WO2015059844A1 - Production method for organic el display device - Google Patents

Production method for organic el display device Download PDF

Info

Publication number
WO2015059844A1
WO2015059844A1 PCT/JP2014/002749 JP2014002749W WO2015059844A1 WO 2015059844 A1 WO2015059844 A1 WO 2015059844A1 JP 2014002749 W JP2014002749 W JP 2014002749W WO 2015059844 A1 WO2015059844 A1 WO 2015059844A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic
pixel
dark spot
light
Prior art date
Application number
PCT/JP2014/002749
Other languages
French (fr)
Japanese (ja)
Inventor
清水 丈司
幹 福島
征聡 志垣
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Publication of WO2015059844A1 publication Critical patent/WO2015059844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present disclosure relates to a method for manufacturing an organic EL display device including a light emitting pixel having an organic EL element, and particularly relates to a method for manufacturing an organic EL display device having a repairable light emitting pixel.
  • a liquid crystal display panel used in a liquid crystal display device and a plasma display panel used in a plasma display device have been subjected to an aging treatment for stabilizing the display state, and then the display state of the panel is inspected.
  • Patent Document 1 describes a plasma display panel inspection method in which after the plasma display panel is subjected to an aging treatment, the surface temperature of the plasma display panel is lowered to a predetermined temperature, and then the inspection is performed.
  • an organic EL display device using an organic electroluminescence element (hereinafter referred to as an organic EL element) has attracted attention as a new image display apparatus.
  • This organic EL display device has the advantages of good viewing angle characteristics and low power consumption.
  • a normal organic EL display device includes a substrate on which light-emitting pixels each including an organic EL element and a circuit that emits light are arranged in a matrix (matrix shape).
  • this organic EL display substrate as the structure of the light emitting pixel is miniaturized, an electrical defect such as short circuit or opening may occur in a part of the light emitting pixel in a manufacturing process that requires fine processing. .
  • a short-circuit defect occurs in one light-emitting pixel, even if a forward bias voltage corresponding to the signal voltage is applied to the light-emitting pixel, current flows preferentially to the short-circuit defect portion.
  • the organic EL display substrate can also detect a light emitting pixel that has been turned into a dark spot and repair the detected light emitting pixel.
  • the present disclosure has been made in view of the characteristics of the organic EL display substrate, and an object thereof is to provide a method for manufacturing an organic EL display device that performs an aging process suitable for the characteristics of the organic EL display substrate.
  • an organic EL display device manufacturing method includes a light emitting pixel having an organic EL element and a substrate on which a plurality of the light emitting pixels are arranged in a matrix.
  • a dark spot repair process for performing a process for increasing light emission luminance on the dark spot pixel specified in the spot pixel specifying process, and the light emitting pixel including the dark spot pixel repaired in the dark spot repair process.
  • an aging process for performing a process of stabilizing the reduction rate of the light emission luminance.
  • FIG. 1 is a functional block diagram showing the configuration of the organic EL display device.
  • FIG. 2 is a circuit configuration diagram of a light emitting pixel having an organic EL display element.
  • FIG. 3 is a circuit configuration diagram schematically showing a light emitting pixel which is a dark spot pixel.
  • FIG. 4 is a cross-sectional view showing the structure of the light emitting pixel.
  • FIG. 5 is a flowchart showing a method for manufacturing the organic EL display device.
  • a manufacturing method of an organic EL display device is a manufacturing method of an organic EL display device including a light emitting pixel having an organic EL element and a substrate on which the plurality of light emitting pixels are arranged in a matrix.
  • the dark spot pixel specifying step for specifying a dark spot pixel that is the light emitting pixel that does not emit light even when a voltage is applied, or the light emitting luminance is low, from the plurality of light emitting pixels, and in the dark spot pixel specifying step.
  • a dark spot repair process for performing a process for increasing the light emission brightness on the identified dark spot pixel, and a decrease in the light emission brightness for the light emitting pixel including the dark spot pixel repaired in the dark spot repair process.
  • an aging step for performing a treatment for stabilizing the rate.
  • the aging process can be performed after repairing the dark spot pixel to a state capable of emitting light, and it becomes possible to stabilize the deterioration of the luminance of the entire light emitting pixel.
  • a method for manufacturing an organic EL display device includes a light emitting pixel having an organic EL element and a substrate on which a plurality of the light emitting pixels are arranged in a matrix.
  • a dark spot repair process for performing a process for increasing the light emission brightness for the dark spot pixel specified in the process, and a light emission brightness for the light emitting pixel including the dark spot pixel repaired in the dark spot repair process
  • An aging step for performing a process for stabilizing the decrease rate of the light, and a luminance for measuring a light emission luminance of the light emitting pixels subjected to the aging process and deriving a correction value for adjusting the light emission luminance between the light emitting pixels It is intended to include a positive step.
  • the driver connecting process for connecting the driver device for controlling the light emission of each of the light emitting pixels to the substrate is performed, aging is performed via the connected driver device, so that the reliability of the driver device is also improved. It becomes possible to verify, which is preferable.
  • the method for manufacturing an organic EL display device is a method for manufacturing an organic EL display device including a light emitting pixel having an organic EL element and a substrate on which a plurality of the light emitting pixels are arranged in a matrix. It is specified by the dark spot pixel specifying step of specifying a dark spot pixel which is the light emitting pixel which emits light even when a voltage is applied or the light emission luminance is low, from the plurality of light emitting pixels, and the dark spot pixel specifying step.
  • a dark spot repair process for performing a process for increasing the light emission brightness on the dark spot pixels, and a reduction rate of the light emission brightness for the light emitting pixels including the dark spot pixels repaired in the dark spot repair process.
  • an aging step for applying a stabilizing treatment.
  • the repaired dark spot pixel can be subjected to the aging process, and the luminance deterioration of the entire light emitting pixel can be stabilized.
  • FIG. 1 is a functional block diagram showing the configuration of the organic EL display device.
  • the organic EL display device 1 described in the figure includes a control unit 11, a display unit 12, a data line driving circuit 13 as a driver device, and a scanning line driving circuit 14.
  • the control unit 11 is a processing unit that converts a video signal input from the outside into a signal voltage that determines light emission of the light emitting pixel.
  • the control unit 11 outputs the converted signal voltage to the data line driving circuit 13 in the scanning order. Further, the control unit 11 controls the timing of outputting the signal voltage output from the data line driving circuit 13 and the output timing of the scanning signal output from the scanning line driving circuit 14.
  • the data line driving circuit 13 is a circuit device that realizes light emission of a light emitting pixel corresponding to a video signal by outputting a signal voltage to each data line, and is one of so-called driver devices.
  • the scanning line driving circuit 14 is a circuit device that drives a circuit element of a light emitting pixel at a predetermined driving timing by outputting a scanning signal to each scanning line, and is one of so-called driver devices.
  • the display unit 12 has a plurality of light emitting pixels arranged in a matrix. Each of the plurality of light emitting pixels emits light according to the luminance signal from the data line driving circuit 13 and the scanning signal from the scanning line driving circuit 14.
  • FIG. 2 is a circuit configuration diagram of a light emitting pixel having an organic EL display element.
  • the light emitting pixel 15 shown in the figure includes an organic EL element 16, a drive transistor 17, a selection transistor 18, and a capacitor 19.
  • a data line 131 is arranged for each column of the light emitting pixels 15 arranged in a matrix, and a scanning line 141 is arranged for each row of the light emitting pixels 15.
  • a positive power supply line 151 and a negative power supply line 152 are arranged in common to all the light emitting pixels 15.
  • the drain electrode of the selection transistor 18 is connected to the data line 131, the gate electrode of the selection transistor 18 is connected to the scanning line 141, and the source electrode of the selection transistor 18 is connected to the capacitor 19 and the gate electrode of the driving transistor 17.
  • the drain electrode of the drive transistor 17 is connected to the positive power supply line 151, and the source electrode is connected to the anode of the organic EL element 16.
  • the figure shows a so-called normal circuit state that can emit a sufficient amount of light.
  • FIG. 4 is a cross-sectional view showing the structure of the light emitting pixel.
  • the light emitting pixel 15 shown in the figure includes a substrate 100, a drive circuit layer 101, a light emitting layer 102, and a transparent sealing film 110.
  • the substrate 100 is a plate-like member on which a plurality of light emitting pixels 15 are arranged in a matrix, for example, a glass substrate.
  • the substrate 100 can be a flexible substrate made of resin.
  • a thin film transistor (TFT) is formed on the surface of the substrate 100 together with the driving circuit layer 101.
  • TFT thin film transistor
  • the substrate 100 does not need to be transparent, and thus a non-transparent substrate, for example, a silicon substrate can be used.
  • the drive circuit layer 101 includes a drive transistor 17, a capacitor 19, and a selection transistor 18 formed on the substrate 100.
  • the drive circuit layer 101 has a flat surface to ensure flatness.
  • the light emitting layer 102 is a layer constituting the organic EL element 16, and includes an anode 161, a hole injection layer 162, a hole transport layer 163, an organic light emitting layer 164, a bank layer 165, an electron injection layer 166, and the like. And a transparent cathode 167.
  • the light emitting pixel 15 shown in FIG. 4 has a top emission structure. That is, when a voltage is applied to the light emitting layer 102, light is generated in the organic light emitting layer 164, and light is emitted upward through the transparent cathode 167 and the transparent sealing film 110. Further, light emitted downward from the organic light emitting layer 164 is reflected by the anode 161, and light is emitted upward through the transparent cathode 167 and the transparent sealing film 110.
  • the anode 161 is an electrode that is laminated on the surface of the planarizing film of the drive circuit layer 101 and applies a positive voltage to the light emitting layer 102 with respect to the transparent cathode 167.
  • an anode material constituting the anode 161 for example, Al, Ag, or an alloy thereof, which is a highly reflective metal, is preferable.
  • the thickness of the anode 161 is, for example, 100 to 300 nm.
  • the hole injection layer 162 is formed on the surface of the anode 161 and has a function of injecting holes into the organic light emitting layer 164 stably or by assisting the generation of holes. Thereby, the driving voltage of the light emitting layer 102 is lowered, and the lifetime of the element is extended by stabilizing the hole injection.
  • a material of the hole injection layer 162 for example, PEDOT (polyethylenedioxythiophene) can be used.
  • the film thickness of the hole injection layer 162 is preferably about 10 nm to 100 nm, for example.
  • the hole transport layer 163 is formed on the surface of the hole injection layer 162, efficiently transports holes injected from the hole injection layer 162 into the organic light emitting layer 164, and the organic light emitting layer 164 and hole injection. It has a function of preventing deactivation of excitons at the interface with the layer 162 and further blocking electrons.
  • the hole transport layer 163 is, for example, an organic polymer material having a property of transmitting generated holes by intermolecular charge transfer reaction, and examples thereof include triferamine and polyaniline.
  • the thickness of the hole transport layer 163 is, for example, about 5 to 50 nm.
  • the hole transport layer 163 may be omitted depending on the material of the hole injection layer 162 and the organic light emitting layer 164 which are adjacent layers.
  • the organic light emitting layer 164 is formed on the surface of the hole transport layer 163 and has a function of emitting light by generating an excited state by injecting and recombining holes and electrons.
  • As the organic light emitting layer 164 not only a low molecular organic material but also a light emitting polymer organic material that can be formed by a wet film forming method such as ink jet or spin coating is used.
  • the polymer organic material include a simple device structure, excellent film reliability, and a low-voltage driven device.
  • a polymer having a conjugated system such as an aromatic ring or a condensed ring or a ⁇ -conjugated polymer has fluorescence
  • it can be used as a polymer organic material constituting the organic light emitting layer 164.
  • the polymer light emitting material constituting the organic light emitting layer 164 include polyphenylene vinylene (PPV) or a derivative thereof (PPV derivative), polyfluorene (PFO) or a derivative thereof (PFO derivative), and a polyspirofluorene derivative. Can do. It is also possible to use polythiophene or a derivative thereof.
  • the bank layer 165 is formed on the surface of the hole injection layer 162 and has a function as a bank for forming the hole transport layer 163 and the organic light emitting layer 164 formed by a wet film formation method in a predetermined region.
