WO2010102506A1 - 信道分配优化方法及信道分配优化设备 - Google Patents

信道分配优化方法及信道分配优化设备 Download PDF

Info

Publication number
WO2010102506A1
WO2010102506A1 PCT/CN2010/000041 CN2010000041W WO2010102506A1 WO 2010102506 A1 WO2010102506 A1 WO 2010102506A1 CN 2010000041 W CN2010000041 W CN 2010000041W WO 2010102506 A1 WO2010102506 A1 WO 2010102506A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
neighboring base
base station
level
base stations
Prior art date
Application number
PCT/CN2010/000041
Other languages
English (en)
French (fr)
Inventor
邱吉刚
杨峰
徐斌阳
Original Assignee
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿尔卡特朗讯 filed Critical 阿尔卡特朗讯
Priority to JP2011553260A priority Critical patent/JP5478641B2/ja
Priority to IN6415CHN2011 priority patent/IN2011CN06415A/en
Priority to EP10750302.1A priority patent/EP2408226B1/en
Priority to KR1020117023481A priority patent/KR101319904B1/ko
Priority to US13/255,444 priority patent/US8521201B2/en
Priority to BRPI1013247A priority patent/BRPI1013247A2/pt
Publication of WO2010102506A1 publication Critical patent/WO2010102506A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a channel allocation optimization method and a channel allocation optimization apparatus, and in particular to a channel allocation optimization method and a channel allocation optimization apparatus implemented by a channel switching process based on multiple iterations.
  • the IEEE 802.16h standard specifies a channel allocation optimization procedure to obtain a dedicated channel for the IBS (Initial Base Station): First, the IBS attempts to find an idle (no interference) channel through the spectrum sensing process; if the IBS fails to find any The idle channel should vacate the idle channel as its own proprietary working channel by switching the working channel of its neighboring base station to other idle channels, that is, by changing the channel distribution of the adjacent system.
  • IEEE 802.16h only defines a single-hop channel allocation optimization mechanism, which means that the IBS only requires its neighboring base stations to switch the working channel to free up the idle channel for it. If the IBS cannot find: All neighboring base stations on a certain channel have a backup-idle channel, the process IBS through the channel allocation optimization defined in 802.16h will not be able to obtain a free channel as its dedicated channel.
  • 2 shows an initial channel allocation diagram and initial channel allocation information for an IBS (BS 5) and its neighboring base stations before obtaining a clear channel for the working channel. As shown in FIG.
  • the initial channel allocation information of the IBS includes the IDs of neighboring base stations on each channel, and the backup-idle channel of the neighboring base stations, etc., where BS 1, BS 2, BS 4, BS 6, BS 7 and B BS 8 are both neighboring base stations of BS 5, and BS 3 and BS 9 are adjacent base stations of neighboring base stations which are BS 5.
  • BS 1, BS 2, BS 4, BS 6, BS 7 and B BS 8 are both neighboring base stations of BS 5
  • BS 3 and BS 9 are adjacent base stations of neighboring base stations which are BS 5.
  • both BS 1 and BS 7 operate on channel 1.
  • BS 5 cannot request BS 7 and BS 1 to switch to other channels to vacate channel 1 as the working channel of BS 5, although BS 1 has channel 3 as the backup- idle channel.
  • BS 5 cannot request that neighboring base stations on channel 2 or channel 3 switch to other channels to vacate channel 2 or channel 3 as their own working channel because these neighboring base stations operating on channel 2 or channel 3 Not all backup- idle channels are available.
  • the BS 5 must abort its transmission, or must share a channel with other neighboring base stations to transmit a service message.
  • the BS 5 can obtain a dedicated working channel.
  • this new mechanism can improve spectrum efficiency and more effectively guarantee the quality of service (QoS;) of BS 5.
  • the invention proposes a distributed channel matching optimization mechanism based on multiple iterations.
  • the basic channel allocation optimization process is divided into two phases: channel allocation optimization path search phase and channel switching phase.
  • the IBS negotiates with other base stations through multiple iterations to discover the channel allocation optimization path.
  • the IBS and other neighboring base stations initiate a channel switching procedure, thereby avoiding useless channel switching.
  • the threshold of the number of iterations is set in advance. Once the current number of iterations > the threshold, the channel allocation optimized path search process on the current channel will stop and go to the other channel to discover another path.
  • a channel allocation optimization method in a communication system includes the initialization base station, and the multi-level neighbor base station of the initialization base station.
  • the method includes the steps of: receiving from a higher level phase a channel allocation optimization test message of the neighboring base station; determining whether there is a channel on which all of the next-level neighboring base stations have a backup-idle channel; if there are all the next-level neighboring base stations on it a channel having a backup idle channel, transmitting a channel allocation optimization response message with a "feasible" indication to a neighboring base station; and requesting on the channel when receiving a channel switch request message from a neighboring base station All next-level neighboring base stations working to switch to their backup idle channel; when receiving a channel switch response message with a "success" indication from all next-level neighboring base stations, the neighboring base station transmits "success" to the next-level neighboring base station
  • the indicated channel switch response message causes the current level neighboring base station to operate on the channel.
  • the method further includes the step of determining whether the number of stages of the neighboring base station of the current level exceeds if there is no channel on which all of the next-level neighboring base stations have backup idle channels. a predetermined threshold; if a predetermined threshold is exceeded, a channel allocation optimization response message having an "infeasible" indication is transmitted to the neighboring base station; if the predetermined threshold is not exceeded, according to the next-level neighboring base station operating thereon The number of each channel is classified; a) determining whether there are still channels available for testing in the respective channels; if there is no channel available for testing, sending an indication of "not feasible" to the neighboring base station in the upper level a channel allocation optimization response message; if there is still a channel available for testing, selecting a channel with the least number of neighboring base stations operating from the testable channels as a preparation for the current level neighboring base station Selecting an optimized channel; and transmitting a channel allocation optimization test message to all next-level neighboring base stations operating
  • the method further includes the steps of: determining whether all channel allocation optimization test messages have obtained a "feasible” indication of a channel allocation optimization response message; if not all channel allocation optimization test messages are obtained “feasible” "Instructed channel allocation optimization response message, then return to a); if all channel allocation optimization test messages obtain the channel assignment optimization response message indicated by "feasible", then the neighboring base station transmits a "feasible” indication Channel allocation optimization response message; when receiving a channel switching request message from a neighboring base station, requesting all next-level neighboring base stations operating on the selected channel to switch to their respective candidate optimized channels or backup idle channels When receiving a channel switch response message with a "success" indication from all of the next-level neighboring base stations, transmitting a channel switch response message with a "success” indication to the neighboring base station to the next level, and causing the current-level neighboring base station to operate On the selected channel.
  • the method includes the steps of: operating in a case where it is determined that there is no idle channel and there are no channels in which all of the first-level neighboring base stations operating on it have an alternate idle channel Sorting the number of the first-level neighboring base stations on the respective channels; determining whether there are still channels available for testing in the respective channels; if there are still channels available for testing, from the channels available for testing Selecting a channel with a minimum number of first-level neighboring base stations as an alternate optimized channel for the initializing base station; All first-level neighboring base stations on the selected channel send channel allocation optimization test messages.
  • the method further includes the steps of: causing the initializing base station to operate on its alternate optimized channel upon receiving a channel switch response message with a "success" indication from all of the first level neighboring base stations,
  • the alternate optimized channel is a free channel that the first-level neighboring base station vacates for initializing the base station.
  • the initializing base station and the multi-level neighboring base station of the initializing base station save relevant information of the channel allocation optimization path search result to calculate an optimized channel allocation optimization path based on the information.
  • a handover failure occurs at a neighboring base station of any level, the following completed handovers are restored to the original state, and a channel handover response message with a "failure" indication is sent to the neighboring primary base station. Determining whether a channel for testing is still present in the respective channels when the channel switching response message having the "failure" indication is forwarded up to the initializing base station; if there is still a channel available for testing, Selecting, from the testable channels, a channel having a minimum number of first-level neighboring base stations as an alternate optimized channel for the initializing base station; transmitting to all first-level neighboring base stations operating on the selected channel Channel assignment optimization test message.
  • a channel allocation optimization apparatus in a communication system, wherein the communication system includes the initialization base station, and the multi-level neighbor base station of the initialization base station, in a multi-stage adjacent base station At the current level neighboring base station, the channel allocation optimization device includes:
  • a channel allocation optimization path searching apparatus configured to: receive a channel allocation optimization test message from a neighboring base station; determine whether there is a channel on which all of the next-level neighboring base stations have a backup idle channel; if present Where all of the next-level neighboring base stations have channels for backing up the idle channels, then the channel allocation optimization response message with the "feasible" indication is sent to the neighboring base station to the next level;
  • a channel switching apparatus configured to: upon receiving a channel switching request message from a neighboring base station, request that all next-level neighboring base stations operating on the selected channel switch to their respective candidate optimized channels or Backing up the idle channel; when receiving the channel switch response message with the "success” indication from all the next-level neighboring base stations, transmitting the channel switch response message with the "success” indication to the neighboring base station to the next level, and The working channel of the neighboring base station is switched to the selected channel.
  • the channel allocation optimized path searching apparatus is further configured to: if there is no channel on which all of the next-level neighboring base stations have backup idle channels, determine the level of the neighboring base station of the current stage Whether the number exceeds a predetermined threshold; if the predetermined threshold is exceeded, a channel allocation optimization response message with an indication of "not feasible” is sent to the neighboring base station; if it does not exceed the predetermined threshold, it is operated by The number of primary neighboring base stations classifies each channel; a) determines whether the respective channels still exist for testing Channel; if there is no channel available for testing, a channel allocation optimization response message with an "infeasible" indication is sent to the neighboring base station; if there is still a channel available for testing, then from the testable Selecting, among the channels, a channel having a minimum number of next-level neighboring base stations as an alternate optimized channel of the current-level neighboring base station; and transmitting a channel allocation optimization test message to all next-level neighboring base
  • the channel allocation optimized path searching means is further configured to: determine whether all channel allocation optimization test messages have obtained a "feasible” indication of the channel allocation optimization response message; if not all channel allocation optimization test messages are The channel allocation optimization response message with the "feasible” indication is returned to a); if all the channel allocation optimization test messages have obtained the "feasible” indication of the channel allocation optimization response message, then the next-level neighboring base station transmits "has" Feasible "indicated channel allocation optimization response message.
  • the channel allocation optimization apparatus includes: a channel switching apparatus configured to: optimize channel allocation if all channel assignment optimization test messages addressed to the first-level neighboring base stations obtain a "feasible" indication
  • a channel switching apparatus configured to: optimize channel allocation if all channel assignment optimization test messages addressed to the first-level neighboring base stations obtain a "feasible" indication
  • all next-level neighboring base stations operating on the selected channel are requested to switch to their respective candidate optimized channels or their backup idle channels.
  • the neighboring base station is an idle channel vacated by the initializing base station.
  • the channel allocation optimization device further includes: means for storing, by the initialization base station, and related information of a channel allocation optimization path search result at a multi-level neighboring base station of the initialization base station; and means for The information calculates an optimized channel allocation optimization path.
  • the channel switching device is configured to: if a handover failure occurs at a neighboring base station of any level, the following completed handovers are restored to the original state, and the channel with the "failure" indication is sent to the neighboring primary base station. Switch the reply message.
  • Figure 1 shows a general network scenario in the case of multi-system coexistence.
  • an optimized channel allocation mechanism needs to be performed to improve the frequency efficiency.
  • FIG. 2 shows an initial channel allocation diagram and initial channel allocation information of an IBS (BS 5) and its neighboring base stations before obtaining a free channel as its proprietary working channel;
  • FIG. 5 is a flowchart showing a method performed by a base station IBS for initializing a channel allocation optimization mechanism according to the present invention
  • FIG. 6 shows a flow of a method performed by a k-th order neighbor base station NB(k) of a multiple iteration channel allocation optimization mechanism according to the present invention
  • FIG. 7 shows a channel allocation optimization apparatus according to an embodiment of the present invention. detailed description
  • the present invention proposes a distributed solution based on multiple iterative channel switching procedures. That is, the IBS may change the channel allocation of the neighboring base station or the secondary iterative process by one iterative process to change the channel allocation of the neighboring base stations of the neighboring base stations... until the maximum number of iterations is reached, so as to free up the idle channel as its Proprietary working channel.
  • the basic channel allocation optimization process can be divided into two phases: channel allocation optimization path search phase and channel switching phase.
  • the IBS negotiates with other base stations to discover channel allocation optimized paths, i.e., which base stations need to switch their current working channel to which channel to free up the free channel.
  • each base station on the channel allocation optimization path sequentially switches the current working channel to the possible channel determined in the channel allocation optimized path search phase.
  • NB(1) denote the neighboring base station (first-level neighboring base station) of the IBS
  • NB(2) denote the neighboring base station of the neighboring base station of the IBS, that is, the neighboring base station of NB(1)
  • the secondary neighboring base station of the IBS is referred to as ...
  • NB(k) denotes the neighboring base station of the NB (k1) (the k-level neighboring base station of the IBS).
  • NB(l)-ChX denote a primary neighboring base station operating on channel X
  • NB(l)-ChX-1 denote a primary neighboring base station 1 operating on channel X
  • NB(2)-ChX Representing a secondary neighboring base station operating on channel X
  • NB(k)-ChX denote a k-level neighboring base station operating on channel X.
  • the IBS can detect a certain idle channel by listening, the idle channel can be directly selected as its dedicated working channel. If no idle channel is found, the IBS determines if there is a channel on which all NB(1) have a backup-idle channel. If present (assuming the channel is channel X), the IBS sends a "Channel Switch Request" message to each NB(1)-ChX requesting that each NB(1)-Ch be handed over to its backup-id channel. If the "channel switch request" message is received, each NB(l)-ChX will switch to its backup- idle channel, and then the IBS can obtain channel X as its dedicated working channel. If such a channel does not exist, the IBS will have to share the channel with other systems or suspend the transmission of its service messages.
  • a channel allocation optimization process based on multiple iterations can be employed to vacate the idle channel for the IBS.
  • the channel allocation optimization process based on multiple iterations according to the present invention will be described below with reference to FIG.
  • the IBS classifies these channels based on the number of NBs (1) operating on each channel and selects the channel with the smallest number of NB(1) (denoted as channel X).
  • each NB(1)-Ch determines whether there is a channel on which all NBs (2) have backup-idle channels.
  • NB(l)-ChX finds that all such NB(2) on it have a backup- idle channel The channel (denoted as channel Y), then the NB(1)-ChX sends a "channel assignment optimization response" message with a "feasible" flag to the IBS.
  • NB(l)-ChX-1 can discover such a channel: All neighboring base stations on this channel can switch to their backup channel by backing up their current working channel to NB(l)-ChX-l Out of the idle channel. In this case, NB(l)-ChX-1 will send a "channel assignment optimization response" message with a "feasible" flag to the IBS.
  • NB(l)-ChX will further request its neighboring base stations to use the channel allocation optimized path search procedure respectively. If the neighboring base station of NB(l)-ChX successfully finds an optimized path capable of leaving the channel for NB(l)-ChX, NB(l)-ChX sends "channel assignment optimization” with "feasible” flag to IBS. Answer “message; otherwise a "channel assignment optimization response" message with an "not viable” flag will be sent to the IBS. +
  • each neighboring base station for example, NB(k)-ChN
  • NB(k)-ChN performs an operation similar to NB(l)-Ch to find optimization path.
  • the channel > ⁇ can be vacated for NB(k-l)-ChM.
  • the threshold of the number of iterations is set in advance. Therefore, in the channel allocation optimization path search phase, if NB(k) finds the number of iterations > the threshold, it will no longer request the neighboring base station to start the channel allocation optimization path search process. In this case, a "Channel Assignment Optimization Answer" message with an "not viable" flag will be sent to NB(k-1)-ChM.
  • B(l)-ChX shall retain information about the channel allocation optimization path search result, including the number of channel switching times, the base station ID of the transmission path search request, the channel to which the handover is desired, and the like.
  • the IBS receives any "channel assignment optimization response" message with a "not feasible” flag from a neighboring base station (the IBS sent a request to it), or has not received a certain channel after waiting for a predetermined time.
  • the allocation optimization test "message response message indicates that the channel currently being tested cannot be used to free up the currently tested channel for IBS. Therefore, the IBS will attempt to perform a similar channel allocation optimization procedure on other channels. Gp, IBS will select the remaining possible channels with the minimum number of NB(1), continue with steps 2), 3), 4), 5), 6), 7) to find the optimized path.
  • the IBS does not pass the channel allocation optimization process.
  • a free channel can be successfully obtained for its dedicated working channel. In this case, the IBS must abort its transmission or must share the channel with other neighboring base stations to implement message transmission.
  • NB(a) is the end point of the optimized path.
  • each base station on the optimized path sequentially switches the current channel to the selected channel according to the handover mode determined during the channel allocation optimization path search phase.
  • the IBS sends a "Channel Switch Request” message to a neighboring base station (ie, NB(1)) on a given channel determined by the optimized path, and then each NB(1) on the channel is determined by the optimized path. Forwarding to its neighboring base station (NB(2)) on a given channel, ... until each NB(a) on the optimized path receives the "Channel Switch Request” message. Assume that these NB(a) on the optimized path work on channel Z.
  • Each NB(a)-ChZ attempts to switch its working channel from channel Z to its backup-id channel. After switching the working channel to its backup- idle channel, each NB(a)-ChZ acknowledges the "channel switch request” message by sending a "channel switch acknowledgement” message with a "success” flag to NB(a-l).
  • the IBS After receiving all the "channel switching response" information with the "success” flag from NB(1), the IBS successfully obtains the idle channel as its dedicated working channel through the multiple iterative channel switching procedure.
  • step 501 if there are channels on which all NBs (1) have backup-idle channels, then in step 503, NB(1) working on the channel is requested to switch to them.
  • the backup is an idle channel, so that the IBS obtains the idle channel as its dedicated working channel (step 523).
  • the IBS will proceed to step 505 to determine if all channels have been tested. If there is a channel that has not been tested, the IBS will select, in step 507, the primary working channel (referred to as channel X) that has the smallest number of NB(1) to operate as the primary test channel, ie, the alternate optimized channel of the IBS. .
  • channel X the primary working channel
  • step 509 the IBS sends a "Channel Assignment Optimization Test" message to each NB(1)-ChX. After receiving the "Channel Assignment Optimization Test" message, each
  • NB(1)-ChX determines whether there are channels on which all NB(2) have a backup-advance channel. If NB(l)-ChX finds that there is such a channel on which all NB(2) have a backup- idle channel, then the NB(l)-ChX sends a "feasible" indication to the IBS for channel allocation optimization. Answer "message. No Bay I", if no such channel is found, NB(l)-ChX will further request its neighboring base station (NB(2)) respectively Performing channel allocation to optimize the path search process; on this basis, NB(2) may further request the next-level neighboring base station (NB(3)) to perform the channel allocation optimization path search process respectively; The channel allocation optimized path search process described above is performed iteratively.
  • the "Channel Assignment Optimization Test" message sent by the IBS to each NB(1)-ChX receives a "Channel Assignment Optimization Response” message with a "feasible” indication indicating that a channel assignment has been successfully discovered.
  • the optimized path vacates the idle channel as its working channel for the IBS, and proceeds to step 513.
  • any NB(l)-ChX sends a "channel assignment optimization response" message with an "not feasible” indication to the IBS, or does not receive a "channel assignment optimization test” message after waiting for a predetermined time. In response to the message, return to step 505. In the case where the IBS determines that there is still a remaining channel in addition to the tested channel X in the local channel list, steps 507-511 are performed again to find the channel allocation optimization path.
  • the IBS saves the discovered channel allocation optimization path information, including the number of channel handovers, the base station ID of the transmission path search request, the destination channel to which the handover is desired, and the like.
  • the IBS sends a "channel switch request" message to the primary neighboring base station (SP, NB(1)-CHX) operating on the channel determined by the optimized path (assumed to be channel X); and proceeds to step 517 to wait for each NB(1)-CHX responds to this message.
  • SP primary neighboring base station
  • NB(1)-CHX the primary neighboring base station
  • step 505 If all of the channels have been tested in step 505, no feasible channel allocation optimization path is found, i.e., one idle channel cannot be vacated for the IBS through multiple iterations of the handover procedure (step 506). In this case, the IBS must abort its transmission or must share the channel with other neighboring base stations to implement message transmission.
  • NB(k) -CHO receives a "channel allocation optimization test" message from NB(k-1)-CHM.
  • step 603 all NBs (k+1) are grouped according to the working channel, and NB(k+1) on the same working channel are grouped.
  • step 605 it is determined whether there is a channel on which all NB(k+1) have a backup_idle channel. If there is such a channel (assumed to be channel R), then step 606 is entered, NB(k)-CHO sends a "channel assignment optimization response" message with a "feasible” indication to NB(kl)-CHM.
  • step 6061 when NB(k)-CHO receives the channel switch request message from NB(kl)-CHM, it proceeds to step 6062 to request that NB(k+1)-CHR working on channel R switch to them.
  • the backup- idle channel in order to be able to vacate the channel R for NB(k)-CHO.
  • step 6063 NB(k)-CHO sends a "channel switch acknowledgement" message with a "success” indication to NB(k-1)-CHM and switches to channel R for operation in step 6064.
  • step 605 In the case where it is determined in step 605 that there is no channel on which all of the NBs (k+1) have the backup- idle channel, the flow proceeds to step 607 where it is determined whether the number of iterations k exceeds a predetermined threshold. It is worth mentioning that the iteration threshold is set to avoid endless execution of the iterative process (ie, convergence problem).
  • step 608 the process proceeds to step 608, and the neighboring base station NB(k+1) is no longer requested to be started.
  • the channel allocation optimizes the path search procedure, and NB(k)-CHO will send a "channel assignment optimization response" message with an "infeasible" indication to its upper neighboring base station NB(kl). If the number of iterations k does not exceed the threshold, then step 609 is entered.
  • NB(k)-CHO groups NB(k+1) operating on each channel according to the working channel, wherein NB(k+1) operating on the same channel is set to one group.
  • NB(k)-CHO selects the channel with the smallest number of NB(k+1) as the (k+1)-level test channel, that is, the candidate optimized channel of NB(k) (assumed to be S) ).
  • NB(k)-CHO sends a "Channel Assignment Optimization Test" message to each NB(k+1)-CHS.
  • step 617 If, in step 617, the "channel assignment optimization test" message sent to each NB(k+1)-CHS receives a response with a "feasible” indication, then in step 619, NB(k)-CHO direction NB(kl)-CHM sends a "Channel Assignment Optimization Answer” message with a "feasible” indication.
  • NB(k)-CHO receives any "channel assignment optimization response" message with an "infeasible” indication, or does not receive a "channel assignment optimization test” message after waiting for a certain time.
  • the response information is returned to step 611, and the channel having the least NB(k+1) on the channel other than the channel S (i.e., the remaining channel) is selected as the new (k+1)-level test channel.
  • Steps 613-617 continue to be performed for NB(k) operating on the k-level test channel.
  • step 612 If all the channels are tested, and the channel allocation optimization path that can vacate the k-level working channel is not found, then go to step 612 to send a "channel allocation optimization response" with an "infeasible" indication to the NB(kl)-CHM. Message.
  • NB(k) saves the discovered channel allocation optimization path information, including the number of channel switching, The base station ID of the transmission path search request, the selected channel to which it is switched, and the like.
  • Steps 623-629 describe the process performed by NB(k) during the channel switching phase. It is assumed that NB(k-1)-CHM, NB(k)-CHO, NB(k+l)-CHS are determined on the path by the channel allocation optimization path search process.
  • step 625 is performed.
  • NB(k)-CHO requests NB(k+1)-CHS to vacate channel S through channel switching, and proceeds to step 627 to wait for NB(k+l)-CHS to respond to the channel switch request message.
  • NB(k) -CHO If NB(k) -CHO receives a "success" indication channel switch response message from each NB(k+1)-CHS, it indicates that channel S has been vacated by its neighboring base stations. Therefore, NB(k)-CHO will send a channel switch response message with a "success” indication to NB(k1) in step 629; and in step 631, the channel is switched to S for message transmission. jobs.
  • the IBS and neighboring base stations at each level will save the relevant information of the channel allocation optimization path search result, so that the saved channel allocation optimization path can be used when performing channel allocation optimization path search in the future. Information to quickly discover the channel allocation optimization path.
  • Table 1 Contents of channel allocation optimization path information
  • the “total number of channel switching times” is the sum of the number of channel switching performed by the base station on the channel allocation optimization path to vacate the idle channel. For example, as shown in Table 1, if base station a wants to change the channel allocation of neighboring base stations to obtain channel y as its working channel, then these base stations (including their neighboring base stations, neighboring base stations of their neighboring base stations, . ..) A total of 6 channel switchings are required.
  • the optimized path is represented as a channel allocation optimized path that vacates the idle channel with the minimum number of channel switching times.
  • the optimization path is calculated based on the distance-vector algorithm, and there is no need to frequently exchange channel allocation optimization path information in neighboring base stations.
  • the base station may preferentially use the saved channel allocation optimization path information in the information table to discover the channel allocation optimization path; if a feasible channel allocation optimization path cannot be successfully found according to the information, the base station will request The next-level base station initiates a channel allocation optimization path search process. Obviously, based on a priori information table information, the time spent on channel allocation optimization path search will be greatly accelerated, and the resources used to transmit the "channel allocation optimization test" and "channel allocation optimization response" messages will be saved.
  • the IBS (BS 5 ) cannot find such a channel in which all NBs (1) have a backup-id channel, it is necessary to vacate the idle channel for the channel allocation optimization process based on multiple iterations.
  • the IBS classifies these channels by the number of NBs (1) operating on the channel and selects channel 3 on which only one neighboring base station (BS 6) operates.
  • the IBS sends a "Channel Assignment Optimization Test" message to BS 6.
  • the BS 6 determines whether there is a channel on which all NBs (2) have backup-idle channels.
  • BS 6 finds that only one NB(2) (gP BS 3 ) is on channel 1, and it is known that BS 3 can vacate channel 1 for BS 6 by switching to channel 2.
  • BS 6 sends a "Channel Assignment Optimization Response" message with a "feasible” indication to the IBS.
  • BS 3 switches from channel 1 to channel 2;
  • Figure 7 shows a channel allocation optimization device 700 distributed in a multi-level neighbor base station comprising IBS and IBS in accordance with the present invention.
  • the channel allocation optimization path searching means 701 determines the number of stages k of the current-level neighboring base stations NB(k) Whether the predetermined threshold is exceeded.
  • the channel allocation optimization path searching means 701 selects a channel having the least number of next-level neighboring base stations NB(k+1) from the testable channels as the current stage.
  • the base station NB(k) selects an optimized channel and transmits a channel allocation optimization test message to all of the next-level neighboring base stations NB(k+1) operating on the selected channel.
  • the channel allocation optimization path searching means 701 also determines whether all channel allocation optimization test messages have obtained a "feasible" indication of the channel allocation optimization response message; if not all channel allocation optimization test messages If the channel allocation optimization response message of the "feasible" indication is obtained, the steps are repeatedly performed: determining whether there is still a channel for testing in the respective channels; if there is no channel available for testing, the neighboring base station is up to one level.
  • NB(kl) transmits a channel allocation optimization response message with an indication of "not feasible"; if there is still a channel available for testing, selecting the next-level neighboring base station NB having the least number of channels from the testable channels a channel of (k+l), an alternate optimized channel for the current neighboring base station NB(k); and a channel allocation optimization test for all next-level neighboring base stations NB(k+1) operating on the selected channel Message.
  • the channel allocation optimized path search means 701 in the channel allocation optimization device 700 can be configured to: determine that there are no idle dedicated channels and that there are no first-level neighboring base stations NB(1) operating on it In the case of a channel having an alternate idle channel, each channel is classified by the number of first-level neighboring base stations NB(1) operating thereon; determining whether there are still channels available for testing in the respective channels If there is still a channel for testing, select the channel with the least number of first-level neighboring base stations NB(1) from the testable channels as an alternate optimized channel for the IBS; All first-level neighboring base stations NB(1) on the selected channel transmit channel allocation optimization test messages.
  • the channel allocation optimization apparatus 700 may further include: means (not shown) for storing related information of the channel allocation optimization path search result at the multi-stage neighboring base station of the initialization base station and the initialization base station; The information calculates means (not shown) for optimizing the channel allocation optimization path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

信道分配优化方法及信道分配优化设备
技术领域
本发明涉及信道分配优化方法及信道分配优化设备,具体而言,涉及通过基于多 次迭代的信道切换过程实现的信道分配优化方法及信道分配优化设备。 背景技术
在频谱共享中,将无线信道釆用适当的方式分配给不同的系统从而实现系统间更 好的共存是至为重要的。一方面, 需要给具有重叠覆盖区域的相邻系统分配以不同的 信道, 从而避免相邻系统间的共信道干扰。 如图 1所示, 由于系统 1和系统 2彼此相 邻, 需要给系统 1和系统 2分配不同的信道, 使得 BS (基站) 1与从属于 BS 1的 SS (用户站) 1之间的传输将不会对 BS2与从属于 BS2的 SS2之间的通信链路产生干扰。 另一方面, 需要确保尽可能多的系统能够获得专有信道满足其传输需求。 否则, 未能 成功获得专用传输信道的这些系统不得不与其它系统共享无线信道, 甚至中止其当前 的传输工作。 显然, 在这种情况下, 频谱利用率将会降低, 业务的 QoS (业务质量)不 能得到很好的保证; 换言之, 系统间不能实现有效的共存。
一般而言,在频谱共享中, 不存在一个全局的中央控制器实现跨系统的无线资源 管理。此外, 在集中模式下实现跨系统的全局信道分配优化需要中央控制器收集 /保持 诸多信息, 加之网络拓扑的动态变化将加重传播这些信息的负荷; 因此, 集中式的全 局信道分配优化方式难以在实际网络建设中得到应用。 在这种情况下, 可选方式是在 分布式模式下实现信道分配, 其中每个系统自适应地选择其工作信道。
当前, IEEE 802.16h标准规定了一种信道分配优化的过程, 以便为 IBS (初始化 基站) 获得专用信道: 首先, IBS尝试通过频谱感测过程发现空闲 (无干扰) 信道; 如果 IBS未能发现任何空闲信道, 则应通过使其相邻基站的工作信道切换至其它空闲 信道, 即通过改变相邻系统的信道分布,从而腾出空闲信道作为自己的专有工作信道。
然而, IEEE 802.16h仅定义了单跳的信道分配优化机制, 这意味着 IBS仅要求其 相邻基站切换工作信道来为其腾出空闲信道。 如果 IBS不能发现: 在某个信道上所有 相邻基站都具有一个备份空闲 (backup— idle) 信道, 则通过 802.16h中定义的信道分 配优化的过程 IBS将无法获得一个空闲信道作为其专用信道。 图 2示出了在获得空闲信道用于工作信道之前, IBS (BS 5 )及其相.邻基站的初 始信道分配示意图以及初始信道分配信息。 如图 2所示, IBS的初始信道分配信息包 括每个信道上的相邻基站的 ID, 以及这些相邻基站的 backup一 idle信道等,其中 BS 1、 BS 2、 BS 4、 BS 6、 BS 7禾 B BS 8均是 BS 5的相邻基站, 而 BS 3和 BS 9为是 BS 5 的相邻基站的相邻基站。 假设有三个信道可以分配给各个基站, 在此分别使用不同的 阴影表示。
如图 2所示, BS 1和 BS 7均工作于信道 1上。然而, 由于 BS 7没有 backup— idle 信道, 所以 BS 5不能请求 BS 7和 BS 1切换至其它信道以腾出信道 1作为 BS 5的工 作信道, 尽管 BS 1具有信道 3作为 backup— idle信道。 类似地, BS 5不能请求在信道 2或信道 3上的相邻基站切换至其它信道以腾出信道 2或信道 3作为自己的工作信道, 因为工作于信道 2或信道 3上的这些相邻基站并不都具备 backup— idle信道。在这种情 况下, 如果采用 802.16h中定义的信道分配优化机制的话, BS 5必须中止其传输, 或 必须与其它相邻基站共享信道来传输业务报文。 然而, 如果当前的信道分配可以通过 某种机制改变为图 3中所示的信道分配情况, 则 BS 5可以获得一个专用工作信道。 显然, 在这种情况下, 与 802.16h中定义的信道分配优化机制相比, 此种新机制可以 得到提髙频谱效率, 且能更有效地保证 BS 5的服务质量 (QoS;)。
因此, 期望设计此种信道分配优化机制, 以便于系统间更好的共存。 发明内容
本发明提出了一种基于多次迭代的分布式信道^^配优化机制。
基本的信道分配优化过程分为两个阶段:信道分配优化路径搜索阶段和信道切换 阶段。 在信道分配优化路径搜索阶段中, IBS通过多次迭代, 与其它基站协商以发现 信道分配优化路径。 在成功发现信道分配优化路径后, IBS及其它相邻基站启动信道 切换过程, 从而可以避免无用的信道切换。
此外, 为了避免在迭代过程中不能及时收敛问题, 预先设置迭代次数的阈值。一 旦当前迭代次数>该阈值, 在当前信道上的信道分配优化路径搜索过程将停止, 并转 至其它信道以发现另一路径。
根据本发明的一方面,提供了一种通信系统中的信道分配优化方法,其中所述通 信系统包括所述初始化基站、 以及所述初始化基站的多级相邻基站。
在多级相邻基站中的当前级相邻基站处,所述方法包括步骤:接收来自上一级相 邻基站的信道分配优化测试消息; 确定是否存在在其上所有的下一级相邻基站均具有 备份空闲 (backup— idle ) 信道的信道; 如果存在在其上所有的下一级相邻基站均具有 备份空闲信道的信道, 则向上一级相邻基站发送具有 "可行"指示的信道分配优化应 答消息; 以及在从上一级相邻基站接收到信道切换请求消息时, 请求在所述信道上工 作的所有下一级相邻基站切换至其备份空闲信道; 在从所有下一级相邻基站接收到具 有 "成功"指示的信道切换应答消息时, 向上一级相邻基站发送具有 "成功"指示的 信道切换应答消息, 并使当前级相邻基站工作于所述信道。
在当前级相邻基站处,所述方法还包括步骤:如果不存在在其上所有的下一级相 邻基站均具有备份空闲信道的信道, 则确定当前级相邻基站的级数是否超过了预定阈 值; 如果超过了预定阈值, 则向上一级相邻基站发送具有 "不可行"指示的信道分配 优化应答消息; 如果并未超过预定阈值, 则根据工作在其上的下一级相邻基站的个数 对各个信道进行分类; a) 确定所述各个信道中是否仍然存在可供测试的信道; 如果不 存在可供测试的信道, 则向上一级相邻基站发送具有 "不可行"指示的信道分配优化 应答消息; 如果仍然存在可供测试的信道, 则从所述可供测试的信道中选择具有最少 个数的下一级相邻基站所工作的信道, 作为当前级相邻基站的备选优化信道; 以及向 工作在所选信道上所有下一级相邻基站发送信道分配优化测试消息。
在当前级相邻基站处,所述方法还包括步骤:确定是否所有信道分配优化测试消 息都获得了 "可行"指示的信道分配优化应答消息; 如果并非所有信道分配优化测试 消息都获得了 "可行 "指示的信道分配优化应答消息, 则回到 a); 如果所有信道分配 优化测试消息都获得了 "可行"指示的信道分配优化应答消息, 则向上一级相邻基站 发送具有 "可行"指示的信道分配优化应答消息; 在从上一级相邻基站接收到信道切 换请求消息时, 请求在所选信道上工作的所有下一级相邻基站切换至其各自的备选优 化信道或者备份空闲信道; 在从所有下一级相邻基站接收到具有 "成功"指示的信道 切换应答消息时, 向上一级相邻基站发送具有 "成功"指示的信道切换应答消息, 并 使当前级相邻基站工作于所选信道。
在所述初始化基站处,所述方法包括步骤:在确定不存在空闲信道且不存在在其 上工作的所有第一级相邻基站均具有备选空闲信道的信道的情况下, 通过工作在其上 的第一级相邻基站的个数对各个信道进行分类; 确定所述各个信道中是否仍然存在可 供测试的信道; 如果仍然存在可供测试的信道, 则从所述可供测试的信道中选择具有 最少个数的第一级相邻基站的信道, 作为所述初始化基站的备选优化信道; 向工作在 所选信道上所有第一级相邻基站发送信道分配优化测试消息。
在所述初始化基站处,所述方法还包括步骤:在从所有第一级相邻基站接收到具 有 "成功"指示的信道切换应答消息时, 使初始化基站工作于其备选优化信道, 所述 备选优化信道为第一级相邻基站为初始化基站腾出的空闲信道。
优选地,所述初始化基站以及所述初始化基站的多级相邻基站均保存信道分配优 化路径搜索结果的相关信息, 以基于所述信息计算最优化的信道分配优化路径。
如果在任一级相邻基站处发生切换失败,则将以下各级已完成的切换恢复为原有 状态, 并向上一级相邻基站发送具有 "失败"指示的信道切换应答消息。 当将所述具 有 "失败"指示的信道切换应答消息逐级向上转发至所述初始化基站时, 确定所述各 个信道中是否仍然存在可供测试的信道; 如果仍然存在可供测试的信道, 则从所述可 供测试的信道中选择具有最少个数的第一级相邻基站的信道, 作为所述初始化基站的 备选优化信道; 向工作在所选信道上所有第一级相邻基站发送信道分配优化测试消 息。
根据本发明的另一方面,提供了一种通信系统中的信道分配优化设备,其中所述 通信系统包括所述初始化基站、 以及所述初始化基站的多级相邻基站, 在多级相邻基 站中的当前级相邻基站处, 所述信道分配优化设备包括:
信道分配优化路径搜索装置,被配置为: 接收来自上一级相邻基站的信道分配优 化测试消息; 确定是否存在在其上所有的下一级相邻基站均具有备份空闲信道的信 道; 如果存在在其上所有的下一级相邻基站均具有备份空闲信道的信道, 则向上一级 相邻基站发送具有 "可行"指示的信道分配优化应答消息; 以及
信道切换装置, 被配置为: 在从上一级相邻基站接收到信道切换请求消息时, 请 求在所选信道上工作的所有下一级相邻基站切换至其各自的备选优化信道或者其备 份空闲信道; 在从所有下一级相邻基站接收到具有 "成功"指示的信道切换应答消 息时, 向上一级相邻基站发送具有 "成功"指示的信道切换应答消息, 并将当前级 相邻基站的工作信道切换至所选信道。
在当前级相邻基站处,信道分配优化路径搜索装置还被配置为: 如果不存在在其 上所有的下一级相邻基站均具有备份空闲信道的信道, 则确定当前级相邻基站的级数 是否超过了预定阈值; 如果超过了预定阈值, 则向上一级相邻基站发送具有"不可行" 指示的信道分配优化应答消息; 如果并未超过预定阚值, 则通过工作在其上的下一级 相邻基站的个数对各个信道进行分类; a) 确定所述各个信道中是否仍然存在可供测试 的信道; 如果不存在可供测试的信道, 则向上一级相邻基站发送具有 "不可行"指示 的信道分配优化应答消息; 如果仍然存在可供测试的信道, 则从所述可供测试的信道 中选择具有最少个数的下一级相邻基站的信道, 作为当前级相邻基站的备选优化信 道; 以及向工作在所选信道上所有下一级相邻基站发送信道分配优化测试消息。
在当前级相邻基站处, 信道分配优化路径搜索装置还被配置为:确定是否所有信 道分配优化测试消息都获得了 "可行"指示的信道分配优化应答消息; 如果并非所有 信道分配优化测试消息都获得了 "可行 "指示的信道分配优化应答消息, 则回到 a); 如果所有信道分配优化测试消息都获得了 "可行"指示的信道分配优化应答消息, 则 向上一级相邻基站发送具有 "可行"指示的信道分配优化应答消息。
在所述初始化基站处,所述信道分配优化设备包括:信道分配优化路径搜索装置, 被配置为: 在确定不存在空闲专用信道且不存在在其上工作的所有第一级相邻基站均 具有备选空闲信道的信道的情况下, 通过工作在其上的第一级相邻基站的个数对各个 信道进行分类; 确定所述各个信道中是否仍然存在可供测试的信道; 如果仍然存在可 供测试的信道, 则从所述可供测试的信道中选择具有最少个数的第一级相邻基站的信 道, 作为所述初始化基站的备选优化信道; 向工作在所选信道上所有第一级相邻基站 发送信道分配优化测试消息。
在所述初始化基站处, 所述信道分配优化设备包括: 信道切换装置, 被配置为: 如果所有发往第一级相邻基站的信道分配优化测试消息都获得了 "可行"指示的 信道分配优化应答消息, 则向相应的第一级相邻基站发送信道切换请求消息时, 请求 在所选信道上工作的所有下一级相邻基站切换至其各自的备选优化信道或者其备份 空闲信道。 在从所有第一级相邻基站接收到具有 "成功"指示的信道切换应答消息 时, 将所述初始化基站的工作信道切换至其备选优化信道, 所述备选优化信道为第一 级相邻基站为初始化基站腾出的空闲信道。
优选地, 所述信道分配优化设备还包括: 装置, 用于保存所述初始化基站以及所 述初始化基站的多级相邻基站处的信道分配优化路径搜索结果的相关信息; 以及装 置, 用于基于所述信息计算最优化的信道分配优化路径。
所 信道切换设备被配置为: 如果在任一级相邻基站处发生切换失败, 则将以下 各级已完成的切换恢复为原有状态, 并向上一级相邻基站发送具有 "失败"指示的信 道切换应答消息。
当在所述初始化基站处, 信道切换设备接收到具有 "失败"指示的信道切换应答 消息时, 所述信道分配优化路径搜索装置被配置为: 确定所述各个信道中是否仍然存 在可供测试的信道; 如果仍然存在可供测试的信道, 则从所述可供测试的信道中选择 具有最少个数的第一级相邻基站的信道, 作为所述初始化基站的备选优化信道; 向工 作在所选信道上所有第一级相邻基站发送信道分配优化测试消息。 附图说明
图 1示出了多系统共存情形下的一般网络场景,在此场景下为提高频频效率需要 执行优化信道分配机制;
图 2示出了在获得空闲信道作为其专有工作信道之前, IBS (BS 5 )及其相邻基 站的初始信道分配示意图以及初始信道分配信息;
图 3示出了基于图 2所示的初始场景的、 根据本发明实现的信道分配优化示例; 图 4示出了根据本发明的基于多次迭代的信道分配优化过程;
图 5示出了根据本发明的多次迭代的信道分配优化机制初始化基站 IBS所执行的 方法流程;
图 6示出了根据本发明的多次迭代的信道分配优化机制第 k级相邻基站 NB(k) 所执行的方法流程; 以及
图 7示出了根据本发明实施例的信道分配优化设备。 具体实施方式
为了实现优化信道分配,本发明提出了一种基于多次迭代信道切换过程的分布式 解决方案。 即, IBS可以通过一次迭代过程来改变相邻基站的信道分配、 或者二次迭 代过程来改变相邻基站的相邻基站的信道分配 ...直至达到最大迭代次数, 以腾出空闲 信道作为其专有工作信道。
可以将基本的信道分配优化过程分为两个阶段:信道分配优化路径搜索阶段和信 道切换阶段。 在信道分配优化路径搜索阶段中, IBS与其它基站协商以发现信道分配 优化路径,即,哪些基站需要将它们的当前工作信道切换至哪个信道以腾出空闲信道。 在信道切换阶段, 信道分配优化路径上的每个基站依次将当前工作信道切换至在信道 分配优化路径搜索阶段中确定的可能信道。
应注意, 信道分配优化路径搜索的方向与实际信道切换的方向相反。 即, 信道分 配优化路径搜索的方向是: IBS→IBS 的相邻基站→IBS 的相邻基站的相邻基站 → 然而, 信道切换的方向是: IBS的相邻基站的相邻基站~ IBS的相邻 基站→IBS。
还应注意, 在信道分配优化路径搜索阶段中,每个基站应保存信道分配优化路径 搜索结果的相关信息。 因而在将来执行信道分配优化路径搜索时, 系统可以利用所保 存的信道分配优化路径信息来迅速发现信道分配优化路径。此外, 一些距离-矢量算法 (如 Bellman-Ford算法)可以用于计算信道分配优化的最优路径(可采用最小信道切 换次数作为度量标准), 以便为 IBS腾出空闲信道。
令 NB(1)表示 IBS的相邻基站 (一级相邻基站); 令 NB(2)表示 IBS的相邻基站 的相邻基站,即, NB(1)的相邻基站(为论述方便,这里称之 IBS的二级相邻基站); ...; 令 NB(k)表示 NB(k-l)的相邻基站 (IBS的 k级相邻基站)。 令 NB(l)-ChX表示工作在 信道 X上的一级相邻基站; 令 NB(l)-ChX-l表示工作在信道 X上的一级相邻基站 1 ; 令 NB(2)-ChX表示工作在信道 X上的二级相邻基站; ...; 令 NB(k)-ChX表示工作在 信道 X上的 k级相邻基站。
根据 IEEE 802.16h标准所规定的信道分配优化方案, 如果 IBS通过侦听可以发 现某个空闲信道, 则可以直接选择空闲信道作为其专用工作信道。 如果没有发现任何 空闲信道,则 IBS确定是否存在这样的信道:在该信道上所有 NB(1)均具有 backup— idle 信道。 如果存在 (假设该信道是信道 X), 则 IBS向每个 NB(l)-ChX发送 "信道切换 请求"消息, 请求将每个 NB(l)-Ch 切换至其 backup一 idle信道。 如果接收到该 "信 道切换请求"消息, 则每个 NB(l)-ChX将切换至其 backup— idle信道, 然后 IBS可以 获得信道 X作为其专用工作信道。 如果不存在这样的信道, IBS将不得不与其他系统 共享信道或者暂停其业务报文的发送。
然而, 根据本发明, 在不存在在其上的所有 NB(1)均具有 backup— idle信道的信 道的情况下, 可以采用基于多次迭代的信道分配优化过程来为 IBS腾出空闲信道。 以 下结合图 4, 对根据本发明的基于多次迭代的信道分配优化过程进行描述。
1 ) IBS 根据在各个信道上工作的 NB(1)的数目对这些信道进行分类, 并选择具 有最小数目的 NB(1)的信道 (记为信道 X)。
2) IBS向每个 NB(l)-Ch 发送 "信道分配优化测试"消息。 在接收到该 "信道 分配优化测试" 消息后, 每个 NB(l)-Ch 确定是否存在在其上的所有 NB(2)均具有 backup— idle信道的信道。
3 )如果 NB(l)-ChX发现存在这种在其上的所有 NB(2)均具有 backup— idle信道的 信道 (记为信道 Y), 则该 NB(l)-ChX向 IBS发送具有 "可行"标记的 "信道分配优 化应答"消息。
例如, NB(l)-ChX-l可以发现这种信道: 在此信道上的所有相邻基站可以通过切 换他们当前的工作信道至 backup— idle信道, 从而为 NB(l)-ChX-l腾出空闲信道。 在 此情况下, NB(l)-ChX- 1将向 IBS发送具有 "可行"标记的 "信道分配优化应答"消 息。
4)如果没有发现这种信道, 则 NB(l)-ChX将进一步请求其相邻基站分别釆用该 信道分配优化路径搜索过程。 如果 NB(l)-ChX 的相邻基站成功地发现了能够为 NB(l)-ChX空出信道的优化路径, 则 NB(l)-ChX向 IBS发送具有 "可行"标记的 "信 道分配优化应答"消息; 否则将向 IBS发送具有 "不可行"标记的 "信道分配优化应 答"消息。 +
5 )在从 NB(k-l)-ChM接收到 "信道分配优化测试"消息之后,每个相邻基站(例 如, NB(k)-ChN)执行与 NB(l)-Ch 类似的操作以发现优化路径。 通过该路径, 可以 为 NB(k-l)-ChM空出信道>^。 此外, 为了避免将会无尽地执行该迭代过程(gp, 收敛 问题), 预先设置迭代次数的阈值。 因而在信道分配优化路径搜索阶段, 如果 NB(k) 发现迭代次数 >该阈值, 则将不再请求其相邻下一级基站启动信道分配优化路径搜索 过程。 在这种情况下, 将向 NB(k-l)-ChM发送具有 "不可行"标记的 "信道分配优化 应答"消息。
6) B(l)-ChX应保留关于信道分配优化路径搜索结果的信息, 包括信道切换次 数、 发送路径搜索请求的基站 ID、 期望切换至的信道等。
7) 如果 IBS接收到所有具有 "可行"标记的 "信道分配优化应答"消息, 则成 功地发现了一条可行的信道分配优化路径。 通过该路径上基站的信道切换操作, 可以 为 IBS腾出一条空闲信道, 因此 IBS将转入信道切换阶段。
8) 如果 IBS从某个相邻基站接收到任何具有 "不可行"标记的 "信道分配优化 应答"消息(IBS对其发送了请求), 或者在等待预定时间之后仍未收到某个 "信道分 配优化测试"消息的应答信息, 表明不能通过信道切换过程将腾出当前所测试的信道 为 IBS所用。 因此, IBS将尝试在其他信道上进行类似的信道分配优化过程。 gp, IBS 将选择所剩下的具有最小数目的 NB(1)的可能信道, 继续执行步骤 2)、 3 )、 4)、 5 )、 6)、 7) 以发现优化路径。
9) 如果测试了所有信道, 并未发现优化信道, 则 IBS通过信道分配优化过程不 能成功地获得一个空闲信道用于其专用工作信道。 在这种情况下, IBS必须中止其传 输, 或者必须与其它相邻基站共享信道实现报文传输。
假设通过 a次迭代过程, 可以为 IBS空出空闲信道。 即, NB(a)是优化路径的终 点。 在信道切换阶段, 优化路径上的每个基站根据在信道分配优化路径搜索阶段确定 的切换方式, 依次将当前信道切换至所选信道。
1 ) IBS在通过优化路径确定的给定信道上向相邻基站 (即, NB(1)) 发送 "信道 切换请求"消息, 然后该信道上的每个 NB(1) 在通过优化路径确定的给定信道上向其 相邻基站(NB(2))进行转发, ..., 直至优化路径上的每个 NB(a)都接收到该 "信道切 换请求"消息。 假设优化路径上的这些 NB(a)在信道 Z上工作。
2) 每个 NB(a)-ChZ尝试将其工作信道从信道 Z切换至其 backup一 idle信道。 在 将工作信道切换至其 backup— idle信道之后, 每个 NB(a)-ChZ通过向 NB(a-l)发送具有 "成功"标记的 "信道切换应答"信息来确认 "信道切换请求"消息。
3 )在接收到所有具有 "成功"标记的 "信道切换应答"信息之后, NB(a-l)将其 工作信道切换至信道 Z, 然后 NB(a-l) 向 NB(a-2)发送 "信道切换应答"信息, …。
4)在从 NB(1)接收到所有具有 "成功"标记的 "信道切换应答"信息之后, IBS 成功地通过多次迭代信道切换过程获得了作为其专用工作信道的空闲信道。
下面结合图 5,对在根据本发明的多次迭代的信道分配优化机制中 IBS所执行的 方法流程进行细述。 '
如图 5所示, 在步骤 501 中, 如果存在在其上的所有 NB(1)均具有 backup—idle 信道的信道, 则在步骤 503中请求在该信道上工作的 NB(1)切换至它们的 backup一 idle 信道, 以使 IBS获得空闲信道作为其专用工作信道 (步骤 523 )。
否则, IBS将进入步骤 505, 确定是否测试了所有信道。 如果存在尚未被测试的 信道, IBS将在步骤 507中选择具有最小个数的 NB(1)所工作的一级工作信道 (记为 信道 X) 作为一级测试信道, 即 IBS的备选优化信道。
在步骤 509中, IBS向每个 NB(l)-ChX发送 "信道分配优化测试"消息。在接收 到该 "信道分配优化测试"消息后, 每个
NB(l)-ChX确定是否存在在其上的所有 NB(2)均具有 backup— idle信道的信道。 如果 NB(l)-ChX发现存在这种在其上的所有 NB(2)均具有 backup— idle信道的信 道, 则该 NB(l)-ChX向 IBS发送具有 "可行"指示的 "信道分配优化应答"消息。 否 贝 I」, 如果没有发现这种信道, 则 NB(l)-ChX将进一步请求其相邻基站 (NB(2)) 分别 执行信道分配优化路径搜索过程; 在此基础上, NB(2)有可能再进一步请求其下一级 的相邻基站 (NB(3)) 分别执行信道分配优化路径搜索过程; 由此逐级向下迭代地执 行上述信道分配优化路径搜索过程。
在步骤 511, 当 IBS向每个 NB(l)-ChX发送的 "信道分配优化测试"消息均接收 到具有 "可行"指示的 "信道分配优化应答"消息, 表明已经成功地发现了一条信道 分配优化路径为 IBS腾出空闲信道作为其工作信道, 转入步骤 513。
否则, 如果任何一个 NB(l)-ChX向 IBS发送了具有 "不可行"指示的 "信道分 配优化应答"消息, 或者在等待预定时间之后仍未收到某个 "信道分配优化测试"消 息的应答信息, 则返回步骤 505。 IBS在确定本地信道列表中除已测试过的信道 X之 外仍存在剩余信道的情况下, 再次执行步骤 507-511, 以发现信道分配优化路径。
在步骤 513中, IBS保存已发现的信道分配优化路径信息, 包括信道切换次数、 发送路径搜索请求的基站 ID、 期望切换至的目的信道等。
在步骤 515, IBS向优化路径所确定的信道(假设为信道 X)上工作的一级相邻 基站(SP,NB(1)-CHX)发送"信道切换请求 "消息;并进入步骤 517等待各个 NB(1)-CHX 对此消息的回应。
如果所有的 "信道切换请求"消息均获得具有 "成功"指示的应答, 表明通过多 次迭代切换过程已经成功地为 IBS腾出一个空闲信道作为其专用工作信道 X。在此情 况下, IBS 驻留在信道 X上, 开始报文传输 (步骤 519)。
如果已经在步骤 505 中测试了所有信道, 并未发现任何可行的信道分配优化路 径, 即不能通过多次迭代切换过程为 IBS腾出一个空闲信道(步骤 506)。在这种情况 下, IBS必须中止其传输, 或者必须与其它相邻基站共享信道实现报文传输。
以下结合图 6, 对在根据本发明的多次迭代的信道分配优化机制中第 k级相邻基 站 NB(k)所执行的相关流程进行描述。 为论述方便, 这里假设 NB(k)正工作在 0信道 上。
首先, 在步骤 601中, NB(k) -CHO接收到来自 NB(k-l)-CHM的 "信道分配优化 测试"消息。
然后在步骤 603中, 对所有 NB(k+l)按照工作信道进行分组, 将在同一工作信道 上的 NB(k+l)归为一组。
在步骤 605中, 确定是否存在在其上所有的 NB(k+l)均具有 backup_idle信道的 信道。 如果存在这样的信道 (假设为信道 R), 则进入步骤 606, NB(k)-CHO 向 NB(k-l)-CHM发送具有 "可行"指示的 "信道分配优化应答"消息。
在步骤 6061中, 当 NB(k)-CHO接收到来自 NB(k-l)-CHM的信道切换请求消息 时, 进入步骤 6062, 请求在信道 R上工作的 NB(k+l)-CHR切换至它们的 backup— idle 信道, 以便能够为 NB(k)-CHO腾出信道 R。
在步骤 6063中, NB(k)-CHO向 NB(k-l)-CHM发送具有 "成功"指示的 "信道 切换应答"消息, 并在步骤 6064中切换至信道 R进行工作。
在步骤 605中确定不存在在其上所有的 NB(k+l)均具有 backup— idle信道的信道 的情况下, 进入步骤 607, 在此确定迭代次数 k是否超过了预定阈值。 值得一提的是, 迭代阈值的设定是为了避免出现无尽地执行迭代过程 (即, 收敛问题)。
因而在信道分配优化路径搜索过程中,如果第 k级相邻基站 NB(k)发现迭代次数 1<>该阈值, 则进入步骤 608, 将不再请求其相邻基站 NB(k+l)启动信道分配优化路径 搜索过程, NB(k)-CHO将向其上级相邻基站 NB(k-l)发送具有 "不可行"指示的 "信 道分配优化应答"消息。 如果迭代次数 k没有超过阈值, 则进入步骤 609。
在步骤 609中, NB(k)-CHO将工作在各个信道上的 NB(k+l)按照工作信道进行 分组, 其中相同信道上工作的 NB(k+l)设定为一组。 在步骤 613中, NB(k)-CHO选择 具有最小个数的 NB(k+l)的信道作为 (k+1 )级测试信道, 也即 NB(k)的备选优化信道 (假设为 S )。 在步骤 615中, NB(k)-CHO向每个 NB(k+l)-CHS发送 "信道分配优化 测试"消息。 如果在步骤 617中, 向每个 NB(k+l)-CHS发送的 "信道分配优化测试" 消息均接收到了具有 "可行" 指示的应答, 则在步骤 619 中, NB(k)-CHO 向 NB(k-l)-CHM发送具有 "可行"指示的 "信道分配优化应答"消息。
如果在步骤 617中, NB(k)-CHO接收到任何一个具有 "不可行"指示的 "信道 分配优化应答"消息, 或者在等待一定时间之后仍未收到某个 "信道分配优化测试" 消息的应答信息, 则返回步骤 611, 继续在除信道 S之外的信道 (即, 剩余信道) 中 选择在其上具有最少 NB(k+l)的信道作为新的 (k+1 ) 级测试信道, 继续针对在 k级 测试信道上工作的 NB(k)执行步骤 613-617。
如果测试了所有信道, 仍未发现了可以腾出 k级工作信道的信道分配优化路径, 则转入步骤 612, 向 NB(k-l)-CHM发送具有 "不可行"指示的 "信道分配优化应答" 消息。
在步骤 621中, NB(k)保存已发现的信道分配优化路径信息,包括信道切换次数、 发送路径搜索请求的基站 ID、 所切换至的所选信道等。
步骤 623-629描述了 NB(k)在信道切换阶段所执行的过程。 假设通过信道分配优 化路径搜索过程确定 NB(k-l)-CHM、 NB(k)-CHO、 NB(k+l)-CHS在该路径上。 当在步 骤 623中 NB(k)-CHO从 NB(k-l)-CHM接收到信道切换请求消息时, 执行步骤 625。 在步骤 625中, NB(k) -CHO请求 NB(k+l)-CHS通过信道切换腾出信道 S, 并进入步 骤 627 等待 NB(k+l)-CHS 对信道切换请求消息的回应。 如果 NB(k) -CHO 从每个 NB(k+l)-CHS都收到 "成功"指示的信道切换应答消息, 表明信道 S已被其相邻基站 腾出。 因此, NB(k)-CHO将在步骤 629中, NB(k)向 NB(k-l)发送具有 "成功 "指示 的信道切换应答消息; 并在步骤 631, 将信道切换至 S, 进行报文传送工作。
应注意, 在该信道切换过程中, 如果在任一级相邻基站处发生切换失败, 则应将 以下各级已完成的切换恢复为原有状态, 并将具有 "失败"指示的信道切换应答消息 逐级转发直至 IBS; IBS将针对剩余信道重新执行信道分配优化路径搜索过程。
在信道分配优化路径搜索过程中, IBS和各级相邻基站将保存本次信道分配优化 路径搜索结果的相关信息, 以便在将来执行信道分配优化路径搜索时, 可以使用所保 存的信道分配优化路径信息来迅速发现信道分配优化路径。
表 1中示出基站 (假设为基站 c) 所保存的信道分配优化路径信息的示例。
Figure imgf000014_0001
表 1 信道分配优化路径信息的内容
应注意, "总信道切换次数"是信道分配优化路径上的基站腾出空闲信道所执行 的信道切换次数的和。例如, 如表 1所示, 如果基站 a想要改变相邻基站的信道分配, 以获得信道 y作为其工作信道, 则这些基站 (包括其相邻基站, 其相邻基站的相邻基 站, ...) 需要进行总数为 6次的信道切换。
如果将 "总信道切换次数"被视为距离矢量,一些距离-矢量算法(如 Bellman-Ford 算法) 可以用于计算最优化路径。 这里, 最优化路径表示为以最小信道切换次数腾出 空闲信道的信道分配优化路径。基于距离-矢量算法计算最优化路径, 不需要在相邻基 站中频繁地交换信道分配优化路径信息。
当将来执行信道分配优化路径搜索时,基站可以优先使用信息表中已保存的信道 分配优化路径信息来发现信道分配优化路径; 如果不能依据这些信息成功发现一条可 行的信道分配优化路径, 基站将要求其下一级基站启动信道分配优化路径搜索过程。 显然, 基于先验的信息表信息, 将大大加快信道分配优化路径搜索所耗时间, 并节省 相应用于传输 "信道分配优化测试"和 "信道分配优化应答"消息所耗的资源。
下面以图 2所示的场景为例, 说明如何实现图 3所示的信道分配优化。
由于 IBS (BS 5 )无法发现在其上的所有 NB(1)均具有 backup— idle信道的这种信 道, 因而需要釆用基于多次迭代的信道分配优化过程为其腾出空闲信道。
1 ) IBS 通过在信道上工作的 NB(1)的数目对这些信道进行分类, 并选择仅有一 个相邻基站 (BS 6) 在其上工作的信道 3。
2) IBS向 BS 6发送 "信道分配优化测试"消息。接收到该 "信道分配优化测试" 消息后, BS 6确定是否存在在其上的所有 NB(2)均具有 backup— idle信道的信道。
3 ) BS 6发现只有一个 NB(2) ( gP BS 3 ) 在信道 1上, 且已知 BS 3可以通过切 换至信道 2为 BS 6腾出信道 1。
4) BS 6向 IBS发送具有 "可行"指示的 "信道分配优化应答"消息。
5 )当 IBS从 BS6接收到具有 "可行"指示的 "信道分配优化应答"消息时, IBS 成功地搜索到腾出空闲信道以供其专用的优化信道。 用于信道切换的路径是:
a) BS 3从信道 1切换至信道 2;
b) BS 6从信道 3切换至信道 1 ;
c) BS 5切换至信道 3。
在信道切换过程中, BS 3、 BS 6和 BS 5根据信道切换路径依次切换至所选信 道。 最后, 信道 3被腾出, 且由 IBS (BS 5 ) 使用作为其专用工作信道。
图 7示出了根据本发明的分布在包括 IBS和 IBS的多级相邻基 '站中的信道分配 优化设备 700。
在多级相邻基站中的当前级相邻基站 NB(k)处, 信道分配优化设备 700包括: 信 道分配优化路径搜索装置 701 ,用于接收来自上一级相邻基站 NB(k-l)的信道分配优化 测试消息; 确定是否存在在其上所有的下一级相邻基站 NB(k+l)均具有备份空闲信道 的信道;如果存在在其上所有的下一级相邻基站 B(k+l)均具有备份空闲信道的信道, 则向上一级相邻基站 NB(k-l)发送具有 "可行"指示的信道分配优化应答消息; 以及 信道切换装置 703,用于在从上一级相邻基站 NB(k-l)接收到信道切换请求消息时,请 求在所述信道上工作的所有下一级相邻基站 NB(k+l)切换至其备份空闲信道; 在从所 有下一级相邻基站 NB(k+l)接收到具有 "成功"指示的信道切换应答消息时, 向上一 级相邻基站 NB(k-l)发送具有 "成功"指示的信道切换应答消息, 并将当前级相邻基 站 NB(k)的工作信道切换至所述信道。
如果不存在在其上所有的下一级相邻基站 NB(k+l)均具有备份空闲信道的信道, 则信道分配优化路径搜索装置 701确定当前级相邻基站 NB(k)的级数 k是否超过了预 定阈值。 如果超过了预定阈值, 则信道分配优化路径搜索装置 701向上一级相邻基站 NB(k-l)发送具有 "不可行"指示的信道分配优化应答消息; 如果并未超过预定阈值, 则信道分配优化路径搜索装置 701通过工作在各个信道上的下一级相邻基站 NB(k+l) 的个数对各个信道进行分类; 然后确定所述各个信道中是否仍然存在可供测试的信 道; 如果不存在可供测试的信道, 则信道分配优化路径搜索装置 701向上一级相邻基 站 NB(k-l)发送具有 "不可行"指示的信道分配优化应答消息。 如果仍然存在可供测 试的信道, 则信道分配优化路径搜索装置 701从所述可供测试的信道中选择具有最少 个数的下一级相邻基站 NB(k+l)的信道, 作为当前级基站 NB(k)的备选优化信道, 并 向工作在所选信道上所有下一级相邻基站 NB(k+l)发送信道分配优化测试消息。
在当前级相邻基站 NB(k)处,信道分配优化路径搜索装置 701还确定是否所有信 道分配优化测试消息都获得了 "可行"指示的信道分配优化应答消息; 如果并非所有 信道分配优化测试消息都获得了 "可行"指示的信道分配优化应答消息, 则重复执行 步骤: 确定所述各个信道中是否仍然存在可供测试的信道; 如果不存在可供测试的信 道, 则向上一级相邻基站 NB(k-l)发送具有 "不可行"指示的信道分配优化应答消息; 如果仍然存在可供测试的信道, 则从所述可供测试的信道中选择具有最少个数的下一 级相邻基站 NB(k+l)的信道, 作为当前级相邻基站 NB(k)的备选优化信道; 以及向工 作在所选信道上所有下一级相邻基站 NB(k+l)发送信道分配优化测试消息。
如果所有信道分配优化测试消息都获得了 "可行 "指示的信道分配优化应答消息, 则信道分配优化路径搜索装置 701 向上一级相邻基站 NB(k-l)发送具有 "可行"指示 的信道分配优化应答消息。
在当前级相邻基站 NB(k)处, 路径切换装置 703在从上一级相邻基站 NB(k-l)接 收到信道切换请求消息时, 请求在所选信道上工作的所有下一级相邻基站 NB(k+l)切 换至其各自的备选优化信道或者其备份空闲信道。 在从所有下一级相邻基站 NB(k+l) 接收到具有 "成功"指示的信道切换应答消息时, 向上一级相邻基站 NB(k-l)发送具 有 "成功"指示的信道切换应答消息, 并将当前的工作信道切换至所选信道。
信道切换设备 703还被配置为: 如果在任一级相邻基站处发生切换失败,则将以 下各级已完成的切换恢复为原有状态, 并向上一级相邻基站发送具有 "失败"指示的 信道切换应答消息。
在 IBS处,信道分配优化设备 700中的信道分配优化路径搜索装置 701可以被配 置为: 在确定不存在空闲专用信道且不存在在其上工作的所有第一级相邻基站 NB(1) 均具有备选空闲信道的信道的情况下, 通过工作在其上的第一级相邻基站 NB(1)的个 数对各个信道进行分类; 确定所述各个信道中是否仍然存在可供测试的信道; 如果仍 然存在可供测试的信道, 则从所述可供测试的信道中选择具有最少个数的第一级相邻 基站 NB(1)的信道, 作为 IBS的备选优化信道; 向工作在所选信道上所有第一级相邻 基站 NB(1)发送信道分配优化测试消息。信道分配优化设备 700中的信道切换装置 703 被配置为:如果所有发往第一级相邻基站 NB(1)的信道分配优化测试消息都获得了 "可 行"指示的信道分配优化应答消息, 则向相应的第一级相邻基站 NB(1)发送信道切换 请求消息时, 请求在所选信道上工作的所有下一级相邻基站切换至其各自的备选优化 信道或者其备份空闲信道。
在从所有第一级相邻基站 NB(1)接收到具有 "成功"指示的信道切换应答消息 时, 将 IBS的工作信道切换至其备选优化信道, 所述备选优化信道为第一级相邻基站 NB(1)为初始化基站腾出的空闲信道。
当在 IBS处,信道切换设备 703接收到具有"失败"指示的信道切换应答消息时, 信道分配优化路径搜索装置 701被配置为: 确定所述各个信道中是否仍然存在可供测 试的信道; 如果仍然存在可供测试的信道, 则从所述可供测试的信道中选择具有最少 个数的第一级相邻基站 NB(1)的信道, 作为 IBS的备选优化信道; 向工作在所选信道 上所有第一级相邻基站 NB(1)发送信道分配优化测试消息。
信道分配优化设备 700还可以包括:用于保存所述初始化基站以及所述初始化基 站的多级相邻基站处的信道分配优化路径搜索结果的相关信息的装置 (未示出); 以 及用于基于所述信息计算最优化的信道分配优化路径的装置 (未示出)。
本发明提出了一种基于多次迭代的分布式信道分配优化机制。 基本的信道分配优化过程分为两个阶段:信道分配优化路径搜索阶段和信道切换 阶段。 在信道分配优化路径搜索阶段中, IBS通过多次迭代, 与相邻基站协商以发现 信道分配优化路径。 在成功发现信道分配优化路径后, IBS及其相邻基站启动信道切 换过程, 从而可以避免无效的信道切换。
此外, 为了避免迭代不能及时收敛问题, 预先设置迭代次数的阈值。 一旦当前迭 代次数 >该阈值, 在当前信道上的信道分配优化路径搜索过程将停止, 并转至其它信 道以发现另一路径。
此外, 为了减少在搜索信道分配优化路径的所耗时间, 每个基站都保存信道分配 优化路径搜索结果的相关信息。基于该信息,可以使用距离-矢量算法(如 Bellman-Ford 算法) 计算最优化的信道分配优化路径 (具有最小的信道切换次数)。
很明显, 与在 802.16h中定义的传统的单跳信道分配机制相比, 本发明的技术方 案通过多个信道切换过程可以实现更优化的信道分配。如果 IBS不能发现任何在其上 的所有相邻基站均具有 backup— idle信道的信道, 则 802.16h中定义的信道分配优化的 过程无法腾出空闲信道为 IBS所用。 但是, 根据本发明的技术方案可以增加 IBS获得 专用信道的机会, 提高频谱利用率, 并为共存系统提供了更好的 QoS, 从而可以实现 更好的多系统共存。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将 会理解, 在不脱离本发明的精神和范围的情况下, 可以对本发明进行各种修改、 替换 和改变。 因此, 本发明不应由上述实施例来限定, 而应由所附权利要求及其等价物来 限定。

Claims

权 利 要 求
1. 一种通信系统中的信道分配优化方法, 其中所述通信系统包括所述初始化基 站、 以及所述初始化基站的多级相邻基站,
在多级相邻基站中的当前级相邻基站处, 所述方法包括步骤:
接收来自上一级相邻基站的信道分配优化测试消息;
确定是否存在在其上所有的下一级相邻基站均具有备份空闲信道的信道; 如果存在在其上所有的下一级相邻基站均具有备份空闲信道的信道, 则 向上一级相邻基站发送具有 "可行"指示的信道分配优化应答消息; 以及 在从上一级相邻基站接收到信道切换请求消息时,请求在所述信道上工作的所有 下一级相邻基站切换至其备份空闲信道;
在从所有下一级相邻基站接收到具有 "成功"指示的信道切换应答消息时, 向上 一级相邻基站发送具有 "成功"指示的信道切换应答消息, 并使当前级相邻基站工作 于所述信道。
2. 根据权利要求 1所述的方法, 在当前级相邻基站处, 所述方法还包括步骤: 如果不存在在其上所有的下一级相邻基站均具有备份空闲信道的信道, 则 确定当前级相邻基站的级数是否超过了预定阈值;
如果超过了预定阈值, 则向上一级相邻基站发送具有 "不可行"指示的信道分配 优化应答消息;
如果并未超过预定阈值,则根据工作在其上的下一级相邻基站的个数对各个信道 进行分类;
a) 确定所述各个信道中是否仍然存在可供测试的信道;
如果不存在可供测试的信道, 则向上一级相邻基站发送具有 "不可行"指示的信 道分配优化应答消息;
如果仍然存在可供测试的信道,则从所述可供测试的信道中选择具有最少个数的 下一级相邻基站所工作的信道, 作为当前级相邻基站的备选优化信道; 以及
向工作在所选信道上所有下一级相邻基站发送信道分配优化测试消息。
3. 根据权利要求 2所述的方法, 在当前级相邻基站处, 所述方法还包括步骤: 确定是否所有信道分配优化测试消息都获得了 "可行"指示的信道分配优化应答 消息; 如果并非所有信道分配优化测试消息都获得了 "可行"指示的信道分配优化应答 消息, 则回到 a);
如果所有信道分配优化测试消息都获得了 "可行 "指示的信道分配优化应答消息, 则向上一级相邻基站发送具有 "可行"指示的信道分配优化应答消息;
在从上一级相邻基站接收到信道切换请求消息时,请求在所选信道上工作的所有 下一级相邻基站切换至其各自的备选优化信道或者备份空闲信道;
在从所有下一级相邻基站接收到具有 "成功"指示的信道切换应答消息时, 向上 一级相邻基站发送具有 "成功"指示的信道切换应答消息, 并使当前级相邻基站工作 于所选信道。
4. 根据权利要求 1所述的方法, 在所述初始化基站处, 所述方法包括步骤: 在确定不存在空闲信道且不存在在其上工作的所有第一级相邻基站均具有备选 空闲信道的信道的情况下,
通过工作在其上的第一级相邻基站的个数对各个信道进行分类;
确定所述各个信道中是否仍然存在可供测试的信道;
如果仍然存在可供测试的信道,则从所述可供测试的信道中选择具有最少个数的 第一级相邻基站的信道, 作为所述初始化基站的备选优化信道;
向工作在所选信道上所有第一级相邻基站发送信道分配优化测试消息。
5. 根据权利要求 1 所述的方法, 在所述初始化基站处, 所述方法还包括步骤- 如果所有发往第一级相邻基站的信道分配优化测试消息都获得了 "可行"指示的信道 分配优化应答消息, 则向相应的第一级相邻基站发送信道切换请求消息时, 请求在所 选信道上工作的所有下一级相邻基站切换至其各自的备选优化信道或者其备份空闲 信道。
6. 根据权利要求 1所述的方法, 在所述初始化基站处, 所述方法还包括步骤: 在从所有第一级相邻基站接收到具有 "成功"指示的信道切换应答消息时, 使初 始化基站工作于其备选优化信道, 所述备选优化信道为第一级相邻基站为初始化基站 腾出的空闲信道。
7. 根据权利要求 1 所述的方法, 其中所述初始化基站以及所述初始化基站的多 级相邻基站均保存信道分配优化路径搜索结果的相关信息, 以基于所述信息计算最优 化的信道分配优化路径。
8. 根据权利要求 1 所述的方法, 其中如果在任一级相邻基站处发生切换失败, 则将以下各级已完成的切换恢复为原有状态, 并向上一级相邻基站发送具有 "失败" 指示的信道切换应答消息。
9. 根据权利要求 8所述的方法, 其中当将所述具有 "失败"指示的信道切换应 答消息逐级向上转发至所述初始化基站时,
确定所述各个信道中是否仍然存在可供测试的信道;
如果仍然存在可供测试的信道,则从所述可供测试的信道中选择具有最少个数的 第一级相邻基站的信道, 作为所述初始化基站的备选优化信道;
向工作在所选信道上所有第一级相邻基站发送信道分配优化测试消息。
10. 一种通信系统中的信道分配优化设备, 其中所述通信系统包括所述初始化基 站、 以及所述初始化基站的多级相邻基站,
在多级相邻基站中的当前级相邻基站处, 所述信道分配优化设备包括: 信道分配优化路径搜索装置,被配置为: 接收来自上一级相邻基站的信道分配优 化测试消息; 确定是否存在在其上所有的下一级相邻基站均具有备份空闲信道的信 道; 如果存在在其上所有的下一级相邻基站均具有备份空闲信道的信道, 则向上一级 相邻基站发送具有 "可行"指示的信道分配优化应答消息; 以及
信道切换装置, 被配置为: 在从上一级相邻基站接收到信道切换请求消息时, 请 求在所述信道上工作的所有下一级相邻基站切换至其备份空闲信道; 在从所有下一级 相邻基站接收到具有 "成功"指示的信道切换应答消息时, 向上一级相邻基站发送具 有 "成功"指示的信道切换应答消息, 并将当前级相邻基站的工作信道切换至所述信 道。
11. 根据权利要求 10所述的设备, 在当前级相邻基站处, 信道分配优化路径搜 索装置还被配置为:
如果不存在在其上所有的下一级相邻基站均具有备份空闲信道的信道, 则 确定当前级相邻基站的级数是否超过了预定阈值;
如果超过了预定阈值, 则向上一级相邻基站发送具有 "不可行"指示的信道分配 优化应答消息;
如果并未超过预定阈值,则通过工作在其上的下一级相邻基站的个数对各个信道 进行分类;
a) 确定所述各个信道中是否仍然存在可供测试的信道;
如果不存在可供测试的信道, 则向上一级相邻基站发送具有 "不可行"指示的信 道分配优化应答消息;
如果仍然存在可供测试的信道,则从所述可供测试的信道中选择具有最少个数的 下一级相邻基站的信道, 作为当前级相邻基站的备选优化信道; 以及
向工作在所选信道上所有下一级相邻基站发送信道分配优化测试消息。
12. 根据权利要求 11 所述的设备, 其中在当前级相邻基站处, 信道分配优化路 径搜索装置还被配置为:
确定是否所有信道分配优化测试消息都获得了 "可行"指示的信道分配优化应答 消息;
如果并非所有信道分配优化测试消息都获得了 "可行"指示的信道分配优化应答 消息, 则回到 a);
如果所有信道分配优化测试消息都获得了 "可行 "指示的信道分配优化应答消息, 则向上一级相邻基站发送具有 "可行"指示的信道分配优化应答消息;
在当前级相邻基站处, 所述路径切换装置还被配置为:
在从上一级相邻基站接收到信道切换请求消息时,请求在所选信道上工作的所有 下一级相邻基站切换至其各自的备选优化信道或者其备份空闲信道;
在从所有下一级相邻基站接收到具有 "成功"指示的信道切换应答消息时, 向 上一级相邻基站发送具有 "成功" 指示的信道切换应答消息, 并将当前级相邻基站 的工作信道切换至所选信道。
13. 根据权利要求 10所述的设备, 在所述初始化基站处, 所述信道分配优化设 备包括:
信道分配优化路径搜索装置,被配置为:在确定不存在空闲专用信道且不存在在 其上工作的所有第一级相邻基站均具有备选空闲信道的信道的情况下, 通过工作在其 上的第一级相邻基站的个数对各个信道进行分类; 确定所述各个信道中是否仍然存在 可供测试的信道; 如果仍然存在可供测试的信道, 则从所述可供测试的信道中选择具 有最少个数的第一级相邻基站的信道, 作为所述初始化基站的备选优化信道; 向工作 在所选信道上所有第一级相邻基站发送信道分配优化测试消息。
14. 根据权利要求 10所述的设备, 在所述初始化基站处, 所述信道分配优化设 备还包括- 信道切换装置, 被配置为- 如果所有发往第一级相邻基站的信道分配优化测试消息都获得了 "可行"指示的 信道分配优化应答消息, 则向相应的第一级相邻基站发送信道切换请求消息时, 请求 在所选信道上工作的所有下一级相邻基站切换至其各自的备选优化信道或者其备份 空闲信道。
15. 根据权利要求 10所述的设备, 其中在所述初始化基站处, 所述信道分配优 化设备还包括:
信道切换装置, 还被配置为- 在从所有第一级相邻基站接收到具有 "成功"指示的信道切换应答消息时, 将 所述初始化基站的工作信道切换至其备选优化信道, 所述备选优化信道为第一级相邻 基站为初始化基站腾出的空闲信道。
16. 根据权利要求 10所述的设备, 其中所述信道分配优化设备还包括; 装置,用于保存所述初始化基站以及所述初始化基站的多级相邻基站处的信道分 配优化路径搜索结果的相关信息; 以及
装置, 用于基于所述信息计算最优化的信道分配优化路径。
17. 根据权利要求 10所述的设备, 其中所述信道切换设备被配置为: 如果在任 一级相邻基站处发生切换失败, 则将以下各级已完成的切换恢复为原有状态, 并向上 一级相邻基站发送具有 "失败"指示的信道切换应答消息。
18. 根据权利要求 17所述的设备, 其中当在所述初始化基站处, 信道切换设备 接收到具有 "失败"指示的信道切换应答消息时, 所述信道分配优化路径搜索装置被 配置为:
确定所述各个信道中是否仍然存在可供测试的信道;
如果仍然存在可供测试的信道,则从所述可供测试的信道中选择具有最少个数的 第一级相邻基站的信道, 作为所述初始化基站的备选优化信道;
向工作在所选信道上所有第一级相邻基站发送信道分配优化测试消息。
PCT/CN2010/000041 2009-03-09 2010-01-11 信道分配优化方法及信道分配优化设备 WO2010102506A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011553260A JP5478641B2 (ja) 2009-03-09 2010-01-11 チャネル割り当て最適化方法およびチャネル割り当て最適化装置
IN6415CHN2011 IN2011CN06415A (zh) 2009-03-09 2010-01-11
EP10750302.1A EP2408226B1 (en) 2009-03-09 2010-01-11 Optimization method for channel assignment and optimization equipment for channel assignment
KR1020117023481A KR101319904B1 (ko) 2009-03-09 2010-01-11 채널 할당을 위한 최적화 방법 및 채널 할당을 위한 최적화 장치
US13/255,444 US8521201B2 (en) 2009-03-09 2010-01-11 Channel assignment optimization method and channel assignment optimization apparatus
BRPI1013247A BRPI1013247A2 (pt) 2009-03-09 2010-01-11 "método de otimização de designação de canal e aparelho de otimização de designação de canal."

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910047429.5 2009-03-09
CN2009100474295A CN101835166B (zh) 2009-03-09 2009-03-09 信道分配优化方法及信道分配优化设备

Publications (1)

Publication Number Publication Date
WO2010102506A1 true WO2010102506A1 (zh) 2010-09-16

Family

ID=42719054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000041 WO2010102506A1 (zh) 2009-03-09 2010-01-11 信道分配优化方法及信道分配优化设备

Country Status (8)

Country Link
US (1) US8521201B2 (zh)
EP (1) EP2408226B1 (zh)
JP (1) JP5478641B2 (zh)
KR (1) KR101319904B1 (zh)
CN (1) CN101835166B (zh)
BR (1) BRPI1013247A2 (zh)
IN (1) IN2011CN06415A (zh)
WO (1) WO2010102506A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581954B (zh) * 2013-10-28 2017-12-19 株式会社理光 信道调度方法和无线通信设备
CN105208672B (zh) * 2014-05-26 2019-02-22 北京信威通信技术股份有限公司 一种用于eps网络架构的通道信息管理方法
CN105636234B (zh) * 2014-10-27 2021-06-25 中兴通讯股份有限公司 一种开站方法、基站、基站控制器及开站系统
US10111235B2 (en) 2016-02-15 2018-10-23 Spidercloud Wireless, Inc. Methods for centralized channel selection across different cells in a radio access network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430431A (zh) * 2001-12-31 2003-07-16 广达电脑股份有限公司 多频无线网络的信道分配系统及方法
US20040254974A1 (en) * 2003-06-11 2004-12-16 Kamel Khamfallah Methods and systems for assignment of user data blocks for transmission over a network
CN1815933A (zh) * 2005-02-06 2006-08-09 北京邮电大学 Ofdma系统频率时间二维无线资源调度模型及其调度方法
CN101227701A (zh) * 2007-01-19 2008-07-23 华为技术有限公司 一种信道分配方法以及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956643A (en) * 1994-01-13 1999-09-21 Lucent Technologies Inc. Apparatus and method for adaptive dynamic channel assignment in wireless communication networks
FI109513B (fi) * 1997-05-13 2002-08-15 Nokia Corp Solun kuormitukseen perustuva kanavanvaihto matkaviestinjärjestelmässä
US6498934B1 (en) * 1999-03-24 2002-12-24 Telefonaktiebologet Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates
US6871073B1 (en) * 1999-12-15 2005-03-22 Verizon Laboratories Inc. Methods and techniques in channel assignment in a cellular network
US6925066B1 (en) * 2000-07-31 2005-08-02 Lucent Technologies Inc. Methods and apparatus for design, adjustment or operation of wireless networks using multi-stage optimization
US7184772B2 (en) * 2002-07-01 2007-02-27 Samsung Electronics Co., Ltd. Wireless network using multiple channel assignment messages and method of operation
WO2004077850A2 (en) * 2003-02-27 2004-09-10 Interdigital Technology Corporation Method for implementing fast-dynamic channel allocation radio resource management procedures
CN101001438B (zh) * 2006-01-10 2010-12-08 华为技术有限公司 相邻基站间协商工作信道的方法
CN101090528A (zh) * 2006-06-16 2007-12-19 华为技术有限公司 集群业务中的信道资源指配方法及集群通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430431A (zh) * 2001-12-31 2003-07-16 广达电脑股份有限公司 多频无线网络的信道分配系统及方法
US20040254974A1 (en) * 2003-06-11 2004-12-16 Kamel Khamfallah Methods and systems for assignment of user data blocks for transmission over a network
CN1815933A (zh) * 2005-02-06 2006-08-09 北京邮电大学 Ofdma系统频率时间二维无线资源调度模型及其调度方法
CN101227701A (zh) * 2007-01-19 2008-07-23 华为技术有限公司 一种信道分配方法以及装置

Also Published As

Publication number Publication date
KR20110124361A (ko) 2011-11-16
IN2011CN06415A (zh) 2015-08-21
BRPI1013247A2 (pt) 2016-04-05
EP2408226A4 (en) 2014-06-11
US20120009958A1 (en) 2012-01-12
JP5478641B2 (ja) 2014-04-23
EP2408226A1 (en) 2012-01-18
JP2012520037A (ja) 2012-08-30
EP2408226B1 (en) 2017-07-12
CN101835166A (zh) 2010-09-15
KR101319904B1 (ko) 2013-10-21
US8521201B2 (en) 2013-08-27
CN101835166B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2015131677A1 (zh) 虚拟小区的构建、协作节点的选择方法及装置
JPWO2007142199A1 (ja) 無線通信システム、無線端末、基地局、及び基地局探索方法
JP2007037111A (ja) メッシュネットワークにおけるハンドオーバを改良するための装置および方法
WO2013136906A1 (ja) 無線通信システム、通信方法、基地局装置、および通信端末
WO2016041448A1 (zh) 数据转发设备工作模式的配置方法及装置
WO2007079685A1 (fr) Procédé et système de négociation de canaux entre stations de base adjacentes
US10993222B2 (en) Floating links
US20180184470A1 (en) Wireless backhaul connection establishment method and apparatus
US11553390B2 (en) Seamless roaming for multi-link device clients
WO2014194852A1 (zh) 载波协调装置和方法,通信装置和方法,测量装置和方法
WO2010102506A1 (zh) 信道分配优化方法及信道分配优化设备
WO2009021359A1 (fr) Ensemble de gestion de cellules, système d&#39;antennes distribué et procédé de réaffectation associé
Santos et al. Small cell wireless backhaul reconfiguration using software-defined networking
WO2019214693A1 (zh) 确定父节点的方法及装置
JP5665578B2 (ja) 基地局、無線端末及び無線通信システム
WO2015038097A1 (en) Mobile and base station grouping in heterogeneous networks
JP2006094388A (ja) 通信装置、通信システムおよび通信方法
US8548461B2 (en) Device roaming in hybrid Wi-Fi/wireline and multi-AP networks
JP7152476B2 (ja) 無線経路制御方法、無線通信システム、無線ノード、及び、無線経路制御プログラム
JP4330562B2 (ja) 制御方法ならびにそれを利用したサーバ
JP7186248B2 (ja) 効率的な位置登録のための基地局装置、端末装置、制御方法、およびプログラム
KR20190135808A (ko) 멀티-채널 애드혹 네트워크에서 단일 무선 인터페이스를 이용하는 노드를 위한 라우팅 방법 및 장치
WO2020035979A1 (ja) 無線通信システム、無線通信装置、及び無線通信プログラム
Houhamdi et al. Load Balancing Algorithms for Software-Defined Networks
Tao et al. Throughput-Optimized Routing for Multi-Path Multi-Channel Wireless Mesh Network with Integrated Nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750302

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010750302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010750302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6415/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13255444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011553260

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117023481

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013247

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013247

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110908