WO2010104231A1 - 고압 처리기 및 고압 실링방법 - Google Patents

고압 처리기 및 고압 실링방법 Download PDF

Info

Publication number
WO2010104231A1
WO2010104231A1 PCT/KR2009/001309 KR2009001309W WO2010104231A1 WO 2010104231 A1 WO2010104231 A1 WO 2010104231A1 KR 2009001309 W KR2009001309 W KR 2009001309W WO 2010104231 A1 WO2010104231 A1 WO 2010104231A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
wafer
high pressure
carbon dioxide
pressure
Prior art date
Application number
PCT/KR2009/001309
Other languages
English (en)
French (fr)
Inventor
한갑수
Original Assignee
주식회사 에이앤디코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이앤디코퍼레이션 filed Critical 주식회사 에이앤디코퍼레이션
Priority to JP2011552870A priority Critical patent/JP5210439B2/ja
Publication of WO2010104231A1 publication Critical patent/WO2010104231A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like

Definitions

  • the present invention relates to a high pressure processor and a high pressure sealing method, and more particularly, to a high pressure processor and a high pressure sealing method capable of increasing the number of wafers that can be simultaneously cleaned compared to a volume and preventing leakage of pressure.
  • the high-pressure processor is a device used for supercritical dry cleaning using carbon dioxide, the internal pressure of about 30 to 50 bar initially, the pressure when the cleaning process is about 120 to 300 bar.
  • the conventional high pressure processor having such a structure increases the volume of the device because the wafer mounter that mounts the wafer during the cleaning process moves up and down, and in particular, the larger the number of wafers to be processed at the same time, the wafers are mounted and moved up and down.
  • the increase in volume is further exacerbated by the need for space.
  • Such an increase in volume may cause an increase in the operating distance of the device for loading and unloading the wafer, which may lead to a decrease in productivity due to a delay in the cleaning process.
  • first sealant and the second sealant having a 'c' shape are used for maintaining confidentiality, but when a high pressure carbon dioxide is introduced into the central portion of the 'c' shape, the upper element is pushed upward. As a result of the raising force, there was a problem that the high pressure carbon dioxide flowed out and the pressure was not easily maintained, and its life was shortened, so that the replacement cycle of the first and second sealants was short, There was a problem that the productivity can not be reduced.
  • the problem to be solved by the present invention in consideration of the above problems is to provide a high pressure processor and a high pressure sealing method in which pressure leakage does not occur due to internal pressure.
  • another object of the present invention is to provide a high pressure processor and a high pressure sealing method capable of processing a wafer at a high pressure by maintaining a sealing state without moving the wafer up and down.
  • Another problem to be solved by the present invention is to completely prevent the leakage of pressure during the progress of the treatment process, high pressure processor that can extend the life by minimizing the exposure of the airtight means carbon dioxide and additives And to provide a high pressure sealing method.
  • Another problem to be solved by the present invention is to minimize the friction of the mechanical drive portion, to reduce the occurrence of foreign matter and to prevent the leakage of pressure due to wear caused by the use of the equipment, to extend the life of the equipment It is to provide a high pressure processor and a high pressure sealing method.
  • a high pressure carbon dioxide is supplied to the inside to clean or rinse a wafer with the high pressure carbon dioxide, or to dry the micromechanical electronic system.
  • a door for preventing pressure leakage is installed between the outside and the outside, and the door is located between the inside and the outside of the autoclave by the internal pressure to closely contact the door cover that provides a space for the wafer to be loaded and unloaded. Prevent leakage of pressure.
  • the high pressure treatment method of the present invention is a method of cleaning or rinsing a wafer in a pressurized atmosphere by supplying a high pressure carbon dioxide or a high pressure carbon dioxide and an additive, or drying a microelectromechanical system.
  • a high pressure carbon dioxide or a high pressure carbon dioxide and an additive or drying a microelectromechanical system.
  • the high pressure processor and the high pressure sealing method of the present invention maintain the high pressure atmosphere of the high pressure processor without leakage by using the difference between the internal processing pressure and the external pressure, thereby ensuring the reliability of the process.
  • the high pressure processor and the high pressure sealing method of the present invention can minimize the volume by loading, unloading, and cleaning the wafers in a fixed state without moving up and down, thereby having an effect that can be installed without being limited to the installation space.
  • the high pressure processor of the present invention is easy to maintain the airtightness of the door even at the initial pressure, there is an effect that can extend the life of the airtight portion by minimizing the airtight portion is exposed to high pressure carbon dioxide and additives.
  • the high pressure processor of the present invention allows the door to be moved up and down, and the door can be moved back and forth in a closed state, thereby improving airtightness and minimizing friction with the surroundings when driving up and down, thereby reducing the amount of wear of the high pressure processor.
  • the life of the can be extended, there is an effect that can prevent the generation of foreign matter.
  • FIG. 1 is a perspective view of the high pressure processor of the present invention.
  • FIG. 2 is a partial cross-sectional view illustrating a closed state of the door in FIG. 2.
  • FIG. 3 is a partial cross-sectional view illustrating an open state of the door in FIG. 1.
  • Figure 4 is an exploded perspective view of a door applied to the high pressure processor of the present invention.
  • FIG. 5 is a perspective view of a wafer support portion applied to the present invention with a wafer mounted thereon.
  • FIG. 6 is a partially enlarged perspective view of the wafer support
  • Wafer storage space portion 13 opening and closing space portion
  • Wafer support part 21 Distributed supply part
  • Figure 1 is a perspective view of the high pressure processor of the present invention
  • Figure 2 is a partial cross-sectional view showing a closed state of the door in Figure 1
  • Figure 3 is a partial cross-sectional view showing an open state of the door in Figure 1
  • Figure 4 is a high pressure processor of the present invention An exploded perspective view of a door applied to a.
  • the high pressure processor of the present invention is provided with a supply port 11 to which high-pressure carbon dioxide is supplied, and a wafer accommodating space portion 12 connected to the supply port 11 and the wafer storage.
  • the main body 10 in which the opening / closing space portion 13 higher than the upper and lower spaces of the wafer storage space portion 12 is located in front of the space portion 12, and the plurality of wafers are located in the wafer storage space portion 12.
  • the door driving unit 30 includes a moving shaft 32 that moves up and down in a state of being inserted into the thickness of the door cover 46, and a connection part 33 to the moving shaft 32 of the door driving unit 30. It is connected, and driven up and down in the opening and closing space 13 Air, and a door 40 to the loading and unloading of the wafer to be maintained during the cleaning process confidential.
  • the door 40 is connected to the connecting portion 33 in a state close to the inner surface of the door cover 46, the fixed door 41 receives the vertical movement of the door driving unit 30, and the fixed door 41 ) Is connected by a plurality of bellows 45, the movable door 42, the distance to the fixed door 41 is adjusted by the action of the bellows 45, and the central portion of the fixed door 41 It is exposed at the provided hole, and is provided at the edge of the gap adjusting port 44 for supplying external air to the bellows 45 or for discharging the air of the bellows 45 to the outside, and at the edge of the movable door 42. It is configured to include an O-ring 43 to hold.
  • the main body 10 is provided with an opening and closing space 13 on the inside of the front end to enable the vertical opening and closing movement of the door 40, the rear end of the opening and closing space 13 to the opening and closing space 13
  • the wafer storage space portion 12 having a lower height is provided.
  • the wafer accommodating portion 12 is a space in which high-pressure carbon dioxide supplied through the supply port 11 protruding from the rear side of the main body 10 is located, and has a minimum clearance for maintaining pressure. It is preferable.
  • the door 40 of the main body 10 is provided at the front side, it can be rotated and arrange
  • the door 40 is shown to maintain a closed state when descending, it can be easily changed to a structure for closing the main body 10 when raised as needed.
  • an ultrasonic generator may be added to the main body 10 for easy mixing of the introduced carbon dioxide and the additive. This can be applied regardless of the position or structure as long as it is easy to seal and can generate high frequency vibration inside the main body 10.
  • the wafer support 20 is fastened to the wafer storage space 12.
  • FIG. 5 is a perspective view of the wafer support 20 with a wafer mounted thereon
  • FIG. 6 is an enlarged perspective view of a portion of the wafer support 20.
  • the wafer accommodating space part 12 applied to the present invention includes a plurality of vertically provided additives mixed with high pressure carbon dioxide or high pressure carbon dioxide supplied to the supply port 11.
  • Dispersion supply part 21 having a dispersing groove 23 provided therein for distributing and supplying carbon dioxide supplied through the supply hole 22 and distributing and supplying carbon dioxide supplied through the supply hole 22 along the surface of a wafer.
  • a plurality of wafer seating parts 24 disposed vertically at both ends of the dispersion supply part 21 and having a seating protrusion 25 on each inner side to seat the wafer.
  • the additive may be a cleaning additive for washing, a rinsing additive for rinsing or a drying additive for drying.
  • the wafer support unit 20 can mount a plurality of wafers, and has a fixed structure, not a structure that moves up and down as in the prior art.
  • the supply port 11 and the supply line connected to the supply port 11 are also fixed by the fixed structure, the possibility of leakage may be reduced when supplying high pressure carbon dioxide.
  • the bottom portion of the main body 10 includes a plurality of outlets through which the high pressure carbon dioxide passing through the wafer may be selectively discharged to the outside.
  • the cylinder 31 is supported by a support (not shown) to generate a driving force for driving the moving shaft 32 up and down through the link portion 34.
  • a support not shown
  • the cylinder 31 is illustrated as being located on the upper side of the main body 10 in the drawing, it is obvious that the shape of the link portion 34 can be changed to be positioned on the side or the back of the main body 10. In order to generate a stable driving force can be arranged in multiple, can be replaced by a motor.
  • the movable shaft 32 covers the entire surface of the opening / closing space 13 of the main body 10, and the upper and lower directions on both side portions of the thickness of the door cover 46 having an opening capable of loading and unloading the wafer. Is inserted.
  • a connecting portion 33 for coupling with the door 40 is provided at the end of the moving shaft 32, and the connecting portion 33 is a fixed door of the door 40 inside the opening of the door cover 46. 41) is coupled to the outside.
  • the door 40 moves up and down by driving the cylinder 31, and the door 40 seals the opening of the door cover 46 or moves to the upper side of the opening to open and close the opening and closing portion ( Located on the upper side of 13) to allow the wafer to be loaded and unloaded.
  • the fixing of the fixed door 41 is a door in a fixed state without moving back and forth.
  • the door 40 includes a fixed door 41 that receives the drive of the cylinder 31 and a movable door 42 that is movable back and forth of the main body 10.
  • the fixed door 41 and the movable door 42 are coupled by a plurality of bellows 45.
  • Such inflow and outflow of air is fixed to the movable door 42, and is made possible by the gap adjusting port 44 connected to the bellows 45 by a pipeline through which air flows, and after the action thereof. Will be described in more detail later.
  • the gap adjusting port 44 should be exposed so that it can be connected to an external vacuum and pressurizing device, and a part of the fixed door 41 is provided with a hole for exposing the gap adjusting port 44.
  • the cylinder 31 is driven to move the door 40 upward to load the initial wafer into the wafer support 20.
  • the driving force of the cylinder 31 is transmitted to the moving shaft 32 through the link portion 34 to raise the moving shaft 32 and coupled to the moving shaft 32 through the connecting portion 33. ) Will rise.
  • the door 40 in the state in which the door 40 is opened, a plurality of wafers are simultaneously loaded by a robot or the like from the outside and mounted on the wafer support 20, respectively. Thus, after the wafer is mounted, the door 40 should be closed for the cleaning process.
  • the bellows 45 is filled with air, and thus the door cover 46 and the O-ring 43 are not rubbed.
  • high pressure carbon dioxide is initially supplied through the supply port 11, and a plurality of supply holes 22 are provided in the vertical direction in the dispersion supply part 21 of the wafer support part 20.
  • the high pressure carbon dioxide is discharged through the distribution groove 23 which is supplied through the supply hole 22 and communicates with the supply hole 22.
  • This initial pressure is lower than the process pressure but higher than the atmospheric pressure, and the supplied carbon dioxide is moved from the wafer storage space 12 to the opening / closing space 13, but at this time, the bellows 45 is compressed. O-ring 43 and the door cover 46 is kept airtight so that the carbon dioxide outflow does not occur.
  • the supply port 11 may be provided in two or more, and initially, carbon dioxide is supplied only through the supply port at a position where the carbon dioxide is not directly injected to the wafer among the plurality of supply ports 11 to a predetermined pressure.
  • the movable door 42 is squeezed to the door cover 46 toward a stronger pressure, and thus the pressure leaks during the process. Can be completely prevented.
  • the air flows into the bellows 45 of the door 40 when the loading of the door 40 is lifted, and the movable door 42 retreats, and the O-ring 43 and the door cover ( The door 40 is opened while the 46 is not rubbed.
  • the high pressure processor maintains the wafer support portion 20 for evenly injecting high pressure carbon dioxide onto the wafer to prevent the possibility of leakage due to movement, and the door 40 has a double structure.
  • the double door structure is designed to be moved back and forth, thereby increasing the effect of preventing leakage and minimizing friction with peripheral devices, thereby preventing foreign substances from occurring and extending the life of equipment.
  • the high pressure processor and the high pressure sealing method maintain the high pressure atmosphere of the high pressure processor without leakage by utilizing the difference between the internal processing pressure and the external pressure, thereby ensuring the reliability of the process, and thus there is industrial applicability.
  • the high pressure processor and the high pressure sealing method of the present invention can minimize the volume by loading, unloading, and cleaning the wafers in a fixed state without moving up and down.
  • the high pressure processor of the present invention is easy to maintain the airtightness of the door even at the initial pressure, it is possible to extend the life of the airtight portion by minimizing the exposure of the airtight portion to the high pressure carbon dioxide and additives, there is an industrial use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)

Abstract

본 발명은 고압 처리기에 관한 것으로, 본 발명 고압 처리기는 고압의 이산화탄소가 내측으로 공급되고, 그 고압의 이산화탄소로 웨이퍼를 세정할 수 있는 수납공간부 및 그 수납공간부의 전단에서 그 수납공간부의 높이보다 더 높은 공간인 개폐공간부를 구비하는 본체와, 상기 본체의 수납공간부에 고정설치되어 상기 웨이퍼를 실장하며, 상기 유입된 고압의 이산화탄소를 상기 웨이퍼를 표면을 따라 흐르도록하여 세정하는 웨이퍼 지지부와, 상기 본체의 개폐공간부의 일측을 밀폐하되 상기 웨이퍼의 로딩 및 언로딩이 가능한 개구부가 마련된 도어커버와, 상기 개폐공간부 내에서 상하 이동이 가능하며, 상기 도어커버측으로 전후 이동이 가능한 도어와, 상기 도어를 상하방향으로 구동시키는 도어구동부를 포함한다. 이와 같은 구성의 본 발명은 기밀부분이 고압 이산화탄소에 노출되는 것을 최소화하여 기밀부의 수명을 연장시킬 수 있는 효과가 있으며, 도어를 상하 및 전후로 이동시킬 수 있도록 하여, 기밀성을 향상시킴과 아울러 상하 구동시 주변과의 마찰을 최소화하여 마모량을 줄여 고압 처리기의 수명을 연장시킬 수 있으며, 이물의 발생을 방지할 수 있는 효과가 있다.

Description

고압 처리기 및 고압 실링방법
본 발명은 고압 처리기 및 고압 실링방법에 관한 것으로, 특히 부피에 비하여 동시에 세정할 수 있는 웨이퍼의 수량을 증가시킬 수 있으며, 압력의 누설이 방지될 수 있는 고압 처리기 및 고압 실링방법에 관한 것이다.
일반적으로, 고압 처리기는 이산화탄소를 사용하는 초임계 건식세정에 사용되는 장치이며, 내부의 압력이 초기에는 30 내지 50bar 정도이며, 세정공정이 진행될 때의 압력은 120 내지 300bar 정도가 된다.
이와 같이 고압의 내부 분위기의 유지는 세정공정에 반드시 필요한 것이며, 이러한 압력의 누설을 방지하는 고압 처리기의 구조가 등록특허 10-0713209호에 기재되어 있다.
그러나 이와 같은 구조의 종래 고압 처리기는 세정공정중에 웨이퍼를 실장하는 웨이퍼장착기가 상하로 이동하기 때문에 장치의 부피가 커지게 되며, 특히 동시에 처리하는 웨이퍼의 수량이 많을 수록 그 웨이퍼 들을 실장하며, 상하 이동을 위한 공간이 필요하기 때문에 그 부피의 증가가 더 심화된다.
이와 같은 부피의 증가는 웨이퍼를 로딩 및 언로딩하는 장치의 운전 거리의 증가를 유발할 수 있으며, 이는 세정공정의 지연에 의한 생산성의 저하로 이어질 수 있는 문제점이 있었다.
또한 기밀의 유지를 위하여 'ㄷ'자 형상의 제1밀봉제 및 제2밀봉제를 사용하고 있으나, 그 'ㄷ'자 형의 중앙부분에 고압의 이산화탄소가 유입되는 경우, 상부요소를 상향으로 밀어 올리는 힘이 작용하여 결과적으로 고압의 이산화탄소가 유출되어 압력의 유지가 용이하지 않은 문제점이 있었으며, 그 수명이 단축되어 그 제1밀봉제와 제2밀봉제의 교체주기가 짧고, 교체시 세정공정을 진행할 수 없어 생산성이 저하되는 문제점이 있었다.
상기와 같은 문제점을 감안한 본 발명이 해결하고자 하는 과제는, 내부 압력에 의해 압력의 누설이 발생하지 않는 고압 처리기 및 고압 실링방법을 제공함에 있다.
또한 본 발명이 해결하고자 하는 다른 과제는, 웨이퍼를 상하 이동시키지 않고도 실링 상태를 유지하여 고압으로 웨이퍼를 처리할 수 있는 고압 처리기 및 고압 실링방법을 제공함에 있다.
또한 본 발명이 해결하고자 하는 다른 과제는 처리공정의 진행 중에 압력의 누설이 발생하는 것을 완전히 차단할 수 있으며, 기밀유지수단이 고압의 이산화탄소 및 첨가제에 노출되는 것을 최소화하여 수명을 연장시킬 수 있는 고압 처리기 및 고압 실링방법을 제공함에 있다.
아울러 본 발명이 해결하고자 하는 다른 과제는 기계적 구동 부분의 마찰을 최소화하여, 이물의 발생을 줄임과 아울러 장비의 사용에 따른 마모로 인해 압력의 누설이 발생하는 것을 방지하여, 장비의 수명을 연장시킬 수 있는 고압 처리기 및 고압 실링방법을 제공함에 있다.
상기와 같은 과제를 해결하기 위한 본 발명 고압 처리기는, 고압의 이산화탄소가 내측으로 공급되어 그 고압의 이산화탄소로 웨이퍼를 세정 또는 린스 처리하거나, 마이크로 기계 전자 시스템을 건조하는 고압 처리기에 있어서, 고압 처리기 내부와 외부 사이에 압력누설 차단을 위한 도어를 설치하되, 그 도어는 내부의 압력에 의해 고압처리기의 내부와 외부 사이에 위치하여 웨이퍼가 로딩 및 언로딩 될 수 있는 공간을 제공하는 도어커버에 밀착되어 압력의 누설을 방지한다.
본 발명 고압 처리방법은, 고압의 이산화탄소 또는 고압의 이산화탄소와 첨가제가 공급되어 가압 분위기에서 웨이퍼를 세정 또는 린스처리하거나, 마이크로 전자 기계 시스템을 건조시키는 방법에 있어서, 상기 공급된 고압의 이산화탄소 또는 고압의 이산화탄소와 첨가제의 압력에 의해 상기 웨이퍼가 로딩 및 언로딩되는 공간부가 마련된 도어커버 측으로 도어를 밀착시켜 압력의 누설을 방지하며, 압력의 차이가 발생하기 전에도 도어를 전진 및 후퇴시켜 밀착도를 조절할 수 있다.
본 발명 고압 처리기 및 고압 실링방법은, 내부의 처리압력과 외부의 압력의 차이를 이용하여 고압 처리기의 고압 분위기를 누설없이 유지하여, 공정의 신뢰성을 확보할 수 있는 효과가 있다.
또한 본 발명 고압 처리기 및 고압 실링방법은 웨이퍼들이 상하 이동 없이 고정된 상태에서 로딩, 언로딩 및 세정됨으로써 부피를 최소화할 수 있어, 설치 공간에 제한되지 않고 설치할 수 있는 효과가 있다.
그리고 본 발명 고압 처리기는 초기 압력시에도 도어의 기밀을 유지하기가 용이하며, 그 기밀부분이 고압 이산화탄소 및 첨가제에 노출되는 것을 최소화하여 기밀부의 수명을 연장시킬 수 있는 효과가 있다.
또한 본 발명 고압 처리기는 도어를 상하로 이동시킬 수 있도록 하되, 그 도어가 닫힌 상태에서 전후로도 이동할 수 있도록 하여, 기밀성을 향상시킴과 아울러 상하 구동시 주변과의 마찰을 최소화하여 마모량을 줄여 고압 처리기의 수명을 연장시킬 수 있으며, 이물의 발생을 방지할 수 있는 효과가 있다.
도 1은 본 발명 고압 처리기의 사시도이다.
도 2은 도 2에서 도어의 닫힌 상태를 보인 일부 단면도이다.
도 3는 도 1에서 도어의 열린 상태를 보인 일부 단면도이다.
도 4은 본 발명 고압 처리기에 적용되는 도어의 분해 사시도이다.
도 5는 웨이퍼가 실장된 상태의 본 발명에 적용되는 웨이퍼 지지부의 사시도이다.
도 6은 웨이퍼 지지부의 일부 확대 사시도이다.
*도면의 주요 부분에 대한 부호의 설명*
10:본체 11:공급포트
12:웨이퍼 수납공간부 13:개폐공간부
20:웨이퍼 지지부 21:분산공급부
22:공급홀 23:분산홈
24:웨이퍼 안착부 25:안착돌기
30:도어구동부 31:실린더
32:이동축 33:연결부
34:링크부 40:도어
41:고정도어 42:이동도어
43:오링 44:간격조절포트
45:벨로우즈 46:도어커버
이하, 상기와 같은 본 발명 고압 처리기의 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.
도 1은 본 발명 고압 처리기의 사시도이고, 도 2은 도 1에서 도어의 닫힌 상태를 보인 일부 단면도이며, 도 3는 도 1에서 도어의 열린 상태를 보인 일부 단면도이고, 도 4은 본 발명 고압 처리기에 적용되는 도어의 분해 사시도이다.
도 1 내지 도 4을 각각 참조하면 본 발명 고압 처리기는, 고압의 이산화탄소가 공급되는 공급포트(11)가 마련되어 있으며, 그 공급포트(11)와 연결되는 웨이퍼 수납공간부(12) 및 그 웨이퍼 수납공간부(12)의 전단에 그 웨이퍼 수납공간부(12)의 상하 공간보다 높은 개폐공간부(13)가 위치하는 본체(10)와, 상기 웨이퍼 수납공간부(12)에 위치하여 다수의 웨이퍼를 상하로 상호 이격되에 위치시키며, 다수의 공급홀을 통해 상기 공급포트(11)를 통해 공급된 고압 이산화탄소를 각 웨이퍼의 사이로 공급하는 웨이퍼 지지부(20)와, 실린더(31)의 구동에 따라 도어커버(46)의 두께 내측으로 삽입설치된 상태로 상하 이동하는 이동축(32)을 포함하는 도어구동부(30)와, 상기 도어구동부(30)의 이동축(32)에 연결부(33)를 통해 연결되며, 상기 개폐공간부(13) 내측에서 상하로 구동되어, 상기 웨이퍼의 로딩 및 언로딩이 가능하도록 하고, 세정공정시 기밀을 유지하는 도어(40)를 포함한다.
상기 도어(40)는 상기 도어커버(46)의 내측면과 근접한 상태로 상기 연결부(33)에 연결되어 도어구동부(30)의 상하 운동을 전달받는 고정도어(41)와, 상기 고정도어(41)와는 복수의 벨로우즈(45)에 의해 연결되어 있으며, 그 벨로우즈(45)의 작용에 의해 그 고정도어(41)와의 간격이 조절되는 이동도어(42)와, 상기 고정도어(41)의 중앙부에 마련된 홀에 노출되며, 외부의 공기를 상기 벨로우즈(45)에 공급하거나, 그 벨로우즈(45)의 공기를 외부로 배출하는 간격조절포트(44)와, 상기 이동도어(42)의 가장자리에 마련되어 기밀을 유지하는 오링(43)을 포함하여 구성된다.
이하 상기와 같이 구성되는 본 발명에 따른 고압 처리기의 구성과 작용을 보다 상세히 설명한다.
먼저, 본체(10)는 도어(40)의 상하 개폐 운동이 가능하도록 전단의 내측에 개폐공간부(13)가 마련되어 있으며, 그 개폐공간부(13)의 후단에는 그 개폐공간부(13)에 비해 높이가 더 낮은 웨이퍼 수납공간부(12)가 마련되어 있다.
상기 웨이퍼 수납공간부(12)에는 그 본체(10)의 뒷편에서 돌출되어 있는 공급포트(11)를 통해 공급되는 고압의 이산화탄소가 위치하는 공간이 되며, 압력의 유지를 위하여 최소한의 여유공간을 가지는 것이 바람직하다.
도면에는 상기 본체(10)의 도어(40)가 정면에 마련된 것으로 도시하였으나, 필요에 따라서는 그 도어(40)가 상면에 위치하도록 회전시켜 배치할 수 있다.
또한 도어(40)가 하강시 닫힘상태를 유지하는 것으로 도시되었으나, 필요에 따라 상승하였을 때 본체(10)를 닫는 구조로 쉽게 변경될 수 있다.
그리고 도면에는 생략되었지만 본체(10)에는 유입되는 이산화탄소와 첨가제의 용이한 혼합을 위하여 초음파발생장치가 추가될 수 있다. 이는 실링이 용이하고 본체(10)의 내측에 고주파수의 진동을 발생시킬 수 있는 위치 또는 구조이면 그 위치나 구조에 무관하게 적용할 수 있다.
상기 웨이퍼 수납공간부(12)에는 웨이퍼 지지부(20)가 체결되어 있다.
도 5는 웨이퍼(wafer)가 실장된 상태의 웨이퍼 지지부(20)의 사시도이고, 도 6은 웨이퍼 지지부(20)의 일부 확대 사시도이다.
도 5 및 도 6을 참조하면 본 발명에 적용되는 웨이퍼 수납공간부(12)는, 상기 공급포트(11)로 공급된 고압의 이산화탄소, 또는 고압의 이산화탄소와 혼합된 첨가제를 수직방향으로 마련된 다수의 공급홀(22)을 통해 분산시켜 공급하고, 그 공급홀(22)을 통해 공급된 이산화탄소를 웨이퍼(wafer)의 면을 따라 분산공급할 수 있는 분산홈(23)이 내측에 마련된 분산공급부(21)와, 상기 분산공급부(21)의 양측단에서 수직으로 다수 배치되며, 각각의 내측부에 안착돌기(25)를 구비하여 웨이퍼를 안착시키는 웨이퍼 안착부(24)를 포함하여 구성된다.
상기 첨가제는 세정을 위한 세정첨가제, 린스를 위한 린스첨가제 또는 건조를 위한 건조첨가제가 될 수 있다.
이와 같은 구성에 의해 상기 웨이퍼 지지부(20)는 다수의 웨이퍼를 실장할 수 있으며, 종래와 같이 상하로 이동하는 구조가 아닌 고정된 구조를 갖는다.
그 고정된 구조에 의해 상기 공급포트(11)와 도면에는 도시되지 않았지만 공급포트(11)에 연결되는 공급라인도 고정된 상태이기 때문에 고압의 이산화탄소의 공급시 누설이 발생할 확률을 줄일 수 있다.
도면에서는 생략되었지만 상기 본체(10)의 저면부에는 상기 웨이퍼를 지난 고압의 이산화탄소가 선택적으로 외부로 배출될 수 있는 다수의 배출구를 포함하고 있다.
상기 실린더(31)는 지지대(부호 생략)에 의해 지지되어, 링크부(34)를 통해 이동축(32)을 상하로 구동하는 구동력을 발생시킨다. 도면에서는 실린더(31)가 본체(10)의 상부측에 위치하는 것으로 도시하였으나, 링크부(34)의 형상을 변경하여 그 본체(10)의 측면 또는 배면에 위치시킬 수 있음은 당연하며, 또한 안정된 구동력을 발생시키기 위하여 다수로 배치할 수도 있으며, 모터로 대체할 수 있다.
상기 이동축(32)은 상기 본체(10)의 개폐공간부(13)의 전면을 커버하며, 웨이퍼의 로딩 및 언로딩이 가능한 정도의 개구부를 가지는 도어커버(46) 두께의 양측면부에 상하 방향으로 삽입되어 있다.
상기 이동축(32)의 끝단에는 도어(40)와의 결합을 위한 연결부(33)가 마련되어 있으며, 그 연결부(33)는 상기 도어커버(46)의 개구부의 내측에서 도어(40)의 고정도어(41)의 외측에 결합된다.
따라서 상기 실린더(31)의 구동에 의해 도어(40)가 상하 이동을 하게 되며, 그 도어(40)는 도어커버(46)의 개구부를 밀폐하거나, 그 개구부의 상부측으로 이동하여 상기 개폐공간부(13)의 상부측에 위치하여 웨이퍼가 로딩 및 언로딩 될 수 있게 한다. 여기서 고정도어(41)의 고정의 의미는 전후의 이동이 없이 고정된 상태의 도어라는 의미이다.
상기 도어(40)는 상기 실린더(31)의 구동을 전달받는 고정도어(41)와 본체(10)의 전후로 이동이 가능한 이동도어(42)를 포함한다. 그 고정도어(41)와 이동도어(42)는 복수의 벨로우즈(45)에 의해 결합되어 있다.
따라서 상기 고정도어(41)가 전후 방향으로 고정된 상태에서 벨로우즈(45)의 내부에 공기가 유입되면, 그 이동도어(42)는 상기 도어커버(46)로부터 멀어지도록 후퇴하게 되며, 내부에 공기를 외부에서 유출하면 도어커버(46)에 밀착되도록 전진하게 된다.
이와 같은 공기의 유입과 유출은 상기 이동도어(42)에 고정되며, 공기가 흐를 수 있는 관로에 의해 상기 벨로우즈(45)에 연결되는 간격조절포트(44)에 의해 가능하게 되며, 그 작용의 이후는 이후에 보다 상세히 설명한다.
상기 간격조절포트(44)는 외부의 진공 및 가압 장치에 연결될 수 있도록, 노출되어야 하며, 이를 위해 고정도어(41)의 일부에는 그 간격조절포트(44)를 노출시키는 홀을 구비하고 있다.
이와 같은 구조에서, 최초 웨이퍼를 상기 웨이퍼 지지부(20)에 로딩하기 위하여 실린더(31)는 도어(40)를 상향 이동시키는 구동을 하게 된다.
그 실린더(31)의 구동력은 링크부(34)를 통해 이동축(32)에 전달되어 그 이동축(32)을 상승시키며 연결부(33)를 통해 그 이동축(32)에 결합되는 도어(40)가 상승하게 된다.
이때 도어(40)의 벨로우즈(45)는 공기가 유입된 것이며, 따라서 그 이동도어(42)는 상기 도어커버(46)로 부터 이격된 상태가 된다. 즉, 도어커버(46)와 이동도어(42)의 오링(43)이 이격되어 그 도어(40)의 상향 이동시 마찰을 줄여 이물의 발생을 방지할 수 있으며, 장치의 수명을 연장시킬 수 있게 된다.
이와 같이 도어(40)가 오픈된 상태에서 외부에서 로봇 등에 의해 다수의 웨이퍼가 동시에 로딩되어 상기 웨이퍼 지지부(20)에 각각 실장된다. 이처럼 웨이퍼가 실장된 후에는 세정공정을 위하여 상기 도어(40)가 닫힌 상태가 되어야 한다.
이를 위해 실린더(31)가 하향의 구동력을 발생시키면, 이를 링크부(34)를 통해 전달받은 이동축(32)은 하향의 이동을 하게 되며, 따라서 도어(40)가 도어커버(46)의 개구부측으로 하향 이동하게 된다.
이때 역시 상기 벨로우즈(45)에는 공기가 차 있는 상태이며, 따라서 도어커버(46)와 오링(43)이 마찰되지 않는다.
이와 같은 상태에서 도어(40)가 닫힘 위치에 위치하면, 오링(43)과 도어커버(46)의 사이에는 약간의 틈이 존재하며, 이 틈을 밀폐시키기 위하여 상기 간격조절포트(44)를 통해 외부의 진공장치로 그 벨로우즈(45)의 내부 공기를 배출시키며, 따라서 이동도어(42)가 전진하여 오링(43)이 상기 도어커버(46)에 완전히 밀착된다.
상기와 같은 밀착 상태에서 세정공정이 진행되면 초기에 고압의 이산화탄소가 공급포트(11)를 통해 공급되어, 상기 웨이퍼 지지부(20)의 분산공급부(21)에 수직방향으로 다수 마련된 공급홀(22)을 통해 공급되며, 그 공급홀(22)과 연통되는 분산홈(23)으로 그 고압의 이산화탄소가 배출된다.
이와 같은 초기의 압력은 공정압력보다는 낮지만 대기압 보다는 높으며, 그 공급된 이산화탄소가 웨이퍼 수납공간부(12)에서 개폐공간부(13) 측으로 이동하게 되나, 이때에도 상기 벨로우즈(45)의 압착에 의한 오링(43)과 도어커버(46)의 기밀이 유지되고 있어 이산화탄소의 유출은 발생하지 않게 된다.
상기 공급포트(11)는 둘 이상으로 구비할 수 있으며, 초기에는 일정압까지 복수의 공급포트(11) 중 그 웨이퍼에 직접 이산화탄소를 분사하지 않는 위치의 공급포트를 통해서만 이산화탄소가 공급되도록 한다.
이는 초기의 액체 이산화탄소가 그 공급포트를 통해 공급될 때 일시적인 감압에 의한 온도하강에 의하여 드라이아이스로 상변화될 수 있으며, 위와 같이 웨이퍼에 직접 이산화탄소를 분사하지 않는 공급포트를 통해 이산화탄소를 공급하여 드라이아이스에 의한 웨이퍼 소자패턴 손상을 방지하기 위한 것이다.
시간이 경과하여 상기 본체(10)의 내부압력이 점점 더 증가할 수록 그 압력에 의하여 상기 이동도어(42)는 도어커버(46)측으로 점점더 강한 압력으로 압착되며, 따라서 공정중에도 압력이 누설되는 것을 완전하게 방지할 수 있게 된다.
이와 같이 세정공정이 완료되면, 도면에 도시하지는 않았지만 본체(10)의 저면부에 다수로 마련된 배기구를 통해 이산화탄소가 배출되며, 그 본체(10)의 내부압력은 외부압력과 동일하게 된다.
세정공정이 완료되면 상기 로딩시 도어(40)의 상승 설명과 같이, 도어(40)의 벨로우즈(45)에 공기가 유입되어 그 이동도어(42)가 후퇴하며, 오링(43)과 도어커버(46)가 마찰되지 않는 상태로 도어(40)가 오픈된다.
상기 도어(40)가 오픈되면 다시 로봇에 의해 세정된 웨이퍼가 언로딩 처리되고, 다시 세정할 웨이퍼가 웨이퍼 지지부(20)에 로딩된다.
이처럼 본 발명에 의한 고압 처리기는 웨이퍼에 고르게 고압 이산화탄소를 분사하는 웨이퍼 지지부(20)를 고정된 상태로 하여, 이동에 따른 누설이 발생할 가능성을 방지할 수 있으며, 도어(40)를 이중 구조로 하고, 그 이중 구조의 도어가 전후로 이동이 가능하도록 설계하여, 누설방지의 효과를 높임과 아울러 주변장치들과의 마찰을 최소화하여 이물 발생을 방지하고, 장비의 수명을 연장시킬 수 있게 된다.
본 발명은 고압 처리기 및 고압 실링방법은, 내부의 처리압력과 외부의 압력의 차이를 이용하여 고압 처리기의 고압 분위기를 누설없이 유지하여, 공정의 신뢰성을 확보할 수 있어 산업상 이용 가능성이 있다.
또한 본 발명 고압 처리기 및 고압 실링방법은 웨이퍼들이 상하 이동 없이 고정된 상태에서 로딩, 언로딩 및 세정됨으로써 부피를 최소화할 수 있어, 설치 공간에 제한되지 않고 설치할 수 있어 산업상 이용 가능성이 있다.
그리고 본 발명 고압 처리기는 초기 압력시에도 도어의 기밀을 유지하기가 용이하며, 그 기밀부분이 고압 이산화탄소 및 첨가제에 노출되는 것을 최소화하여 기밀부의 수명을 연장시킬 수 있어 산업상 이용 가능성이 있다.

Claims (11)

  1. 고압의 이산화탄소 또는 고압의 이산화탄소와 첨가제가 공급되어 가압 분위기에서 웨이퍼를 세정 또는 린스처리하거나, 마이크로 전자 기계 시스템을 건조시키는 방법에 있어서,
    상기 공급된 고압의 이산화탄소 또는 고압의 이산화탄소와 첨가제의 압력에 의해 상기 웨이퍼가 로딩 및 언로딩되는 공간부가 마련된 도어커버 측으로 도어를 밀착시켜 압력의 누설을 방지하며, 압력의 차이가 발생하기 전에도 도어를 전진 및 후퇴시켜 밀착도를 조절할 수 있는 양산형 고압 실링방법.
  2. a) 내부와 외부의 경계면에 위치하여 웨이퍼가 로딩 및 언로딩 될 수 있는 공간을 제공하는 도어커버를 통해 웨이퍼가 내측으로 로딩될 수 있도록 도어를 오픈하되, 그 도어의 오픈시 도어커버로부터 소정거리 이격될 수 있도록 후퇴시키는 단계;
    b) 상기 도어를 이동시켜 상기 도어커버의 공간을 밀폐할 수 있는 위치에 이동시키되, 그 도어커버와 도어가 밀착될 수 있도록 전진시키는 단계;
    c) 상기 도어가 밀착된 상태에서 세정, 린스 또는 건조 처리를 위해 내부가 고압분위기가 되면 내부와 외부의 압력차에 의하여 상기 도어를 도어 커버로 밀착시켜, 실링을 강화하는 단계; 및
    d) 상기 세정, 린스 또는 건조 처리가 완료된 후, 내부의 압력을 외부와 동일하게 한 상태에서 상기 도어를 후퇴시킨 후, 오픈하여 처리된 웨이퍼를 언로딩시키는 단계를 포함하는 고압 실링방법.
  3. 제1항 또는 제2항에 있어서,
    상기 도어의 전진시에는 서로 분할된 양면의 도어의 중앙에 마련된 벨로우즈에 공기를 주입하며, 후퇴시에는 상기 벨로우즈에 충진된 공기를 배출시키는 고압 실링방법.
  4. 고압의 이산화탄소가 내측으로 공급되어 그 고압의 이산화탄소로 웨이퍼를 세정 또는 린스 처리하거나, 마이크로 기계 전자 시스템을 건조하는 고압 처리기에 있어서,
    고압 처리기 내부와 외부 사이에 압력누설 차단을 위한 도어를 설치하되, 그 도어는 내부의 압력에 의해 고압처리기의 내부와 외부 사이에 위치하여 웨이퍼가 로딩 및 언로딩 될 수 있는 공간을 제공하는 도어커버에 밀착되어 압력의 누설을 방지하는, 양산형 고압 처리기.
  5. 고압의 이산화탄소가 내측으로 공급되고, 그 고압의 이산화탄소로 웨이퍼를 세정할 수 있는 수납공간부 및 그 수납공간부의 전단에서 그 수납공간부의 높이보다 더 높은 공간인 개폐공간부를 구비하는 본체;
    상기 본체의 수납공간부에 고정설치되어 상기 웨이퍼를 실장하며, 상기 유입된 고압의 이산화탄소를 상기 웨이퍼를 표면을 따라 흐르도록하여 세정하는 웨이퍼 지지부;
    상기 본체의 개폐공간부의 일측을 밀폐하되 상기 웨이퍼의 로딩 및 언로딩이 가능한 개구부가 마련된 도어커버;
    상기 개폐공간부 내에서 상하 이동이 가능하며, 상기 도어커버측으로 전후 이동이 가능한 도어; 및
    상기 도어를 상하방향으로 구동시키는 도어구동부를 포함하는 고압 처리기.
  6. 제4항 또는 제5항에 있어서,
    상기 도어는,
    상기 도어커버의 내측면과 근접한 상태로 상기 도어구동부의 상하 운동을 전달받는 고정도어;
    상기 고정도어의 내면과는 복수의 벨로우즈에 의해 연결되어 있으며, 상기 벨로우즈의 팽창과 수축에 의해 상기 고정도어와의 간격이 조절되는 이동도어;
    일측이 상기 이동도어에 고정되며 상기 고정도어의 중앙부에 마련된 홀에 의해 외부에 노출되며, 외부의 공기를 상기 벨로우즈에 공급하거나, 상기 벨로우즈의 공기를 외부로 배출하는 간격조절포트; 및
    상기 이동도어의 외측 가장자리에 마련되어 상기 도어커버와 기밀을 유지하는 오링을 포함하는 고압 처리기.
  7. 제6항에 있어서,
    상기 벨로우즈는,
    상기 도어가 닫힌 상태일 때 공기가 유입되어 팽창되며, 도어가 이동할 때는 공기가 외부로 유출되어 수축되는 것을 특징으로 하는 고압 처리기.
  8. 제6항에 있어서,
    상기 도어커버는,
    상기 도어구동부의 이동축이 그 폭에 상하방향으로 삽입되어, 상기 도어에 구동력을 전달할 수 있도록 하는 것을 특징으로 하는 고압 처리기.
  9. 제6항에 있어서,
    상기 웨이퍼 지지부는,
    상기 수납공간부 내에 고정설치되어, 유입된 고압 이산화탄소를 수직방향으로 분산이동시키는 다수의 공급홀과 그 공급홀들과 연통되어 수납된 상기 웨이퍼의 면을 따라 가로방향으로 분사하는 분산홈을 구비하는 분산공급부와,
    상기 분산공급부의 양측단 각각에서 다수로 돌출되며 각각 내측에 안착돌기가 마련된 웨이퍼 안착부로 구성되는 것을 특징으로 하는 고압 처리기.
  10. 제9항에 있어서,
    상기 본체에는,
    유입된 상기 이산화탄소와 첨가제의 용이한 혼합을 위한 초음파발생장치를 더 포함하는 것을 특징으로 하는 고압 처리기.
  11. 제4항 또는 제5항에 있어서,
    상기 본체에는,
    이산화탄소를 공급하는 복수의 공급포트가 마련되어 있으며, 초기 이산화탄소의 공급에서 드라이아이스에 의한 웨이퍼 손상을 방지하기 위해 그 공급포트 중 웨이퍼에 이산화탄소를 직접 분사하지 않는 위치의 공급포트만을 통해 이산화탄소를 공급하는 것을 특징으로 하는 고압 처리기.
PCT/KR2009/001309 2009-03-13 2009-03-17 고압 처리기 및 고압 실링방법 WO2010104231A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552870A JP5210439B2 (ja) 2009-03-13 2009-03-17 高圧処理器及び高圧シーリング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0021573 2009-03-13
KR1020090021573A KR101047863B1 (ko) 2009-03-13 2009-03-13 고압 처리기 및 고압 실링방법

Publications (1)

Publication Number Publication Date
WO2010104231A1 true WO2010104231A1 (ko) 2010-09-16

Family

ID=42728502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001309 WO2010104231A1 (ko) 2009-03-13 2009-03-17 고압 처리기 및 고압 실링방법

Country Status (3)

Country Link
JP (1) JP5210439B2 (ko)
KR (1) KR101047863B1 (ko)
WO (1) WO2010104231A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033964A (ja) * 2011-07-29 2013-02-14 Semes Co Ltd 基板処理装置及び基板処理方法
CN106935876A (zh) * 2017-04-17 2017-07-07 百睿机械(深圳)有限公司 一种电池正负压箱体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708506B2 (ja) * 2011-04-20 2015-04-30 東京エレクトロン株式会社 処理装置
JP7105183B2 (ja) 2018-12-27 2022-07-22 株式会社ダイヘン インピーダンス整合装置及びインピーダンス整合方法
CN110164799B (zh) * 2019-05-31 2021-03-02 吉林建筑大学 一种基于微电子控制的定位封装机构及方法
KR102391244B1 (ko) * 2020-06-05 2022-04-28 주식회사 제우스이엔피 식각장치 및 그 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353185A (ja) * 2001-05-29 2002-12-06 Dainippon Screen Mfg Co Ltd 高圧処理装置
JP2003168672A (ja) * 2001-12-03 2003-06-13 Kobe Steel Ltd 高圧処理方法
JP2005081302A (ja) * 2003-09-10 2005-03-31 Japan Organo Co Ltd 超臨界流体による電子部品部材類の洗浄方法及び洗浄装置
KR100713209B1 (ko) * 2007-02-06 2007-05-02 서강대학교산학협력단 세정장치에 사용되는 고압세정기

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289829U (ko) * 1988-12-28 1990-07-17
JPH0417333A (ja) * 1990-05-10 1992-01-22 Hitachi Ltd 基板の超臨界ガスによる洗浄方法及び洗浄システム
JP2000340540A (ja) * 1999-05-31 2000-12-08 Hitachi Koki Co Ltd 超臨界乾燥装置
JP2001077074A (ja) * 1999-08-31 2001-03-23 Kobe Steel Ltd 半導体ウエハ等の洗浄装置
JP3983015B2 (ja) * 2000-07-03 2007-09-26 東京エレクトロン株式会社 シール機構付処理装置
US20040040660A1 (en) * 2001-10-03 2004-03-04 Biberger Maximilian Albert High pressure processing chamber for multiple semiconductor substrates
JP3950084B2 (ja) * 2003-06-04 2007-07-25 株式会社神戸製鋼所 高圧処理装置
KR20060021637A (ko) * 2004-09-03 2006-03-08 삼성전자주식회사 웨이퍼 세정 건조 장비
KR20060108317A (ko) * 2005-04-12 2006-10-17 삼성전자주식회사 오염방지 커버가 부착된 에어 실린더를 구비한 반도체 장비

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353185A (ja) * 2001-05-29 2002-12-06 Dainippon Screen Mfg Co Ltd 高圧処理装置
JP2003168672A (ja) * 2001-12-03 2003-06-13 Kobe Steel Ltd 高圧処理方法
JP2005081302A (ja) * 2003-09-10 2005-03-31 Japan Organo Co Ltd 超臨界流体による電子部品部材類の洗浄方法及び洗浄装置
KR100713209B1 (ko) * 2007-02-06 2007-05-02 서강대학교산학협력단 세정장치에 사용되는 고압세정기

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033964A (ja) * 2011-07-29 2013-02-14 Semes Co Ltd 基板処理装置及び基板処理方法
US9136147B2 (en) 2011-07-29 2015-09-15 Semes Co., Ltd. Apparatus and method for treating substrate
CN106935876A (zh) * 2017-04-17 2017-07-07 百睿机械(深圳)有限公司 一种电池正负压箱体装置
CN106935876B (zh) * 2017-04-17 2024-01-30 百睿机械(深圳)有限公司 一种电池正负压箱体装置

Also Published As

Publication number Publication date
JP5210439B2 (ja) 2013-06-12
JP2012519392A (ja) 2012-08-23
KR101047863B1 (ko) 2011-07-08
KR20100103123A (ko) 2010-09-27

Similar Documents

Publication Publication Date Title
WO2010104231A1 (ko) 고압 처리기 및 고압 실링방법
KR101593386B1 (ko) 퍼지 모듈 및 이를 포함하는 로드 포트
WO2017003210A1 (en) Laundry treatment apparatus
WO2010011013A1 (en) Multi-workpiece processing chamber and workpiece processing system including the same
WO2014109526A1 (ko) 반도체 웨이퍼의 연속 처리 장치 및 방법
WO2013054965A1 (ko) 배압형성을 방지하는 캔들 타입 밸러스트수 여과장치
WO2017052100A1 (ko) 웨이퍼 처리장치의 배기장치
WO2014157827A1 (ko) 챔버타입의 원자층 고속 증착장치
WO2016148327A1 (ko) 복수의 회전형 트레이 홀더를 구비한 인라인 스퍼터링 시스템 및 이를 이용한 패키지 쉴딩 제조방법
WO2021256772A1 (ko) 회전축 밀폐장치 및 이를 이용하는 반도체 기판처리장치
WO2017003216A1 (en) Laundry treatment apparatus
WO2009116780A2 (ko) 진공처리장치
WO2016171452A1 (ko) 기판처리장치 및 챔버 세정방법
WO2013015481A1 (ko) 웨이퍼 캐리어
WO2020189892A1 (ko) 기판 건조 챔버
WO2010101413A2 (ko) 게이트밸브어셈블리와 이를 포함하는 기판처리시스템
WO2014119831A1 (ko) 태양광발전설비의 냉각수 분배장치
WO2020213852A1 (ko) 기판 건조 챔버
WO2020166836A1 (ko) 진공밸브
WO2020138970A2 (ko) 기판처리장치
WO2020116771A1 (ko) 기판처리장치
WO2020209536A1 (ko) 기판 건조 챔버
WO2020218748A1 (ko) 기판 건조 챔버
WO2020175788A1 (ko) 기판 건조 챔버
WO2011142499A1 (ko) 원통형 고압처리기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21.11.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09841545

Country of ref document: EP

Kind code of ref document: A1