  • the material used for the bank layer 165 may be either an inorganic substance or an organic substance. However, since the organic substance generally has higher water repellency, it can be used more preferably. Examples of such materials include resins such as polyimide and polyacryl.
  • the thickness of the bank layer 165 is, for example, about 100 to 3000 nm.
  • the electron injection layer 166 is formed on the organic light emitting layer 164, reduces the barrier for electron injection into the organic light emitting layer 164, lowers the driving voltage of the light emitting layer 102, and suppresses exciton deactivation. Have As a result, it is possible to stabilize the electron injection and prolong the life of the device, enhance the adhesion with the transparent cathode 167, improve the uniformity of the light emitting surface, and reduce device defects.
  • the electron injection layer 166 is not particularly limited, but is preferably made of barium, aluminum, phthalocyanine, lithium fluoride, and a barium-aluminum laminate. The thickness of the electron injection layer 166 is, for example, about 2 to 50 nm.
  • the transparent cathode 167 is laminated on the surface of the electron injection layer 166, and has a function of applying a negative voltage to the light emitting layer 102 with respect to the anode 161 and injecting electrons into the element (particularly the organic light emitting layer 164). Although it does not specifically limit as the transparent cathode 167, It is preferable to use the substance and structure with a high transmittance
  • the configuration of the transparent cathode 167 is not particularly limited, but a metal oxide layer is used.
  • the metal oxide layer is not particularly limited, and a layer made of indium tin oxide (hereinafter referred to as ITO) or indium zinc oxide (hereinafter referred to as IZO) is used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the thickness of the transparent cathode 167 is, for example, about 5 to 200 nm.
  • the transparent sealing film 110 is formed on the surface of the transparent cathode 167 and has a function of protecting the element from moisture. Further, the transparent sealing film 110 is required to be transparent.
  • the transparent sealing film 110 is made of, for example, SiN, SiON, or an organic film.
  • the thickness of the transparent sealing film 110 is, for example, about 20 to 5000 nm.
  • the organic EL display device 1 Due to the structure of the light emitting pixels 15 described above, the organic EL display device 1 has a function as an active matrix display device.
  • circuit configuration of the light-emitting pixel described above is not limited to the circuit configuration illustrated in FIG.
  • the selection transistor 18 and the drive transistor 17 are circuit components necessary for flowing a drive current corresponding to the signal voltage to the organic EL element 16, but are not limited to the above-described form. Further, a case where another circuit component is added to the circuit components described above is also included in the light emitting pixel circuit of the organic EL display device according to the present disclosure.
  • an active matrix organic EL display device in a manufacturing process that requires fine processing as the structure of a light-emitting pixel is miniaturized and thinned, and as the number of light-emitting pixels is increased, the organic EL element is manufactured. Electrical problems such as short circuit and open circuit between the anode and cathode will occur.
  • FIG. 3 is a circuit configuration diagram schematically showing a light emitting pixel that is a dark spot pixel.
  • the circuit configuration shown in the figure represents the state of a light emitting pixel that has become a dark spot pixel due to a short circuit between the anode and cathode of the organic EL element for some reason. That is, as compared with the circuit configuration described in FIG. 2, the difference is that a short-circuit component 47 that realizes an electrical conduction state is connected in parallel between the anode and the cathode of the organic EL element 16.
  • the state where the organic EL element 16 is short-circuited is defined as the organic EL element 16 being in a short-circuited state when the resistance value of the short-circuit component 47 is in a low-resistance state.
  • the electron injection layer 166 are assumed to be in point contact via pinholes generated in the organic light emitting layer 164.
  • the dark spot pixel In order to ensure the display quality of the organic EL display substrate, it is necessary to reduce the number of dark spot pixels due to the short circuit component 47 or the like. In the case of an organic EL display substrate, if a dark spot pixel is generated in the manufacturing process, the dark spot pixel can be repaired. That is, it is only necessary to remove the short-circuit component 47 that causes dark spots.
  • a method for removing the short-circuit component 47 for example, a method of irradiating the short-circuit component 47 with a laser to burn out the short-circuit component 47 can be mentioned.
  • a reverse bias voltage is applied to an organic EL element in a short-circuited state to cause a current to flow through the short-circuit component 47 and generate Joule heat, thereby reconstructing and opening the short defect portion.
  • an electrical characteristic measuring device for specifying a dark spot pixel can be used, and it is not necessary to prepare a separate device for this repair.
  • FIG. 5 is a flowchart showing a method for manufacturing an organic EL display device.
  • the manufacturing method of the organic EL display device includes a light emitting pixel forming process, a dark spot pixel specifying process, a dark spot repair process, and an aging process.
  • the method for manufacturing the organic EL display device further includes a driver connection step and a luminance correction step.
  • the light emitting pixels 15 are formed in a matrix on the surface of the substrate 100 (S101: light emitting pixel forming step).
  • the drive circuit layer 101 in which the drive transistor 17, the selection transistor 18, the capacitor 19, the circuit wiring, and the like are appropriately arranged is formed.
  • a lower electrode layer made of an alloy of Mo and W is formed as a layer of the drive circuit layer 101 shown in FIG. 4 by using a technique such as metal mask film formation, lift-off, and etching.
  • the lower electrode layer is one electrode of the capacitor 19 and is formed so as to connect the source electrode of the selection transistor 18 and the gate electrode of the drive transistor 17.
  • an insulating layer made of, for example, SiOx or SiN is formed on the lower electrode layer so as to cover the lower electrode layer. At this time, it is preferable to planarize the surface of the insulating layer as necessary.
  • an upper electrode layer having a laminated structure of, for example, an alloy of Mo and W / an alloy of Al / Mo and W is formed on the insulating layer using a technique such as metal mask deposition, lift-off, and etching.
  • the upper electrode layer is the other electrode of the capacitor 19 and is formed so as to connect the positive power supply line 151 and the drain electrode of the drive transistor 17.
  • the light emitting layer 102 having the organic EL element 16 is formed on the drive circuit layer 101 after the planarization process of the drive circuit layer 101.
  • the light emitting layer 102 includes, for example, an anode, a hole injection layer, a hole transport layer, an organic light emitting layer, a bank layer, an electron injection layer, and a transparent cathode.
  • a dark spot pixel which is a light emitting pixel 15 which does not emit light even when a voltage is applied or has a low light emission luminance is specified (S102: light emitting pixel specifying step).
  • the light emitting pixels 15 formed in a matrix on the substrate 100 to form the display unit 12 are arranged on the stage, and a forward bias voltage is applied to each light emitting pixel 15. Is applied to cause the corresponding light emitting pixel 15 to emit light, the light emission state is observed with a CCD camera or the like, and the light emitting pixel 15 whose light emission luminance is equal to or lower than a predetermined first threshold is specified as a dark spot pixel.
  • the light emitting pixel specifying step (S102) is not limited to the above.
  • a light emitting pixel 15 in which a reverse bias voltage is applied to each light emitting pixel 15 and a leak current of a second threshold value or more is observed The light emitting pixel 15 including the light emitting point that emits the leak light with the luminance equal to or higher than the third threshold value may be specified as the dark spot pixel.
  • a method of increasing the emission luminance by applying a reverse bias voltage within a predetermined range to the dark spot pixel specified in the dark spot pixel specifying step (S102) can be exemplified. Specifically, by applying a reverse bias voltage to the dark spot pixel, a current is passed through the short defect portion having the short circuit component 47, and the short defect component 47 is opened by fusing (breaking) the short circuit component 47 by Joule heat. In some cases, the light emission luminance of the light emitting pixel 15 can be increased.
  • the dark spot repairing step (S103) there is also a method of increasing the light emission luminance of the light emitting pixel 15 by irradiating the short defect portion having the short circuit component 47 with a laser beam to melt (break) the short circuit component 47. It can be illustrated.
  • the dark spot repair process (S103) includes a process of inspecting the repair result. This step is the same as the dark spot pixel specifying step (S102), and the light emitting pixels 15 whose repair results are not good and the light emitting pixels 15 that have changed again to dark spot pixels after repair are specified again. If a dark spot pixel is specified, the dark spot repair may be performed again.
  • a bright spot pixel that is a light emitting pixel that always emits light separately may be specified, and the bright spot pixel may be repaired.
  • driver devices for example, drive circuits such as the data line drive circuit 13 and the scan line drive circuit 14 that control the light emission of the light emitting pixels 15 respectively.
  • driver connection step Is connected to the substrate 100 (S104: driver connection step).
  • driver connecting step (S104) a method of connecting the flexible substrate on which the driver circuit is formed by thermocompression bonding with an ACF (illegal conductive film) can be exemplified.
  • the driver IC may be mounted directly on the board.
  • a source meter or the like may be used as the driver device, and the source meter probe may be connected to the substrate 100.
  • aging means that the light emitting pixel 15 that is regarded as an initial state immediately after manufacturing has a large decrease rate of light emission luminance (a decrease amount of light emission luminance per unit time) even when a constant forward bias voltage is applied. This means processing for causing the light emitting pixels 15 to emit light until the rate of decrease in the light emission luminance is stabilized.
  • a predetermined forward bias voltage is applied to each light emitting pixel 15 via the driver device, and the emission luminance is the fourth.
  • a method of lighting each light-emitting pixel 15 until it becomes equal to or less than the threshold value or until the decrease rate of the light emission luminance becomes equal to or less than the fifth threshold value can be exemplified.
  • the display unit 12 may be heated.
  • the organic EL display device 1 can be manufactured.
  • the reliability of the driver device can be verified.
  • the driver device is driven to measure the light emission luminance of each light emitting pixel 15, and the correction for adjusting the light emission luminance between the light emitting pixels 15 is performed.
  • a value is derived (S106: luminance correction step).
  • the driver device causes each light emitting pixel 15 to emit light based on a predetermined image signal, and the brightness of each light emitting pixel 15 is measured by a CCD camera or the like.
  • a process of deriving a correction value that makes the light emission luminance uniform or substantially uniform for each light emitting pixel 15 and storing the correction value derived in the driver device can be exemplified.
  • the manufacturing method of the organic EL device includes a dark spot pixel specifying process for detecting a dark spot pixel, a dark spot repair process for repairing the specified dark spot pixel, and a dark spot repair process. Since it includes an aging process in which aging is performed on all or almost all of the light emitting pixels 15 including the light emitting pixels repaired by the point repair process, the light emitting pixels repaired together with the light emitting pixels 15 that did not require repair are included. Can also be aged. Therefore, the substrate 100 with stable emission luminance can be sent to a subsequent process, and a highly stable organic EL display device can be provided.
  • the correction value can be derived with the light emission luminance being stable, and a high-quality organic EL display device can be provided. Further, by connecting a driver device and performing an aging process using the driver device, the driver device can be verified, and a highly reliable organic EL display device can be provided.
  • the bright spot repair process may be performed before or after the dark spot repair process (S103), which is a previous process of the aging process (S105).
  • an antireflection film may be bonded to the entire display unit 12.
  • a heat dissipation sheet may be bonded to the substrate 100.
  • the manufacturing method of the organic EL display device of the present disclosure can be used in technical fields such as a flat-screen television and a personal computer display that require a large screen and high resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The production method for an organic EL display device (1) provided with light-emitting pixels (15) having an organic EL element (16) each, and a substrate (100) whereon a plurality of the light-emitting pixels (15) are arranged into a matrix, comprises: a defective pixel identification step of identifying, from among the plurality of the light-emitting pixels (15) a defective pixel, that is to say, a light-emitting pixel (15) emitting no light even when a voltage is applied, or wherefrom the brightness of light emission is poor; a defect repair step of subjecting the defective pixel identified in the defective pixel identification step to a process for increasing the brightness of light emission; and an aging step of subjecting the light-emitting pixels (15), including the defective pixel repaired in the defect repair step, to a process for stabilizing the rate of decrease in the brightness of light emission.

Description

有機EL表示装置の製造方法Manufacturing method of organic EL display device
 本開示は、有機EL素子を有する発光画素を備えた有機EL表示装置の製造方法に関し、特にリペア可能な発光画素を有する有機EL表示装置の製造方法に関する。 The present disclosure relates to a method for manufacturing an organic EL display device including a light emitting pixel having an organic EL element, and particularly relates to a method for manufacturing an organic EL display device having a repairable light emitting pixel.
 従来、液晶表示装置に用いられる液晶ディスプレイパネルやプラズマ表示装置に用いられるプラズマディスプレイパネルは、表示状態を安定させるエージング処理を施した後、パネルの表示状態を検査していた。 Conventionally, a liquid crystal display panel used in a liquid crystal display device and a plasma display panel used in a plasma display device have been subjected to an aging treatment for stabilizing the display state, and then the display state of the panel is inspected.
 例えば特許文献1には、プラズマディスプレイパネルのエージング処理を施した後、プラズマディスプレイパネルの表面温度を所定温度に低下させ、その後検査を行うプラズマディスプレイパネルの検査方法が記載されている。 For example, Patent Document 1 describes a plasma display panel inspection method in which after the plasma display panel is subjected to an aging treatment, the surface temperature of the plasma display panel is lowered to a predetermined temperature, and then the inspection is performed.
特開2010-92793号公報JP 2010-92793 A
 昨今、新しい画像表示装置として、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す。)を用いた有機EL表示装置が注目されている。この有機EL表示装置は、視野角特性が良好で、消費電力が少ないという利点を有している。 Recently, an organic EL display device using an organic electroluminescence element (hereinafter referred to as an organic EL element) has attracted attention as a new image display apparatus. This organic EL display device has the advantages of good viewing angle characteristics and low power consumption.
 一方、通常有機EL表示装置は、有機EL素子とこれを発光させる回路とを備えた発光画素が行列状(マトリクス状)に配置された基板を備えている。この有機EL表示基板では、発光画素の構造が微細化されるほど、微細加工を必要とする製造工程において、発光画素の一部に短絡や開放といった電気的な不具合が発生してしまう場合がある。具体的に例えば、一つの発光画素に短絡欠陥が発生した場合、当該発光画素に、信号電圧に対応した順方向バイアス電圧が印加されても、短絡欠陥部に優先的に電流が流れてしまうため、有機EL素子に電流が流れず発光しない場合や、流れる電流が少なくなって発光輝度が乏しい場合が発生する。これにより、上記発光画素は滅点化してしまう。ただし、有機EL表示基板は、滅点化した発光画素を検出し、検出された発光画素に対しリペアすることも可能である。 On the other hand, a normal organic EL display device includes a substrate on which light-emitting pixels each including an organic EL element and a circuit that emits light are arranged in a matrix (matrix shape). In this organic EL display substrate, as the structure of the light emitting pixel is miniaturized, an electrical defect such as short circuit or opening may occur in a part of the light emitting pixel in a manufacturing process that requires fine processing. . Specifically, for example, when a short-circuit defect occurs in one light-emitting pixel, even if a forward bias voltage corresponding to the signal voltage is applied to the light-emitting pixel, current flows preferentially to the short-circuit defect portion. There are cases where no current flows through the organic EL element and no light is emitted, or when the flowing current is small and the light emission luminance is poor. As a result, the light-emitting pixel becomes a dark spot. However, the organic EL display substrate can also detect a light emitting pixel that has been turned into a dark spot and repair the detected light emitting pixel.
 本開示は、上記の有機EL表示基板の特性に鑑みてなされたものであり、有機EL表示基板の特性に適したエージング処理を行う有機EL表示装置の製造方法を提供することを目的とする。 The present disclosure has been made in view of the characteristics of the organic EL display substrate, and an object thereof is to provide a method for manufacturing an organic EL display device that performs an aging process suitable for the characteristics of the organic EL display substrate.
 上記目的を達成するために、本開示にかかる有機EL表示装置の製造方法は、有機EL素子を有する発光画素と、複数の前記発光画素が行列状に配置される基板とを備える有機EL表示装置の製造方法であって、電圧を印加しても発光しない、または、発光輝度が乏しい前記発光画素である滅点画素を複数の前記発光画素の中から特定する滅点画素特定工程と、前記滅点画素特定工程で特定された前記滅点画素に対し発光輝度の増加のための処理を施す滅点リペア工程と、前記滅点リペア工程でリペアされた前記滅点画素を含む前記発光画素に対し、発光輝度の低下率を安定させる処理を施すエージング工程とを含むことを特徴とする。 In order to achieve the above object, an organic EL display device manufacturing method according to the present disclosure includes a light emitting pixel having an organic EL element and a substrate on which a plurality of the light emitting pixels are arranged in a matrix. A dark spot pixel specifying step of specifying a dark spot pixel that is a light emitting pixel that does not emit light even when a voltage is applied, or has low light emission luminance, from the plurality of light emitting pixels; and A dark spot repair process for performing a process for increasing light emission luminance on the dark spot pixel specified in the spot pixel specifying process, and the light emitting pixel including the dark spot pixel repaired in the dark spot repair process. And an aging process for performing a process of stabilizing the reduction rate of the light emission luminance.
 本開示によれば、有機EL表示基板の特性に適したエージング処理を行う有機EL表示装置の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a method for manufacturing an organic EL display device that performs an aging process suitable for the characteristics of the organic EL display substrate.
図1は、有機EL表示装置の構成を示す機能ブロック図である。FIG. 1 is a functional block diagram showing the configuration of the organic EL display device. 図2は、有機EL表示素子を有する発光画素の回路構成図である。FIG. 2 is a circuit configuration diagram of a light emitting pixel having an organic EL display element. 図3は、滅点画素となった発光画素を模式的に示す回路構成図である。FIG. 3 is a circuit configuration diagram schematically showing a light emitting pixel which is a dark spot pixel. 図4は、発光画素の構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the light emitting pixel. 図5は、有機EL表示装置の製造方法を示すフローチャートである。FIG. 5 is a flowchart showing a method for manufacturing the organic EL display device.
 本開示の一態様に係る有機EL表示装置の製造方法は、有機EL素子を有する発光画素と、複数の前記発光画素が行列状に配置される基板とを備える有機EL表示装置の製造方法であって、電圧を印加しても発光しない、または、発光輝度が乏しい前記発光画素である滅点画素を複数の前記発光画素の中から特定する滅点画素特定工程と、前記滅点画素特定工程で特定された前記滅点画素に対し発光輝度の増加のための処理を施す滅点リペア工程と、前記滅点リペア工程でリペアされた前記滅点画素を含む前記発光画素に対し、発光輝度の低下率を安定させる処理を施すエージング工程とを含むものである。 A manufacturing method of an organic EL display device according to an aspect of the present disclosure is a manufacturing method of an organic EL display device including a light emitting pixel having an organic EL element and a substrate on which the plurality of light emitting pixels are arranged in a matrix. In the dark spot pixel specifying step for specifying a dark spot pixel that is the light emitting pixel that does not emit light even when a voltage is applied, or the light emitting luminance is low, from the plurality of light emitting pixels, and in the dark spot pixel specifying step. A dark spot repair process for performing a process for increasing the light emission brightness on the identified dark spot pixel, and a decrease in the light emission brightness for the light emitting pixel including the dark spot pixel repaired in the dark spot repair process. And an aging step for performing a treatment for stabilizing the rate.
 本態様によれば、滅点画素を発光可能な状態にリペアした後にエージング処理を施すことができ、発光画素全体の輝度の劣化を安定させることが可能となる。 According to this aspect, the aging process can be performed after repairing the dark spot pixel to a state capable of emitting light, and it becomes possible to stabilize the deterioration of the luminance of the entire light emitting pixel.
 また、本開示の一態様に係る有機EL表示装置の製造方法は、有機EL素子を有する発光画素と、複数の前記発光画素が行列状に配置される基板とを備える有機EL表示装置の製造方法であって、電圧を印加しても発光しない、または、発光輝度が乏しい前記発光画素である滅点画素を複数の前記発光画素の中から特定する滅点画素特定工程と、前記滅点画素特定工程で特定された前記滅点画素に対し発光輝度の増加のための処理を施す滅点リペア工程と、前記滅点リペア工程でリペアされた前記滅点画素を含む前記発光画素に対し、発光輝度の低下率を安定させる処理を施すエージング工程と、前記エージング処理が施された前記発光画素に対し、発光輝度を測定し、前記発光画素相互の発光輝度を調整するための補正値を導出する輝度補正工程とを含むものである。 In addition, a method for manufacturing an organic EL display device according to one embodiment of the present disclosure includes a light emitting pixel having an organic EL element and a substrate on which a plurality of the light emitting pixels are arranged in a matrix. A dark spot pixel specifying step of specifying a dark spot pixel, which is the light emitting pixel having a low light emission luminance even when a voltage is applied, from the plurality of light emitting pixels, and the dark spot pixel specification. A dark spot repair process for performing a process for increasing the light emission brightness for the dark spot pixel specified in the process, and a light emission brightness for the light emitting pixel including the dark spot pixel repaired in the dark spot repair process An aging step for performing a process for stabilizing the decrease rate of the light, and a luminance for measuring a light emission luminance of the light emitting pixels subjected to the aging process and deriving a correction value for adjusting the light emission luminance between the light emitting pixels It is intended to include a positive step.
 本態様によれば、発光画素全体の輝度の劣化度合いが安定した状態で輝度補正を行うことができ、補正値の信頼性を向上させることが可能となる。 According to this aspect, it is possible to perform luminance correction in a state where the degree of luminance deterioration of the entire light emitting pixel is stable, and it is possible to improve the reliability of the correction value.
 また、エージング工程に先立ち、前記発光画素の発光をそれぞれ制御するドライバ装置を前記基板に接続するドライバ接続工程を行えば、接続されたドライバ装置を介してエージングを行うため、ドライバ装置の信頼性も検証することが可能となり、好ましい。 In addition, prior to the aging process, if the driver connecting process for connecting the driver device for controlling the light emission of each of the light emitting pixels to the substrate is performed, aging is performed via the connected driver device, so that the reliability of the driver device is also improved. It becomes possible to verify, which is preferable.
 (実施の形態)
 本実施の形態における有機EL表示装置の製造方法は、有機EL素子を有する発光画素と、複数の前記発光画素が行列状に配置される基板とを備える有機EL表示装置の製造方法であって、電圧を印加しても発光しない、または、発光輝度が乏しい前記発光画素である滅点画素を複数の前記発光画素の中から特定する滅点画素特定工程と、前記滅点画素特定工程で特定された前記滅点画素に対し発光輝度の増加のための処理を施す滅点リペア工程と、前記滅点リペア工程でリペアされた前記滅点画素を含む前記発光画素に対し、発光輝度の低下率を安定させる処理を施すエージング工程とを施す。
(Embodiment)
The method for manufacturing an organic EL display device according to the present embodiment is a method for manufacturing an organic EL display device including a light emitting pixel having an organic EL element and a substrate on which a plurality of the light emitting pixels are arranged in a matrix. It is specified by the dark spot pixel specifying step of specifying a dark spot pixel which is the light emitting pixel which emits light even when a voltage is applied or the light emission luminance is low, from the plurality of light emitting pixels, and the dark spot pixel specifying step. A dark spot repair process for performing a process for increasing the light emission brightness on the dark spot pixels, and a reduction rate of the light emission brightness for the light emitting pixels including the dark spot pixels repaired in the dark spot repair process. And an aging step for applying a stabilizing treatment.
 これにより、リペアされた滅点画素に対してもエージング処理を施すことができ、発光画素全体の輝度の劣化を安定させることが可能となる。 As a result, the repaired dark spot pixel can be subjected to the aging process, and the luminance deterioration of the entire light emitting pixel can be stabilized.
 次に、有機EL表示装置の製造方法の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、有機EL表示装置の製造方法の一例を示したものに過ぎない。従って本願発明は、以下の実施の形態を参考に請求の範囲の文言によって範囲が画定されるものであり、以下の実施の形態のみに限定されるものではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Next, an embodiment of a method for manufacturing an organic EL display device will be described with reference to the drawings. The following embodiment is merely an example of a method for manufacturing an organic EL display device. Accordingly, the scope of the present invention is defined by the wording of the claims with reference to the following embodiments, and is not limited to the following embodiments. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 まず、本開示の製造方法の対象となる有機EL表示装置の構成について説明する。 First, the configuration of an organic EL display device that is a target of the manufacturing method of the present disclosure will be described.
 図1は、有機EL表示装置の構成を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing the configuration of the organic EL display device.
 同図に記載された有機EL表示装置1は、制御部11と、表示部12と、ドライバ装置としてのデータ線駆動回路13、および、走査線駆動回路14とを備える。 The organic EL display device 1 described in the figure includes a control unit 11, a display unit 12, a data line driving circuit 13 as a driver device, and a scanning line driving circuit 14.
 制御部11は、外部から入力される映像信号を変換して発光画素の発光を決定する信号電圧にする処理部である。制御部11は、変換された信号電圧を走査順にデータ線駆動回路13に出力する。また、制御部11は、データ線駆動回路13から出力される信号電圧を出力するタイミング、及び、走査線駆動回路14から出力される走査信号の出力タイミングを制御する。 The control unit 11 is a processing unit that converts a video signal input from the outside into a signal voltage that determines light emission of the light emitting pixel. The control unit 11 outputs the converted signal voltage to the data line driving circuit 13 in the scanning order. Further, the control unit 11 controls the timing of outputting the signal voltage output from the data line driving circuit 13 and the output timing of the scanning signal output from the scanning line driving circuit 14.
 データ線駆動回路13は、各データ線へ、信号電圧を出力することにより、映像信号に対応した発光画素の発光を実現する回路装置であり、いわゆるドライバ装置の一つである。 The data line driving circuit 13 is a circuit device that realizes light emission of a light emitting pixel corresponding to a video signal by outputting a signal voltage to each data line, and is one of so-called driver devices.
 走査線駆動回路14は、各走査線へ走査信号を出力することにより、発光画素の有する回路素子を所定の駆動タイミングで駆動する回路装置であり、いわゆるドライバ装置の一つである。 The scanning line driving circuit 14 is a circuit device that drives a circuit element of a light emitting pixel at a predetermined driving timing by outputting a scanning signal to each scanning line, and is one of so-called driver devices.
 表示部12は、複数の発光画素がマトリクス状に配置されている。複数の発光画素のそれぞれは、データ線駆動回路13からの輝度信号、及び、走査線駆動回路14からの走査信号に応じて発光する。 The display unit 12 has a plurality of light emitting pixels arranged in a matrix. Each of the plurality of light emitting pixels emits light according to the luminance signal from the data line driving circuit 13 and the scanning signal from the scanning line driving circuit 14.
 図2は、有機EL表示素子を有する発光画素の回路構成図である。 FIG. 2 is a circuit configuration diagram of a light emitting pixel having an organic EL display element.
 同図に記載された発光画素15は、有機EL素子16と、駆動トランジスタ17と、選択トランジスタ18と、コンデンサ19とを備える。マトリクス状に配置された発光画素15の列ごとにデータ線131が配置され、発光画素15の行ごとに走査線141が配置されている。また、全ての発光画素15に共通して正電源線151及び負電源線152が配置されている。選択トランジスタ18のドレイン電極はデータ線131に、選択トランジスタ18のゲート電極は走査線141に、さらに、選択トランジスタ18のソース電極は、コンデンサ19及び駆動トランジスタ17のゲート電極に接続されている。また、駆動トランジスタ17のドレイン電極は正電源線151に接続され、ソース電極は有機EL素子16のアノードに接続されている。なお、同図は、十分な光量を放射することのできるいわゆる正常な回路の状態を示している。 The light emitting pixel 15 shown in the figure includes an organic EL element 16, a drive transistor 17, a selection transistor 18, and a capacitor 19. A data line 131 is arranged for each column of the light emitting pixels 15 arranged in a matrix, and a scanning line 141 is arranged for each row of the light emitting pixels 15. In addition, a positive power supply line 151 and a negative power supply line 152 are arranged in common to all the light emitting pixels 15. The drain electrode of the selection transistor 18 is connected to the data line 131, the gate electrode of the selection transistor 18 is connected to the scanning line 141, and the source electrode of the selection transistor 18 is connected to the capacitor 19 and the gate electrode of the driving transistor 17. The drain electrode of the drive transistor 17 is connected to the positive power supply line 151, and the source electrode is connected to the anode of the organic EL element 16. The figure shows a so-called normal circuit state that can emit a sufficient amount of light.
 ここで、有機EL素子16の構造について説明する。 Here, the structure of the organic EL element 16 will be described.
 図4は、発光画素の構造を示す断面図である。 FIG. 4 is a cross-sectional view showing the structure of the light emitting pixel.
 同図に記載された発光画素15は、基板100と、駆動回路層101と、発光層102と、透明封止膜110とを備える。 The light emitting pixel 15 shown in the figure includes a substrate 100, a drive circuit layer 101, a light emitting layer 102, and a transparent sealing film 110.
 基板100は、複数の発光画素15が行列状に配置される板状の部材であり、例えば、ガラス基板である。なお、基板100は、樹脂からなるフレキシブル基板を用いることも可能である。基板100は、駆動回路層101とともに、薄膜トランジスタ(TFT)も表面に形成される。なお、図4に記載されたようなトップエミッション構造の場合には、基板100は透明である必要はないので、非透明の基板、例えば、シリコン基板を用いることもできる。 The substrate 100 is a plate-like member on which a plurality of light emitting pixels 15 are arranged in a matrix, for example, a glass substrate. The substrate 100 can be a flexible substrate made of resin. A thin film transistor (TFT) is formed on the surface of the substrate 100 together with the driving circuit layer 101. In the case of the top emission structure as shown in FIG. 4, the substrate 100 does not need to be transparent, and thus a non-transparent substrate, for example, a silicon substrate can be used.
 駆動回路層101は、図示していないが、基板100の上に形成された駆動トランジスタ17と、コンデンサ19と、選択トランジスタ18とを備える。駆動回路層101は、平坦化膜により、その上面の平担性が確保されている。 Although not shown, the drive circuit layer 101 includes a drive transistor 17, a capacitor 19, and a selection transistor 18 formed on the substrate 100. The drive circuit layer 101 has a flat surface to ensure flatness.
 発光層102は、有機EL素子16を構成する層であり、陽極161と、正孔注入層162と、正孔輸送層163と、有機発光層164と、バンク層165と、電子注入層166と、透明陰極167とを備える。 The light emitting layer 102 is a layer constituting the organic EL element 16, and includes an anode 161, a hole injection layer 162, a hole transport layer 163, an organic light emitting layer 164, a bank layer 165, an electron injection layer 166, and the like. And a transparent cathode 167.
 図4に記載された発光画素15は、トップエミッション構造を有している。つまり、発光層102に電圧を印加すると、有機発光層164で光が生じ、透明陰極167及び透明封止膜110を通じて光が上方に出射する。また、有機発光層164で生じた光のうち下方に向かったものは、陽極161で反射され、透明陰極167及び透明封止膜110を通じて光が上方に出射する。 The light emitting pixel 15 shown in FIG. 4 has a top emission structure. That is, when a voltage is applied to the light emitting layer 102, light is generated in the organic light emitting layer 164, and light is emitted upward through the transparent cathode 167 and the transparent sealing film 110. Further, light emitted downward from the organic light emitting layer 164 is reflected by the anode 161, and light is emitted upward through the transparent cathode 167 and the transparent sealing film 110.
 陽極161は、駆動回路層101の平坦化膜の表面上に積層され、透明陰極167に対して正の電圧を発光層102に印加する電極である。陽極161を構成する陽極材料としては、例えば、反射率の高い金属であるAl、Ag、またはそれらの合金が好ましい。また、陽極161の厚さは、例えば、100~300nmである。 The anode 161 is an electrode that is laminated on the surface of the planarizing film of the drive circuit layer 101 and applies a positive voltage to the light emitting layer 102 with respect to the transparent cathode 167. As an anode material constituting the anode 161, for example, Al, Ag, or an alloy thereof, which is a highly reflective metal, is preferable. The thickness of the anode 161 is, for example, 100 to 300 nm.
 正孔注入層162は、陽極161の表面上に形成され、正孔を安定的に、又は正孔の生成を補助して、有機発光層164へ正孔を注入する機能を有する。これにより、発光層102の駆動電圧が低電圧化され、正孔注入の安定化により素子が長寿命化される。正孔注入層162の材料としては、例えばPEDOT(ポリエチレンジオキシチオフェン)などを用いることができる。また、正孔注入層162の膜厚は、例えば、10nm~100nm程度にすることが好ましい。 The hole injection layer 162 is formed on the surface of the anode 161 and has a function of injecting holes into the organic light emitting layer 164 stably or by assisting the generation of holes. Thereby, the driving voltage of the light emitting layer 102 is lowered, and the lifetime of the element is extended by stabilizing the hole injection. As a material of the hole injection layer 162, for example, PEDOT (polyethylenedioxythiophene) can be used. The film thickness of the hole injection layer 162 is preferably about 10 nm to 100 nm, for example.
 正孔輸送層163は、正孔注入層162の表面上に形成され、正孔注入層162から注入された正孔を有機発光層164内へ効率良く輸送し、有機発光層164と正孔注入層162との界面での励起子の失活防止をし、さらには電子をブロックする機能を有する。正孔輸送層163としては、例えば、生じた正孔を分子間の電荷移動反応により伝達する性質を有する有機高分子材料であり、例えば、トリフェルアミン、ポリアニリンなどが挙げられる。また、正孔輸送層163の厚さは、例えば、5~50nm程度である。 The hole transport layer 163 is formed on the surface of the hole injection layer 162, efficiently transports holes injected from the hole injection layer 162 into the organic light emitting layer 164, and the organic light emitting layer 164 and hole injection. It has a function of preventing deactivation of excitons at the interface with the layer 162 and further blocking electrons. The hole transport layer 163 is, for example, an organic polymer material having a property of transmitting generated holes by intermolecular charge transfer reaction, and examples thereof include triferamine and polyaniline. The thickness of the hole transport layer 163 is, for example, about 5 to 50 nm.
 なお、正孔輸送層163は、その隣接層である正孔注入層162や有機発光層164の材料により、省略される場合がある。 Note that the hole transport layer 163 may be omitted depending on the material of the hole injection layer 162 and the organic light emitting layer 164 which are adjacent layers.
 有機発光層164は、正孔輸送層163の表面上に形成され、正孔と電子が注入され再結合されることにより励起状態が生成され発光する機能を有する。有機発光層164としては、低分子有機材料だけでなく、インクジェットやスピンコートのような湿式成膜法で成膜できる発光性の高分子有機材料も適用される。高分子有機材料の特徴としては、デバイス構造が簡単であること、膜の信頼性に優れ、低電圧駆動のデバイスであることも挙げることができる。芳香環または縮合環のような共役系を持った高分子あるいはπ共役系高分子は蛍光性を有することから、有機発光層164を構成する高分子有機材料として用いることができる。有機発光層164を構成する高分子発光材料としては、例えば、ポリフェニレンビニレン(PPV)またはその誘導体(PPV誘導体)、ポリフルオレン(PFO)またはその誘導体(PFO誘導体)、ポリスピロフルオレン誘導体などを挙げることができる。また、ポリチオフェンまたはその誘導体を用いることも可能である。 The organic light emitting layer 164 is formed on the surface of the hole transport layer 163 and has a function of emitting light by generating an excited state by injecting and recombining holes and electrons. As the organic light emitting layer 164, not only a low molecular organic material but also a light emitting polymer organic material that can be formed by a wet film forming method such as ink jet or spin coating is used. Features of the polymer organic material include a simple device structure, excellent film reliability, and a low-voltage driven device. Since a polymer having a conjugated system such as an aromatic ring or a condensed ring or a π-conjugated polymer has fluorescence, it can be used as a polymer organic material constituting the organic light emitting layer 164. Examples of the polymer light emitting material constituting the organic light emitting layer 164 include polyphenylene vinylene (PPV) or a derivative thereof (PPV derivative), polyfluorene (PFO) or a derivative thereof (PFO derivative), and a polyspirofluorene derivative. Can do. It is also possible to use polythiophene or a derivative thereof.
 バンク層165は、正孔注入層162の表面上に形成され、湿式製膜法を用いて形成される正孔輸送層163及び有機発光層164を所定の領域に形成するバンクとしての機能を有する。バンク層165に用いられる材料は、無機物質および有機物質のいずれであってもよいが、有機物質の方が、一般的に、撥水性が高いので、より好ましく用いることができる。このような材料の例としては、ポリイミド、ポリアクリルなどの樹脂が挙げられる。バンク層165の厚さは、例えば、100~3000nm程度である。 The bank layer 165 is formed on the surface of the hole injection layer 162 and has a function as a bank for forming the hole transport layer 163 and the organic light emitting layer 164 formed by a wet film formation method in a predetermined region. . The material used for the bank layer 165 may be either an inorganic substance or an organic substance. However, since the organic substance generally has higher water repellency, it can be used more preferably. Examples of such materials include resins such as polyimide and polyacryl. The thickness of the bank layer 165 is, for example, about 100 to 3000 nm.
 電子注入層166は、有機発光層164の上に形成され、有機発光層164への電子注入の障壁を低減し発光層102の駆動電圧を低電圧化すること、励起子失活を抑制する機能を有する。これにより、電子注入を安定化し素子を長寿命化すること、透明陰極167との密着を強化し発光面の均一性を向上させ素子欠陥を減少させることが可能となる。電子注入層166は、特に限定されるものではないが、好ましくはバリウム、アルミニウム、フタロシアニン、フッ化リチウム、さらに、バリウム-アルミニウム積層体などからなる。電子注入層166の厚さは、例えば、2~50nm程度である。 The electron injection layer 166 is formed on the organic light emitting layer 164, reduces the barrier for electron injection into the organic light emitting layer 164, lowers the driving voltage of the light emitting layer 102, and suppresses exciton deactivation. Have As a result, it is possible to stabilize the electron injection and prolong the life of the device, enhance the adhesion with the transparent cathode 167, improve the uniformity of the light emitting surface, and reduce device defects. The electron injection layer 166 is not particularly limited, but is preferably made of barium, aluminum, phthalocyanine, lithium fluoride, and a barium-aluminum laminate. The thickness of the electron injection layer 166 is, for example, about 2 to 50 nm.
 透明陰極167は、電子注入層166の表面上に積層され、陽極161に対して負の電圧を発光層102に印加し、電子を素子内(特に有機発光層164)に注入する機能を有する。透明陰極167としては、特に限定されるものではないが、透過率の高い物質および構造を用いることが好ましい。これにより、発光効率が高いトップエミッション有機EL素子を実現することができる。透明陰極167の構成としては、特に限定されるものではないが、金属酸化物層が用いられる。この金属酸化物層としては、特に限定されるものではないが、インジウム錫酸化物(以下、ITOと記す)、あるいはインジウム亜鉛酸化物(以下、IZOと記す)からなる層が用いられる。また、透明陰極167の厚さは、例えば、5~200nm程度である。 The transparent cathode 167 is laminated on the surface of the electron injection layer 166, and has a function of applying a negative voltage to the light emitting layer 102 with respect to the anode 161 and injecting electrons into the element (particularly the organic light emitting layer 164). Although it does not specifically limit as the transparent cathode 167, It is preferable to use the substance and structure with a high transmittance | permeability. Thereby, a top emission organic EL element with high luminous efficiency can be realized. The configuration of the transparent cathode 167 is not particularly limited, but a metal oxide layer is used. The metal oxide layer is not particularly limited, and a layer made of indium tin oxide (hereinafter referred to as ITO) or indium zinc oxide (hereinafter referred to as IZO) is used. The thickness of the transparent cathode 167 is, for example, about 5 to 200 nm.
 透明封止膜110は、透明陰極167の表面上に形成され、水分から素子を保護する機能を有する。また、透明封止膜110は、透明であることが要求される。透明封止膜110は、例えば、SiN、SiON、または有機膜からなる。また、透明封止膜110の厚さは、例えば、20~5000nm程度である。 The transparent sealing film 110 is formed on the surface of the transparent cathode 167 and has a function of protecting the element from moisture. Further, the transparent sealing film 110 is required to be transparent. The transparent sealing film 110 is made of, for example, SiN, SiON, or an organic film. The thickness of the transparent sealing film 110 is, for example, about 20 to 5000 nm.
 以上説明した発光画素15の構造により、有機EL表示装置1は、アクティブマトリクス型の表示装置としての機能を有する。 Due to the structure of the light emitting pixels 15 described above, the organic EL display device 1 has a function as an active matrix display device.
 上記構成において、走査線141に走査信号が入力され、選択トランジスタ18をオン状態にすると、データ線131を介して供給された信号電圧に対応した電圧がコンデンサ19に書き込まれる。そして、コンデンサ19に書き込まれた信号電圧に対応した保持電圧は、1フレーム期間を通じて保持され、この保持電圧により、駆動トランジスタ17のコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が有機EL素子16のアノードに供給される。さらに、有機EL素子16のアノードに供給された駆動電流は、有機EL素子16のカソードへと流れる。これにより、有機EL素子16が発光し画像として表示される。このとき、有機EL素子16のアノードには、信号電圧に対応した順バイアス電圧が印加されていることになる。 In the above configuration, when a scanning signal is input to the scanning line 141 and the selection transistor 18 is turned on, a voltage corresponding to the signal voltage supplied via the data line 131 is written to the capacitor 19. The holding voltage corresponding to the signal voltage written in the capacitor 19 is held throughout one frame period, and this holding voltage changes the conductance of the driving transistor 17 in an analog manner, and the driving current corresponding to the light emission gradation is changed. It is supplied to the anode of the organic EL element 16. Further, the drive current supplied to the anode of the organic EL element 16 flows to the cathode of the organic EL element 16. Thereby, the organic EL element 16 emits light and is displayed as an image. At this time, a forward bias voltage corresponding to the signal voltage is applied to the anode of the organic EL element 16.
 なお、上述した発光画素の回路構成は、図2に記載された回路構成に限定されない。選択トランジスタ18、駆動トランジスタ17は、信号電圧に応じた駆動電流を有機EL素子16に流すために必要な回路構成要素であるが、上述した形態に限定されない。また、上述した回路構成要素に、別の回路構成要素が付加される場合も、本開示に係る有機EL表示装置の発光画素回路に含まれる。 Note that the circuit configuration of the light-emitting pixel described above is not limited to the circuit configuration illustrated in FIG. The selection transistor 18 and the drive transistor 17 are circuit components necessary for flowing a drive current corresponding to the signal voltage to the organic EL element 16, but are not limited to the above-described form. Further, a case where another circuit component is added to the circuit components described above is also included in the light emitting pixel circuit of the organic EL display device according to the present disclosure.
 例えば、アクティブマトリクス型の有機EL表示装置では、発光画素の構造が微細化、薄型化されるほど、また、発光画素数が増加するほど、微細加工を必要とする製造工程において、有機EL素子のアノード-カソード間の短絡や開放といった電気的な不具合が発生してしまう。 For example, in an active matrix organic EL display device, in a manufacturing process that requires fine processing as the structure of a light-emitting pixel is miniaturized and thinned, and as the number of light-emitting pixels is increased, the organic EL element is manufactured. Electrical problems such as short circuit and open circuit between the anode and cathode will occur.
 図3は、滅点画素となった発光画素を模式的に示す回路構成図である。 FIG. 3 is a circuit configuration diagram schematically showing a light emitting pixel that is a dark spot pixel.
 同図に記載された回路構成は、有機EL素子のアノード-カソード間が何らかの原因により短絡し、滅点画素となった発光画素の状態を表している。つまり、図2に記載された回路構成と比較して、有機EL素子16のアノードとカソードとの間に電気的導通状態を実現する短絡成分47が並列接続されている点が異なる。ここで、有機EL素子16が短絡している状態とは、短絡成分47の抵抗値が低抵抗状態である場合に、有機EL素子16は短絡状態であると定義する。有機EL素子16のアノード-カソード間が短絡状態である場合の一例としては、図4に示された有機発光層164の膜厚の不均一性により、有機発光層164を挟む正孔輸送層163と電子注入層166とが有機発光層164内に生じたピンホールを介して点接触している場合などが想定される。 The circuit configuration shown in the figure represents the state of a light emitting pixel that has become a dark spot pixel due to a short circuit between the anode and cathode of the organic EL element for some reason. That is, as compared with the circuit configuration described in FIG. 2, the difference is that a short-circuit component 47 that realizes an electrical conduction state is connected in parallel between the anode and the cathode of the organic EL element 16. Here, the state where the organic EL element 16 is short-circuited is defined as the organic EL element 16 being in a short-circuited state when the resistance value of the short-circuit component 47 is in a low-resistance state. As an example of the case where the anode and cathode of the organic EL element 16 are short-circuited, the hole transport layer 163 sandwiching the organic light emitting layer 164 due to the nonuniformity of the film thickness of the organic light emitting layer 164 shown in FIG. And the electron injection layer 166 are assumed to be in point contact via pinholes generated in the organic light emitting layer 164.
 図3に示された滅点画素に、信号電圧に対応した順方向バイアス電圧が印加されても、短絡成分47を短絡電流が流れてしまうため、有機EL素子16には順方向バイアス電圧に対応した電流が流れず発光しない、または、発光輝度が乏しい状態となる。これにより、発光画素は滅点化し滅点画素となる。 Even if a forward bias voltage corresponding to the signal voltage is applied to the dark spot pixel shown in FIG. 3, a short-circuit current flows through the short-circuit component 47. Therefore, the organic EL element 16 corresponds to the forward bias voltage. Current does not flow and light is not emitted, or light emission luminance is poor. As a result, the light emitting pixel becomes a dark spot and becomes a dark spot pixel.
 有機EL表示基板の表示品質を確保するためには、短絡成分47などによる滅点画素の存在数を減少させることが必要である。有機EL表示基板の場合、製造工程において、滅点画素が発生した場合には、滅点画素をリペアすることが可能である。つまり、滅点化の原因となる短絡成分47を除去すればよい。短絡成分47の除去方法として例えば、短絡成分47の存在箇所にレーザーを照射し、短絡成分47を焼き切る方法が挙げられる。これにより、短絡成分47が除去、または、高抵抗となり、リペアされた発光画素に順バイアス電圧をかけて通常発光させた場合、リペアされた部分は黒点となるが、その他の発光領域において正常発光がなされる。 In order to ensure the display quality of the organic EL display substrate, it is necessary to reduce the number of dark spot pixels due to the short circuit component 47 or the like. In the case of an organic EL display substrate, if a dark spot pixel is generated in the manufacturing process, the dark spot pixel can be repaired. That is, it is only necessary to remove the short-circuit component 47 that causes dark spots. As a method for removing the short-circuit component 47, for example, a method of irradiating the short-circuit component 47 with a laser to burn out the short-circuit component 47 can be mentioned. As a result, when the short-circuit component 47 is removed or the resistance is increased and a normal emission is caused by applying a forward bias voltage to the repaired light emitting pixel, the repaired portion becomes a black spot, but normal light emission occurs in other light emitting regions. Is made.
 一方、上述したレーザーリペアのほか、短絡状態にある有機EL素子に逆バイアス電圧を印加して短絡成分47に電流を流しジュール熱を発生させることにより、ショート欠陥部を再構成してオープン化するというリペア方法がある。この方法には、滅点画素を特定するための電気特性測定装置を流用でき、本リペアのために別途装置を準備する必要がない。 On the other hand, in addition to the laser repair described above, a reverse bias voltage is applied to an organic EL element in a short-circuited state to cause a current to flow through the short-circuit component 47 and generate Joule heat, thereby reconstructing and opening the short defect portion. There is a repair method. In this method, an electrical characteristic measuring device for specifying a dark spot pixel can be used, and it is not necessary to prepare a separate device for this repair.
 図5は、有機EL表示装置の製造方法を示すフローチャートである。 FIG. 5 is a flowchart showing a method for manufacturing an organic EL display device.
 有機EL表示装置の製造方法は、発光画素形成工程、滅点画素特定工程、滅点リペア工程、エージング工程を含む。本実施の形態の場合、有機EL表示装置の製造方法はさらに、ドライバ接続工程と、輝度補正工程とを含んでいる。 The manufacturing method of the organic EL display device includes a light emitting pixel forming process, a dark spot pixel specifying process, a dark spot repair process, and an aging process. In the case of the present embodiment, the method for manufacturing the organic EL display device further includes a driver connection step and a luminance correction step.
 まず、基板100の表面に発光画素15をマトリクス状に形成する(S101:発光画素形成工程)。 First, the light emitting pixels 15 are formed in a matrix on the surface of the substrate 100 (S101: light emitting pixel forming step).
 発光画素形成工程(S101)としては、まず、駆動トランジスタ17、選択トランジスタ18、コンデンサ19及び回路配線などを適宜配置させた駆動回路層101を形成する。 In the light emitting pixel formation step (S101), first, the drive circuit layer 101 in which the drive transistor 17, the selection transistor 18, the capacitor 19, the circuit wiring, and the like are appropriately arranged is formed.
 具体的には、図4に記載された駆動回路層101の一層として、メタルマスク製膜、リフトオフ及びエッチングなどの手法を用いて、例えば、MoとWとの合金からなる下側電極層を形成する。ここで、下側電極層は、コンデンサ19の一方の電極であり、選択トランジスタ18のソース電極と、駆動トランジスタ17のゲート電極とを接続するように形成される。次に、下側電極層の上に、例えば、SiOxまたはSiNなどからなる絶縁層を、下側電極層を覆うように形成する。このとき、必要に応じて、絶縁層の表面を平坦化することが好ましい。次に、絶縁層の上に、メタルマスク製膜、リフトオフ及びエッチングなどの手法を用いて、例えば、MoとWとの合金/Al/MoとWとの合金の積層構造からなる上側電極層を形成する。ここで、上側電極層は、コンデンサ19の他方の電極であり、正電源線151と、駆動トランジスタ17のドレイン電極とを接続するように形成される。 Specifically, for example, a lower electrode layer made of an alloy of Mo and W is formed as a layer of the drive circuit layer 101 shown in FIG. 4 by using a technique such as metal mask film formation, lift-off, and etching. To do. Here, the lower electrode layer is one electrode of the capacitor 19 and is formed so as to connect the source electrode of the selection transistor 18 and the gate electrode of the drive transistor 17. Next, an insulating layer made of, for example, SiOx or SiN is formed on the lower electrode layer so as to cover the lower electrode layer. At this time, it is preferable to planarize the surface of the insulating layer as necessary. Next, an upper electrode layer having a laminated structure of, for example, an alloy of Mo and W / an alloy of Al / Mo and W is formed on the insulating layer using a technique such as metal mask deposition, lift-off, and etching. Form. Here, the upper electrode layer is the other electrode of the capacitor 19 and is formed so as to connect the positive power supply line 151 and the drain electrode of the drive transistor 17.
 次に、駆動回路層101の上に、駆動回路層101の平坦化工程を経た後、有機EL素子16を有する発光層102を形成する。 Next, the light emitting layer 102 having the organic EL element 16 is formed on the drive circuit layer 101 after the planarization process of the drive circuit layer 101.
 具体的には、発光層102は、例えば、陽極、正孔注入層、正孔輸送層、有機発光層、バンク層、電子注入層、及び透明陰極を有する。 Specifically, the light emitting layer 102 includes, for example, an anode, a hole injection layer, a hole transport layer, an organic light emitting layer, a bank layer, an electron injection layer, and a transparent cathode.
 次に、電圧を印加しても発光しない、または、発光輝度が乏しい発光画素15である滅点画素を特定する(S102:発光画素特定工程)。 Next, a dark spot pixel which is a light emitting pixel 15 which does not emit light even when a voltage is applied or has a low light emission luminance is specified (S102: light emitting pixel specifying step).
 発光画素特定工程(S102)としては、例えば、基板100の上に発光画素15がマトリクス状に形成されて表示部12となされたものをステージ上に配置し、各発光画素15に対し順バイアス電圧を印加させて対応する発光画素15を発光させ、その発光状態をCCDカメラ等で観察し、発光輝度が所定の第一閾値以下の発光画素15を滅点画素として特定する。 In the light emitting pixel specifying step (S102), for example, the light emitting pixels 15 formed in a matrix on the substrate 100 to form the display unit 12 are arranged on the stage, and a forward bias voltage is applied to each light emitting pixel 15. Is applied to cause the corresponding light emitting pixel 15 to emit light, the light emission state is observed with a CCD camera or the like, and the light emitting pixel 15 whose light emission luminance is equal to or lower than a predetermined first threshold is specified as a dark spot pixel.
 なお、発光画素特定工程(S102)は、上記に限定されるものではなく、例えば、各発光画素15に逆バイアス電圧を印加させ、第二閾値以上のリーク電流が観測される発光画素15や、第三閾値以上の輝度でリーク発光する発光点を含む発光画素15を滅点画素として特定してもかまわない。 The light emitting pixel specifying step (S102) is not limited to the above. For example, a light emitting pixel 15 in which a reverse bias voltage is applied to each light emitting pixel 15 and a leak current of a second threshold value or more is observed, The light emitting pixel 15 including the light emitting point that emits the leak light with the luminance equal to or higher than the third threshold value may be specified as the dark spot pixel.
 次に、滅点画素特定工程(S102)で特定された滅点画素に対し発光輝度の増加のための処理を施す(S103:滅点リペア工程)。 Next, a process for increasing the light emission luminance is performed on the dark spot pixel specified in the dark spot pixel specifying process (S102) (S103: dark spot repair process).
 滅点リペア工程(S103)としては、滅点画素特定工程(S102)で特定された滅点画素に対し、所定範囲の逆バイアス電圧を印加することにより発光輝度の増加を図る方法が例示できる。具体的には、逆バイアス電圧を滅点画素に印加することにより、短絡成分47を有するショート欠陥部に電流を流し、ジュール熱により短絡成分47を溶断(破壊)してショート欠陥部をオープン化させ、当該発光画素15の発光輝度を増加させることができる場合がある。 As the dark spot repairing step (S103), a method of increasing the emission luminance by applying a reverse bias voltage within a predetermined range to the dark spot pixel specified in the dark spot pixel specifying step (S102) can be exemplified. Specifically, by applying a reverse bias voltage to the dark spot pixel, a current is passed through the short defect portion having the short circuit component 47, and the short defect component 47 is opened by fusing (breaking) the short circuit component 47 by Joule heat. In some cases, the light emission luminance of the light emitting pixel 15 can be increased.
 また、滅点リペア工程(S103)としては、短絡成分47を有するショート欠陥部にレーザー光線を照射し短絡成分47を溶断(破壊)することにより、当該発光画素15の発光輝度を増加させる方法なども例示できる。 Further, as the dark spot repairing step (S103), there is also a method of increasing the light emission luminance of the light emitting pixel 15 by irradiating the short defect portion having the short circuit component 47 with a laser beam to melt (break) the short circuit component 47. It can be illustrated.
 なお、滅点リペア工程(S103)にはリペアの結果を検査する工程も含まれる。当該工程は滅点画素特定工程(S102)と同様であり、リペアの結果が芳しくない発光画素15や、リペア後に滅点画素へ再変化した発光画素15を再度特定する。また、滅点画素が特定されれば、再度滅点リペアを施してもよい。 The dark spot repair process (S103) includes a process of inspecting the repair result. This step is the same as the dark spot pixel specifying step (S102), and the light emitting pixels 15 whose repair results are not good and the light emitting pixels 15 that have changed again to dark spot pixels after repair are specified again. If a dark spot pixel is specified, the dark spot repair may be performed again.
 また、滅点リペアの他、別途常時発光する発光画素である輝点画素を特定し、輝点画素に対しリペアを行ってもよい。 Further, in addition to the dark spot repair, a bright spot pixel that is a light emitting pixel that always emits light separately may be specified, and the bright spot pixel may be repaired.
 次に本実施の形態の場合、滅点リペア工程(S103)が完了した後、発光画素15の発光をそれぞれ制御するドライバ装置(例えば、データ線駆動回路13、走査線駆動回路14などの駆動回路)を基板100に接続する(S104:ドライバ接続工程)。 Next, in the case of the present embodiment, after the dark spot repair process (S103) is completed, driver devices (for example, drive circuits such as the data line drive circuit 13 and the scan line drive circuit 14) that control the light emission of the light emitting pixels 15 respectively. ) Is connected to the substrate 100 (S104: driver connection step).
 ドライバ接続工程(S104)としては、ドライバ回路が形成されたフレキ基板をACF(違法導電性フィルム)により熱圧着して接続する方法を例示することができる。また、ドライバICを直接基板に実装するものなどでもかまわない。 As the driver connecting step (S104), a method of connecting the flexible substrate on which the driver circuit is formed by thermocompression bonding with an ACF (illegal conductive film) can be exemplified. In addition, the driver IC may be mounted directly on the board.
 なお、ドライバ装置としてソースメータなどを用い、ソースメータのプローブを基板100に接続してもかまわない。 Note that a source meter or the like may be used as the driver device, and the source meter probe may be connected to the substrate 100.
 次に、滅点リペア工程(S103)でリペアされた滅点画素を含む各発光画素15に対し、発光輝度の低下率を安定させる処理を施す(S105:エージング工程)。 Next, a process for stabilizing the reduction rate of the light emission luminance is performed on each light emitting pixel 15 including the dark spot pixel repaired in the dark spot repair process (S103) (S105: aging process).
 ここで、エージングとは、製造直後の初期状態とみなされる発光画素15は、一定の順バイアス電圧を印加しても発光輝度の低下率(単位時間当たりの発光輝度の減少量)が大きいため、発光輝度の低下率が安定する状態まで、発光画素15を発光させる処理を意味している。 Here, aging means that the light emitting pixel 15 that is regarded as an initial state immediately after manufacturing has a large decrease rate of light emission luminance (a decrease amount of light emission luminance per unit time) even when a constant forward bias voltage is applied. This means processing for causing the light emitting pixels 15 to emit light until the rate of decrease in the light emission luminance is stabilized.
 具体的なエージング工程(S105)としては、本実施の形態の場合ドライバ装置が実装されているため、ドライバ装置を介して各発光画素15に所定の順バイアス電圧を印加し、発光輝度が第四閾値以下になるまで、または、発光輝度の低下率が第五閾値以下となって安定するまで各発光画素15を点灯させる方法を例示することができる。なお、エージング効果を促進させるため、表示部12を加温してもかまわない。 As a specific aging process (S105), in the case of the present embodiment, since the driver device is mounted, a predetermined forward bias voltage is applied to each light emitting pixel 15 via the driver device, and the emission luminance is the fourth. A method of lighting each light-emitting pixel 15 until it becomes equal to or less than the threshold value or until the decrease rate of the light emission luminance becomes equal to or less than the fifth threshold value can be exemplified. In order to promote the aging effect, the display unit 12 may be heated.
 以上に示したタイミングでエージング工程(S105)を実施することにより、滅点リペア工程(S103)によりリペアされた発光画素15をもエージングすることができ、表示部12全体の輝度の劣化を安定させた状態で、有機EL表示装置1を製造することが可能となる。 By performing the aging process (S105) at the timing shown above, the light emitting pixels 15 repaired by the dark spot repair process (S103) can also be aged, and the deterioration of the luminance of the entire display unit 12 can be stabilized. In this state, the organic EL display device 1 can be manufactured.
 さらに本実施の形態の場合、接続されたドライバ装置を介してエージングを行うため、ドライバ装置の信頼性も検証することが可能となる。 Furthermore, in the case of the present embodiment, since the aging is performed through the connected driver device, the reliability of the driver device can be verified.
 次に本実施の形態の場合、エージング工程(S105)が終了した後、ドライバ装置を駆動させて各発光画素15の発光輝度をそれぞれ測定し、発光画素15相互の発光輝度を調整するための補正値を導出する(S106:輝度補正工程)。 Next, in the case of the present embodiment, after the aging step (S105) is completed, the driver device is driven to measure the light emission luminance of each light emitting pixel 15, and the correction for adjusting the light emission luminance between the light emitting pixels 15 is performed. A value is derived (S106: luminance correction step).
 輝度補正工程(S106)としては、所定の画像信号に基づきドライバ装置が各発光画素15を発光させて各発光画素15の輝度をCCDカメラなどにより測定し、同一の画像信号においては各発光画素15の発光輝度が均一、または、ほぼ均一となる補正値を発光画素15毎に導出し、ドライバ装置に導出された補正値を記憶させる処理を例示できる。 In the brightness correction step (S106), the driver device causes each light emitting pixel 15 to emit light based on a predetermined image signal, and the brightness of each light emitting pixel 15 is measured by a CCD camera or the like. A process of deriving a correction value that makes the light emission luminance uniform or substantially uniform for each light emitting pixel 15 and storing the correction value derived in the driver device can be exemplified.
 以上説明してきたように、本実施の形態に係る有機EL装置の製造方法は、滅点画素を検出する滅点画素特定工程と、特定された滅点画素をリペアする滅点リペア工程と、滅点リペア工程によりリペアされた発光画素を含む全て、または、ほぼ全ての発光画素15についてエージングを行うエージング工程を含んでいるので、リペアを必要としなかった発光画素15とともにリペアした発光画素に対してもエージングを行うことが可能となる。よって、発光輝度の安定した基板100を後工程へ送ることができ、安定性の高い有機EL表示装置を提供することができる。 As described above, the manufacturing method of the organic EL device according to the present embodiment includes a dark spot pixel specifying process for detecting a dark spot pixel, a dark spot repair process for repairing the specified dark spot pixel, and a dark spot repair process. Since it includes an aging process in which aging is performed on all or almost all of the light emitting pixels 15 including the light emitting pixels repaired by the point repair process, the light emitting pixels repaired together with the light emitting pixels 15 that did not require repair are included. Can also be aged. Therefore, the substrate 100 with stable emission luminance can be sent to a subsequent process, and a highly stable organic EL display device can be provided.
 さらに、エージング工程を経た後で輝度補正工程を実施すれば、発光輝度の安定した状態で補正値を導出することができ、高品位な有機EL表示装置を提供することができる。また、ドライバ装置を接続し、当該ドライバ装置を用いてエージング処理を行うことで、ドライバ装置の検証も行うことができ、信頼性の高い有機EL表示装置を提供することができる。 Furthermore, if the luminance correction step is performed after the aging step, the correction value can be derived with the light emission luminance being stable, and a high-quality organic EL display device can be provided. Further, by connecting a driver device and performing an aging process using the driver device, the driver device can be verified, and a highly reliable organic EL display device can be provided.
 以上、本開示に係る有機EL表示装置の製造方法の一例を説明してきたが、本開示は、上述した実施の形態に限定されるものではない。実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、実施の形態に対して本開示の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本開示に含まれる。 As mentioned above, although an example of the manufacturing method of the organic EL display device according to the present disclosure has been described, the present disclosure is not limited to the above-described embodiment. Other embodiments realized by combining arbitrary constituent elements in the embodiments, and modifications obtained by subjecting the embodiments to various modifications conceivable by those skilled in the art without departing from the gist of the present disclosure Included in this disclosure.
 たとえば前述したとおり、エージング工程(S105)の前工程であって、滅点リペア工程(S103)の前後に輝点リペア工程を実施してもかまわない。 For example, as described above, the bright spot repair process may be performed before or after the dark spot repair process (S103), which is a previous process of the aging process (S105).
 また、滅点リペア、または、輝点リペアが完了した後に、表示部12全体に反射防止フィルムを貼り合わせてもよい。 Further, after the dark spot repair or the bright spot repair is completed, an antireflection film may be bonded to the entire display unit 12.
 また、エージング工程(S105)の後、基板100に放熱シートを貼り合わせてもかまわない。 Further, after the aging process (S105), a heat dissipation sheet may be bonded to the substrate 100.
 本開示の有機EL表示装置の製造方法は、大画面及び高解像度が要望される薄型テレビ及びパーソナルコンピュータのディスプレイなどの技術分野に利用可能である。 The manufacturing method of the organic EL display device of the present disclosure can be used in technical fields such as a flat-screen television and a personal computer display that require a large screen and high resolution.
1 表示装置
11 制御部
12 表示部
13 データ線駆動回路
14 走査線駆動回路
15 発光画素
16 素子
17 駆動トランジスタ
18 選択トランジスタ
19 コンデンサ
47 短絡成分
100 基板
101 駆動回路層
102 発光層
110 透明封止膜
131 データ線
141 走査線
151 正電源線
152 負電源線
161 陽極
162 正孔注入層
163 正孔輸送層
164 有機発光層
165 バンク層
166 電子注入層
167 透明陰極
DESCRIPTION OF SYMBOLS 1 Display apparatus 11 Control part 12 Display part 13 Data line drive circuit 14 Scan line drive circuit 15 Light emission pixel 16 Element 17 Drive transistor 18 Selection transistor 19 Capacitor 47 Short-circuit component 100 Substrate 101 Drive circuit layer 102 Light emission layer 110 Transparent sealing film 131 Data line 141 Scan line 151 Positive power supply line 152 Negative power supply line 161 Anode 162 Hole injection layer 163 Hole transport layer 164 Organic light emitting layer 165 Bank layer 166 Electron injection layer 167 Transparent cathode

Claims (3)

  1.  有機EL素子を有する発光画素と、複数の前記発光画素が行列状に配置される基板とを備える有機EL表示装置の製造方法であって、
     電圧を印加しても発光しない、または、発光輝度が乏しい前記発光画素である滅点画素を複数の前記発光画素の中から特定する滅点画素特定工程と、
     前記滅点画素特定工程で特定された前記滅点画素に対し発光輝度の増加のための処理を施す滅点リペア工程と、
     前記滅点リペア工程でリペアされた前記滅点画素を含む前記発光画素に対し、発光輝度の低下率を安定させる処理を施すエージング工程と
    を含む有機EL表示装置の製造方法。
    A method of manufacturing an organic EL display device comprising: a light emitting pixel having an organic EL element; and a substrate on which the plurality of light emitting pixels are arranged in a matrix.
    A dark spot pixel identifying step of identifying a dark spot pixel that is the light emitting pixel that emits light even when a voltage is applied, or the light emitting brightness is low, from among the plurality of light emitting pixels;
    A dark spot repairing step for performing a process for increasing light emission luminance on the dark spot pixel specified in the dark spot pixel specifying step;
    A method of manufacturing an organic EL display device, comprising: an aging step of performing a process of stabilizing a reduction rate of light emission luminance on the light emitting pixel including the dark spot pixel repaired in the dark spot repair step.
  2.  有機EL素子を有する発光画素と、複数の前記発光画素が行列状に配置される基板とを備える有機EL表示装置の製造方法であって、
     電圧を印加しても発光しない、または、発光輝度が乏しい前記発光画素である滅点画素を複数の前記発光画素の中から特定する滅点画素特定工程と、
     前記滅点画素特定工程で特定された前記滅点画素に対し発光輝度の増加のための処理を施す滅点リペア工程と、
     前記滅点リペア工程でリペアされた前記滅点画素を含む前記発光画素に対し、発光輝度の低下率を安定させる処理を施すエージング工程と、
     前記エージング処理が施された前記発光画素に対し、発光輝度を測定し、前記発光画素相互の発光輝度を調整するための補正値を導出する輝度補正工程と
    を含む有機EL表示装置の製造方法。
    A method of manufacturing an organic EL display device comprising: a light emitting pixel having an organic EL element; and a substrate on which the plurality of light emitting pixels are arranged in a matrix.
    A dark spot pixel identifying step of identifying a dark spot pixel that is the light emitting pixel that emits light even when a voltage is applied, or the light emitting brightness is low, from among the plurality of light emitting pixels;
    A dark spot repairing step for performing a process for increasing light emission luminance on the dark spot pixel specified in the dark spot pixel specifying step;
    An aging step of performing a process of stabilizing a decrease rate of light emission luminance with respect to the light emitting pixels including the dark spot pixels repaired in the dark spot repair step;
    A method of manufacturing an organic EL display device, comprising: a luminance correction step of measuring a luminance of the light emitting pixels subjected to the aging process and deriving a correction value for adjusting the luminance of the light emitting pixels.
  3.  前記エージング工程に先立ち、前記発光画素の発光をそれぞれ制御するドライバ装置を前記基板に接続するドライバ接続工程
    を含む請求項1または2に記載の有機EL表示装置の製造方法。
    3. The method of manufacturing an organic EL display device according to claim 1, further comprising a driver connection step of connecting a driver device that controls light emission of each of the light emitting pixels to the substrate prior to the aging step.
PCT/JP2014/002749 2013-10-21 2014-05-26 Production method for organic el display device WO2015059844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-218732 2013-10-21
JP2013218732 2013-10-21

Publications (1)

Publication Number Publication Date
WO2015059844A1 true WO2015059844A1 (en) 2015-04-30

Family

ID=52992469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002749 WO2015059844A1 (en) 2013-10-21 2014-05-26 Production method for organic el display device

Country Status (1)

Country Link
WO (1) WO2015059844A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103068A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Aging method of organic electroluminescent display panel
JP2007317384A (en) * 2006-05-23 2007-12-06 Canon Inc Organic electroluminescence display device, its manufacturing method, repair method and repair unit
JP2008064806A (en) * 2006-09-04 2008-03-21 Sanyo Electric Co Ltd Defect inspecting method and defect inspecting device for electroluminescence display device, and manufacturing method of electroluminescence display device using them
JP2008276030A (en) * 2007-05-02 2008-11-13 Canon Inc Method of manufacturing organic el display
JP2009063711A (en) * 2007-09-05 2009-03-26 Canon Inc Inspection method of organic el element and organic el display device, and production system
JP2010231187A (en) * 2009-03-05 2010-10-14 Casio Computer Co Ltd Drive circuit array substrate and production and test methods thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103068A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Aging method of organic electroluminescent display panel
JP2007317384A (en) * 2006-05-23 2007-12-06 Canon Inc Organic electroluminescence display device, its manufacturing method, repair method and repair unit
JP2008064806A (en) * 2006-09-04 2008-03-21 Sanyo Electric Co Ltd Defect inspecting method and defect inspecting device for electroluminescence display device, and manufacturing method of electroluminescence display device using them
JP2008276030A (en) * 2007-05-02 2008-11-13 Canon Inc Method of manufacturing organic el display
JP2009063711A (en) * 2007-09-05 2009-03-26 Canon Inc Inspection method of organic el element and organic el display device, and production system
JP2010231187A (en) * 2009-03-05 2010-10-14 Casio Computer Co Ltd Drive circuit array substrate and production and test methods thereof

Similar Documents

Publication Publication Date Title
KR101022156B1 (en) Pixel Repair structure for Repairing Pixel Defect of Organic Light Emitting Display Device and Method of Repairing the Same
US8860705B2 (en) Image display device and modification method performed by the same
CN103392381B (en) The manufacture method of organic electroluminescent device and organic electroluminescent device
TWI588804B (en) Organic light emitting diode display and testing method thereof
US8597067B2 (en) Method of manufacturing organic electroluminescence display device
JP2006269108A (en) Organic light emitting display device, and restoration method of its defective pixel
US9954202B2 (en) Method for manufacturing electroluminescent display device
US8765494B2 (en) Method for fabricating organic EL device and method for evaluating organic EL device
TW200934288A (en) Method of manufacturing organic light-emitting device
JP5441374B2 (en) Semiconductor element manufacturing method, semiconductor element, light emitting device, display device, and driving substrate
JP5690333B2 (en) Inspection method for organic EL display device
JP5958808B2 (en) Display panel manufacturing method, inspection apparatus and inspection method thereof
JP2008123700A (en) Organic el display device and repairing method therefor, and manufacturing method for the organic el display device
JP2010249883A (en) Image display device and correction method for the same
JP6041087B2 (en) Display panel manufacturing method, inspection apparatus and inspection method thereof
WO2010106801A1 (en) Image display apparatus, manufacturing method thereof, and correction method therefor
WO2015059844A1 (en) Production method for organic el display device
JP6232593B2 (en) Manufacturing method of display device
JP5938692B2 (en) Display panel manufacturing method, inspection apparatus and inspection method thereof
JP5363188B2 (en) Image display device and correction method thereof
JP2015210842A (en) Method of manufacturing organic el display device
JP2016100171A (en) Method of manufacturing organic electroluminescent display device
JP2010262074A (en) Image display device and correcting method of the same
US20170125746A1 (en) Display panel manufacturing method and display panel
JP2015130257A (en) Method and device for inspecting organic el display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP