232 may be replaced and laser processing of the electrode layer 231 formed in the lower part may be performed.
 また、レーザーの照射方向は、表示パネル10の上面からではなく、基板100を介した下面からであってもよい。図4Cは、本発明の実施の形態1に係る保持容量素子に対し、下面側からレーザー照射する場合を説明する構造断面図である。図4Cに記載の、下面からのレーザー照射方式は、図4Aに記載の、上面からのレーザー照射方式と比較して、発光層11Bが駆動回路層11Aの上に形成された後になされる保持容量素子23の修正において有利である。なぜなら、下面からのレーザー照射方式は、発光層11Bをレーザーが通過しないという点で、発光層11Bを、レーザーの通過により損傷させる可能性を排除できるからである。 Further, the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10. FIG. 4C is a structural cross-sectional view illustrating the case where the storage capacitor element according to Embodiment 1 of the present invention is irradiated with laser from the lower surface side. The laser irradiation method from the lower surface shown in FIG. 4C is compared with the laser irradiation method from the upper surface shown in FIG. 4A, and the storage capacitor formed after the light emitting layer 11B is formed on the drive circuit layer 11A. This is advantageous in the modification of the element 23. This is because the laser irradiation method from the lower surface can eliminate the possibility of damaging the light emitting layer 11B due to the passage of the laser in that the laser does not pass through the light emitting layer 11B.
 次に、本発明の実施の形態1に係る画像表示装置の製造方法について説明する。本発明の画像表示装置1の製造方法は、従来の画像表示装置の製造方法と比較して、保持容量素子23の形成工程のみが異なる。従来の画像表示装置の製造方法と同じ点は説明を省略し、以下、異なる点のみ説明する。 Next, a method for manufacturing the image display apparatus according to Embodiment 1 of the present invention will be described. The manufacturing method of the image display device 1 of the present invention differs from the conventional manufacturing method of the image display device only in the formation process of the storage capacitor element 23. The description of the same points as in the conventional method of manufacturing an image display device is omitted, and only different points will be described below.
 まず、駆動回路層11Aの一層として、メタルマスク製膜、リフトオフ及びエッチングなどの手法を用いて、例えば、MoとWとの合金からなる電極層231を所定の位置に形成する。このとき、電極層231とスイッチングトランジスタ21のゲート電極とは、金属配線により接続されている。 First, as a layer of the drive circuit layer 11A, an electrode layer 231 made of, for example, an alloy of Mo and W is formed at a predetermined position using a technique such as metal mask deposition, lift-off, and etching. At this time, the electrode layer 231 and the gate electrode of the switching transistor 21 are connected by a metal wiring.
 次に、電極層231の上に、例えば、SiOxまたはSiNなどからなる絶縁層233を、電極層231を覆うように形成する。このとき、必要に応じて、絶縁層233の表面を平坦化することが好ましい。 Next, an insulating layer 233 made of, for example, SiOx or SiN is formed on the electrode layer 231 so as to cover the electrode layer 231. At this time, the surface of the insulating layer 233 is preferably planarized as necessary.
 次に、絶縁層233の上に、メタルマスク製膜、リフトオフ及びエッチングなどの手法を用いて、例えば、MoとWとの合金/Al/MoとWとの合金の積層構造からなる電極層232を所定の位置に形成する。このとき、電極層232の平面パターンは、分割された複数の電極ブロック層領域からなり、これらの電極ブロック層領域が、同一面内で導電線にて接続されている形状である。 Next, an electrode layer 232 having a laminated structure of, for example, an alloy of Mo and W / an alloy of Al / Mo and W is formed on the insulating layer 233 by using a method such as metal mask deposition, lift-off, and etching. Are formed at predetermined positions. At this time, the planar pattern of the electrode layer 232 is composed of a plurality of divided electrode block layer regions, and these electrode block layer regions are connected by conductive lines within the same plane.
 ここで、下部に形成された電極層231は、導電線234が積層方向に投影された領域を除く領域に形成されている。つまり、電極層231の形成時には、図3に記載された領域Rが電極層231の内部領域に含まれるよう、上記パターニング手法を用いて電極層231が形成される。 Here, the electrode layer 231 formed in the lower part is formed in a region excluding the region where the conductive line 234 is projected in the stacking direction. That is, when the electrode layer 231 is formed, the electrode layer 231 is formed using the patterning method so that the region R illustrated in FIG. 3 is included in the inner region of the electrode layer 231.
 上記製造方法により、保持容量素子23が駆動回路層11A内に形成される。 The storage capacitor element 23 is formed in the drive circuit layer 11A by the above manufacturing method.
 上述した画像表示装置1の製造方法によれば、不要なパーティクルなどが発生した電極ブロックを、導電線へのレーザー照射により容量素子から切り離すことが可能となる。しかも、導電線234が積層方向に投影された領域(図3記載の領域R)には容量素子を構成する電極が形成されていないので、導電線へのレーザー照射により、容量素子を構成する領域を損傷させることを回避できる。 According to the manufacturing method of the image display device 1 described above, the electrode block in which unnecessary particles or the like are generated can be separated from the capacitive element by laser irradiation of the conductive wire. In addition, since the electrode constituting the capacitor element is not formed in the region where the conductive line 234 is projected in the stacking direction (region R shown in FIG. 3), the region constituting the capacitor element by laser irradiation to the conductive line. Can be avoided.
 図5は、本発明の実施の形態1に係る第1の変形例を示す保持容量素子の電極構成図である。同図には、図3と同様に、積層方向において対向する電極層231及び232の上面図、ならびに両電極層が上下に重なり合って形成された保持容量素子23の上面透視図が記載されている。なお、図示していないが、両電極層231及び232の間には、絶縁層233が形成されている。同図に記載された保持容量素子23は、図3に記載された保持容量素子と比較して、導電線の接続位置、及び、当該接続位置に対応した電極層231の形状が異なる。以下、図3に記載された保持容量素子と同じ点は説明を省略し、同じ点のみ説明する。 FIG. 5 is an electrode configuration diagram of a storage capacitor element showing a first modification according to Embodiment 1 of the present invention. 3, similarly to FIG. 3, a top view of the electrode layers 231 and 232 facing each other in the stacking direction and a top perspective view of the storage capacitor element 23 formed by overlapping both electrode layers vertically are described. . Although not shown, an insulating layer 233 is formed between the electrode layers 231 and 232. The storage capacitor element 23 shown in the figure is different from the storage capacitor element shown in FIG. 3 in the connection position of the conductive line and the shape of the electrode layer 231 corresponding to the connection position. Hereinafter, description of the same points as those of the storage capacitor element illustrated in FIG. 3 will be omitted, and only the same points will be described.
 導電線234は、電極層232の領域の外周辺に配置され、各電極ブロック層を接続している。 The conductive wire 234 is disposed on the outer periphery of the electrode layer 232 and connects the electrode block layers.
 下部に形成された電極層231の内側領域には、導電線234が積層方向に投影された領域は形成されておらず、当該領域は、電極層231の外部に形成されている。 In the inner region of the electrode layer 231 formed in the lower part, the region where the conductive wire 234 is projected in the stacking direction is not formed, and the region is formed outside the electrode layer 231.
 本変形例の保持容量素子23の構成によれば、不要なパーティクルなどが発生した電極ブロックを、導電線234へのレーザー照射により容量素子から切り離すことが可能となる。しかも、導電線234が積層方向に投影された領域を除く領域に電極層が形成されているので、導電線234へのレーザー照射により、容量素子を構成する領域を損傷させることを回避できる。 According to the configuration of the storage capacitor element 23 of this modification, the electrode block in which unnecessary particles or the like are generated can be separated from the capacitor element by irradiating the conductive wire 234 with a laser. In addition, since the electrode layer is formed in a region excluding the region where the conductive line 234 is projected in the stacking direction, it is possible to avoid damaging the region forming the capacitor element by irradiating the conductive line 234 with a laser.
 また、本変形例では、電極層232と他の回路素子とを接続するための引出配線が記載されている。この引出配線は、導電線234を介して4つの前記電極ブロック層232A~232Dに接続されている。 Further, in this modification, a lead-out wiring for connecting the electrode layer 232 and other circuit elements is described. The lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234.
 通常の画像表示装置における発光画素の不良率から推定して、容量素子を要因とした不良発光画素においては、1カ所のみのショートによる場合が支配的である。従って、不要なパーティクルなどが発生した一の電極ブロックのみを除外することにより、容量素子が原因である発光画素不良は殆ど解消される。よって上記引出配線の接続によれば、電極ブロック層232A~232Dのうち一の電極ブロックのみを他の電極ブロック及び引出配線から電気絶縁させることが可能となる。また、電極ブロック層232A~232Dのうち一の電極ブロックのみを電気的に切断しても、引出配線は正常機能を有する容量素子から切断されることがない。よって修正後の容量素子は、発光画素の静電保持容量素子としての機能を有する。 Estimated from the defective rate of light emitting pixels in a normal image display device, a defective light emitting pixel due to a capacitive element is predominantly due to a short circuit. Therefore, by removing only one electrode block in which unnecessary particles or the like are generated, light emitting pixel defects caused by the capacitive element are almost eliminated. Therefore, according to the connection of the extraction wiring, only one electrode block among the electrode block layers 232A to 232D can be electrically insulated from the other electrode blocks and the extraction wiring. Further, even if only one of the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitive element having a normal function. Therefore, the corrected capacitive element has a function as an electrostatic holding capacitive element of the light emitting pixel.
 本変形例においても、例えば、電極ブロックC4(図5記載の上面透視図における右上の電極ブロック)がショート不良の原因である場合、電極ブロックC4に接続された導電線234Lへのレーザー照射により、保持容量素子23は、電極ブロックC1~C3が並列接続された容量素子として正常に機能することが可能となる。 Also in this modification, for example, when the electrode block C4 (the upper right electrode block in the top perspective view of FIG. 5) is the cause of the short-circuit failure, the conductive wire 234L connected to the electrode block C4 is irradiated with laser, The holding capacitor element 23 can function normally as a capacitor element in which the electrode blocks C1 to C3 are connected in parallel.
 よって、保持容量素子23は、切除された電極ブロックC4の面積比だけ静電容量値は減少するものの、信号線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光層11Bを発光させることが可能となる。よって、従来の修正方法にあったような、不良発光画素を常時輝点化または常時滅点化する場合に比べて、発光パネルの表示品質が向上する。 Therefore, although the capacitance value is reduced by the area ratio of the removed electrode block C4, the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
 また、本変形例の保持容量素子の構成は、図3に記載された保持容量素子の構成に比べ、導電線を形成するための領域を、保持容量素子の周辺に確保する必要がある。一方、電極層231には、電極層内部に領域Rを別途確保する必要がないので、微細加工によるパターニング工程の簡略化を図ることが可能となる。 Further, in the configuration of the storage capacitor element of this modification, it is necessary to secure a region for forming a conductive line in the periphery of the storage capacitor element as compared with the configuration of the storage capacitor element shown in FIG. On the other hand, in the electrode layer 231, it is not necessary to separately secure the region R inside the electrode layer, so that it becomes possible to simplify the patterning process by fine processing.
 なお、本変形例においても、上部に形成された電極層232を加工する例を挙げたが、電極層231及び232のパターンを入れ替えて、下部に形成された電極層231のレーザー加工を行っても良い。 In the present modification, the example in which the electrode layer 232 formed on the upper part is processed has been described. However, the pattern of the electrode layers 231 and 232 is replaced, and the electrode layer 231 formed on the lower part is subjected to laser processing. Also good.
 また、レーザーの照射方向は、表示パネル10の上面からではなく、基板100を介した下面からであってもよい。 Further, the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10.
 図6は、本発明の実施の形態1に係る第2の変形例を示す保持容量素子の電極構成図である。同図には、図3と同様に、積層方向において対向する電極層231及び232の上面図、ならびに両電極層が上下に重なり合って形成された保持容量素子23の上面透視図が記載されている。なお、図示していないが、両電極層231及び232の間には、絶縁層233が形成されている。同図に記載された保持容量素子23は、図3に記載された保持容量素子と比較して、導電線234の形成位置が異なる。以下、図3に記載された保持容量素子と同じ点は説明を省略し、同じ点のみ説明する。 FIG. 6 is an electrode configuration diagram of a storage capacitor element showing a second modification according to Embodiment 1 of the present invention. 3, similarly to FIG. 3, a top view of the electrode layers 231 and 232 facing each other in the stacking direction and a top perspective view of the storage capacitor element 23 formed by overlapping both electrode layers vertically are described. . Although not shown, an insulating layer 233 is formed between the electrode layers 231 and 232. The storage capacitor element 23 shown in the figure differs from the storage capacitor element shown in FIG. 3 in the formation position of the conductive line 234. Hereinafter, description of the same points as those of the storage capacitor element illustrated in FIG. 3 will be omitted, and only the same points will be described.
 導電線234は、電極層232の領域内であって、当該領域の外周部に配置され、各電極ブロックを接続している。 The conductive wire 234 is disposed in the region of the electrode layer 232 and on the outer peripheral portion of the region, and connects the electrode blocks.
 下部に形成された電極層231は、導電線234が積層方向に投影された領域Rを除く領域に形成されている。つまり、導電線234と対向する領域Rには、積極的に電極層231を形成していない。本実施の形態では、電極層231が形成された領域内であって外縁部に、領域Rが形成されている。 The electrode layer 231 formed in the lower part is formed in a region excluding the region R where the conductive lines 234 are projected in the stacking direction. That is, the electrode layer 231 is not actively formed in the region R facing the conductive line 234. In the present embodiment, the region R is formed in the outer edge portion in the region where the electrode layer 231 is formed.
 本変形例の保持容量素子23の構成によれば、不要なパーティクルなどが発生した電極ブロック層を、導電線234へのレーザー照射により容量素子から切り離すことが可能となる。しかも、領域Rには電極が形成されていないので、電極層232の面に対して略垂直な方向からの導電線234へのレーザー照射により、容量素子を構成する領域、つまり電極層231を損傷させることを回避できる。 According to the configuration of the storage capacitor element 23 of this modification, the electrode block layer in which unnecessary particles or the like are generated can be separated from the capacitor element by irradiating the conductive wire 234 with laser. In addition, since no electrode is formed in the region R, the region constituting the capacitive element, that is, the electrode layer 231 is damaged by laser irradiation to the conductive wire 234 from a direction substantially perpendicular to the surface of the electrode layer 232. Can be avoided.
 また、本変形例では、電極層232と他の回路素子とを接続するための引出配線が記載されている。この引出配線は、導電線234を介して4つの前記電極ブロック層232A~232Dに接続されている。よって上記引出配線の接続によれば、電極ブロック層232A~232Dのうち一の電極ブロックのみを他の電極ブロック及び引出配線から電気絶縁させることが可能となる。また、電極ブロック層232A~232Dのうち一の電極ブロックのみを電気的に切断しても、引出配線は正常機能を有する容量素子から切断されることがない。よって修正後の保持容量素子は、発光画素の静電保持容量素子としての機能を有する。 Further, in this modification, a lead-out wiring for connecting the electrode layer 232 and other circuit elements is described. The lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234. Therefore, according to the connection of the extraction wiring, only one electrode block among the electrode block layers 232A to 232D can be electrically insulated from the other electrode blocks and the extraction wiring. Further, even if only one of the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitive element having a normal function. Therefore, the corrected storage capacitor element has a function as an electrostatic storage capacitor element of the light emitting pixel.
 本変形例においても、例えば電極ブロックC4(図6記載の上面透視図における右上の電極ブロック)がショート不良の原因である場合、電極ブロックC4に接続された導電線234Lへのレーザー照射により、保持容量素子23は、電極ブロックC1~C3が並列接続された容量素子として正常に機能することが可能となる。 Also in this modification, for example, when the electrode block C4 (upper right electrode block in the top perspective view shown in FIG. 6) is the cause of the short-circuit failure, the conductive wire 234L connected to the electrode block C4 is held by laser irradiation. The capacitive element 23 can function normally as a capacitive element in which the electrode blocks C1 to C3 are connected in parallel.
 よって、保持容量素子23は、切除された電極ブロックC4の面積比だけ静電容量値は減少するものの、信号線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光層11Bを発光させることが可能となる。よって、従来の修正方法にあったような、不良発光画素を常時輝点化または常時滅点化する場合に比べて、発光パネルの表示品質が向上する。 Therefore, although the capacitance value is reduced by the area ratio of the removed electrode block C4, the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
 また、本変形例の保持容量素子23によれば、図5に記載された保持容量素子と比較して、レーザー照射による損傷が想定される領域Rを、電極層231の領域内に積極的に確保している。よって、電極層231を形成する領域の周辺外部に配線形成領域を確保する必要がない。一方、図5に記載された保持容量素子を構成する場合には、周辺外部に配線領域を確保しなければならない上に、レーザー照射による周辺回路素子の損傷回避を考慮して、周辺回路素子と保持容量素子との間隔を確保しなければならない。これに対して、本変形例の保持容量素子23構成によれば、レーザー照射による保持容量素子の損傷を回避しつつ省面積化が図られる。 Further, according to the storage capacitor element 23 of the present modification, the region R that is assumed to be damaged by laser irradiation is more actively included in the region of the electrode layer 231 than the storage capacitor device illustrated in FIG. Secured. Therefore, it is not necessary to secure a wiring formation region outside the periphery of the region where the electrode layer 231 is formed. On the other hand, when the storage capacitor element shown in FIG. 5 is configured, it is necessary to secure a wiring area outside the periphery, and in consideration of avoiding damage to the peripheral circuit element due to laser irradiation, An interval from the storage capacitor element must be secured. On the other hand, according to the configuration of the storage capacitor element 23 of the present modification, the area can be saved while avoiding damage to the storage capacitor element due to laser irradiation.
 さらに、本変形例の保持容量素子23の構成は、図3に記載された保持容量素子と比較して、確保すべき静電容量の面積効率に優れている。以下、この効果を説明する。 Furthermore, the configuration of the storage capacitor element 23 of the present modification is excellent in the area efficiency of the capacitance to be secured as compared with the storage capacitor element shown in FIG. Hereinafter, this effect will be described.
 図6に記載された保持容量素子の上面透視図には、領域Rと導電線234とが重なり合った部分の拡大図が記載されている。導電線234へのレーザー照射により電極層231が損傷しないよう、また、領域Rと導電線234との重ね合わせ工程におけるパターンマスクずれを考慮して、電極層231の左右両端に配置された領域Rは、例えば、X=8μm、Y=12μmで確保されている。一方、電極層231の上下両端に配置された領域Rは、例えば、X=12μm、Y=8μmで確保されている。ここで、導電線234の線幅を4μm、長さを4μmと仮定している。つまり、導電線234をレーザー照射により切断するために、電極層231の左右両端に配置された領域Rは、導電線234の線幅に対応した領域に加え、領域R7及びR8を含む領域(X=4μm、Y=12μm)がさらに確保され、電極層231の上下両端に配置された領域Rは、領域R5及びR6を含む領域(X=12μm、Y=4μm)がさらに確保されている。このとき、導電線234でない、電極ブロックの構成要素である領域R5~R8と対向する領域は領域Rとなっているので、領域R5~R8は保持容量として機能しない。 6 is an enlarged view of a portion where the region R and the conductive wire 234 overlap each other in the top perspective view of the storage capacitor element described in FIG. In order to prevent the electrode layer 231 from being damaged by the laser irradiation to the conductive line 234, and considering the pattern mask shift in the overlapping process of the region R and the conductive line 234, the region R disposed at the left and right ends of the electrode layer 231. For example, X = 8 μm and Y = 12 μm are secured. On the other hand, the regions R arranged at the upper and lower ends of the electrode layer 231 are secured, for example, with X = 12 μm and Y = 8 μm. Here, it is assumed that the conductive line 234 has a line width of 4 μm and a length of 4 μm. That is, in order to cut the conductive line 234 by laser irradiation, the regions R arranged at the left and right ends of the electrode layer 231 include regions RX and R8 in addition to the region corresponding to the line width of the conductive line 234 (X = 4 μm, Y = 12 μm) is further secured, and the regions R arranged at the upper and lower ends of the electrode layer 231 further secure regions including the regions R5 and R6 (X = 12 μm, Y = 4 μm). At this time, the regions R5 to R8 that are not the conductive lines 234 and that are opposed to the regions R5 to R8 that are constituent elements of the electrode block are the regions R, so the regions R5 to R8 do not function as storage capacitors.
 一方、 図3に記載された保持容量素子の上面透視図でも、領域Rと導電線234とが重なり合った部分の拡大図が記載されている。導電線234へのレーザー照射により電極層231が損傷しないよう、また、領域Rと導電線234との重ね合わせ工程におけるパターンマスクずれを考慮して、電極層231の左右方向に配置された領域Rは、例えば、X=12μm、Y=12μmで確保されている。一方、電極層231の上下方向に配置された領域Rは、例えば、X=12μm、Y=12μmで確保されている。ここで、導電線234の線幅を4μmと仮定している。つまり、導電線234をレーザー照射により切断するために、電極層231の左右方向に配置された領域Rは、導電線234の線幅に加え、導電線234の両側に、それぞれ、X=4μm、Y=12μmがさらに確保され、電極層231の上下方向に配置された領域Rは、導電線234の両側に、それぞれ、X=12μm、Y=4μmがさらに確保されている。このとき、導電線234でない、電極ブロックの構成要素である領域R1~R4の対向する領域は領域Rとなっているので、領域R1~R4は保持容量として機能しない。 On the other hand, even in the top perspective view of the storage capacitor element shown in FIG. 3, an enlarged view of a portion where the region R and the conductive wire 234 overlap is shown. The region R arranged in the left-right direction of the electrode layer 231 is considered so that the electrode layer 231 is not damaged by the laser irradiation to the conductive line 234 and the pattern mask shift in the overlapping process of the region R and the conductive line 234 is taken into consideration. Are secured at, for example, X = 12 μm and Y = 12 μm. On the other hand, the region R arranged in the vertical direction of the electrode layer 231 is secured, for example, with X = 12 μm and Y = 12 μm. Here, the line width of the conductive line 234 is assumed to be 4 μm. That is, in order to cut the conductive line 234 by laser irradiation, the region R arranged in the left-right direction of the electrode layer 231 has X = 4 μm on both sides of the conductive line 234 in addition to the line width of the conductive line 234, respectively. Y = 12 μm is further secured, and regions R arranged in the vertical direction of the electrode layer 231 further secure X = 12 μm and Y = 4 μm on both sides of the conductive wire 234, respectively. At this time, the regions R1 to R4 that are not conductive lines 234 and that are the components of the electrode block are the regions R, so the regions R1 to R4 do not function as storage capacitors.
 以上の比較より、図6に記載された保持容量素子において確保された領域Rと対向する領域R5及びR6は、それぞれ、図3に記載された保持容量素子において確保された領域Rと対向する領域R1及びR2よりも小さい。また、同様にして、領域R7及びR8は、それぞれ、領域R3及びR4よりも小さい。これより、図6に記載された保持容量素子23の方が、領域Rの確保により浸食される電極層面積を抑制することができるので、複数の電極ブロック層から構成される電極層232の面積に対して、確保すべき静電容量の面積効率が高い。 From the above comparison, the regions R5 and R6 facing the region R secured in the storage capacitor element shown in FIG. 6 are regions facing the region R secured in the storage capacitor device shown in FIG. It is smaller than R1 and R2. Similarly, the regions R7 and R8 are smaller than the regions R3 and R4, respectively. Accordingly, since the storage capacitor element 23 shown in FIG. 6 can suppress the area of the electrode layer eroded by securing the region R, the area of the electrode layer 232 composed of a plurality of electrode block layers is reduced. On the other hand, the area efficiency of the capacitance to be secured is high.
 つまり、導電線234は、電極層232の外部ではなく、電極層232の外縁部に形成されていることが好ましい。この導電線234の配置に対応して、レーザー照射により電極層231が損傷しないように形成される領域Rは、電極層231の外部領域ではなく、電極層231の外縁部領域に形成されていることが好ましい。 That is, the conductive wire 234 is preferably formed not on the outside of the electrode layer 232 but on the outer edge of the electrode layer 232. Corresponding to the arrangement of the conductive lines 234, the region R formed so that the electrode layer 231 is not damaged by laser irradiation is formed not in the outer region of the electrode layer 231 but in the outer edge region of the electrode layer 231. It is preferable.
 さらに、本変形例の保持容量素子の構成は、図3に記載された保持容量素子の構成に比べ、レーザー照射される導電線が、電極層232の外周部に形成されているので、引出配線を短くすることが可能となる。よって、引出配線による充放電の遅延が抑制されるので、信号電荷の充放電特性を向上させることが可能となる。 Further, in the configuration of the storage capacitor element of this modification, the conductive line irradiated with the laser is formed on the outer periphery of the electrode layer 232 as compared with the configuration of the storage capacitor element shown in FIG. Can be shortened. Therefore, since the delay of charging / discharging by the lead-out wiring is suppressed, it is possible to improve the charge / discharge characteristics of signal charges.
 なお、本変形例においても、上部に形成された電極層232を加工する例を挙げたが、電極層231及び232のパターンを入れ替えて、下部に形成された電極層231のレーザー加工を行っても良い。 In the present modification, the example in which the electrode layer 232 formed on the upper part is processed has been described. However, the pattern of the electrode layers 231 and 232 is replaced, and the electrode layer 231 formed on the lower part is subjected to laser processing. Also good.
 また、レーザーの照射方向は、表示パネル10の上面からではなく、基板100を介した下面からであってもよい。 Further, the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10.
 図7は、本発明の実施の形態1に係る第3の変形例を示す保持容量素子の電極構成図である。同図には、図6と同様に、積層方向において対向する電極層231及び232の上面図、ならびに両電極層が上下に重なり合って形成された保持容量素子23の上面透視図が記載されている。なお、図示していないが、両電極層231及び232の間には、絶縁層233が形成されている。同図に記載された保持容量素子23は、図6に記載された保持容量素子と比較して、導電線の接続位置、及び、当該接続位置に対応した電極層231の形状が異なる。以下、図6に記載された保持容量素子と同じ点は説明を省略し、同じ点のみ説明する。 FIG. 7 is an electrode configuration diagram of a storage capacitor element showing a third modification according to Embodiment 1 of the present invention. 6, similarly to FIG. 6, a top view of the electrode layers 231 and 232 facing each other in the stacking direction, and a top perspective view of the storage capacitor element 23 formed by overlapping both electrode layers vertically are described. . Although not shown, an insulating layer 233 is formed between the electrode layers 231 and 232. The storage capacitor element 23 shown in the figure is different from the storage capacitor element shown in FIG. 6 in the connection position of the conductive line and the shape of the electrode layer 231 corresponding to the connection position. Hereinafter, description of the same points as those of the storage capacitor element illustrated in FIG. 6 will be omitted, and only the same points will be described.
 導電線234は、電極層232の領域外であって、当該領域の周辺に配置され、各電極ブロック層を接続している。 The conductive wire 234 is arranged outside the region of the electrode layer 232 and around the region, and connects the electrode block layers.
 下部に形成された電極層231の内側領域には、導電線234が積層方向に投影された領域は形成されておらず、当該領域は、電極層231の外周部に形成されている。 In the inner region of the electrode layer 231 formed in the lower portion, a region where the conductive wire 234 is projected in the stacking direction is not formed, and the region is formed in the outer peripheral portion of the electrode layer 231.
 本変形例の保持容量素子23の構成によれば、不要なパーティクルなどが発生した電極ブロックを、導電線234へのレーザー照射により容量素子から切り離すことが可能となる。しかも、導電線234が積層方向に投影された領域を除く領域に電極層が形成されているので、導電線234へのレーザー照射により、容量素子を構成する領域を損傷させることを回避できる。 According to the configuration of the storage capacitor element 23 of this modification, the electrode block in which unnecessary particles or the like are generated can be separated from the capacitor element by irradiating the conductive wire 234 with a laser. In addition, since the electrode layer is formed in a region excluding the region where the conductive line 234 is projected in the stacking direction, it is possible to avoid damaging the region forming the capacitor element by irradiating the conductive line 234 with a laser.
 また、本変形例では、電極層232と他の回路素子とを接続するための引出配線が記載されている。この引出配線は、導電線234を介して4つの前記電極ブロック層232A~232Dに接続されている。よって上記引出配線の接続によれば、電極ブロック層232A~232Dのうち一の電極ブロック層のみを他の電極ブロック層及び引出配線から電気絶縁させることが可能となる。また、電極ブロック層232A~232Dのうち一の電極ブロック層のみを電気的に切断しても、引出配線は正常機能を有する容量素子から切断されることがない。よって修正後の容量素子は、発光画素の静電保持容量素子としての機能を有する。 Further, in this modification, a lead-out wiring for connecting the electrode layer 232 and other circuit elements is described. The lead-out wiring is connected to the four electrode block layers 232A to 232D through conductive lines 234. Therefore, according to the connection of the lead lines, only one of the electrode block layers 232A to 232D can be electrically insulated from the other electrode block layers and the lead lines. Further, even if only one electrode block layer among the electrode block layers 232A to 232D is electrically disconnected, the lead-out wiring is not disconnected from the capacitor element having a normal function. Therefore, the corrected capacitive element has a function as an electrostatic holding capacitive element of the light emitting pixel.
 本変形例においても、例えば、電極ブロックC4(図7記載の上面透視図における右上の電極ブロック)がショート不良の原因である場合、電極ブロックC4に接続された導電線234Lへのレーザー照射により、保持容量素子23は、電極ブロックC1~C3が並列接続された容量素子として正常に機能することが可能となる。 Also in this modification, for example, when the electrode block C4 (the upper right electrode block in the top perspective view of FIG. 7) is the cause of the short-circuit failure, the conductive wire 234L connected to the electrode block C4 is irradiated with laser, The holding capacitor element 23 can function normally as a capacitor element in which the electrode blocks C1 to C3 are connected in parallel.
 よって、保持容量素子23は、切除された電極ブロックC4の面積比だけ静電容量値は減少するものの、信号線からの信号電圧に対応した電圧を保持し、正常な発光タイミングで発光層11Bを発光させることが可能となる。よって、従来の修正方法にあったような、不良発光画素を常時輝点化または常時滅点化する場合に比べて、発光パネルの表示品質が向上する。 Therefore, although the capacitance value is reduced by the area ratio of the removed electrode block C4, the holding capacitor element 23 holds a voltage corresponding to the signal voltage from the signal line, and holds the light emitting layer 11B at a normal light emission timing. It is possible to emit light. Therefore, the display quality of the light-emitting panel is improved as compared with the case where the defective light-emitting pixels are always brightened or constantly darkened as in the conventional correction method.
 また、本変形例の保持容量素子の構成は、図6に記載された保持容量素子の構成に比べ、導電線を形成するための領域を、保持容量素子の周辺に確保する必要がある。一方、電極層231には、電極層231内部に領域Rを別途確保する必要がないので、微細加工によるパターニング工程の簡略化を図ることが可能となる。 Further, in the configuration of the storage capacitor element of this modification, it is necessary to secure a region for forming a conductive line around the storage capacitor element as compared with the configuration of the storage capacitor element shown in FIG. On the other hand, since it is not necessary for the electrode layer 231 to separately reserve the region R inside the electrode layer 231, it is possible to simplify the patterning process by fine processing.
 なお、本変形例においても、上部に形成された電極層232を加工する例を挙げたが、電極層231及び232のパターンを入れ替えて、下部に形成された電極層231のレーザー加工を行っても良い。 In the present modification, the example in which the electrode layer 232 formed on the upper part is processed has been described. However, the pattern of the electrode layers 231 and 232 is replaced, and the electrode layer 231 formed on the lower part is subjected to laser processing. Also good.
 また、レーザーの照射方向は、表示パネル10の上面からではなく、基板100を介した下面からであってもよい。 Further, the laser irradiation direction may be from the lower surface via the substrate 100 instead of from the upper surface of the display panel 10.
 (実施の形態2)
 本実施の形態では、実施の形態1に記載された画像表示装置1の修正方法について説明する。
(Embodiment 2)
In the present embodiment, a correction method for the image display device 1 described in the first embodiment will be described.
 図8は、本発明の実施の形態2に係る画像表示装置の修正方法を示す動作フローチャートである。 FIG. 8 is an operation flowchart showing a correction method for the image display device according to the second embodiment of the present invention.
 まず、最初に、全ての発光画素11について、保持容量素子23の電気特性を検査し、短絡状態にある保持容量素子23を有する発光画素11を特定する(S10)。具体的には、例えば、信号線12にアレイテスタ(Agilent社:HS100)を接続し、信号線12を介して各発光画素11へ順次テスト電圧を出力して保持容量素子23に当該電圧を書き込む。その後、アレイテスタは、保持容量素子23に書き込まれた電圧を、所定のタイミングにて、信号線12を介し読み込む。これにより、読み込んだ電圧が所定の電圧に満たない発光画素11を特定する。これにより、異常な保持容量素子23を有する発光画素の画素限定プロセスが完了する。 First, the electrical characteristics of the storage capacitor element 23 are inspected for all the light emitting pixels 11, and the light emitting pixel 11 having the storage capacitor element 23 in a short-circuited state is specified (S10). Specifically, for example, an array tester (Agilent: HS100) is connected to the signal line 12, a test voltage is sequentially output to each light emitting pixel 11 via the signal line 12, and the voltage is written in the storage capacitor element 23. Thereafter, the array tester reads the voltage written in the storage capacitor element 23 through the signal line 12 at a predetermined timing. Thereby, the light emitting pixel 11 whose read voltage is less than the predetermined voltage is specified. Thereby, the pixel limiting process of the light emitting pixel having the abnormal storage capacitor element 23 is completed.
 次に、特定した発光画素11の保持容量素子23を観察し、異常箇所の領域を特定する(S20)。具体的には、例えば、保持容量素子23が形成された領域の表面凹凸形状を顕微鏡観察する。導電性パーティクルが偏在した領域は、凸形状となる場合が多い。これにより、異常な保持容量素子23のエリア限定プロセスが完了し、異常電極ブロックが特定される。 Next, the storage capacitor element 23 of the specified light emitting pixel 11 is observed, and the region of the abnormal part is specified (S20). Specifically, for example, the surface irregularity shape of the region where the storage capacitor element 23 is formed is observed with a microscope. A region where conductive particles are unevenly distributed often has a convex shape. Thereby, the area limitation process of the abnormal storage capacitor element 23 is completed, and the abnormal electrode block is specified.
 なお、このエリア限定プロセスは、検査員が実行してもよいし、また、画像認識機能を有する自動測定で実行してもよい。 Note that this area limitation process may be executed by an inspector, or may be executed by automatic measurement having an image recognition function.
 次に、特定した異常箇所を含む電極ブロック層が接続されている導電線234の一部にレーザーを照射し、当該電極ブロック層を他の電極ブロック層から電気絶縁させる(S30)。ここで、導電線234の一部にレーザーを照射することにより切断可能な形状とは、使用されるレーザーの仕様と密接な関係があり、例えば、YAG(Yttrium Aluminium Garnet)レーザーを光源としたレーザー発振器を用いて、例えば、波長532nm、パルス幅10ns、パワー0.5mWを出力パラメータとしたレーザーを使用した場合、導電線234の幅が4μm、膜厚が150nmであれば、他の正常な電極ブロックを損傷させることなく、導電線234は切断される。このとき、導電線234の材料としては、例えば、前述したMoとWとの合金/アルミニウム(Al)/MoとWとの合金の積層構造が挙げられる。 Next, a part of the conductive wire 234 connected to the electrode block layer including the specified abnormal portion is irradiated with a laser to electrically insulate the electrode block layer from other electrode block layers (S30). Here, the shape that can be cut by irradiating a part of the conductive wire 234 is closely related to the specifications of the laser used, for example, a laser using a YAG (Yttrium Aluminum Garnet) laser as a light source. For example, when a laser having an output parameter of a wavelength of 532 nm, a pulse width of 10 ns, and a power of 0.5 mW is used with an oscillator, if the width of the conductive wire 234 is 4 μm and the film thickness is 150 nm, other normal electrodes The conductive line 234 is cut without damaging the block. At this time, examples of the material of the conductive wire 234 include the above-described laminated structure of an alloy of Mo and W / aluminum (Al) / alloy of Mo and W.
 最後に、上述したレーザー照射を実施した発光画素11の動作確認を行う(S40)。 Finally, the operation of the light emitting pixel 11 that has been subjected to the laser irradiation described above is checked (S40).
 以上の動作により、保持容量素子形成時には異常であった発光画素は、信号線からの信号電圧に対応した電圧を保持することが可能となり、正常な発光タイミングで発光素子を発光させることが可能となる。よって、発光パネルの表示品質が向上する。 Through the above operation, the light emitting pixel that is abnormal when the storage capacitor element is formed can hold a voltage corresponding to the signal voltage from the signal line, and the light emitting element can emit light at a normal light emission timing. Become. Therefore, the display quality of the light emitting panel is improved.
 なお、図8に記載された画像表示装置の修正方法は、画像表示装置1の製造工程途中、または、製造工程完了後において適用される。例えば、図2に記載された画像表示装置1において、上部の電極層232が形成された段階、または、平坦化膜102が形成された段階で実施されてもよく、また、発光層11B及び透明封止膜110が形成された段階で実施されてもよい。 Note that the method for correcting the image display device illustrated in FIG. 8 is applied during the manufacturing process of the image display device 1 or after the manufacturing process is completed. For example, in the image display device 1 illustrated in FIG. 2, the image display device 1 may be implemented when the upper electrode layer 232 is formed or when the planarization film 102 is formed. It may be performed at the stage where the sealing film 110 is formed.
 以上、本発明の画像表示装置、その製造方法及び修正方法について、実施の形態に基づいて説明してきたが、本発明に係る画像表示装置、その製造方法及び修正方法は、上記実施の形態に限定されるものではない。実施の形態1及びその変形例ならびに実施の形態2における任意の構成要素を組み合わせて実現される別の実施の形態や、実施の形態1及びその変形例ならびに実施の形態2に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る画像表示装置を内蔵した各種機器も本発明に含まれる。 The image display device, the manufacturing method, and the correction method of the present invention have been described based on the embodiments. However, the image display device, the manufacturing method, and the correction method according to the present invention are limited to the above embodiments. It is not done. The present invention is different from Embodiment 1 and its modified examples, and other embodiments realized by combining arbitrary components in Embodiment 2, as well as Embodiment 1 and its modified examples and Embodiment 2. Modifications obtained by various modifications conceived by those skilled in the art without departing from the spirit of the present invention, and various apparatuses incorporating the image display device according to the present invention are also included in the present invention.
 例えば、実施の形態1では、保持容量素子23を構成する電極層232を4つの電極ブロックに分割した例を示したが、電極ブロックの分割数は、発光画素11の不良率や必要とされる静電容量に応じ、2以上の任意の分割数であればよい。 For example, in the first embodiment, the example in which the electrode layer 232 constituting the storage capacitor element 23 is divided into four electrode blocks has been described. However, the number of divisions of the electrode blocks depends on the defect rate of the light emitting pixels 11 and the required number. Depending on the capacitance, any number of divisions of 2 or more may be used.
 また、実施の形態1では、保持容量素子の不良要因として、電極間に偏在するパーティクルなどによる電極間ショートを挙げたが、本実施の形態におけるショートとは、完全短絡に限定されない。例えば、パーティクル同士の点接触のように微小な抵抗値及び容量値を有するものもショートに含まれる。 In the first embodiment, the short-circuit between the electrodes due to particles unevenly distributed between the electrodes is cited as a cause of the defective storage capacitor, but the short-circuit in the present embodiment is not limited to a complete short circuit. For example, a short circuit includes a small resistance value and capacitance value such as point contact between particles.
 また、例えば、本発明に係る画像表示装置は、図9に記載されたような薄型フラットTVに内蔵される。これにより、正常発光タイミングで発光しない発光画素が修正され、表示パネルの品質が向上した薄型フラットTVが実現される。 Also, for example, the image display apparatus according to the present invention is built in a thin flat TV as shown in FIG. Thereby, a light emitting pixel that does not emit light at normal light emission timing is corrected, and a thin flat TV with improved display panel quality is realized.
 本発明の画像表示装置、その製造方法及び修正方法は、大画面及び高解像度が要望される、薄型テレビ、パーソナルコンピュータのディスプレイなどの技術分野に有用である。 The image display device of the present invention, its manufacturing method, and correction method are useful in technical fields such as flat-screen televisions and personal computer displays that require a large screen and high resolution.
 1  画像表示装置
 10  表示パネル
 11  発光画素
 11A  駆動回路層
 11B  発光層
 12  信号線
 13  走査線
 14  走査線駆動回路
 15  信号線駆動回路
 20  制御回路
 21  スイッチングトランジスタ
 22  駆動トランジスタ
 23  保持容量素子
 24  有機EL素子
 100  基板
 101、102  平坦化膜
 103  陽極
 104  正孔注入層
 105  正孔輸送層
 106  有機発光層
 107  バンク層
 108  電子注入層
 109  透明陰極
 110  透明封止膜
 220  ドレイン電極
 221  ソース電極
 222  半導体層
 223  ゲート絶縁膜
 224  ゲート電極
 231、232  電極層
 232A、232B、232C、232D  電極ブロック層
 233  絶縁層
 234、234L  導電線
DESCRIPTION OF SYMBOLS 1 Image display apparatus 10 Display panel 11 Light emission pixel 11A Drive circuit layer 11B Light emission layer 12 Signal line 13 Scan line 14 Scan line drive circuit 15 Signal line drive circuit 20 Control circuit 21 Switching transistor 22 Drive transistor 23 Holding capacity element 24 Organic EL element DESCRIPTION OF SYMBOLS 100 Substrate 101, 102 Planarization film 103 Anode 104 Hole injection layer 105 Hole transport layer 106 Organic light emitting layer 107 Bank layer 108 Electron injection layer 109 Transparent cathode 110 Transparent sealing film 220 Drain electrode 221 Source electrode 222 Semiconductor layer 223 Gate Insulating film 224 Gate electrode 231, 232 Electrode layer 232A, 232B, 232C, 232D Electrode block layer 233 Insulating layer 234, 234L Conductive line

Claims (7)

  1.  発光層と当該発光層を駆動する駆動回路層とが積層された複数の発光画素が二次元状に配列された画像表示装置であって、
     前記駆動回路層は、
     積層方向において対向する2枚の電極層を有する平行平板型の容量素子を備え、
     前記2枚の電極層のうちの一方の電極層は、面方向において分割された複数の電極ブロック層からなり、
     前記複数の電極ブロック層は、同一面内で1以上の導電線にて接続されており、
     前記2枚の電極層のうちの他方の電極層は、前記導電線が積層方向に投影された領域を除く領域に、面方向において共通した1枚の平板形状に形成されている
     画像表示装置。
    An image display device in which a plurality of light-emitting pixels in which a light-emitting layer and a drive circuit layer that drives the light-emitting layer are stacked are two-dimensionally arranged,
    The drive circuit layer includes
    A parallel plate type capacitive element having two electrode layers facing each other in the stacking direction;
    One of the two electrode layers is composed of a plurality of electrode block layers divided in the plane direction,
    The plurality of electrode block layers are connected by one or more conductive wires in the same plane,
    The other electrode layer of the two electrode layers is formed in a single flat plate shape common to the surface direction in a region excluding the region where the conductive lines are projected in the stacking direction.
  2.  前記導電線は、当該導電線の一部にレーザーを照射することにより切断可能な形状を有する
     請求項1記載の画像表示装置。
    The image display device according to claim 1, wherein the conductive line has a shape that can be cut by irradiating a part of the conductive line with a laser.
  3.  前記発光画素のそれぞれは、
     一方の端子が前記駆動回路層を構成する他の回路素子に接続され、他方の端子が前記導電線を介して前記複数の電極ブロック層に接続された引出配線を備える
     請求項2記載の画像表示装置。
    Each of the light emitting pixels
    The image display according to claim 2, wherein one terminal is connected to another circuit element constituting the drive circuit layer, and the other terminal includes a lead wiring connected to the plurality of electrode block layers via the conductive wire. apparatus.
  4.  前記容量素子は、前記発光画素ごとに与えられた信号電圧に応じた電圧を保持電圧として保持する保持容量素子であり、
     前記駆動回路層は、さらに、
     ゲートと前記容量素子の一方の端子とが接続され、ゲートに前記保持電圧が印加されることにより、前記保持電圧をソース-ドレイン間電流である信号電流に変換する駆動トランジスタを備え、
     前記発光層は、
     前記信号電流が流れることにより発光する発光素子を備える
     請求項1~3のうちいずれか1項に記載の画像表示装置。
    The capacitive element is a retention capacitive element that retains a voltage corresponding to a signal voltage applied to each of the light emitting pixels as a retention voltage,
    The drive circuit layer further includes:
    A driving transistor that connects a gate and one terminal of the capacitive element and converts the holding voltage into a signal current that is a source-drain current by applying the holding voltage to the gate;
    The light emitting layer is
    The image display device according to any one of claims 1 to 3, further comprising a light emitting element that emits light when the signal current flows.
  5.  基板上に発光層と当該発光層を駆動する駆動回路層とを有する複数の発光画素が二次元状に配置された画像表示装置の製造方法であって、
     面方向において分割された複数の電極ブロック層からなり当該複数の電極ブロック層が同一面内で1以上の導電線にて接続された第1電極層を前記駆動回路層内に形成する第1電極形成ステップと、
     前記第1電極層と積層方向において対向して配置されることにより前記第1電極層とともに容量素子を構成する第2電極層を、前記駆動回路層内であって前記導電線が積層方向に投影された領域を除く領域に、面方向において共通した1枚の平板形状に形成する第2電極形成ステップとを含む
     画像表示装置の製造方法。
    A method of manufacturing an image display device in which a plurality of light emitting pixels having a light emitting layer and a drive circuit layer for driving the light emitting layer are arranged two-dimensionally on a substrate,
    A first electrode comprising a plurality of electrode block layers divided in the plane direction and forming a first electrode layer in the drive circuit layer in which the plurality of electrode block layers are connected by one or more conductive lines in the same plane Forming step;
    A second electrode layer that constitutes a capacitive element together with the first electrode layer by being disposed opposite to the first electrode layer in the stacking direction is projected in the driving circuit layer and the conductive line in the stacking direction. And a second electrode forming step of forming a single flat plate shape common to the surface direction in a region excluding the formed region.
  6.  請求項5記載の画像表示装置の製造方法と、
     前記第1電極形成ステップ及び前記第2電極形成ステップの後、
     前記発光画素ごとに前記容量素子を検査する容量検査ステップと、
     前記容量検査ステップで異常と判断された前記容量素子の前記導電線の一部にレーザーを照射して前記導電線を切断することにより、特定の前記電極ブロック層を前記駆動回路層内の他の回路素子及び他の前記電極ブロック層から電気絶縁させるレーザー照射ステップを含む
     画像表示装置の修正方法。
    A manufacturing method of the image display device according to claim 5;
    After the first electrode forming step and the second electrode forming step,
    A capacity inspection step of inspecting the capacitive element for each of the light emitting pixels;
    By irradiating a part of the conductive line of the capacitive element determined to be abnormal in the capacitance inspection step to cut the conductive line, the specific electrode block layer is moved to another part of the drive circuit layer. A method of correcting an image display device, comprising: a laser irradiation step for electrically insulating circuit elements and other electrode block layers.
  7.  前記容量検査ステップでは、
     前記容量素子が短絡している前記発光画素を特定する画素特定ステップと、
     前記画素特定ステップにて特定された、前記容量素子が短絡している前記発光画素の有する前記容量素子について、短絡の原因となっている前記電極ブロック層を特定する電極ブロック特定ステップとを含む
     請求項6記載の画像表示装置の修正方法。
    In the capacity inspection step,
    A pixel specifying step of specifying the light emitting pixel in which the capacitive element is short-circuited;
    An electrode block specifying step for specifying the electrode block layer that causes a short circuit with respect to the capacitor element of the light emitting pixel specified by the pixel specifying step and having the capacitor element short-circuited. Item 7. A method for correcting an image display device according to Item 6.
PCT/JP2010/001928 2009-03-18 2010-03-18 Image display apparatus, manufacturing method thereof, and correction method therefor WO2010106801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009066658 2009-03-18
JP2009-066658 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010106801A1 true WO2010106801A1 (en) 2010-09-23

Family

ID=42739470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001928 WO2010106801A1 (en) 2009-03-18 2010-03-18 Image display apparatus, manufacturing method thereof, and correction method therefor

Country Status (1)

Country Link
WO (1) WO2010106801A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301080A (en) * 2017-07-24 2019-02-01 固安翌光科技有限公司 A kind of organic electroluminescence device
CN111092104A (en) * 2018-10-24 2020-05-01 乐金显示有限公司 Storage capacitor, display device using the same, and method of manufacturing the same
CN112585951A (en) * 2018-08-16 2021-03-30 索尼半导体解决方案公司 Imaging element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084233A (en) * 2003-09-05 2005-03-31 Toshiba Matsushita Display Technology Co Ltd Display device and method for manufacturing display device
JP2005242307A (en) * 2004-01-28 2005-09-08 Sharp Corp Active matrix substrate and display device
JP2005252228A (en) * 2004-02-05 2005-09-15 Sharp Corp Display device and manufacturing method thereof
JP2008134345A (en) * 2006-11-27 2008-06-12 Toshiba Matsushita Display Technology Co Ltd Repair method of active matrix display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084233A (en) * 2003-09-05 2005-03-31 Toshiba Matsushita Display Technology Co Ltd Display device and method for manufacturing display device
JP2005242307A (en) * 2004-01-28 2005-09-08 Sharp Corp Active matrix substrate and display device
JP2005252228A (en) * 2004-02-05 2005-09-15 Sharp Corp Display device and manufacturing method thereof
JP2008134345A (en) * 2006-11-27 2008-06-12 Toshiba Matsushita Display Technology Co Ltd Repair method of active matrix display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301080A (en) * 2017-07-24 2019-02-01 固安翌光科技有限公司 A kind of organic electroluminescence device
CN109301080B (en) * 2017-07-24 2024-03-05 固安翌光科技有限公司 Organic electroluminescent device
CN112585951A (en) * 2018-08-16 2021-03-30 索尼半导体解决方案公司 Imaging element
CN112585951B (en) * 2018-08-16 2023-11-14 索尼半导体解决方案公司 Imaging element
CN111092104A (en) * 2018-10-24 2020-05-01 乐金显示有限公司 Storage capacitor, display device using the same, and method of manufacturing the same
KR20200046353A (en) * 2018-10-24 2020-05-07 엘지디스플레이 주식회사 Storage Capacitor, Display Device Using the Same and Method for Manufacturing the Same
CN111092104B (en) * 2018-10-24 2024-02-13 乐金显示有限公司 Storage capacitor, display device using the same, and method of manufacturing the same
KR102675918B1 (en) 2018-10-24 2024-06-17 엘지디스플레이 주식회사 Storage Capacitor, Display Device Using the Same and Method for Manufacturing the Same

Similar Documents

Publication Publication Date Title
JP5426562B2 (en) Image display device and correction method thereof
US9761644B2 (en) Organic electroluminescent device and repairing method thereof
JP4049330B2 (en) Electroluminescent display device and manufacturing method thereof
JP4706287B2 (en) Organic EL device and electronic device
JP6142212B2 (en) Defect detection method, organic EL element repair method, and organic EL display panel
US10177207B2 (en) Organic light emitting diode display and manufacturing method thereof
US9276231B2 (en) Method for fabricating organic electroluminescence device and organic electroluminescence device
CN107978620B (en) Ultra-high density display device with high aperture ratio
US20130026478A1 (en) Display unit and substrate for display unit
JP2003233329A (en) Method for repairing display device
WO2010106801A1 (en) Image display apparatus, manufacturing method thereof, and correction method therefor
JP2010249883A (en) Image display device and correction method for the same
KR102440025B1 (en) Organic electro luminescent device
US9088007B2 (en) Organic light emitting diode display
KR100564198B1 (en) Electro luminescence display device
JP5363188B2 (en) Image display device and correction method thereof
JP2010262074A (en) Image display device and correcting method of the same
US10186690B2 (en) Display panel manufacturing method and display panel
WO2015059844A1 (en) Production method for organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP