WO2013136906A1 - 無線通信システム、通信方法、基地局装置、および通信端末 - Google Patents

無線通信システム、通信方法、基地局装置、および通信端末 Download PDF

Info

Publication number
WO2013136906A1
WO2013136906A1 PCT/JP2013/053632 JP2013053632W WO2013136906A1 WO 2013136906 A1 WO2013136906 A1 WO 2013136906A1 JP 2013053632 W JP2013053632 W JP 2013053632W WO 2013136906 A1 WO2013136906 A1 WO 2013136906A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
base station
communication terminal
switching
pcc
Prior art date
Application number
PCT/JP2013/053632
Other languages
English (en)
French (fr)
Inventor
眞一 澤田
下鍋 忠
重人 鈴木
鈴木 康生
充 坂本
佑介 高木
俊平 布施
明生 吉原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/381,672 priority Critical patent/US20150050941A1/en
Priority to CN201380013818.0A priority patent/CN104160769B/zh
Publication of WO2013136906A1 publication Critical patent/WO2013136906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a radio communication system including a communication terminal and a base station apparatus, a communication method in the radio communication system, and a base station apparatus and a communication terminal directed to the radio communication system, and more particularly to a plurality of frequency bands.
  • a communication terminal and a base station apparatus using is related structure to communicate.
  • LTE-A Long Term Evolution
  • LTE-Advanced Long Term Evolution
  • LTE-A is required to realize higher speed and larger capacity communication than LTE. Therefore, LTE-A is supposed to support a wider frequency range than LTE. According to the examination so far, the maximum transmission bandwidth of LTE is 20 MHz, whereas the maximum transmission bandwidth of LTE is extended to 100 MHz.
  • CA carrier aggregation
  • the carrier aggregation technology uses a frequency band called a component carrier (CC) up to 20 MHz and secures a maximum bandwidth of 100 MHz by using a plurality of these component carriers together. . Thereby, high-speed and large-capacity communication is realized.
  • CC component carrier
  • eNB base station in addition to a normal evolved base station (evolved Node B: hereinafter also referred to as “eNB base station”), a small evolved radio base station (Home evolved Node B: hereinafter referred to as “HeNB”). are studying for also referred to.) the introduction of the base station ".
  • HeNB base station is intended for service area expansion and personal use.
  • the HeNB base station provides a service area smaller than the service area provided by the eNB base station.
  • the cell provided by the eNB base station is also referred to as “macro cell”, and the cell provided by the HeNB base station is also referred to as “home cell”.
  • Non-Patent Document 1 The contents studied so far are about carrier aggregation technology between a communication terminal and a macro cell base station (eNB base station), and between the communication terminal and a home cell base station (HeNB base station).
  • the carrier aggregation technology has just started to be studied (Non-Patent Document 1).
  • HeNB base station home cell base station
  • An object of the present invention is to provide a wireless communication system, a communication method, a base station apparatus, and a communication terminal that can switch a frequency band to be used with a simplified procedure.
  • a wireless communication system includes a base station device and a communication terminal capable of communicating with the base station device using a plurality of frequency bands.
  • the plurality of frequency bands include a main frequency band and at least one sub frequency band.
  • the wireless communication system is provided in one of the base station apparatus and the communication terminal, and upon detecting that a frequency band to be used as a main frequency band among a plurality of frequency bands is to be switched, issues a preparation request for switching to the base station
  • the first notification means for notifying the other of the apparatus and the communication terminal, and the situation in which the frequency band used as the main frequency band should be switched in response to the switching preparation request provided on the other of the base station apparatus and the communication terminal
  • the base station apparatus and the communication unit complete the preparation for switching the frequency band.
  • the second notification means for notifying one of the terminals, and between the base station apparatus and the communication terminal in response to the completion of preparation for switching And a switching means for starting the process of
  • the first notification means includes means for determining communication quality of a frequency band used as a main frequency band.
  • the first notifying means includes means for determining whether or not resources in a frequency band used as a main frequency band are insufficient.
  • a service type is defined for each of the plurality of frequency bands, and the first notification unit uses the frequency used as the main frequency band based on the service type of the frequency band used as the main frequency band. comprising means for determining whether a situation should switch the band.
  • the plurality of frequency bands include a plurality of subordinate frequency bands
  • the first notification means includes means for notifying a switch preparation request including information indicating the subordinate frequency band to be switched.
  • the first notification means is provided in the base station apparatus, and the determination means and the second notification means are provided in the communication terminal.
  • the first notifying means includes means for simultaneously notifying a plurality of communication terminals connected to the base station apparatus of a switching preparation request, and the determining means is a target of the switching preparation request. Otherwise, a means for notifying that the process of switching the frequency band is not performed is included.
  • the first notification unit is provided in the communication terminal, and the determination unit and the second notification unit are provided in the base station apparatus.
  • the switching means completes the switching of the frequency band in one of the base station apparatus and the communication terminal, and then uses the frequency band that is newly used as the main frequency band to switch the frequency band.
  • the plurality of frequency bands include a main frequency band and at least one sub frequency band.
  • a step of notifying the other of the terminals, and a step of determining whether the frequency band used as the main frequency band should be switched in response to the switching preparation request on the other of the base station apparatus and the communication terminal In response to determining that the frequency band used as the main frequency band should be switched, a step of notifying one of the base station apparatus and the communication terminal of completion of preparation for switching the frequency band, and switching Frequency band used as the main frequency band between the base station device and the communication terminal in response to the completion of preparation And initiating a process of switching.
  • a base station apparatus capable of communicating with a communication terminal using a plurality of frequency bands.
  • the plurality of frequency bands include a main frequency band and at least one sub frequency band.
  • the base station apparatus detects that the frequency band to be used as a main frequency band among a plurality of frequency bands is to be switched, the base station apparatus notifies the communication terminal of a switching preparation request, and a frequency from the communication terminal Switching means for starting a process of switching a frequency band used as a main frequency band between the base station apparatus and the communication terminal in response to the completion of preparation for switching the band.
  • a base station apparatus capable of communicating with a communication terminal using a plurality of frequency bands.
  • the plurality of frequency bands include a main frequency band and at least one sub frequency band.
  • the base station apparatus is used as a main frequency band and a determination unit that determines whether or not to switch a frequency band used as a main frequency band in response to a switch preparation request from a communication terminal.
  • a notification means for notifying the communication terminal of completion of preparation for switching the frequency band in response to the determination that the frequency band should be switched.
  • a communication terminal capable of communicating with a base station apparatus using a plurality of frequency bands.
  • the plurality of frequency bands include a main frequency band and at least one sub frequency band.
  • the communication terminal detects that the frequency band to be used as the main frequency band among the plurality of frequency bands is to be switched, the communication terminal notifies the base station apparatus of a switching preparation request, and the base station apparatus Switching means for starting a process of switching a frequency band used as a main frequency band between the base station apparatus and the communication terminal in response to completion of preparation for switching of the frequency band.
  • a communication terminal capable of communicating with a base station apparatus using a plurality of frequency bands.
  • the plurality of frequency bands include a main frequency band and at least one sub frequency band.
  • the communication terminal responds to the switching preparation request from the base station apparatus and determines whether or not the frequency band used as the main frequency band should be switched, and is used as the main frequency band In response to determining that the frequency band should be switched, notification means for notifying the base station apparatus of completion of preparation for switching the frequency band is included.
  • the frequency band to be used can be switched by a more simplified procedure.
  • FIG. 7 is a sequence diagram showing an overall process of PCC / SCC switching in the wireless communication system according to the first embodiment.
  • 6 is a flowchart showing a processing procedure related to PCC / SCC switching in a HeNB base station of the wireless communication system according to the first embodiment.
  • FIG. 6 is a flowchart showing a processing procedure related to PCC / SCC switching in a communication terminal of the wireless communication system according to the first embodiment.
  • FIG. 7 is a diagram for illustrating processing for preventing PCC / SCC switching operations from continuing in the wireless communication system according to the first embodiment.
  • FIG. 11 is a schematic diagram showing an example of component carrier (PCC / SCC) switching processing in the wireless communication system according to the second embodiment.
  • FIG. 12 is a sequence diagram showing an overall process of PCC / SCC switching in a wireless communication system according to a second embodiment.
  • FIG. 11 is a sequence diagram showing an overall process of PCC / SCC switching in a wireless communication system according to a third embodiment.
  • FIG. 16 is a sequence diagram showing an overall process of PCC / SCC switching in a wireless communication system according to a fourth embodiment.
  • FIG. 16 is a sequence diagram showing an overall process of PCC / SCC switching in a wireless communication system according to a fifth embodiment.
  • FIG. 1 is a schematic diagram showing an overall configuration of a wireless communication system SYS assumed in the embodiment. As a typical example, it is assumed that the radio communication system SYS supports a communication scheme according to the LTE-A standard or a standard conforming thereto.
  • the radio communication system SYS includes a small evolved radio base station (Home evolved Node B: hereinafter also referred to as “HeNB base station”) 200 and an evolved base station (evolved Node B: hereinafter “ Also referred to as “eNB base station”.) 300.
  • the HeNB base station 200 and the eNB base station 300 may simply be collectively referred to as “base station apparatus”.
  • the HeNB base station 200 provides a service area 201
  • the eNB base station 300 provides a service area 301.
  • the service area 201 provided by the HeNB base station 200 is smaller than the service area 301 provided by the eNB base station 300.
  • the service area 201 provided by the HeNB base station 200 is also referred to as “home cell”, and the service area 301 provided by the eNB base station 300 is also referred to as “macro cell”.
  • the HeNB base station 200 and the eNB base station 300 are connected to an MME (Mobility Management Entity) 400.
  • the MME 400 performs control such as setting / release of a session (connection) for packet communication and handover (switching of base station apparatuses).
  • the MME 400 exchanges user data transmitted through the core network through a core network control device (not shown) including a SAE gateway (System Architecture Evolution Gateway) function.
  • SAE gateway System Architecture Evolution Gateway
  • FIG. 1 shows one HeNB base station 200 and one eNB base station 300, but these numbers are appropriately determined according to the system. Further, the number of MMEs 400 and gateways, connection topology, and the like are also set as appropriate according to the system. For example, the HeNB base station 200 and the eNB base station 300 may be connected to different MMEs 400.
  • the wireless communication system SYS illustrated in FIG. 1 is assumed to support carrier aggregation.
  • the communication terminal 100 illustrated in FIG. 1 performs communication with the HeNB base station 200 using two or more component carriers (frequency bands). That is, in the radio communication system SYS, the base station apparatus (HeNB base station 200) and the communication terminal 100 can communicate with each other using a plurality of frequency bands.
  • any one component carrier is used as a PCC (Primary Component Carrier), and at least one other component carrier is an SCC (Secondary). It is used as a component carrier. If the available component carriers is large, a plurality of SCC are used simultaneously.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • the component carrier used as PCC includes PUCCH (Physical Uplink Control Channel), and the component carrier used as SCC does not include PUCCH. That is, PCC corresponds to the main frequency band, and SCC corresponds to the subordinate frequency band.
  • PUCCH Physical Uplink Control Channel
  • the uplink control signal from the communication terminal 100 is transmitted on the PUCCH included in the PCC, the communication quality of the component carrier used as the PCC must always be kept in a good state. Therefore, the component carrier used as the PCC needs to ensure communication quality equal to or higher than the component carrier used as the SCC.
  • the component carrier used as the PCC among the plurality of available component carriers is appropriately switched according to the communication status. It is done.
  • FIG. 2 is a schematic diagram for explaining component carrier (PCC / SCC) switching processing in the wireless communication system SYS shown in FIG.
  • FIG. 2 shows an example in which the first component carrier (frequency band A) is used as a PCC and the second component carrier (frequency band B) is used as an SCC at a certain point in time (before PCC / SCC switching). Indicates. In this state, it is assumed that the HeNB base station 200 determines that the communication quality of the PCC is deteriorated. Then, the switching process between PCC and SCC is started.
  • the first component carrier (frequency band A) is used as the SCC
  • the second component carrier (frequency band B) is used as the PCC (PCC / SCC). After switching).
  • the component carrier switching process will be mainly described. Below, the switching of the component carrier is also referred to as "PCC / SCC switching".
  • the eNB base station 300 which is a macro cell base station, uses the handover process, because different Cell_IDs are set for the PCC and the SCC, respectively, so that RACH (Random Access Channel) is associated with the PCC / SCC switching. This is because processing similar to that performed when the communication terminal 100 moves between cells, such as processing and Cell_ID change notification processing for the MME 400, is required.
  • RACH Random Access Channel
  • the HeNB base station 200 which is a home cell base station is defined in the standard to operate with only one Cell_ID. Therefore, when the communication terminal 100 communicates with the HeNB base station 200 using two or more component carriers, the same Cell_ID is set for the PCC and the SCC. This is an aspect that is characteristically different from the case where carrier aggregation is performed with the eNB base station 300 that is a macro cell base station.
  • the HeNB base station 200 and the communication terminal 100 detects that the frequency band used as a PCC (main frequency band) among a plurality of component carriers (frequency bands) is to be switched, and it notifies the switching preparation request to the other HeNB base station 200 and the communication terminal 100.
  • a PCC main frequency band
  • component carriers frequency bands
  • the HeNB base station 200 takes the lead in determining the necessity of PCC / SCC switching and performs PCC / SCC switching (see Embodiments 1 to 4 described later), and the communication terminal 100 takes the lead. It is assumed that the necessity of PCC / SCC switching is determined and PCC / SCC switching is executed (see Embodiment 5 described later).
  • the other (driven side) of the HeNB base station 200 and the communication terminal 100 determines whether or not the frequency band used as the main frequency band should be switched in response to the switching preparation request. In response to determining that the frequency band to be used as the main frequency band is to be switched, the other of the HeNB base station 200 and the communication terminal 100 completes preparation for switching the frequency band. 200 and one of the communication terminals 100 (leading side).
  • One (leading side) of the HeNB base station 200 and the communication terminal 100 performs a process of switching a frequency band used as a main frequency band between the HeNB base station 200 and the communication terminal 100 in response to the completion of preparation for switching. Start.
  • FIG. 3 is a block diagram showing a hardware configuration of the communication terminal 100 used in the wireless communication system SYS shown in FIG.
  • communication terminal 100 includes a data processing unit 104, encoding processing units 106 and 116, antenna transmission / reception units 108 and 118, antennas 110 and 120, a communication control unit 112, and a level comparison unit. 114.
  • the communication terminal 100 shown in FIG. 3 has two wireless communication circuits of an A system (frequency band A) and a B system (frequency band B), and two component carriers can be used simultaneously.
  • the data processing unit 104 is a control entity for realizing the functions provided by the communication terminal 100.
  • the data processing unit 104 determines the communication status based on information from the communication control unit 112, and controls signals and user data in each of the encoding processing unit 106 (A system) and the encoding processing unit 116 (B system). Controls sending and receiving.
  • the antenna transmission / reception units 108 and 118 are connected to the antennas 110 and 120, respectively, demodulate a radio signal received from the corresponding antenna and output the demodulated signal to the corresponding encoding processing unit, and receive from the corresponding encoding processing unit.
  • the modulated signal sequence is modulated and output to the corresponding antenna.
  • Antenna 110 and 120 transmit and receive radio signals to and from one or more base stations.
  • the antennas 110 and 120 are also referred to as “antenna A” and “antenna B”, respectively.
  • the level comparison unit 114 compares the levels of the radio signals received by the antenna transmission / reception units 108 and 118, respectively, and outputs the comparison result to the communication control unit 112.
  • the communication control unit 112 determines the communication status at each time point based on the comparison result from the level comparison unit 114, outputs the determination result to the data processing unit 104, and outputs the determination result to the encoding processing units 106 and 116. Output control commands.
  • the communication terminal 100 further includes a display 130 for displaying various types of information, a microphone 132 for acquiring user's voice, a speaker 134 for reproducing the received voice, and an input unit 136 for receiving user operations.
  • the structure as a communication terminal is included.
  • Each function constituting the communication terminal 100 shown in FIG. 3 may be realized by either software or hardware.
  • FIG. 4 is a block diagram showing a hardware configuration of the HeNB base station 200 used in the radio communication system SYS shown in FIG.
  • HeNB base station 200 includes a network interface unit 202, a data processing unit 204, encoding processing units 206 and 216, antenna transmission / reception units 208 and 218, antennas 210 and 220, and communication control. Part 212 and level comparison part 214.
  • FIG. 4 shows an example of the HeNB base station 200 having two wireless communication circuits of an A system (frequency band A) and a B system (frequency band B) for the sake of simplicity. it is preferable to implement the same number of radio communication circuit and component carrier available in the station 200.
  • the network interface unit 202 exchanges user data with the MME 400 and the core network.
  • the network interface unit 202 outputs user data received from the MME 400 or the like to the data processing unit 204, and outputs user data received from the data processing unit 204 to the MME 400 or the like.
  • the data processing unit 204 is a control entity for realizing the function provided by the HeNB base station 200.
  • the data processing unit 204 determines the communication status based on information from the communication control unit 212, and controls signals and user data in each of the encoding processing unit 206 (A system) and the encoding processing unit 216 (B system). Controls sending and receiving.
  • the encoding processing units 206 and 216 are connected to the antenna transmission / reception units 208 and 218, respectively, decode the signal sequence received from the corresponding antenna transmission / reception unit and output the decoded signal sequence to the data processing unit 204. decodes the received control signal and user data output to corresponding antenna transceiver. Also, the encoding processing units 206 and 216 perform encoding / decoding processing in accordance with a control command from the communication control unit 212.
  • the antenna transmission / reception units 208 and 218 are connected to the antennas 210 and 220, respectively, demodulate the radio signal received from the corresponding antenna and output the demodulated signal to the corresponding encoding processing unit and receive from the corresponding encoding processing unit.
  • the modulated signal sequence is modulated and output to the corresponding antenna.
  • Antennas 210 and 220 transmit and receive radio signals to or from one or more communication terminals 100.
  • the antennas 210 and 220 are also referred to as “antenna A” and “antenna B”, respectively.
  • the level comparison unit 214 compares the levels of the radio signals received by the antenna transmission / reception units 208 and 218, respectively, and outputs the comparison result to the communication control unit 212.
  • the communication control unit 212 determines the communication status at each time point based on the comparison result from the level comparison unit 214, outputs the determination result to the data processing unit 204, and outputs the determination result to the encoding processing units 206 and 216. Output control commands.
  • Each function which comprises HeNB base station 200 shown in FIG. 4 may be implement
  • an arithmetic device such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor) executes a preinstalled instruction set.
  • FIG. 4 may be implemented as dedicated hardware (typically, an integrated circuit). In this case, a circuit that realizes all functions may be integrated into one chip.
  • SoC System On a Chip
  • components such as a processor, a memory, and a controller for peripheral devices are integrated into one chip can be used.
  • Embodiment 1 a method in which the HeNB base station 200 takes the initiative to perform PCC / SCC switching will be described. This method is an individual switching method for communication terminals based on wireless environment conditions.
  • the HeNB base station 200 has a function of comparing communication quality between PCC and SCC. That is, the HeNB base station 200 has a function of determining communication quality of a frequency band (component carrier) used as a main frequency band (PCC). This function is mainly realized by the communication control unit 212 and the level comparison unit 214 (FIG. 4).
  • Judgment conditions for detecting a deterioration in communication quality include a decrease in RSSI (Received Signal Strength Indicator: Received Signal Strength), which is an indicator of the radio environment, and Ec / No (Energy per chip to Noise radio: unit chip energy to noise ratio).
  • RSSI Received Signal Strength Indicator: Received Signal Strength
  • Ec / No Ec per chip to Noise radio: unit chip energy to noise ratio.
  • the results of data processing such as deterioration of SIR, deterioration of SIR (Signal to Interference Ratio), information included in PUCCH, and the like can be used.
  • the PCC / SCC switching preparation request may include CC information indicating that the PCC is replaced with any SCC.
  • the communication terminal 100 Upon receiving the PCC / SCC switching preparation request, the communication terminal 100 measures the communication quality of the PCC and the designated SCC and compares the measurement results as preparation for executing the PCC / SCC switching. If it is determined that switching the PCC and the designated SCC leads to an improvement in communication throughput, the communication terminal 100 notifies the HeNB base station 200 of the PCC / SCC switching preparation completion using the PUCCH.
  • the HeNB base station 200 executes PCC / SCC switching and notifies the communication terminal 100 of the switching completion.
  • the communication terminal 100 Upon receiving the switching request, the communication terminal 100 notifies the HeNB base station 200 of the switching completion using the PUCCH of the PCC after switching.
  • FIG. 5 is a sequence diagram showing an overall process of PCC / SCC switching in the wireless communication system SYS according to the first embodiment.
  • HeNB base station 200 uses antenna A to use frequency band A as a PCC and antenna B to use frequency band B as an SCC. Assume that communication is performed with 100. That is, the communication terminal 100 communicates with the HeNB base station 200 using a plurality of frequency bands.
  • the level comparison unit 214 of the HeNB base station 200 monitors the communication quality of the frequency band A and the frequency band B. That is, level comparison section 214 of HeNB base station 200 compares communication quality between PCC and SCC (sequence SQ100).
  • the level comparison unit 214 of the HeNB base station 200 detects that the communication quality of the frequency band A used as the PCC is deteriorated from the communication quality of the frequency band B used as the SCC, and is used as the PCC. If it is determined that changing the frequency band being used leads to an improvement in communication throughput, a PCC / SCC switching preparation request is notified to communication terminal 100 (sequence SQ102). Here, the PCC / SCC switching preparation request is transmitted using the frequency band A used as the PCC.
  • the level comparison unit 214 of the HeNB base station 200 compares the communication quality between the PCC and the SCC based on the information extracted by the antenna transmission / reception units 208 and 218.
  • the item for comparing the communication quality between the PCC and the SCC includes a parameter indicating the communication quality of the wireless section such as RSSI, Ec / No, and SIR.
  • FIG. 4 illustrates a configuration in which the level comparison unit 214 evaluates the communication quality in the wireless section, a comparison logic provided in the data processing unit 204 may be used.
  • the communication quality may be compared using a parameter related to deterioration of data transmission / reception such as an error rate and CQI (Channel Quality Indicator), a delay time until reception of control data, and the like.
  • the comparison result detected by the level comparison unit 214 is output to the communication control unit 212, and the communication control unit 212 manages a series of processes related to PCC / SCC switching.
  • the notification means (data processing unit 204, communication control unit 212, and level comparison unit 214) provided in the HeNB base station 200 switches a frequency band used as a main frequency band (PCC) among a plurality of frequency bands.
  • PCC main frequency band
  • the level comparison unit 114 of the communication terminal 100 compares the communication quality between the PCC and the SCC (sequence SQ104). Items used to compare communication quality between PCC and SCC in level comparison unit 114 of communication terminal 100 are the same as items used by level comparison unit 214 of HeNB base station 200.
  • the level comparison unit 114 of the communication terminal 100 comparing the communication quality between the PCC and the SCC, the communication quality in the frequency band A used as the PCC deteriorates, and the communication in the frequency band B used as the SCC.
  • communication terminal 100 notifies HeNB base station 200 of completion of PCC / SCC switching preparation (sequence SQ106).
  • the determination means (the data processing unit 104, the communication control unit 112, and the level comparison unit 114) provided in the communication terminal 100 responds to the switching preparation request and the frequency band used as the main frequency band (PCC). It is determined whether or not the situation should be switched. And the notification means (communication control part 112) provided in the communication terminal 100 responds to having judged that it is the situation which should switch the frequency band utilized as a main frequency band (PCC). The HeNB base station 200 is notified of completion of preparation for switching.
  • communication terminal 100 After notifying PCC / SCC switching preparation completion, communication terminal 100 temporarily stops the communication service (sequence SQ108) and waits for a PCC / SCC switching request from HeNB base station 200 in frequency band B used as SCC. (Sequence SQ112).
  • the HeNB base station 200 When receiving the PCC / SCC switching preparation completion from the communication terminal 100, the HeNB base station 200 temporarily stops the communication service (sequence SQ108) and executes the PCC / SCC switching (sequence SQ110). That is, the HeNB base station 200 sets the frequency band A that has been used as the PCC so far as the SCC, and sets the frequency band B that has been used as the SCC as the PCC.
  • the HeNB base station 200 notifies the communication terminal 100 of a PCC / SCC switching request in the frequency band B (sequence SQ114).
  • the PCC / SCC switching request notifies the communication terminal 100 that the frequency band B starts to be used as PCC and the frequency band A starts to be used as SCC. That is, after the switching of the frequency band in the HeNB base station 200 is completed, a switching request instructing the switching of the frequency band is made to the communication terminal 100 using the frequency band newly used as the main frequency band (PCC). Be notified.
  • the communication terminal 100 When the communication terminal 100 receives the PCC / SCC switching request in the frequency band B, the communication terminal 100 can recognize that the HeNB base station 200 has performed PCC / SCC switching. Accordingly, communication terminal 100 also executes PCC / SCC switching (sequence SQ116). That is, communication terminal 100 sets frequency band A as SCC and frequency band B as PCC. After that, communication terminal 100 notifies HeNB base station 200 of the completion of PCC / SCC switching in frequency band B set as PCC (sequence SQ118).
  • the HeNB base station 200 When receiving the PCC / SCC switching completion from the communication terminal 100, the HeNB base station 200 recognizes that the communication terminal 100 has also performed the PCC / SCC switching. Then, HeNB base station 200 and communication terminal 100 use frequency band B as PCC, and restart communication service by using frequency band A as SCC (sequence SQ120).
  • the radio communication system SYS starts a process of switching a frequency band used as a main frequency band (PCC) between the HeNB base station 200 and the communication terminal 100. It has the function to do.
  • PCC main frequency band
  • the overall processing shown in FIG. 5 may be modified as follows.
  • Each message exchanged between the communication terminal 100 and the HeNB base station 200 is not notified only in the frequency band used as the PCC, but using both frequency bands used as the PCC and the SCC. You may be notified.
  • the PCC / SCC switching preparation request from the HeNB base station 200 may be notified to the communication terminal 100 using two frequency bands of the frequency band A and the frequency band B.
  • two identical messages may be transmitted independently using the respective frequency bands, or one message may be transmitted using the two frequency bands.
  • one message is divided on the transmission side and then allocated and transmitted to two frequency bands, and the data received on the two frequency bands is combined on the reception side.
  • a method of processing as one message is adopted.
  • FIG. 6 is a flowchart showing a processing procedure related to PCC / SCC switching in HeNB base station 200 of radio communication system SYS according to the first embodiment.
  • the level comparison unit 214 of the HeNB base station 200 monitors the communication quality of the frequency band A and the frequency band B (step S100). And the communication control part 212 of HeNB base station 200 judges whether the communication quality of the frequency band currently used as SCC is higher than the communication quality of the frequency band currently used as PCC (step S102). If the communication quality of the frequency band used as the PCC is lower than the communication quality of the frequency band used as the SCC (NO in step S102), the process returns to step S100.
  • the communication control unit of the HeNB base station 200 212 notifies the communication terminal 100 of a PCC / SCC switching preparation request (step S104). Subsequently, the communication control unit 212 of the HeNB base station 200 determines whether or not the PCC / SCC switching preparation completion is received from the communication terminal 100 (step S106).
  • step S106 If the PCC / SCC switching preparation completion is not received from the communication terminal 100 during the predetermined period (NO in step S106), the process returns to step S100.
  • the communication control unit 212 of the HeNB base station 200 temporarily stops the communication service (step S108), and executes the PCC / SCC switching (step S110). Then, the communication control unit 212 of the HeNB base station 200 notifies the communication terminal 100 of a PCC / SCC switching request in the frequency band used as the SCC (step S112). Subsequently, the communication control unit 212 of the HeNB base station 200 determines whether or not the PCC / SCC switching completion from the communication terminal 100 has been received (step S114).
  • step S114 When the PCC / SCC switching completion from the communication terminal 100 is not received during the predetermined period (NO in step S114), the communication control unit 212 of the HeNB base station 200 performs the PCC / SCC executed in step S110. SCC switching is restored (step S116). Then, the process returns to step S100.
  • step S114 when the PCC / SCC switching completion is received from the communication terminal 100 (YES in step S114), the communication control unit 212 of the HeNB base station 200 switches between PCC and SCC. The communication service is resumed (step S118). And the process after step S100 is repeated.
  • FIG. 7 is a flowchart showing a processing procedure related to PCC / SCC switching in communication terminal 100 of radio communication system SYS according to the first embodiment.
  • communication control unit 112 of communication terminal 100 determines whether a PCC / SCC switching preparation request from HeNB base station 200 has been received (step S200). If a PCC / SCC switching preparation request from HeNB base station 200 has not been received (NO in step S200), the process returns to step S200.
  • the communication control unit 112 of the communication terminal 100 uses the frequency band used as the SCC. Is determined to be higher than the communication quality of the frequency band used as the PCC (step S202). If the communication quality of the frequency band used as the PCC is lower than the communication quality of the frequency band used as the SCC (NO in step S202), the process returns to step S200.
  • the communication control unit 112 of the communication terminal 100 is used. Notifies the HeNB base station 200 of completion of PCC / SCC switching preparation (step S204). Subsequently, the communication control unit 112 of the communication terminal 100 temporarily stops the communication service (step S206). And the communication control part 112 of the communication terminal 100 judges whether the PCC / SCC switching request
  • step S208 when the PCC / SCC switching request is received from the HeNB base station 200 (YES in step S208), the communication control unit 112 of the communication terminal 100 executes PCC / SCC switching (step) S210). Then, the communication control unit 112 of the communication terminal 100 notifies the HeNB base station 200 of the PCC / SCC switching completion in the frequency band set as the PCC (step S212). Subsequently, the communication control unit 112 of the communication terminal 100 resumes the communication service in a state where the PCC and the SCC are switched (Step S214). And the process after step S200 is repeated.
  • the communication terminal 100 may notify not only the NACK signal but also a reprocessing request. For example, when the communication terminal 100 notifies the reprocessing request, the HeNB base station 200 restarts the process from the first measurement of communication quality.
  • the communication terminal 100 communicates a NACK signal or a reprocessing request to the HeNB base station 200, the following processing is performed so that the communication terminal 100 does not continuously notify the NACK signal or the reprocessing request. Is preferably added.
  • FIG. 8 is a diagram for explaining processing for preventing the PCC / SCC switching operation from continuing in the wireless communication system SYS according to the first embodiment.
  • HeNB base station 200 prohibits re-notification of the PCC / SCC switching preparation request for a predetermined period after notifying communication terminal 100 of the PCC / SCC switching preparation request. For example, it is assumed that the HeNB base station 200 has notified the communication terminal 100 of a PCC / SCC switching preparation request, but has received a NACK signal from the communication terminal 100 in response thereto.
  • the frequency band B also used as the SCC. If it is determined that the communication quality is better, the PCC / SCC switching preparation request is repeatedly notified in a short time. By providing the notification prohibition period as described above, such repeated notification can be avoided.
  • a PCC / SCC switching preparation request is provided in response to the notification, and a certain time interval is secured.
  • the HeNB base station 200 does not notify the next PCC / SCC switching preparation request until this timer expires.
  • the radio communication system SYS since it is not necessary to change Cell_ID, notification to the MME 400 or the like is not required when performing PCC / SCC switching. That need only process between the communication terminal 100 and the HeNB base station 200. As a result, the processing load on the core network can be reduced.
  • the PCC includes a control signal for managing a communication service, and thus generally the frequency utilization rate of the PCC tends to increase. Therefore, when viewed from the HeNB base station 200, when the number of communication terminals 100 that use a certain frequency band as a PCC increases, the use efficiency of the frequency band increases, and as a result, the signal processing load of the frequency band increases. It will be. Therefore, by using PCC / SCC switching according to the present embodiment, switching the frequency band used as PCC and the frequency band used as SCC can reduce the signal processing load of a specific frequency band. Can be reduced. That is, since the PUCCH is handled only by the PCC, the SCC that does not handle the PUCCH has a margin for resource allocation compared to the PCC. In this way, the frequency band utilization efficiency can be distributed.
  • the radio communication system SYS employs an individual switching method for the communication terminal 100 based on radio environment conditions. That is, since the PCC / SCC switching process is executed only for the communication terminal 100 whose wireless environment has deteriorated, the signal processing load on the HeNB base station 200 can be reduced. Further, it is possible to flexibly cope with PCC / SCC switching according to the radio environment in each communication terminal 100.
  • ⁇ F Modification of Embodiment 1>
  • This method is an individual switching method of communication terminals by resource allocation.
  • the present invention is not limited to this, and even if the PCC / SCC switching is started due to resource shortage. Good.
  • the resource of the component carrier used in the PCC of the HeNB base station 200 is insufficient, and the component carrier resource used in the SCC is free, the communication with the HeNB base station 200 is in progress.
  • PCC / SCC switching is executed for the communication terminal 100.
  • the HeNB base station 200 has a function of determining whether or not resources in a frequency band (component carrier) used as a main frequency band (PCC) are insufficient. This function is mainly realized by the communication control unit 212 and the data processing unit 204 (FIG. 4).
  • the HeNB base station 200 monitors the status of the resource of the component carrier being handled, and starts the PCC / SCC switching process when the frequency band resource used as the PCC is insufficient.
  • the resource load of the component carrier used between the HeNB base station 200 and the communication terminal 100 can be distributed, and the specific component carrier can be avoided from being concentratedly used.
  • FIG. 9 is a schematic diagram showing an example of component carrier (PCC / SCC) switching processing in the wireless communication system SYS according to the second embodiment.
  • PCC / SCC component carrier
  • the plurality of frequency bands used for communication between the HeNB base station 200 and the communication terminal 100 include a plurality of subordinate frequency bands (SCC).
  • the frequency bands of the target PCC and SCC are clear in the switching process between the PCC and the SCC.
  • the communication terminal 100 may not be notified of the target frequency band.
  • three or more component carriers (frequency bands) that is, when two or more SCCs are set, any of the frequency bands currently used as SCCs is changed to PCC. It is necessary to specify what should be used as.
  • the PCC / SCC switching preparation request including the frequency band designation information is notified to the communication terminal 100.
  • FIG. 10 is a sequence diagram showing an overall process of PCC / SCC switching in the wireless communication system SYS according to the second embodiment.
  • HeNB base station 200 uses frequency band A as PCC, uses frequency band B as SCC1, and uses frequency band C as SCC2. Suppose you are communicating between.
  • the level comparison unit 214 of the HeNB base station 200 monitors the communication quality of the frequency band A, the frequency band B, and the frequency band C. That is, level comparison section 214 of HeNB base station 200 compares communication quality for three frequency bands of PCC, SCC1, and SCC2 (sequence SQ100A).
  • the level comparison unit 214 of the HeNB base station 200 determines that the communication quality of the frequency band B used as the SCC1 is the best compared to the communication quality of other frequency bands, the level comparison unit 214 sends a PCC / SCC switching preparation request to the communication terminal. 100 is notified (sequence SQ102A).
  • the HeNB base station 200 adds information (frequency band designation information) indicating that the frequency band B should be used as the PCC to the PCC / SCC switching preparation request.
  • the notification means (data processing unit 204, communication control unit 212, and level comparison unit 214) provided in the HeNB base station 200 switches a frequency band used as a main frequency band (PCC) among a plurality of frequency bands.
  • PCC main frequency band
  • the notification means provided in the HeNB base station 200 notifies the switch preparation request including information indicating the subordinate frequency band (SCC) to be switched.
  • the level comparison unit 114 of the communication terminal 100 monitors the communication quality of the frequency band A, the frequency band B, and the frequency band C. That is, level comparison section 114 of communication terminal 100 compares the communication quality for the three frequency bands of PCC, SCC1, and SCC2 (sequence SQ104A).
  • the communication terminal 100 When the level comparison unit 214 of the HeNB base station 200 determines that the communication quality of the frequency band B used as the SCC1 is the best compared to the communication quality of other frequency bands, the communication terminal 100 performs PCC / SCC switching. The completion of preparation is notified to HeNB base station 200 (sequence SQ106A).
  • the determination means (the data processing unit 104, the communication control unit 112, and the level comparison unit 114) provided in the communication terminal 100 responds to the switching preparation request and the frequency band used as the main frequency band (PCC). It is determined whether or not the situation should be switched. And the notification means (communication control part 112) provided in the communication terminal 100 responds to having judged that it is the situation which should switch the frequency band utilized as a main frequency band (PCC). The HeNB base station 200 is notified of completion of preparation for switching.
  • communication terminal 100 After notifying PCC / SCC switching preparation completion, communication terminal 100 temporarily stops the communication service (sequence SQ108), and waits for a PCC / SCC switching request from HeNB base station 200 in frequency band B used as SCC1. (Sequence SQ112).
  • the frequency band A is switched from PCC to SCC1
  • the frequency band B is switched from SCC1 to PCC
  • the frequency band C is used as it is as SCC2, and the communication service is continued.
  • sequence SQ104A after receiving the PCC / SCC switching preparation request, communication terminal 100 compares the communication qualities of all three frequency bands being used, and selects the frequency band with the best communication quality. However, the communication quality only for the frequency band of the switching candidate may be evaluated. In the example illustrated in FIG. 10, communication quality is compared only for two frequency bands, the frequency band A used as the PCC and the frequency band B designated by the HeNB base station 200, and which frequency band is You may judge whether it is better.
  • carrier aggregation using three frequency bands has been described in FIG. 10, it is obvious that the present invention can be similarly applied to carrier aggregation using four or more frequency bands.
  • the communication terminal 100 compares the communication quality in response to the PCC / SCC switching preparation request from the HeNB base station 200. As a result, the HeNB base station 200 is designated. When it is determined that the communication quality in the frequency band different from the frequency band is better, the PCC / SCC switching process may be notified again. In this case, the communication terminal 100 may notify the HeNB base station 200 of a reprocessing request or a NACK signal. In response to this notification, the HeNB base station 200 performs the comparison of the communication quality of the frequency band again, and tries the PCC / SCC switching process again.
  • the processing example of adding the frequency band information to the switching preparation request from the HeNB base station 200 has been described.
  • the SCC that is the target of the PCC / SCC switching process A number or a symbol for identifying the frequency band may be determined in advance, and the frequency band corresponding to the SCC may be identified using the number or the symbol.
  • the frequency band used as PCC is “1”
  • the frequency band used as SCC1 is “2”
  • the frequency band used as SCC2 is “3”.
  • the frequency band information can be replaced by notifying these “2” or “3” numbers. .
  • a method of notifying the number assigned for each frequency band can be adopted.
  • the radio communication system SYS since it is not necessary to change Cell_ID, notification to the MME 400 or the like is not required when performing PCC / SCC switching. That is, only processing between the HeNB base station 200 and the communication terminal 100 is required. As a result, the processing load on the core network can be reduced.
  • the frequency utilization rate of the PCC tends to increase. Therefore, when viewed from the HeNB base station 200, when the number of communication terminals 100 that use a certain frequency band as a PCC increases, the use efficiency of the frequency band increases, and as a result, the signal processing load of the frequency band increases. It will be. Therefore, by using PCC / SCC switching according to the present embodiment, the frequency band used as PCC and the frequency band used as SCC are switched to reduce the signal processing load of a specific frequency band. Can be reduced. That is, since the PUCCH is handled only by the PCC, the SCC that does not handle the PUCCH has a margin for resource allocation compared to the PCC. In this way, the frequency band utilization efficiency can be distributed.
  • Embodiment 3> [H1: Overview]
  • the PCC / SCC switching preparation request from the HeNB base station 200 is transmitted to the communication terminal 100 that is communicating with the HeNB base station 200 using an individual control signal.
  • the method of notifying was illustrated.
  • This method is a simultaneous switching method based on broadcast information.
  • the broadcast information is used to notify the PCC / SCC switching preparation request from the HeNB base station 200.
  • the PCC / SCC switching preparation request is notified all at once to the communication terminal 100 connected to the HeNB base station 200, but the HeNB base station that does not use carrier aggregation.
  • the communication terminal 100 communicating with 200 ignores the notification information. Therefore, only the communication terminal 100 that communicates with the HeNB base station 200 using carrier aggregation executes PCC / SCC switching.
  • FIG. 11 is a sequence diagram showing an overall process of PCC / SCC switching in the wireless communication system SYS according to the third embodiment.
  • FIG. 11 shows an example in which two communication terminals 100-1 and 100-2 communicate with HeNB base station 200 using carrier aggregation for convenience of explanation. That is, a plurality of communication terminals 100-1 and 100-2 are connected to the HeNB base station 200.
  • the communication terminal 100-1 uses the frequency band A as the PCC and uses the frequency band B as the SCC, so that the communication terminal 100-2 uses the frequency band A as the SCC and the frequency band B. It is assumed that communication is performed with the HeNB base station 200 by using as a PCC. In addition, HeNB base station 200 may be communicating with more communication terminals 100 using carrier aggregation.
  • communication control section 212 of HeNB base station 200 determines the status of the signal processing load for each frequency band (sequence SQ101). For example, when the HeNB base station 200 is communicating with a plurality of communication terminals 100, the frequency usage rate of the frequency band A is increased and the signal processing load of the frequency band A is increased. When the frequency utilization rate remains low and the signal processing load of the frequency band B has room, the PCC / SCC switching preparation request is sent to the communication terminal 100 located in the service area of the HeNB base station 200. Are notified all at once (sequence SQ102B). Broadcast information is used for simultaneous notification of this PCC / SCC switching preparation request.
  • the notification means (data processing unit 204, communication control unit 212, and level comparison unit 214) provided in the HeNB base station 200 switches a frequency band used as a main frequency band (PCC) among a plurality of frequency bands.
  • PCC main frequency band
  • communication terminal 100-1 that uses frequency band A as PCC and uses frequency band B as SCC at that time
  • the communication quality is compared between the frequency band A and the frequency band B (step S104). If it is determined that switching between frequency band A used as PCC and frequency band B used as SCC leads to improvement in communication throughput, communication terminal 100-1 completes preparation for PCC / SCC switching. Notification to HeNB base station 200 (sequence SQ106).
  • the determination means data processing unit 104, communication control unit 112, and level comparison unit 114 provided in communication terminal 100-1 are used as the main frequency band (PCC) in response to the switch preparation request. It is determined whether or not the frequency band should be switched. Then, the notification means (communication control unit 112) provided in the communication terminal 100-1 responds to the determination that the frequency band to be used as the main frequency band (PCC) should be switched. The HeNB base station 200 is notified of the completion of band switching preparation.
  • communication terminal 100-2 that has already performed carrier aggregation in a state in which PCC / SCC switching is instructed notifies NACK signal to HeNB base station 200 (sequence SQ107).
  • the communication terminal 100-2 that determines that the communication throughput cannot be improved even if the frequency band A used as the PCC and the frequency band B used as the SCC are switched, notifies the HeNB base station 200 of the NACK signal. To do.
  • the determination means (data processing unit 104, communication control unit 112, and level comparison unit 114) provided in the communication terminal 100-2 does not perform the process of switching the frequency band unless it is the target of the switching preparation request.
  • the HeNB base station 200 To the HeNB base station 200.
  • the HeNB base station 200 performs PCC / SCC switching only for the communication terminal 100-1 that has responded that switching preparation is completed. That is, PCC / SCC switching is not executed for communication terminal 100-1 that responded with a NACK signal.
  • the use of the frequency band A can be distributed. .
  • the radio communication system SYS since it is not necessary to change Cell_ID, notification to the MME 400 or the like is not required when performing PCC / SCC switching. That is, only processing between the HeNB base station 200 and the communication terminal 100 is required. As a result, the processing load on the core network can be reduced.
  • the PCC In carrier aggregation, the PCC generally includes a control signal for managing communication services, and thus the frequency utilization rate of the PCC tends to increase. Therefore, when viewed from the HeNB base station 200, when the number of communication terminals 100 that use a certain frequency band as a PCC increases, the use efficiency of the frequency band increases, and as a result, the signal processing load of the frequency band increases. It will be. Therefore, by using PCC / SCC switching according to the present embodiment, switching the frequency band used as PCC and the frequency band used as SCC can reduce the signal processing load of a specific frequency band. Can be reduced. That is, since the PUCCH is handled only by the PCC, the SCC that does not handle the PUCCH has a margin for resource allocation compared to the PCC. In this way, the frequency band utilization efficiency can be distributed.
  • the radio communication system SYS employs a simultaneous switching method based on broadcast information. Therefore, when the number of communication terminals 100 connected to the HeNB base station 200 is small, the PCC / SCC switching process can be executed together, so that the signal processing load on the HeNB base station 200 is small and required for the PCC / SCC switching process. You can save time.
  • Embodiment 4 PCC / SCC switching according to the type of communication service provided by the HeNB base station 200 will be described.
  • This method is a communication terminal individual switching method based on a service type.
  • the service types provided by the HeNB base station 200 include three types of CSG (Closed Subscriber Group) cells, OPEN cells, and Hybrid cells.
  • the CSG cell is permitted to connect to a limited specific communication terminal.
  • the OPEN cell connection of an unspecified number of communication terminals is permitted.
  • the hybrid cell is a cell having both the characteristics of the OPEN cell and the CSG cell, and at the time, both the CSG and the OPEN can be connected.
  • a component carrier used as a PCC is an OPEN cell or a Hybrid cell
  • a component carrier used as an SCC is a CSG cell.
  • the component carrier provided as the OPEN cell or the Hybrid cell is used as the PCC, more resources are occupied as compared with the case where it is used as the SCC.
  • the communication terminal 100 that uses the component carrier provided as the OPEN cell or the Hybrid cell by the HeNB base station 200 as the PCC is caused to execute PCC / SCC switching. That is, in the fourth embodiment, service types are defined for a plurality of frequency bands.
  • the HeNB base station 200 confirms the CSG_ID held by the communication terminal 100. After that, PCC / SCC switching is started.
  • the PCC / SCC switching preparation request is notified only to the communication terminal 100 that can use the CSG cell.
  • the component carrier used as the PCC becomes a CSG cell
  • the component carrier used as the SCC becomes an OPEN cell or a Hybrid cell.
  • FIG. 12 is a sequence diagram showing an overall process of PCC / SCC switching in the wireless communication system SYS according to the fourth embodiment.
  • FIG. 12 shows an example in which the component carrier in the frequency band A provided by the HeNB base station 200 is an OPEN cell and the component carrier in the frequency band B is a CSG cell.
  • the communication terminal 100-1 uses the frequency band A as the PCC and uses the frequency band B as the SCC, so that the communication terminal 100-2 uses the frequency band A as the SCC.
  • the communication terminal 100-2 uses the frequency band A as the SCC.
  • HeNB base station 200 may be communicating with more communication terminals 100 using carrier aggregation.
  • communication control section 212 of HeNB base station 200 identifies a communication terminal using the OPEN cell as a PCC (sequence SQ103).
  • PCC sequence SQ103
  • the HeNB base station 200 recognizes that the communication terminal 100-1 uses the frequency band A that is an OPEN cell as a PCC and uses the frequency band B that is a CSG cell as an SCC.
  • the PCC / SCC switching preparation request is notified to communication terminal 100-1 that uses frequency band A as the PCC (sequence SQ102).
  • the PCC / SCC switching preparation request is transmitted using the frequency band A used as the PCC. This is intended to make it possible to connect an unspecified number of communication terminals by freeing resources in the frequency band A providing the OPEN cell.
  • the notification means (data processing unit 204, communication control unit 212, and level comparison unit 214) provided in the HeNB base station 200 switches a frequency band used as a main frequency band (PCC) among a plurality of frequency bands.
  • PCC main frequency band
  • a request for switching preparation is notified to the communication terminal 100-1.
  • the notification means provided in the HeNB base station 200 in a situation where the frequency band used as the main frequency band should be switched based on the service type of the frequency band used as the main frequency band (PCC)? Judge whether or not.
  • the communication terminal 100-1 that has previously used the frequency band A as a PCC and the frequency band B as an SCC
  • the communication quality between the frequency band A and the frequency band B is compared.
  • the communication terminal 100-1 when it is determined that the PCC and the SCC should be switched, the communication terminal 100-1 notifies the HeNB base station 200 of the PCC / SCC switching preparation completion (sequence). SQ106).
  • the HeNB base station 200 performs PCC / SCC switching only for the communication terminal 100-1 that has responded that switching preparation is completed. Since the PCC / SCC switching process is the same as the process in the first embodiment described above, detailed description will not be repeated.
  • the HeNB base station 200 does not notify the PCC / SCC switching preparation request to the communication terminal 100-2 that uses the frequency band A as the SCC and the frequency band B as the PCC.
  • the HeNB base station 200 evaluates the service type of the communication terminal 100, and only determines the PCC / SCC for the communication terminal 100-1 determined to be able to switch between PCC and SCC. Notify the switch preparation request.
  • the HeNB base station 200 sets priorities for each provided service, and switches between PCC and SCC according to the priorities.
  • the basic idea is to switch between the PCC and the SCC so that the frequency band provided as a CSG cell is used as a PCC as much as possible, and the frequency band provided as an OPEN cell is used as an SCC as much as possible. I do.
  • the communication quality is compared to determine whether or not PCC / SCC switching is necessary. Good.
  • the radio communication system SYS since it is not necessary to change Cell_ID, notification to the MME 400 or the like is not required when performing PCC / SCC switching. That is, only processing between the HeNB base station 200 and the communication terminal 100 is required. As a result, the processing load on the core network can be reduced.
  • the frequency utilization rate of the PCC tends to increase. Therefore, when viewed from the HeNB base station 200, when the number of communication terminals 100 that use a certain frequency band as a PCC increases, the use efficiency of the frequency band increases, and as a result, the signal processing load of the frequency band increases. It will be. Therefore, by using PCC / SCC switching according to the present embodiment, switching the frequency band used as PCC and the frequency band used as SCC can reduce the signal processing load of a specific frequency band. Can be reduced. That is, since the PUCCH is handled only by the PCC, the SCC that does not handle the PUCCH has a margin for resource allocation compared to the PCC. In this way, the frequency band utilization efficiency can be distributed.
  • the wireless communication system SYS employs an individual switching method for communication terminals based on service types.
  • a component carrier that can be used as a CSG cell can be exclusively used as a PCC.
  • the utilization rate of the resource of the component carrier which can be used as an OPEN cell or a Hybrid cell can be lowered, more communication terminals 100 can be connected to the HeNB base station 200.
  • a communication terminal 100 transmits a PCC / SCC switching preparation request from the communication terminal 100 to the HeNB base station 200 as a means for the communication terminal 100 to switch between PCC and SCC.
  • the HeNB base station 200 starts PCC / SCC switching.
  • FIG. 13 is a sequence diagram showing an overall process of PCC / SCC switching in the wireless communication system SYS according to the fifth embodiment.
  • the sequence diagram shown in FIG. 13 is obtained by replacing the functions of the HeNB base station 200 and the communication terminal 100 in the sequence diagram shown in FIG.
  • HeNB base station 200 is communicating with communication terminal 100 by using frequency band A as a PCC and frequency band B as an SCC. To do.
  • the level comparison unit 114 of the communication terminal 100 monitors the communication quality of the frequency band A and the frequency band B. That is, level comparison section 114 of communication terminal 100 compares communication quality between PCC and SCC (sequence SQ200).
  • the level comparison unit 114 of the communication terminal 100 detects that the communication quality of the frequency band A used as the PCC is deteriorated from the communication quality of the frequency band B used as the SCC, and uses it as the PCC. If it is determined that changing the current frequency band leads to an improvement in communication throughput, the PCC / SCC switching preparation request is notified to the HeNB base station 200 (sequence SQ202). Here, the PCC / SCC switching preparation request is transmitted using the frequency band A used as the PCC.
  • the PCC / SCC switching preparation request from the communication terminal 100 may be notified to the HeNB base station 200.
  • the notification means (data processing unit 104, communication control unit 112, and level comparison unit 114) provided in communication terminal 100 should switch the frequency band used as the main frequency band (PCC) among the plurality of frequency bands.
  • PCC main frequency band
  • the level comparison unit 214 of the HeNB base station 200 compares the communication quality between the PCC and the SCC (sequence SQ204). As a result of the comparison of the communication quality between the PCC and the SCC by the level comparison unit 214 of the HeNB base station 200, the communication quality of the frequency band A used as the PCC deteriorates, and the frequency band B used as the SCC When determining that the communication quality is better, HeNB base station 200 notifies communication terminal 100 of completion of PCC / SCC switching preparation (sequence SQ206).
  • the determination means (the data processing unit 204, the communication control unit 212, and the level comparison unit 214) provided in the HeNB base station 200 responds to the switching preparation request and the frequency used as the main frequency band (PCC) It is determined whether or not the band should be switched.
  • the notification means (communication control part 212) provided in HeNB base station 200 responds to having judged that it is the situation which should switch the frequency band utilized as a main frequency band (PCC). The communication terminal 100 is notified of completion of preparation for switching.
  • HeNB base station 200 After notifying PCC / SCC switching preparation completion, HeNB base station 200 temporarily stops the communication service (sequence SQ208), and waits for a PCC / SCC switching request from communication terminal 100 in frequency band B used as SCC. (Sequence SQ212).
  • sequences SQ214 to SQ218 similar to sequences SQ114 to SQ118 shown in FIG. 5 are executed.
  • Communication terminal 100 and HeNB base station 200 use frequency band B as PCC and use frequency band A as SCC to restart the communication service (sequence SQ220).
  • the radio communication system SYS starts a process of switching a frequency band used as a main frequency band (PCC) between the HeNB base station 200 and the communication terminal 100. It has the function to do.
  • PCC main frequency band
  • the overall processing shown in FIG. 13 may be modified as follows.
  • Information specifying a component carrier used as a PCC after PCC / SCC switching may be added to the PCC / SCC switching preparation request notified from the communication terminal 100 to the HeNB base station 200.
  • the HeNB base station 200 individually determines whether or not PCC / SCC switching is necessary in response to the PCC / SCC switching request from the communication terminal 100.
  • each message exchanged between the communication terminal 100 and the HeNB base station 200 is not notified only in the frequency band used as the PCC, but the PCC And you may notify using both frequency bands currently used as SCC.
  • the PCC / SCC switching preparation request from the communication terminal 100 may be notified to the HeNB base station 200 using two frequency bands of the frequency band A and the frequency band B.
  • two identical messages may be transmitted independently using the respective frequency bands, or one message may be transmitted using the two frequency bands.
  • one message is divided on the transmission side and then allocated and transmitted to two frequency bands, and the data received on the two frequency bands is combined on the reception side.
  • a method of processing as one message is adopted.
  • the radio communication system SYS since it is not necessary to change Cell_ID, notification to the MME 400 or the like is not required when performing PCC / SCC switching. That is, only processing between the HeNB base station 200 and the communication terminal 100 is required. As a result, the processing load on the core network can be reduced.
  • the frequency utilization rate of the PCC tends to increase. Therefore, when viewed from the HeNB base station 200, when the number of communication terminals 100 that use a certain frequency band as a PCC increases, the use efficiency of the frequency band increases, and as a result, the signal processing load of the frequency band increases. It will be. Therefore, by using PCC / SCC switching according to the present embodiment, switching the frequency band used as PCC and the frequency band used as SCC can reduce the signal processing load of a specific frequency band. Can be reduced. That is, since the PUCCH is handled only by the PCC, the SCC that does not handle the PUCCH has a margin for resource allocation compared to the PCC. In this way, the frequency band utilization efficiency can be distributed.
  • the radio communication system SYS employs an individual switching method performed by the communication terminal 100.
  • the communication terminal 100 does not need to wait for a PCC / SCC switching preparation request from the HeNB base station 200, so even if the wireless environment suddenly deteriorates, PCC / SCC switching is immediately started. it can.
  • each of the communication terminals 100 determines whether or not PCC / SCC switching is necessary, it is not necessary to constantly grasp the status of each communication terminal 100, and the processing load on the HeNB base station 200 can be reduced.
  • a component is mainly used when communication is performed with a communication terminal using a carrier aggregation with a small evolved radio base station (HeNB base station).
  • HeNB base station a small evolved radio base station
  • eNB base station a base station device used as the object of the present invention
  • eNB base station a base station device which provides a macro cell
  • the present invention can also be applied to other types of base station apparatuses.
  • the embodiment mainly applied to the LTE-A system has been exemplified, but the present invention is not limited to this system and can be applied to any system.
  • a communication terminal individual switching method based on resource allocation (a modification of the first embodiment) and a communication terminal based on a service type It is preferable to adopt the individual switching method (Embodiment 4).
  • the component carrier which each communication terminal 100 utilizes can be more easily disperse
  • an individual switching method for communication terminals based on radio environment conditions (Embodiments 1 and 2), PCC / It is preferable to adopt a method (Embodiment 3) for performing SCC switching all at once and a switching method (Embodiment 5) led by a communication terminal.

Abstract

 利用する周波数帯域をより簡素化された手順で切り替えることのできる無線通信システム、通信方法、基地局装置、および通信端末を提供する。無線通信システムは、基地局装置と、複数の周波数帯域を利用して基地局装置と通信可能な通信端末とを含む。無線通信システムは、基地局装置および通信端末の一方に設けられ、複数の周波数帯域のうち主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を基地局装置および通信端末の他方へ通知する第1の通知手段と、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を基地局装置および通信端末の一方へ通知する第2の通知手段とを含む。

Description

無線通信システム、通信方法、基地局装置、および通信端末
 本発明は、通信端末と基地局装置とを含む無線通信システム、その無線通信システムにおける通信方法、ならびに、その無線通信システムに向けられた基地局装置および通信端末に関し、特に、複数の周波数帯域を利用して基地局装置と通信端末とが通信する構成に関するものである。
 現在、3GPP(Third Generation Partnership Project)は、LTE(Long Term Evolution)を発展させた規格であるLTE-A(LTE-Advanced)についての仕様を検討している。
 LTE-Aでは、LTEに比較してより高速かつ大容量の通信を実現することが要求されている。そのため、LTE-Aでは、LTEに比較してより広帯域な周波数範囲をサポートすることとされている。現在までの検討によれば、LTEの最大送信帯域幅が20MHzであるのに対して、LTEの最大送信帯域幅を100MHzまで拡張されることとされている。
 そこで、LTE-Aでは、LTEとの互換性を可能な限り維持する目的から、キャリアアグリゲーション(Carrier Aggregation;CA)という無線通信技術が採用されている。キャリアアグリゲーション技術は、コンポーネントキャリア(Component Career;CC)と称される帯域幅が20MHzまでの周波数帯域を利用し、これらのコンポーネントキャリアを複数まとめて利用することで、最大100MHzの帯域幅を確保する。これにより、高速かつ大容量の通信を実現させる。
 また、LTEおよびLTE-Aでは、通常の発展型基地局(evolved Node B:以下「eNB基地局」とも称す。)に加えて、小型の発展型無線基地局(Home evolved Node B:以下「HeNB基地局」とも称す。)の導入について検討を進めている。このHeNB基地局は、サービスエリアの拡張および個人使用等を目的とするものである。
 一般的に、HeNB基地局は、eNB基地局によって提供されるサービスエリアより小さいサービスエリアを提供することが想定されている。以下では、eNB基地局によって提供されるセルを「マクロセル」とも称し、HeNB基地局によって提供されるセルを「ホームセル」とも称す。
 現在までに検討されている内容は、通信端末とマクロセル基地局(eNB基地局)との間のキャリアアグリゲーション技術についてのものであり、通信端末とホームセル基地局(HeNB基地局)との間のキャリアアグリゲーション技術については、その検討が開始されたばかりである(非特許文献1)。
 したがって、通信端末とホームセル基地局(HeNB基地局)との間でキャリアアグリゲーションを行う場合、通信端末とホームセル基地局との間で、キャリアアグリゲーションの制御をどのように行うかについて、具体的な提案はなされておらず、検討課題の一つになっている。
 本発明の目的は、利用する周波数帯域をより簡素化された手順で切り替えることのできる無線通信システム、通信方法、基地局装置、および通信端末を提供することである。
 本発明のある局面に従う無線通信システムは、基地局装置と、複数の周波数帯域を利用して基地局装置と通信可能な通信端末とを含む。複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含む。無線通信システムは、基地局装置および通信端末の一方に設けられ、複数の周波数帯域のうち主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を基地局装置および通信端末の他方へ通知する第1の通知手段と、基地局装置および通信端末の他方に設けられ、切り替えの準備要求に応答して、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する判断手段と、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を基地局装置および通信端末の一方へ通知する第2の通知手段と、切り替えの準備完了に応答して、基地局装置と通信端末との間で主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する切り替え手段とを含む。
 好ましくは、第1の通知手段は、主たる周波数帯域として利用されている周波数帯域の通信品質を判断する手段を含む。
 好ましくは、第1の通知手段は、主たる周波数帯域として利用されている周波数帯域のリソースが不足しているか否かを判断する手段を含む。
 好ましくは、複数の周波数帯域には、それぞれサービス種別が定義されており、第1の通知手段は、主たる周波数帯域として利用される周波数帯域のサービス種別に基づいて、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する手段を含む。
 好ましくは、複数の周波数帯域は、従たる周波数帯域を複数含んでおり、第1の通知手段は、切り替え対象の従たる周波数帯域を示す情報を含む切り替えの準備要求を通知する手段を含む。
 好ましくは、記第1の通知手段は、基地局装置に設けられ、判断手段および第2の通知手段は、通信端末に設けられる。
 さらに好ましくは、第1の通知手段は、基地局装置に接続されている複数の通信端末に対して、切り替えの準備要求を一斉に通知する手段を含み、判断手段は、切り替えの準備要求の対象でなければ、周波数帯域を切り替える処理を行わないことを通知する手段を含む。
 好ましくは、第1の通知手段は、通信端末に設けられ、判断手段および第2の通知手段は、基地局装置に設けられる。
 好ましくは、切り替え手段は、基地局装置および通信端末の一方における周波数帯域の切り替えを完了した後、新たに主たる周波数帯域として利用される周波数帯域を利用して、周波数帯域の切り替えを指示する切り替えの要求を基地局装置および通信端末の他方へ通知する手段を含む。
 本発明の別の局面に従えば、基地局装置と、複数の周波数帯域を利用して基地局装置と通信可能な通信端末との間の通信方法が提供される。複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含む。通信方法は、基地局装置および通信端末の一方で、複数の周波数帯域のうち主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を基地局装置および通信端末の他方へ通知するステップと、基地局装置および通信端末の他方で、切り替えの準備要求に応答して、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断するステップと、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を基地局装置および通信端末の一方へ通知するステップと、切り替えの準備完了に応答して、基地局装置と通信端末との間で主たる周波数帯域として利用される周波数帯域を切り替える処理を開始するステップとを含む。
 本発明のさらに別の局面に従えば、複数の周波数帯域を利用して通信端末と通信可能な基地局装置が提供される。複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含む。基地局装置は、複数の周波数帯域のうち主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を通信端末へ通知する通知手段と、通信端末からの周波数帯域の切り替えの準備完了に応答して、基地局装置と通信端末との間で主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する切り替え手段とを含む。
 本発明のさらに別の局面に従えば、複数の周波数帯域を利用して通信端末と通信可能な基地局装置が提供される。複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含む。基地局装置は、通信端末からの切り替えの準備要求に応答して、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する判断手段と、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を通信端末へ通知する通知手段とを含む。
 本発明のさらに別の局面に従えば、複数の周波数帯域を利用して基地局装置と通信可能な通信端末が提供される。複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含む。通信端末は、複数の周波数帯域のうち主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を基地局装置へ通知する通知手段と、基地局装置からの周波数帯域の切り替えの準備完了に応答して、基地局装置と通信端末との間で主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する切り替え手段とを含む。
 本発明のさらに別の局面に従えば、複数の周波数帯域を利用して基地局装置と通信可能な通信端末が提供される。複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含む。通信端末は、基地局装置からの切り替えの準備要求に応答して、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する判断手段と、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を基地局装置へ通知する通知手段とを含む。
 本発明によれば、利用する周波数帯域をより簡素化された手順で切り替えることができる。
実施の形態において想定されている無線通信システムの全体構成を示す模式図である。 図1に示す無線通信システムにおけるコンポーネントキャリア(PCC/SCC)の切り替え処理を説明するための模式図である。 図1に示す無線通信システムにおいて使用される通信端末のハードウェア構成を示すブロック図である。 図1に示す無線通信システムにおいて使用されるHeNB基地局のハードウェア構成を示すブロック図である。 実施の形態1に従う無線通信システムにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。 実施の形態1に従う無線通信システムのHeNB基地局におけるPCC/SCC切り替えに係る処理手順を示すフローチャートである。 実施の形態1に従う無線通信システムの通信端末におけるPCC/SCC切り替えに係る処理手順を示すフローチャートである。 実施の形態1に従う無線通信システムにおいてPCC/SCC切り替え動作が連続しないようにするための処理を説明するための図である。 実施の形態2に従う無線通信システムにおけるコンポーネントキャリア(PCC/SCC)の切り替え処理の一例を示す模式図である。 実施の形態2に従う無線通信システムにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。 実施の形態3に従う無線通信システムにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。 実施の形態4に従う無線通信システムにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。 実施の形態5に従う無線通信システムにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
 <A.無線通信システムの全体構成>
 図1は、実施の形態において想定されている無線通信システムSYSの全体構成を示す模式図である。典型的な一例として、無線通信システムSYSは、LTE-A規格またはそれに準じる規格に従う通信方式をサポートしているとする。
 図1を参照して、無線通信システムSYSは、小型の発展型無線基地局(Home evolved Node B:以下「HeNB基地局」とも称す。)200と、発展型基地局(evolved Node B:以下「eNB基地局」とも称す。)300とを含む。HeNB基地局200およびeNB基地局300を、単に「基地局装置」と総称する場合もある。HeNB基地局200はサービスエリア201を提供し、eNB基地局300はサービスエリア301を提供する。HeNB基地局200によって提供されるサービスエリア201は、eNB基地局300によって提供されるサービスエリア301より小さいものとなっている。HeNB基地局200によって提供されるサービスエリア201を「ホームセル」とも称し、eNB基地局300によって提供されるサービスエリア301を「マクロセル」とも称す。
 HeNB基地局200およびeNB基地局300は、MME(Mobility Management Entity)400に接続されている。MME400は、パケット通信用のセッション(接続)の設定/開放や、ハンドオーバ(基地局装置の切換)といった制御を行う。MME400は、SAEゲートウェイ(System Architecture Evolution Gateway)機能を含むコアネットワーク制御装置(図示しない)などを通じて、コアネットワークを伝送されるユーザデータを遣り取りする。
 説明の便宜上、図1には、HeNB基地局200およびeNB基地局300をそれぞれ1個ずつ記載しているが、これらの数はシステムに応じて適宜決定される。また、MME400およびゲートウェイの数、接続のトポロジーなどについても、システムに応じて適宜設定される。例えば、HeNB基地局200およびeNB基地局300が異なるMME400に接続されてもよい。
 <B.キャリアアグリゲーション(Carrier Aggregation)>
 図1に示す無線通信システムSYSは、キャリアアグリゲーションをサポートしているものとする。例えば、図1に示す通信端末100は、2つ以上のコンポーネントキャリア(周波数帯域)を利用してHeNB基地局200との間で通信を行っているとする。すなわち、無線通信システムSYSでは、複数の周波数帯域を利用して、基地局装置(HeNB基地局200)と通信端末100とが通信可能になっている。
 2つ以上のコンポーネントキャリアを利用してHeNB基地局200と通信を行う際には、いずれか1つのコンポーネントキャリアがPCC(Primary Component Carrier)として利用され、その他の少なくとも1つのコンポーネントキャリアがSCC(Secondary Component Carrier)として利用される。利用可能なコンポーネントキャリアが多い場合には、複数のSCCが同時に利用される。
 PCCとして利用されるコンポーネントキャリアは、PUCCH(Physical Uplink Control Channel:物理上り制御チャネル)を含み、SCCとして利用されるコンポーネントキャリアは、PUCCHを含まない。すなわち、PCCは、主たる周波数帯域に相当し、SCCは従たる周波数帯域に相当する。
 通信端末100からの上り制御信号は、PCCに含まれるPUCCHで送出されるので、PCCとして利用するコンポーネントキャリアの通信品質は常に良好な状態に保つ必要がある。したがって、PCCとして利用されるコンポーネントキャリアは、SCCとして利用されるコンポーネントキャリアと同等かもしくはそれ以上の通信品質を確保する必要がある。
 このようにPCCとして利用されるコンポーネントキャリアの通信品質を良好な状態に保つ必要があるので、通信状況に応じて、利用可能な複数のコンポーネントキャリアのうちでPCCとして利用されるコンポーネントキャリアが適宜切り替えられる。
 図2は、図1に示す無線通信システムSYSにおけるコンポーネントキャリア(PCC/SCC)の切り替え処理を説明するための模式図である。
 図2には、ある時点において、第1のコンポーネントキャリア(周波数帯域A)をPCCとして利用し、第2のコンポーネントキャリア(周波数帯域B)をSCCとして利用している例(PCC/SCC切り替え前)を示す。この状態において、PCCの通信品質が劣化しているとHeNB基地局200が判断したとする。すると、PCCとSCCとの切り替え処理が開始される。
 この切り替え処理の完了後、第1のコンポーネントキャリア(周波数帯域A)がSCCとして利用されるようになり、第2のコンポーネントキャリア(周波数帯域B)がPCCとして利用されるようになる(PCC/SCC切り替え後)。
 各実施の形態においては、主として、このコンポーネントキャリアの切り替え処理について着目して説明する。以下、このコンポーネントキャリアの切り替えを「PCC/SCC切り替え」とも称す。
 <C.課題および解決手段の概要>
 現在の規格では、通信端末100が2つ以上のコンポーネントキャリアを利用してeNB基地局300との間で通信を行っている場合に、ハンドオーバ処理を利用して、図2に示すようなコンポーネントキャリアの切り替え(状況に応じたPCC/SCC切り替え)処理を実現することが決定されている。
 ハンドオーバ処理を利用するのは、マクロセル基地局であるeNB基地局300は、PCCおよびSCCに対して互いに異なるCell_IDをそれぞれ設定しているため、PCC/SCC切り替えに伴って、RACH(Random Access Channel)処理や、MME400に対するCell_IDの変更通知処理といった、通信端末100がセル間を移動した場合と同様の処理が必要になるためである。
 一般的に、このようなハンドオーバ処理を利用すると、ハンドオーバ処理中のユーザデータのスループットが瞬間的に低下するという問題がある。
 これに対して、ホームセル基地局であるHeNB基地局200は、1つのCell_IDでのみ運用することが規格上定められている。したがって、通信端末100が2つ以上のコンポーネントキャリアを利用してHeNB基地局200との間で通信を行う場合にも、PCCおよびSCCに対して同じCell_IDが設定される。この点は、マクロセル基地局であるeNB基地局300との間でキャリアアグリゲーションを行う場合とは、特徴的に異なっている局面である。
 現段階では、PCCおよびSCCに対して同じCell_IDが設定されているHeNB基地局200における、PCCとSCCとの切り替え処理については、未だ検討されていない。そこで、本実施の形態においては、マクロセル基地局で採用されているのと同じ方式ではなく、より簡単なPCC/SCC切り替えの方式を提案する。
 具体的には、HeNB基地局200および通信端末100の一方は、複数のコンポーネントキャリア(周波数帯域)のうちPCC(主たる周波数帯域)として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求をHeNB基地局200および通信端末100の他方へ通知する。
 すなわち、HeNB基地局200が主導して、PCC/SCC切り替えの必要性を判断し、PCC/SCC切り替えを実行する形態(後述の実施の形態1~4参照)と、通信端末100が主導して、PCC/SCC切り替えの必要性を判断し、PCC/SCC切り替えを実行する形態(後述の実施の形態5参照)とが想定される。
 そして、HeNB基地局200および通信端末100の他方(被主導側)は、切り替えの準備要求に応答して、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する。そして、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、HeNB基地局200および通信端末100の他方は、周波数帯域の切り替えの準備完了をHeNB基地局200および通信端末100の一方(主導側)へ通知する。
 HeNB基地局200および通信端末100の一方(主導側)は、切り替えの準備完了に応答して、HeNB基地局200と通信端末100との間で主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する。
 以下、それぞれの実施の形態の詳細について説明する。
 <D.装置構成>
 まず、図1に示す無線通信システムSYSを構成する各主体のハードウェア構成について説明する。
 [d1:通信端末100の構成]
 図1に示す無線通信システムSYSにおいて使用される通信端末100の構成について説明する。図3は、図1に示す無線通信システムSYSにおいて使用される通信端末100のハードウェア構成を示すブロック図である。
 図3を参照して、通信端末100は、データ処理部104と、符号化処理部106,116と、アンテナ送受信部108,118と、アンテナ110,120と、通信制御部112と、レベル比較部114とを含む。図3に示す通信端末100は、A系統(周波数帯域A)およびB系統(周波数帯域B)の2つの無線通信回路を有しており、同時に2つのコンポーネントキャリアを利用可能になっている。
 データ処理部104は、通信端末100が提供する機能を実現するための制御主体である。データ処理部104は、通信制御部112からの情報に基づいて通信状況を判断するとともに、符号化処理部106(A系統)および符号化処理部116(B系統)のそれぞれにおける制御信号やユーザデータの送受信を制御する。
 符号化処理部106および116は、それぞれアンテナ送受信部108および118と接続されており、対応するアンテナ送受信部から受信した信号列をデコードしてデータ処理部104へ出力するとともに、データ処理部104から受信した制御信号やユーザデータをデコードして対応するアンテナ送受信部へ出力する。また、符号化処理部106および116は、通信制御部112からの制御指令に従って、符号化/復号化処理を行う。
 アンテナ送受信部108および118は、それぞれアンテナ110および120と接続されており、対応するアンテナから受信した無線信号を復調して対応する符号化処理部へ出力するとともに、対応する符号化処理部から受信した信号列を変調して対応するアンテナへ出力する。
 アンテナ110および120は、1または複数の基地局装置との間で無線信号を送受信する。説明の便宜上、アンテナ110および120をそれぞれ「アンテナA」および「アンテナB」とも称す。
 レベル比較部114は、アンテナ送受信部108および118でそれぞれ受信される無線信号のレベルを比較し、その比較結果を通信制御部112へ出力する。
 通信制御部112は、レベル比較部114からの比較結果に基づいて、各時点の通信状況を判断し、その判断結果をデータ処理部104へ出力するとともに、符号化処理部106および116に対して制御指令を出力する。
 通信端末100は、さらに、各種情報を表示するためのディスプレイ130、ユーザの音声などを取得するためのマイク132、受信した音声を再生するためのスピーカ134、およびユーザ操作を受付けるための入力部136といった通信端末としての構成を含む。
 図3に示す通信端末100を構成するそれぞれの機能は、ソフトウェアおよびハードウェアのいずれで実現してもよい。
 [d2:HeNB基地局200の構成]
 図1に示す無線通信システムSYSにおいて使用されるHeNB基地局200の構成について説明する。図4は、図1に示す無線通信システムSYSにおいて使用されるHeNB基地局200のハードウェア構成を示すブロック図である。
 図4を参照して、HeNB基地局200は、ネットワークインターフェイス部202と、データ処理部204と、符号化処理部206,216と、アンテナ送受信部208,218と、アンテナ210,220と、通信制御部212と、レベル比較部214とを含む。図4には、説明の簡素化のため、A系統(周波数帯域A)およびB系統(周波数帯域B)の2つの無線通信回路を有しているHeNB基地局200の例を示すが、HeNB基地局200で利用可能なコンポーネントキャリアと同数の無線通信回路を実装することが好ましい。
 ネットワークインターフェイス部202は、MME400やコアネットワークなどとの間でユーザデータを遣り取りする。ネットワークインターフェイス部202は、MME400などから受信したユーザデータをデータ処理部204へ出力し、データ処理部204から受信したユーザデータをMME400などへ出力する。
 データ処理部204は、HeNB基地局200が提供する機能を実現するための制御主体である。データ処理部204は、通信制御部212からの情報に基づいて通信状況を判断するとともに、符号化処理部206(A系統)および符号化処理部216(B系統)のそれぞれにおける制御信号やユーザデータの送受信を制御する。
 符号化処理部206および216は、それぞれアンテナ送受信部208および218と接続されており、対応するアンテナ送受信部から受信した信号列をデコードしてデータ処理部204へ出力するとともに、データ処理部204から受信した制御信号やユーザデータをデコードして対応するアンテナ送受信部へ出力する。また、符号化処理部206および216は、通信制御部212からの制御指令に従って、符号化/復号化処理を行う。
 アンテナ送受信部208および218は、それぞれアンテナ210および220と接続されており、対応するアンテナから受信した無線信号を復調して対応する符号化処理部へ出力するとともに、対応する符号化処理部から受信した信号列を変調して対応するアンテナへ出力する。
 アンテナ210および220は、1または複数の通信端末100との間で無線信号を送受信する。説明の便宜上、アンテナ210および220をそれぞれ「アンテナA」および「アンテナB」とも称す。
 レベル比較部214は、アンテナ送受信部208および218でそれぞれ受信される無線信号のレベルを比較し、その比較結果を通信制御部212へ出力する。
 通信制御部212は、レベル比較部214からの比較結果に基づいて、各時点の通信状況を判断し、その判断結果をデータ処理部204へ出力するとともに、符号化処理部206および216に対して制御指令を出力する。
 図4に示すHeNB基地局200を構成するそれぞれの機能は、不揮発性メモリなどに予め格納されるプログラムをプロセッサが実行することで実現されてもよい。この場合には、CPU(Central Processing Unit)やDSP(Digital Signal Processor)といった演算装置(プロセッサ)が予めインストールされた命令セットを実行することになる。
 あるいは、図4に示す機能の一部または全部を専用のハードウェア(典型的には、集積回路)として実装してもよい。この場合には、すべての機能を実現する回路を1チップ化してもよい。さらに、プロセッサ、メモリ、周辺デバイス用のコントローラといった部品を1チップ化したSoC(System On a Chip)を使用することもできる。
 [d3:その他の構成]
 図1に示す無線通信システムSYSにおいて使用されるeNB基地局300およびMME400については、公知の構成を採用することができるので、ここでは詳細な説明は行わない。
 <E:実施の形態1>
 [e1:概要]
 実施の形態1として、HeNB基地局200が主導して、PCC/SCC切り替えを実行する方式について説明する。この方式は、無線環境条件に基づく通信端末の個別切り替え方式である。
 HeNB基地局200は、PCCとSCCとの間で通信品質を比較する機能を有している。すなわち、HeNB基地局200は、主たる周波数帯域(PCC)として利用されている周波数帯域(コンポーネントキャリア)の通信品質を判断する機能を有する。この機能は、主として、通信制御部212およびレベル比較部214(図4)によって実現される。
 キャリアアグリゲーションを利用して通信端末100との間で通信を行っている場合に、HeNB基地局200がPCCにおける通信品質の悪化を検出すると、キャリアアグリゲーションを利用して通信中の通信端末100だけに対して、PCC/SCC切り替えの実行に必要な準備の開始要求を通知する(以下、この通知を「PCC/SCC切り替え準備要求」とも称す。)。
 通信品質の悪化を検出する判断条件としては、無線環境の指標であるRSSI(Received Signal Strength Indicator:受信信号強度)の低下、Ec/No(Energy per chip to Noise radio:単位チップエネルギー対雑音比)の悪化、SIR(Signal to Interference Ratio:信号対干渉比)の悪化、PUCCHに含まれる情報といったデータ処理の結果などを用いることができる。
 PCC/SCC切り替え準備要求は、PCCをいずれのSCCと入れ替えるのを示すCC情報を含んでいてもよい。
 通信端末100は、PCC/SCC切り替え準備要求を受信すると、PCC/SCC切り替えを実行するための準備として、PCCおよび指定されたSCCの通信品質を測定してその測定結果を比較する。PCCと指定されたSCCとを切り替える方が、通信スループットの向上につながると判断されると、通信端末100は、PUCCHを用いて、PCC/SCC切り替え準備完了をHeNB基地局200へ通知する。
 HeNB基地局200は、PUCCHを介して、PCC/SCC切り替え準備完了を受信すると、PCC/SCC切り替えを実行し、そして切り替え完了を通信端末100へ通知する。通信端末100は、切り替え要求を受信すると、切り替え後のPCCのPUCCHを用いて、切り替え完了をHeNB基地局200へ通知する。
 [e2:全体手順]
 次に、実施の形態1に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理について説明する。
 図5は、実施の形態1に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。図5を参照して、初期状態として、HeNB基地局200は、アンテナAを用いて周波数帯域AをPCCとして利用するとともに、アンテナBを用いて周波数帯域BをSCCとして利用することで、通信端末100との間で通信を行っているとする。すなわち、通信端末100は、複数の周波数帯域を利用してHeNB基地局200と通信を行っている。
 この通信端末100との通信中、HeNB基地局200のレベル比較部214は、周波数帯域Aおよび周波数帯域Bの通信品質を監視する。すなわち、HeNB基地局200のレベル比較部214は、PCCとSCCとの間で通信品質を比較する(シーケンスSQ100)。
 HeNB基地局200のレベル比較部214は、PCCとして利用している周波数帯域Aの通信品質が、SCCとして利用している周波数帯域Bの通信品質より劣化していることを検出し、PCCとして利用している周波数帯域を変更する方が通信スループットの向上につながると判断すると、PCC/SCC切り替え準備要求を通信端末100へ通知する(シーケンスSQ102)。ここで、PCC/SCC切り替え準備要求は、PCCとして利用している周波数帯域Aを利用して送信される。
 HeNB基地局200のレベル比較部214は、アンテナ送受信部208および218で抽出された情報に基づいて、PCCとSCCとの間で通信品質を比較する。このPCCとSCCとの間で通信品質を比較するための項目は、RSSI、Ec/No、SIRといった無線区間の通信品質を示すパラメータを含む。図4には、レベル比較部214が無線区間の通信品質を評価する構成を例示するが、データ処理部204に設けた比較ロジックを用いてもよい。この場合には、誤り率やCQI(Channel Quality Indicator:チャネル品質指標)といったデータ送受信の劣化に係るパラメータ、制御データの受信までの遅延時間などを用いて、通信品質を比較してもよい。レベル比較部214で検出された比較結果は通信制御部212へ出力され、通信制御部212がPCC/SCC切り替えに係る一連の処理を管理する。
 すなわち、HeNB基地局200に設けられた通知手段(データ処理部204、通信制御部212およびレベル比較部214)は、複数の周波数帯域のうち主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を通信端末100へ通知する。
 図5に戻って、HeNB基地局200からのPCC/SCC切り替え準備要求を受信すると、通信端末100のレベル比較部114は、PCCとSCCとの間で通信品質を比較する(シーケンスSQ104)。通信端末100のレベル比較部114において、PCCとSCCとの間で通信品質を比較するために利用される項目は、HeNB基地局200のレベル比較部214が利用する項目と同様である。
 通信端末100のレベル比較部114がPCCとSCCとの間で通信品質を比較した結果、PCCとして利用している周波数帯域Aの通信品質が悪化し、SCCとして利用している周波数帯域Bの通信品質の方が良好であると判断すると、通信端末100は、PCC/SCC切り替え準備完了をHeNB基地局200へ通知する(シーケンスSQ106)。
 すなわち、通信端末100に設けられた判断手段(データ処理部104、通信制御部112およびレベル比較部114)は、切り替えの準備要求に応答して、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であるか否かを判断する。そして、通信端末100に設けられた通知手段(通信制御部112)は、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了をHeNB基地局200へ通知する。
 通信端末100は、PCC/SCC切り替え準備完了を通知した後、通信サービスを一旦停止し(シーケンスSQ108)、SCCとして利用していた周波数帯域BでHeNB基地局200からのPCC/SCC切り替え要求を待つ(シーケンスSQ112)。
 HeNB基地局200は、通信端末100からのPCC/SCC切り替え準備完了を受信すると、通信サービスを一旦停止し(シーケンスSQ108)、PCC/SCC切り替えを実行する(シーケンスSQ110)。すなわち、HeNB基地局200は、これまでPCCとして利用していた周波数帯域AをSCCとして設定するとともに、SCCとして利用していた周波数帯域BをPCCとして設定する。
 続いて、HeNB基地局200は、周波数帯域BでPCC/SCC切り替え要求を通信端末100へ通知する(シーケンスSQ114)。このPCC/SCC切り替え要求によって、周波数帯域BをPCCとして利用開始するとともに、周波数帯域AをSCCとして利用開始することが通信端末100へ通知される。すなわち、HeNB基地局200における周波数帯域の切り替えが完了した後、新たに主たる周波数帯域(PCC)として利用される周波数帯域を利用して、周波数帯域の切り替えを指示する切り替えの要求が通信端末100へ通知される。
 通信端末100は、周波数帯域BでPCC/SCC切り替え要求を受信すると、HeNB基地局200がPCC/SCC切り替えを実行したことを認識できる。これに伴って、通信端末100もPCC/SCC切り替えを実行する(シーケンスSQ116)。すなわち、通信端末100は、周波数帯域AをSCCとして設定するとともに、周波数帯域BをPCCとして設定する。その後、通信端末100は、PCCとして設定した周波数帯域BでPCC/SCC切り替え完了をHeNB基地局200へ通知する(シーケンスSQ118)。
 HeNB基地局200は、通信端末100からのPCC/SCC切り替え完了を受信すると、通信端末100もPCC/SCC切り替えを実行したことを認識する。そして、HeNB基地局200および通信端末100は、周波数帯域BをPCCとして利用するとともに、周波数帯域AをSCCとして利用することで、通信サービスを再開する(シーケンスSQ120)。
 このように、無線通信システムSYSは、PCC/SCC切り替え準備完了に応答して、HeNB基地局200と通信端末100との間で主たる周波数帯域(PCC)として利用される周波数帯域を切り替える処理を開始する機能を有する。
 図5に示す全体処理については、以下のように変形してもよい。
 通信端末100とHeNB基地局200との間で遣り取りされる各メッセージは、PCCとして利用している周波数帯域だけで通知するのではなく、PCCおよびSCCとして利用している両方の周波数帯域を用いて通知してもよい。例えば、HeNB基地局200からのPCC/SCC切り替え準備要求は、周波数帯域Aおよび周波数帯域Bの2つの周波数帯域を用いて通信端末100へ通知されてもよい。
 さらに、2つの周波数帯域の使用形態としても、2つの同じメッセージをそれぞれの周波数帯域を用いて独立に送信してもよいし、1つのメッセージを2つの周波数帯域を用いて送信してもよい。後者の場合には、典型的には、送信側で1つのメッセージを分割した上で2つの周波数帯域にそれぞれ割り当てて送信し、受信側で2つの周波数帯域でそれぞれ受信されたデータを合成して、1つのメッセージとして処理する方法が採用される。
 [e3:HeNB基地局における処理手順]
 次に、実施の形態1に従うHeNB基地局200における処理手順について説明する。図6は、実施の形態1に従う無線通信システムSYSのHeNB基地局200におけるPCC/SCC切り替えに係る処理手順を示すフローチャートである。
 図6を参照して、HeNB基地局200のレベル比較部214は、周波数帯域Aおよび周波数帯域Bの通信品質を監視する(ステップS100)。そして、HeNB基地局200の通信制御部212は、SCCとして利用している周波数帯域の通信品質がPCCとして利用している周波数帯域の通信品質より高いか否かを判断する(ステップS102)。PCCとして利用している周波数帯域の通信品質がSCCとして利用している周波数帯域の通信品質より低い場合(ステップS102においてNOの場合)には、処理はステップS100へ戻る。
 これに対して、SCCとして利用している周波数帯域の通信品質がPCCとして利用している周波数帯域の通信品質より高い場合(ステップS102においてYESの場合)には、HeNB基地局200の通信制御部212は、PCC/SCC切り替え準備要求を通信端末100へ通知する(ステップS104)。続いて、HeNB基地局200の通信制御部212は、通信端末100からのPCC/SCC切り替え準備完了を受信したか否かを判断する(ステップS106)。
 所定期間の間に通信端末100からのPCC/SCC切り替え準備完了を受信しなかった場合(ステップS106においてNOの場合)には、処理はステップS100へ戻る。
 これに対して、通信端末100からのPCC/SCC切り替え準備完了を受信した場合(ステップS106においてYESの場合)には、HeNB基地局200の通信制御部212は、通信サービスを一旦停止し(ステップS108)、PCC/SCC切り替えを実行する(ステップS110)。そして、HeNB基地局200の通信制御部212は、SCCとして利用していた周波数帯域でPCC/SCC切り替え要求を通信端末100へ通知する(ステップS112)。続いて、HeNB基地局200の通信制御部212は、通信端末100からのPCC/SCC切り替え完了を受信したか否かを判断する(ステップS114)。
 所定期間の間に通信端末100からのPCC/SCC切り替え完了を受信しなかった場合(ステップS114においてNOの場合)には、HeNB基地局200の通信制御部212は、ステップS110において実行したPCC/SCC切り替えを元に戻す(ステップS116)。そして、処理はステップS100へ戻る。
 これに対して、通信端末100からのPCC/SCC切り替え完了を受信した場合(ステップS114においてYESの場合)には、HeNB基地局200の通信制御部212は、PCCとSCCとを切り替えた状態で通信サービスを再開する(ステップS118)。そして、ステップS100以下の処理が繰り返される。
 [e4:通信端末における処理手順]
 次に、実施の形態1に従う通信端末100における処理手順について説明する。図7は、実施の形態1に従う無線通信システムSYSの通信端末100におけるPCC/SCC切り替えに係る処理手順を示すフローチャートである。
 図7を参照して、通信端末100の通信制御部112は、HeNB基地局200からのPCC/SCC切り替え準備要求を受信したか否かを判断する(ステップS200)。HeNB基地局200からのPCC/SCC切り替え準備要求を受信しなかった場合(ステップS200においてNOの場合)には、処理はステップS200へ戻る。
 これに対して、HeNB基地局200からのPCC/SCC切り替え準備要求を受信した場合(ステップS200においてYESの場合)には、通信端末100の通信制御部112は、SCCとして利用している周波数帯域の通信品質がPCCとして利用している周波数帯域の通信品質より高いか否かを判断する(ステップS202)。PCCとして利用している周波数帯域の通信品質がSCCとして利用している周波数帯域の通信品質より低い場合(ステップS202においてNOの場合)には、処理はステップS200へ戻る。
 これに対して、SCCとして利用している周波数帯域の通信品質がPCCとして利用している周波数帯域の通信品質より高い場合(ステップS202においてYESの場合)には、通信端末100の通信制御部112は、PCC/SCC切り替え準備完了をHeNB基地局200へ通知する(ステップS204)。続いて、通信端末100の通信制御部112は、通信サービスを一旦停止する(ステップS206)。そして、通信端末100の通信制御部112は、HeNB基地局200からのPCC/SCC切り替え要求を受信したか否かを判断する(ステップS208)。所定期間の間にHeNB基地局200からのPCC/SCC切り替え要求を受信しなかった場合(ステップS208においてNOの場合)には、処理はステップS200へ戻る。
 これに対して、HeNB基地局200からのPCC/SCC切り替え要求を受信した場合(ステップS208においてYESの場合)には、通信端末100の通信制御部112は、PCC/SCC切り替えを実行する(ステップS210)。そして、通信端末100の通信制御部112は、PCCとして設定した周波数帯域でPCC/SCC切り替え完了をHeNB基地局200へ通知する(ステップS212)。続いて、通信端末100の通信制御部112は、PCCとSCCとを切り替えた状態で通信サービスを再開する(ステップS214)。そして、ステップS200以下の処理が繰り返される。
 [e5:変形例]
 上述の図5において、HeNB基地局200がPCC/SCC切り替え準備要求を通信端末100へ通知した場合であっても、通信端末100側で通信品質を比較した結果、PCCとして利用している周波数帯域Aの通信品質の方がまだ良好であると判断されると、通信端末100がPCC/SCC切り替え準備要求に対するNACK(Not ACKnowledgement)信号を応答するようにしてもよい。PCC/SCC切り替え準備要求に対するNACK信号を受信すると、HeNB基地局200は、PCC/SCC切り替えを停止し、元の状態で通信サービスを継続することになる。
 あるいは、通信端末100側からは、NACK信号だけではなく、再処理要求が通知されるようにしてもよい。例えば、通信端末100が再処理要求を通知することで、HeNB基地局200は、最初の通信品質の測定から処理をやり直す。
 このように、通信端末100がNACK信号または再処理要求をHeNB基地局200へ通信する場合には、通信端末100がNACK信号または再処理要求を連続して通知しないように、以下のような処理を追加することが好ましい。
 すなわち、HeNB基地局200と通信端末100との間で通信品質の判断結果が異なるような場合には、PCC/SCC切り替え動作が連続して生じる可能性があるので、このような事態が生じないような処理を含ませる。言い換えれば、ある一定時間内にPCC/SCC切り替えが連続して実行されないようにするための処理が付加される。
 図8は、実施の形態1に従う無線通信システムSYSにおいてPCC/SCC切り替え動作が連続しないようにするための処理を説明するための図である。図8を参照して、HeNB基地局200は、PCC/SCC切り替え準備要求を通信端末100へ通知した後、所定期間の間はPCC/SCC切り替え準備要求の再通知を禁止する。例えば、HeNB基地局200がPCC/SCC切り替え準備要求を通信端末100へ通知したものの、これに対する通信端末100からのNACK信号を受信したとする。この場合において、HeNB基地局200がPCCとして利用している周波数帯域AとSCCとして利用している周波数帯域Bとの間で通信品質を再度比較した結果、やはりSCCとして利用している周波数帯域Bの通信品質の方が良好であると判断すると、短時間の間に、PCC/SCC切り替え準備要求を繰り返し通知してしまうことになる。上述のような通知禁止の期間を設けることで、このような繰り返し通知を回避できる。
 このような通知禁止の期間を設ける方法として、PCC/SCC切り替え準備要求が通知に応答して起動されるタイマーを設けて、一定時間の間隔を確保する。HeNB基地局200は、このタイマーが満了するまでは、次のPCC/SCC切り替え準備要求を通知しない。
 [e6:利点]
 本実施の形態に従う無線通信システムSYSによれば、HeNB基地局200と通信端末100とがキャリアアグリゲーションを利用して通信を行っている場合に、簡素化された手順でPCC/SCC切り替えを行うことができる。
 より具体的には、本実施の形態に従う無線通信システムSYSによれば、Cell_IDを変更する必要がないため、PCC/SCC切り替えの実行に際して、MME400などへの通知が必要ない。すなわち、HeNB基地局200と通信端末100との間の処理だけで済む。これによって、コアネットワークの処理負荷を低減できる。
 また、ハンドオーバ処理を利用する場合のような、ユーザデータのスループットの瞬間的に低下するという事態を避けることができる。そのため、平均スループットを向上させることができる。さらに、RACH処理などの複雑な処理が不要である。
 キャリアアグリゲーションにおいて、PCCは、通信サービスを管理する制御信号を含むので、一般的に、PCCの周波数利用率が高くなる傾向がある。そのため、HeNB基地局200から見れば、ある一つの周波数帯域をPCCとして利用する通信端末100が増加すると、その周波数帯域の利用効率が高くなり、結果的にその周波数帯域の信号処理負荷が増加することになる。そこで、本実施の形態に従うようなPCC/SCC切り替えを利用して、PCCとして利用している周波数帯域とSCCとして利用している周波数帯域とを切り替えることで、特定の周波数帯域の信号処理負荷を軽減することができる。すなわち、PUCCHはPCCのみで扱われるので、PUCCHを扱わないSCCではPCCに比較してリソースの割り当てに余裕がある。このように、周波数帯域の利用効率を分散できる。
 本実施の形態に従う無線通信システムSYSは、無線環境条件に基づく通信端末100の個別切り替え方式を採用する。すなわち、無線環境が悪化した通信端末100についてのみ、PCC/SCC切り替えの処理を実行するので、HeNB基地局200における信号処理負荷を少なくできる。また、個々の通信端末100における無線環境に応じて、PCC/SCC切り替えを柔軟に対処できる。
 <F:実施の形態1の変形例>
 実施の形態1の変形例として、利用可能なリソースが不足している場合に、PCC/SCC切り替えを実行する方式について説明する。この方式は、リソース配分による通信端末の個別切り替え方式である。
 上述の実施の形態1においては、無線環境が悪化を起因として、PCC/SCC切り替えが開始される例について説明したが、これに限らず、リソース不足を起因としてPCC/SCC切り替えを開始してもよい。例えば、HeNB基地局200のPCCで利用しているコンポーネントキャリアのリソースが不足し、一方で、SCCで利用しているコンポーネントキャリアのリソースに空きがある場合に、当該HeNB基地局200と通信中の通信端末100に対して、PCC/SCC切り替えを実行する。
 実施の形態1の変形例に従うHeNB基地局200は、主たる周波数帯域(PCC)として利用されている周波数帯域(コンポーネントキャリア)のリソースが不足しているか否かを判断する機能を有する。この機能は、主として、通信制御部212およびデータ処理部204(図4)によって実現される。
 この場合、PCC/SCC切り替えの処理自体は、上述の実施の形態1において説明した処理と同様である。そのため、処理の詳細な内容については、その説明を繰り返さない。
 言い換えれば、HeNB基地局200は、扱っているコンポーネントキャリアのリソースの状態を監視し、PCCとして利用している周波数帯域のリソースが不足したことを契機に、PCC/SCC切り替えの処理を開始する。
 上述したようなリソース配分による通信端末の個別切り替え方式を採用することで、上述の実施の形態1における利点に加えて、以下のような利点が得られる。すなわち、HeNB基地局200と通信端末100との間で利用されるコンポーネントキャリアのリソースの負荷を分散させることができ、特定のコンポーネントキャリアが集中的に利用されることを回避できる。
 また、コンポーネントキャリアのリソース配分が均等化されるので、空いたリソースを利用して、新たな通信端末100を接続することもできる。言い換えれば、リソースの利用効率を高めて、より多くの通信端末100がHeNB基地局200と通信できる。
 <G:実施の形態2>
 [g1:概要]
 実施の形態2として、SCCとして利用される周波数帯域が複数ある場合のPCC/SCC切り替えについて説明する。
 図9は、実施の形態2に従う無線通信システムSYSにおけるコンポーネントキャリア(PCC/SCC)の切り替え処理の一例を示す模式図である。実施の形態1においては、周波数帯域AをPCCとして利用し、周波数帯域BをSCCとして利用している状態において、PCCとSCCとの切り替え処理の実行方法について説明した。これに対して、実施の形態2においては、図9に示すように、周波数帯域AをPCCとして利用し、周波数帯域Bを第1のSCC(SCC1)として利用し、周波数帯域Cを第2のSCC(SCC2)として利用している状態において、周波数帯域BをPCCとして利用し、周波数帯域AをSCC1として利用するように、切り替えを行う方法について説明する。すなわち、実施の形態2において、HeNB基地局200と通信端末100との間の通信に利用される複数の周波数帯域は、従たる周波数帯域(SCC)を複数含んでいる。
 [g2:全体手順]
 次に、実施の形態2に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理について説明する。
 実施の形態1において説明したように、2つのコンポーネントキャリア(周波数帯域)を利用するキャリアアグリゲーションでは、PCCとSCCとの切り替え処理において、対象となるPCCおよびSCCの周波数帯域が明確であるため、切り替え対象の周波数帯域を通信端末100へ通知しなくてもよい。これに対して、3つ以上のコンポーネントキャリア(周波数帯域)を利用している場合、すなわち2つ以上のSCCが設定されている場合には、現在SCCとして利用されている周波数帯域のいずれをPCCとして利用すべきかを指定する必要がある。
 そこで、実施の形態2においては、周波数帯指定情報を含むPCC/SCC切り替え準備要求が通信端末100へ通知される。
 図10は、実施の形態2に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。図10を参照して、初期状態として、HeNB基地局200は、周波数帯域AをPCCとして利用し、周波数帯域BをSCC1として利用し、周波数帯域CをSCC2として利用することで、通信端末100との間で通信を行っているとする。
 この通信端末100との通信中、HeNB基地局200のレベル比較部214は、周波数帯域A、周波数帯域B、周波数帯域Cの通信品質を監視する。すなわち、HeNB基地局200のレベル比較部214は、PCC、SCC1、SCC2の3つの周波数帯域について通信品質を比較する(シーケンスSQ100A)。
 HeNB基地局200のレベル比較部214は、SCC1として利用している周波数帯域Bの通信品質が他の周波数帯域の通信品質に比較して最も良好と判断すると、PCC/SCC切り替え準備要求を通信端末100へ通知する(シーケンスSQ102A)。ここで、HeNB基地局200は、PCC/SCC切り替え準備要求に、周波数帯域BをPCCとして利用するべきことを示す情報(周波数帯域指定情報)を追加する。
 すなわち、HeNB基地局200に設けられた通知手段(データ処理部204、通信制御部212およびレベル比較部214)は、複数の周波数帯域のうち主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を通信端末100へ通知する。このとき、HeNB基地局200に設けられた通知手段は、切り替え対象の従たる周波数帯域(SCC)を示す情報を含む切り替えの準備要求を通知する。
 HeNB基地局200からのPCC/SCC切り替え準備要求を受信すると、通信端末100のレベル比較部114は、周波数帯域A、周波数帯域B、周波数帯域Cの通信品質を監視する。すなわち、通信端末100のレベル比較部114は、PCC、SCC1、SCC2の3つの周波数帯域について通信品質を比較する(シーケンスSQ104A)。
 HeNB基地局200のレベル比較部214は、SCC1として利用している周波数帯域Bの通信品質が他の周波数帯域の通信品質に比較して最も良好と判断すると、通信端末100は、PCC/SCC切り替え準備完了をHeNB基地局200へ通知する(シーケンスSQ106A)。
 すなわち、通信端末100に設けられた判断手段(データ処理部104、通信制御部112およびレベル比較部114)は、切り替えの準備要求に応答して、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であるか否かを判断する。そして、通信端末100に設けられた通知手段(通信制御部112)は、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了をHeNB基地局200へ通知する。
 通信端末100は、PCC/SCC切り替え準備完了を通知した後、通信サービスを一旦停止し(シーケンスSQ108)、SCC1として利用していた周波数帯域BでHeNB基地局200からのPCC/SCC切り替え要求を待つ(シーケンスSQ112)。
 以下の処理については、図5に示すシーケンス図の対応するシーケンス番号の処理と同様であるので、詳細な説明は繰り返さない。
 以上のようなPCC/SCC切り替えの処理によって、周波数帯域AはPCCからSCC1へ切り替えられ、周波数帯域BはSCC1からPCCへ切り替えられ、周波数帯域CはそのままSCC2として利用されて、通信サービスが継続される。
 図10に示す全体処理については、以下のように変形してもよい。
 シーケンスSQ104Aにおいて、通信端末100は、PCC/SCC切り替え準備要求を受信した後、利用している3つの周波数帯域すべての通信品質を比較し、最も良好な通信品質の周波数帯域を選択する例を示したが、切り替え候補の周波数帯域のみについての通信品質を評価してもよい。図10に示す例では、PCCとして利用している周波数帯域Aと、HeNB基地局200から指定された周波数帯域Bとの2つの周波数帯域についてのみ、通信品質を比較して、いずれの周波数帯域がより良好であるかを判断してもよい。
 また、図10には、3つの周波数帯域を利用したキャリアアグリゲーションについて説明したが、4つ以上の周波数帯域を利用したキャリアアグリゲーションにおいても同様に適用することができるのは自明である。
 [g3:HeNB基地局における処理手順]
 実施の形態2に従うHeNB基地局200における処理手順については、図6に示す実施の形態1に従う処理手順と比較して、通信品質を監視する周波数帯域の数(ステップS100に対応)、および、周波数帯指定情報を含むPCC/SCC切り替え準備要求を通知する点(ステップS104に対応)が異なるのみであるので、詳細な説明は繰り返さない。
 [g4:通信端末における処理手順]
 実施の形態2に従う通信端末100における処理手順については、図7に示す実施の形態1に従う処理手順と比較して、通信品質を監視する周波数帯域の数(ステップS202に対応)が異なるのみであるので、詳細な説明は繰り返さない。
 [g5:変形例]
 複数のSCCを利用してキャリアアグリゲーションを行っている場合に、HeNB基地局200からのPCC/SCC切り替え準備要求に応答して、通信端末100が通信品質を比較した結果、HeNB基地局200の指定した周波数帯域とは異なる周波数帯域の通信品質の方がより良好であると判断したときには、PCC/SCC切り替え処理をやり直すように通知してもよい。この場合には、通信端末100が再処理要求またはNACK信号をHeNB基地局200へ通知してもよい。この通知に応答して、HeNB基地局200は、周波数帯域の通信品質の比較をやり直し、PCC/SCC切り替えの処理を再試行する。
 上述の説明においては、HeNB基地局200からの切り替え準備要求に周波数帯域情報を追加する処理例を示したが、周波数帯域情報に加えてまたはそれに代えて、PCC/SCC切り替え処理の対象となるSCCを特定するための番号または記号を予め定めておいて、その番号または記号を用いてSCCに対応する周波数帯域と特定するようにしてもよい。
 例えば、HeNB基地局200で複数のコンポーネントキャリアを運用している場合に、PCCとして利用する周波数帯域を「1」、SCC1として利用する周波数帯域を「2」、SCC2として利用する周波数帯域を「3」というように番号を予め割り当てておき、PCCとして利用する周波数帯域を変更する際には、これらの「2」または「3」の番号を通知することで、周波数帯域情報を代替することができる。あるいは、周波数帯域毎に割り当てた番号を通知するよう方法を採用することもできる。
 [g6:利点]
 本実施の形態に従う無線通信システムSYSによれば、HeNB基地局200と通信端末100とがキャリアアグリゲーションを利用して通信を行っている場合に、簡素化された手順でPCC/SCC切り替えを行うことができる。
 より具体的には、本実施の形態に従う無線通信システムSYSによれば、Cell_IDを変更する必要がないため、PCC/SCC切り替えの実行に際して、MME400などへの通知が必要ない。すなわち、HeNB基地局200と通信端末100との間の処理だけで済む。これによって、コアネットワークの処理負荷を低減できる。
 また、ハンドオーバ処理を利用する場合のような、ユーザデータのスループットの瞬間的に低下するという事態を避けることができる。そのため、平均スループットを向上させることができる。さらに、RACH処理などの複雑な処理が不要である。
 キャリアアグリゲーションにおいて、PCCは、通信サービスを管理する制御信号を含むので、一般的に、PCCの周波数利用率が高くなる傾向がある。そのため、HeNB基地局200から見れば、ある一つの周波数帯域をPCCとして利用する通信端末100が増加すると、その周波数帯域の利用効率が高くなり、結果的にその周波数帯域の信号処理負荷が増加することになる。そこで、本実施の形態に従うようなPCC/SCC切り替えを利用して、PCCとして利用されている周波数帯域とSCCとして利用されている周波数帯域とを切り替えることで、特定の周波数帯域の信号処理負荷を軽減することができる。すなわち、PUCCHはPCCのみで扱われるので、PUCCHを扱わないSCCではPCCに比較してリソースの割り当てに余裕がある。このように、周波数帯域の利用効率を分散できる。
 <H:実施の形態3>
 [h1:概要]
 上述の実施の形態1および2においては、HeNB基地局200からのPCC/SCC切り替え準備要求を、HeNB基地局200との間で通信を行っている通信端末100に対して、個別の制御信号で通知する方法を例示した。これに対して、実施の形態3においては、HeNB基地局200のサービスエリアに在圏しているすべての通信端末100に対して、PCC/SCC切り替え準備要求を共通の報知情報で通知する方法について説明する。すなわち、実施の形態3においては、HeNB基地局200と通信している通信端末100に対して、PCC/SCC切り替えを一斉に実行する方式について説明する。この方式は、報知情報による一斉切り替え方式である。
 [h2:全体手順]
 次に、実施の形態3に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理について説明する。
 実施の形態3においては、報知情報を用いて、HeNB基地局200からのPCC/SCC切り替え準備要求が通知される。報知情報を用いることで、HeNB基地局200に接続している通信端末100に対して、PCC/SCC切り替え準備要求が一斉に通知されることになるが、キャリアアグリゲーションを利用していないHeNB基地局200と通信を行っている通信端末100は、この報知情報を無視する。そのため、キャリアアグリゲーションを利用してHeNB基地局200と通信を行っている通信端末100だけが、PCC/SCC切り替えを実行することになる。
 図11は、実施の形態3に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。図11には、説明の便宜上、2つの通信端末100-1および100-2がキャリアアグリゲーションを利用してHeNB基地局200と通信を行っている例を示す。すなわち、HeNB基地局200には複数の通信端末100-1,100-2が接続されている。
 初期状態として、通信端末100-1は、周波数帯域AをPCCとして利用し、周波数帯域BをSCCとして利用することで、通信端末100-2は、周波数帯域AをSCCとして利用し、周波数帯域BをPCCとして利用することで、HeNB基地局200との間でそれぞれ通信を行っているとする。なお、HeNB基地局200は、より多くの通信端末100とキャリアアグリゲーションを利用して通信を行っている場合もある。
 通信端末100-1,100-2との通信中、HeNB基地局200の通信制御部212は、各周波数帯域についての信号処理負荷の状況を判断する(シーケンスSQ101)。例えば、HeNB基地局200が複数の通信端末100と通信を行っている場合に、周波数帯域Aの周波数利用率が高くなって周波数帯域Aの信号処理負荷が増加し、一方で、周波数帯域Bの周波数利用率は低いままで周波数帯域Bの信号処理負荷には余裕があるときなどには、HeNB基地局200のサービスエリアに在圏している通信端末100に対して、PCC/SCC切り替え準備要求が一斉に通知される(シーケンスSQ102B)。このPCC/SCC切り替え準備要求の一斉通知には、報知情報が用いられる。
 すなわち、HeNB基地局200に設けられた通知手段(データ処理部204、通信制御部212およびレベル比較部214)は、複数の周波数帯域のうち主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であることを検出すると、HeNB基地局200に接続されている通信端末100に対して、切り替えの準備要求を一斉に通知する。
 HeNB基地局200のサービスエリアに在圏して通信サービスを受けている通信端末のうち、その時点で周波数帯域AをPCCとして利用し、周波数帯域BをSCCと利用している通信端末100-1は、PCC/SCC切り替え準備要求を受信すると、周波数帯域Aと周波数帯域Bとの間で通信品質を比較する(ステップS104)。そして、PCCとして利用している周波数帯域AとSCCとして利用している周波数帯域Bとを切り替える方が通信スループットの向上につながると判断すると、通信端末100-1は、PCC/SCC切り替え準備完了をHeNB基地局200へ通知する(シーケンスSQ106)。
 すなわち、通信端末100-1に設けられた判断手段(データ処理部104、通信制御部112およびレベル比較部114)は、切り替えの準備要求に応答して、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であるか否かを判断する。そして、通信端末100-1に設けられた通知手段(通信制御部112)は、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了をHeNB基地局200へ通知する。
 これに対して、PCC/SCC切り替えを指示された状態で既にキャリアアグリゲーションを行っている通信端末100-2は、NACK信号をHeNB基地局200へ通知する(シーケンスSQ107)。あるいは、PCCとして利用している周波数帯域AとSCCとして利用している周波数帯域Bとを切り替えても通信スループットを向上できないと判断した通信端末100-2は、NACK信号をHeNB基地局200へ通知する。
 すなわち、通信端末100-2に設けられた判断手段(データ処理部104、通信制御部112およびレベル比較部114)は、切り替えの準備要求の対象でなければ、周波数帯域を切り替える処理を行わないことをHeNB基地局200へ通知する。
 HeNB基地局200は、切り替え準備完了を応答した通信端末100-1に対してだけ、PCC/SCC切り替えを実行する。すなわち、NACK信号を応答した通信端末100-1に対しては、PCC/SCC切り替えを実行しない。
 PCC/SCC切り替えの処理は、上述の実施の形態1における処理と同様であるので、詳細な説明は繰り返さない。
 周波数帯域AをPCCとして利用していた一部の通信端末100(通信端末100-1)を、周波数帯域BをPCCと利用するように切り替えることで、周波数帯域Aの利用を分散させることができる。
 [h3:HeNB基地局における処理手順]
 実施の形態3に従うHeNB基地局200における処理手順については、図6に示す実施の形態1に従う処理手順と比較して、信号処理負荷の状況を判断する処理(ステップS100およびS102に対応)、および、PCC/SCC切り替え準備要求を通知する方法(ステップS104に対応)が異なるのみであるので、詳細な説明は繰り返さない。
 [h4:通信端末における処理手順]
 実施の形態3に従う通信端末100における処理手順については、図7に示す実施の形態1に従う処理手順と実質的に同一であるので、詳細な説明は繰り返さない。
 [h5:利点]
 本実施の形態に従う無線通信システムSYSによれば、HeNB基地局200と通信端末100とがキャリアアグリゲーションを利用して通信を行っている場合に、簡素化された手順でPCC/SCC切り替えを行うことができる。
 より具体的には、本実施の形態に従う無線通信システムSYSによれば、Cell_IDを変更する必要がないため、PCC/SCC切り替えの実行に際して、MME400などへの通知が必要ない。すなわち、HeNB基地局200と通信端末100との間の処理だけで済む。これによって、コアネットワークの処理負荷を低減できる。
 また、ハンドオーバ処理を利用する場合のような、ユーザデータのスループットの瞬間的に低下するという事態を避けることができる。そのため、平均スループットを向上させることができる。さらに、RACH処理などの複雑な処理が不要である。
 キャリアアグリゲーションにおいて、PCCは、通信サービスを管理する制御信号を含むので、一般的に、PCCの周波数利用率が高くなる傾向がある。そのため、HeNB基地局200から見れば、ある一つの周波数帯域をPCCとして利用する通信端末100が増加すると、その周波数帯域の利用効率が高くなり、結果的にその周波数帯域の信号処理負荷が増加することになる。そこで、本実施の形態に従うようなPCC/SCC切り替えを利用して、PCCとして利用している周波数帯域とSCCとして利用している周波数帯域とを切り替えることで、特定の周波数帯域の信号処理負荷を軽減することができる。すなわち、PUCCHはPCCのみで扱われるので、PUCCHを扱わないSCCではPCCに比較してリソースの割り当てに余裕がある。このように、周波数帯域の利用効率を分散できる。
 本実施の形態に従う無線通信システムSYSは、報知情報による一斉切り替え方式を採用する。そのため、HeNB基地局200に接続している通信端末100が少ない場合には、PCC/SCC切り替え処理をまとめて実行できるので、HeNB基地局200の信号処理負荷が小さく、PCC/SCC切り替え処理に要する時間を短縮できる。
 <I:実施の形態4>
 [i1:概要]
 実施の形態4として、HeNB基地局200が提供する通信サービスの種別に応じたPCC/SCC切り替えについて説明する。この方式は、サービス種別に基づく通信端末の個別切り替え方式である。
 現在の規格では、HeNB基地局200が提供するサービス種別は、CSG(Closed Subscriber Group)セル、OPENセル、Hybridセルの3種類を含むことになっている。CSGセルは、限られた特定の通信端末に対して接続が許可される。OPENセルは、不特定多数の通信端末の接続が許可される。Hybridセルは、OPENセルおよびCSGセルの両特徴を併せ持つセルであり、その時々で、CSGおよびOPENの両方の接続が可能である。
 一般的に、OPENセルは、不特定多数の通信端末が接続可能となり、周波数利用率が高くなるため、一つの通信端末が利用できるリソース割り当ては少なくなる。一方、CSGセルは、限られた特定の通信端末だけが接続できるので、一つの通信端末が利用できるリソースを比較的容易に増加させることができる。
 例えば、PCCとして利用されているコンポーネントキャリアがOPENセルまたはHybridセルであって、SCCとして利用されているコンポーネントキャリアがCSGセルである場合を考える。この場合、OPENセルまたはHybridセルとして提供されているコンポーネントキャリアがPCCとして利用されるので、SCCとして利用される場合に比較して、より多くのリソースが占有される。一方で、OPENセルまたはHybridセルとして提供されているコンポーネントキャリアには、より多くの不特定の通信端末が接続できるようにすることが好ましく、そのため、PCCとSCCとを切り替えて、可能な限りリソースを空けることが好ましい。
 そこで、実施の形態4においては、HeNB基地局200がOPENセルまたはHybridセルとして提供しているコンポーネントキャリアをPCCとして利用している通信端末100に対して、PCC/SCC切り替えを実行させる。すなわち、実施の形態4においては、複数の周波数帯域にそれぞれサービス種別が定義されている。
 この場合には、PCC/SCC切り替えの実行後に、対象のコンポーネントキャリアをPCCとして利用できる通信端末100だけに通知を行う必要があるので、HeNB基地局200は、通信端末100が保有するCSG_IDを確認した上で、PCC/SCC切り替えを開始することになる。
 すなわち、実施の形態4においては、CSGセルを利用できる通信端末100だけに対して、PCC/SCC切り替え準備要求を通知する。PCC/SCC切り替えの実行後、PCCとして利用されるコンポーネントキャリアはCSGセルとなり、SCCとして利用されるコンポーネントキャリアはOPENセルまたはHybridセルとなる。
 [i2:全体手順]
 次に、実施の形態4に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理について説明する。
 図12は、実施の形態4に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。図12には、説明の便宜上、HeNB基地局200が提供する周波数帯域AのコンポーネントキャリアがOPENセルであり、周波数帯域BのコンポーネントキャリアがCSGセルである例を示す。初期状態として、初期状態として、通信端末100-1は、周波数帯域AをPCCとして利用し、周波数帯域BをSCCとして利用することで、通信端末100-2は、周波数帯域AをSCCとして利用し、周波数帯域BをPCCとして利用することで、HeNB基地局200との間でそれぞれ通信を行っているとする。なお、HeNB基地局200は、より多くの通信端末100とキャリアアグリゲーションを利用して通信を行っている場合もある。
 通信端末100-1,100-2との通信中、HeNB基地局200の通信制御部212は、OPENセルをPCCとして利用している通信端末を特定する(シーケンスSQ103)。図12に示す例では、HeNB基地局200は、通信端末100-1がOPENセルである周波数帯域AをPCCとして利用し、CSGセルである周波数帯域BをSCCとして利用していることを認識すると、周波数帯域AをPCCとして利用している通信端末100-1に向けて、PCC/SCC切り替え準備要求を通知する(シーケンスSQ102)。ここで、PCC/SCC切り替え準備要求は、PCCとして利用している周波数帯域Aを利用して送信される。これは、OPENセルを提供している周波数帯域Aのリソースを空けて、不特定多数の通信端末が接続できるようにすることを目的としている。
 すなわち、HeNB基地局200に設けられた通知手段(データ処理部204、通信制御部212およびレベル比較部214)は、複数の周波数帯域のうち主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を通信端末100-1へ通知する。このとき、HeNB基地局200に設けられた通知手段は、主たる周波数帯域(PCC)として利用される周波数帯域のサービス種別に基づいて、主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する。
 HeNB基地局200のサービスエリアに在圏して通信サービスを受けている通信端末のうち、それまで周波数帯域AをPCCとして利用し、周波数帯域BをSCCとして利用していた通信端末100-1は、PCC/SCC切り替え準備要求を受信すると、周波数帯域Aと周波数帯域Bとの通信品質を比較する。周波数帯域Aと周波数帯域Bとの通信品質を比較した結果、PCCとSCCとを切り替えるべきと判断すると、通信端末100-1は、PCC/SCC切り替え準備完了をHeNB基地局200へ通知する(シーケンスSQ106)。
 HeNB基地局200は、切り替え準備完了を応答した通信端末100-1に対してだけ、PCC/SCC切り替えを実行する。PCC/SCC切り替えの処理は、上述の実施の形態1における処理と同様であるので、詳細な説明は繰り返さない。
 なお、HeNB基地局200は、周波数帯域AをSCCとして利用し、周波数帯域BをPCCとして利用している通信端末100-2に対しては、PCC/SCC切り替え準備要求を通知しない。
 図12のシーケンスSQ103において、HeNB基地局200は、通信端末100のサービス種別を評価し、PCCとSCCとを切り替えることが可能であると判断した通信端末100-1だけに対して、PCC/SCC切り替え準備要求を通知する。
 すなわち、実施の形態4において、HeNB基地局200は、提供しているサービス毎に優先順位を設定しておき、その優先順位に従ってPCCとSCCとを切り替える。このとき、基本的な思想としては、CSGセルとして提供されている周波数帯域はなるべくPCCとして利用し、OPENセルとして提供している周波数帯域はなるべくSCCとして利用するように、PCCとSCCとの切り替えを行う。
 なお、周波数帯域Aおよび周波数帯域Bが同じサービス種別である場合には、上述の実施の形態1において説明したように、通信品質を比較して、PCC/SCC切り替えの要否を判断してもよい。
 [i3:HeNB基地局における処理手順]
 実施の形態4に従うHeNB基地局200における処理手順については、図6に示す実施の形態1に従う処理手順と比較して、OPENセルをPCCとして利用している通信端末を特定する処理(ステップS100およびS102に対応)が異なるのみであるので、詳細な説明は繰り返さない。
 [i4:通信端末における処理手順]
 実施の形態4に従う通信端末100における処理手順については、図7に示す実施の形態1に従う処理手順と実質的に同一であるので、詳細な説明は繰り返さない。
 [i5:利点]
 本実施の形態に従う無線通信システムSYSによれば、HeNB基地局200と通信端末100とがキャリアアグリゲーションを利用して通信を行っている場合に、簡素化された手順でPCC/SCC切り替えを行うことができる。
 より具体的には、本実施の形態に従う無線通信システムSYSによれば、Cell_IDを変更する必要がないため、PCC/SCC切り替えの実行に際して、MME400などへの通知が必要ない。すなわち、HeNB基地局200と通信端末100との間の処理だけで済む。これによって、コアネットワークの処理負荷を低減できる。
 また、ハンドオーバ処理を利用する場合のような、ユーザデータのスループットの瞬間的に低下するという事態を避けることができる。そのため、平均スループットを向上させることができる。さらに、RACH処理などの複雑な処理が不要である。
 キャリアアグリゲーションにおいて、PCCは、通信サービスを管理する制御信号を含むので、一般的に、PCCの周波数利用率が高くなる傾向がある。そのため、HeNB基地局200から見れば、ある一つの周波数帯域をPCCとして利用する通信端末100が増加すると、その周波数帯域の利用効率が高くなり、結果的にその周波数帯域の信号処理負荷が増加することになる。そこで、本実施の形態に従うようなPCC/SCC切り替えを利用して、PCCとして利用している周波数帯域とSCCとして利用している周波数帯域とを切り替えることで、特定の周波数帯域の信号処理負荷を軽減することができる。すなわち、PUCCHはPCCのみで扱われるので、PUCCHを扱わないSCCではPCCに比較してリソースの割り当てに余裕がある。このように、周波数帯域の利用効率を分散できる。
 本実施の形態に従う無線通信システムSYSは、サービス種別に基づく通信端末の個別切り替え方式を採用する。本方式を採用することで、CSGセルとして利用できるコンポーネントキャリアをPCCとして専有できる。また、OPENセルまたはHybridセルとして利用できるコンポーネントキャリアのリソースの利用率を下げることができるので、より多くの通信端末100がHeNB基地局200に接続できるようになる。
 <J:実施の形態5>
 [j1:概要]
 上述の実施の形態1~4においては、HeNB基地局200が主導して、PCC/SCC切り替えを実行する処理例について説明したが、通信端末100が主導して、PCC/SCC切り替えを実行するようにしてもよい。実施の形態5においては、通信端末100が主導してPCC/SCC切り替えを実行する例について説明する。すなわち、実施の形態5に従う方式は、通信端末100の主導による切り替え方式である。
 より具体的には、通信端末100がPCCとSCCとを切り替える手段として、通信端末100からHeNB基地局200へPCC/SCC切り替え準備要求が送信される。このPCC/SCC切り替え準備要求に応答して、HeNB基地局200は、PCC/SCC切り替えを開始する。
 [j2:全体手順]
 次に、実施の形態5に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理について説明する。図13は、実施の形態5に従う無線通信システムSYSにおけるPCC/SCC切り替えの全体処理を示すシーケンス図である。図13に示すシーケンス図は、図5に示すシーケンス図において、実質的にHeNB基地局200と通信端末100との機能を入れ替えたものである。
 図13を参照して、初期状態として、HeNB基地局200は、周波数帯域AをPCCとして利用し、周波数帯域BをSCCとして利用することで、通信端末100との間で通信を行っているとする。
 このHeNB基地局200との通信中、通信端末100のレベル比較部114は、周波数帯域Aおよび周波数帯域Bの通信品質を監視する。すなわち、通信端末100のレベル比較部114は、PCCとSCCとの間で通信品質を比較する(シーケンスSQ200)。
 通信端末100のレベル比較部114は、PCCとして利用している周波数帯域Aの通信品質が、SCCとして利用している周波数帯域Bの通信品質より劣化していることを検出し、PCCとして利用している周波数帯域を変更する方が通信スループットの向上につながると判断すると、PCC/SCC切り替え準備要求をHeNB基地局200へ通知する(シーケンスSQ202)。ここで、PCC/SCC切り替え準備要求は、PCCとして利用している周波数帯域Aを利用して送信される。
 なお、PCCとして利用している周波数帯域の通信品質が劣化していることを検出する以外に、PUCCHの応答が遅いなどの状況(すなわち、通信端末100が利用するPUCCHのリソース割り当てが不十分であると判断された場合)の発生を検出して、通信端末100からのPCC/SCC切り替え準備要求がHeNB基地局200へ通知してもよい。
 すなわち、通信端末100に設けられた通知手段(データ処理部104、通信制御部112およびレベル比較部114)は、複数の周波数帯域のうち主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求をHeNB基地局200へ通知する。
 通信端末100からのPCC/SCC切り替え準備要求を受信すると、HeNB基地局200のレベル比較部214は、PCCとSCCとの間で通信品質を比較する(シーケンスSQ204)。HeNB基地局200のレベル比較部214がPCCとSCCとの間で通信品質を比較した結果、PCCとして利用している周波数帯域Aの通信品質が悪化し、SCCとして利用している周波数帯域Bの通信品質の方が良好であると判断すると、HeNB基地局200は、PCC/SCC切り替え準備完了を通信端末100へ通知する(シーケンスSQ206)。
 すなわち、HeNB基地局200に設けられた判断手段(データ処理部204、通信制御部212およびレベル比較部214)は、切り替えの準備要求に応答して、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であるか否かを判断する。そして、HeNB基地局200に設けられた通知手段(通信制御部212)は、主たる周波数帯域(PCC)として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を通信端末100へ通知する。
 HeNB基地局200は、PCC/SCC切り替え準備完了を通知した後、通信サービスを一旦停止し(シーケンスSQ208)、SCCとして利用していた周波数帯域Bで通信端末100からのPCC/SCC切り替え要求を待つ(シーケンスSQ212)。
 以下、図5に示すシーケンスSQ114~SQ118と同様のシーケンスSQ214~SQ218が実行される。そして、通信端末100およびHeNB基地局200は、周波数帯域BをPCCとして利用するとともに、周波数帯域AをSCCとして利用することで、通信サービスを再開する(シーケンスSQ220)。
 このように、無線通信システムSYSは、PCC/SCC切り替え準備完了に応答して、HeNB基地局200と通信端末100との間で主たる周波数帯域(PCC)として利用される周波数帯域を切り替える処理を開始する機能を有する。
 図13に示す全体処理については、以下のように変形してもよい。
 通信端末100からHeNB基地局200へ通知されるPCC/SCC切り替え準備要求に、PCC/SCC切り替え後にPCCとして利用されるコンポーネントキャリアを指定する情報を付加してもよい。この場合には、HeNB基地局200は、通信端末100からのPCC/SCC切り替え要求に対して、PCC/SCC切り替えの要否を個別に判断する。
 また、上述の実施の形態1において説明したように、通信端末100とHeNB基地局200との間で遣り取りされる各メッセージは、PCCとして利用している周波数帯域だけで通知するのではなく、PCCおよびSCCとして利用している両方の周波数帯域を用いて通知してもよい。例えば、通信端末100からのPCC/SCC切り替え準備要求は、周波数帯域Aおよび周波数帯域Bの2つの周波数帯域を用いてHeNB基地局200へ通知されてもよい。
 さらに、2つの周波数帯域の使用形態としても、2つの同じメッセージをそれぞれの周波数帯域を用いて独立に送信してもよいし、1つのメッセージを2つの周波数帯域を用いて送信してもよい。後者の場合には、典型的には、送信側で1つのメッセージを分割した上で2つの周波数帯域にそれぞれ割り当てて送信し、受信側で2つの周波数帯域でそれぞれ受信されたデータを合成して、1つのメッセージとして処理する方法が採用される。
 [j3:通信端末およびHeNB基地局における処理手順]
 実施の形態5に従う通信端末100およびHeNB基地局200における処理手順については、それぞれ、図6および図7に示すHeNB基地局200および通信端末100における処理手順を互いに入れ替えたものと同等であるので、詳細な説明は繰り返さない。
 [j4:利点]
 本実施の形態に従う無線通信システムSYSによれば、HeNB基地局200と通信端末100とがキャリアアグリゲーションを利用して通信を行っている場合に、簡素化された手順でPCC/SCC切り替えを行うことができる。
 より具体的には、本実施の形態に従う無線通信システムSYSによれば、Cell_IDを変更する必要がないため、PCC/SCC切り替えの実行に際して、MME400などへの通知が必要ない。すなわち、HeNB基地局200と通信端末100との間の処理だけで済む。これによって、コアネットワークの処理負荷を低減できる。
 また、ハンドオーバ処理を利用する場合のような、ユーザデータのスループットの瞬間的に低下するという事態を避けることができる。そのため、平均スループットを向上させることができる。さらに、RACH処理などの複雑な処理が不要である。
 キャリアアグリゲーションにおいて、PCCは、通信サービスを管理する制御信号を含むので、一般的に、PCCの周波数利用率が高くなる傾向がある。そのため、HeNB基地局200から見れば、ある一つの周波数帯域をPCCとして利用する通信端末100が増加すると、その周波数帯域の利用効率が高くなり、結果的にその周波数帯域の信号処理負荷が増加することになる。そこで、本実施の形態に従うようなPCC/SCC切り替えを利用して、PCCとして利用している周波数帯域とSCCとして利用している周波数帯域とを切り替えることで、特定の周波数帯域の信号処理負荷を軽減することができる。すなわち、PUCCHはPCCのみで扱われるので、PUCCHを扱わないSCCではPCCに比較してリソースの割り当てに余裕がある。このように、周波数帯域の利用効率を分散できる。
 本実施の形態に従う無線通信システムSYSは、通信端末100の主導で行う個別切り替え方式を採用する。この方式において、通信端末100は、HeNB基地局200からのPCC/SCC切り替え準備要求を待つ必要がないので、無線環境が急に悪化した場合などであっても、PCC/SCC切り替えをすぐに開始できる。また、通信端末100の各々がPCC/SCC切り替えの要否を判断するので、各通信端末100の状況を常時把握する必要がなく、HeNB基地局200における処理負荷を低減できる。
 <K.その他の実施の形態>
 上述の実施の形態1~5に示した構成を適宜組合せることも可能である。
 上述の実施の形態1~5においては、主として、小型の発展型無線基地局(HeNB基地局)との間でキャリアアグリゲーションを利用して通信端末との間で通信を行っている際に、コンポーネントキャリアの切り替え処理に着目して説明したが、本発明の対象となる基地局装置としては、HeNB基地局に限られることなく、マクロセルを提供する通常の発展型基地局装置(eNB基地局)や他の種類の基地局装置に適用することもできる。
 また、上述の実施の形態1~5においては、主として、LTE-A方式に適用した実施の形態について例示したが、この方式に限られることなく、任意の方式に適用可能である。
 <L.結論>
 以上、本発明の実施の形態についてそれぞれ説明したが、各実施の形態については、以下のような状況において好適である。
 すなわち、HeNB基地局200に多数の通信端末100が接続して通信が行われる場合には、リソース配分による通信端末の個別切り替え方式(実施の形態1の変形例)、およびサービス種別に基づく通信端末の個別切り替え方式(実施の形態4)を採用することが好ましい。これにより、各通信端末100が利用するコンポーネントキャリアをより容易に分散できる。
 一方、HeNB基地局200に接続している通信端末100の数が少ない状態で通信が行われる場合には、無線環境条件に基づく通信端末の個別切り替え方式(実施の形態1および2)、PCC/SCC切り替えを一斉に実行する方式(実施の形態3)、通信端末の主導による切り替え方式(実施の形態5)を採用することが好ましい。これにより、通信状況や無線環境に応じた個別の柔軟な対応を行うことができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100 通信端末、104,204 データ処理部、106,116,206,216 符号化処理部、108,118,208,218 アンテナ送受信部、110,120,210,220 アンテナ、112,212 通信制御部、114,214 レベル比較部、130 ディスプレイ、132 マイク、134 スピーカ、136 入力部、200 HeNB基地局、201,301 サービスエリア、202 ネットワークインターフェイス部、300 eNB基地局、400 MME、SYS 無線通信システム。

Claims (14)

  1.  基地局装置と、複数の周波数帯域を利用して前記基地局装置と通信可能な通信端末とを備えた無線通信システムであって、前記複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含み、
     前記基地局装置および前記通信端末の一方に設けられ、前記複数の周波数帯域のうち前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を前記基地局装置および前記通信端末の他方へ通知する第1の通知手段と、
     前記基地局装置および前記通信端末の他方に設けられ、前記切り替えの準備要求に応答して、前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する判断手段と、
     前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を前記基地局装置および前記通信端末の一方へ通知する第2の通知手段と、
     前記切り替えの準備完了に応答して、前記基地局装置と前記通信端末との間で前記主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する切り替え手段とを備える、無線通信システム。
  2.  前記第1の通知手段は、前記主たる周波数帯域として利用されている周波数帯域の通信品質を判断する手段を含む、請求項1に記載の無線通信システム。
  3.  前記第1の通知手段は、前記主たる周波数帯域として利用されている周波数帯域のリソースが不足しているか否かを判断する手段を含む、請求項1に記載の無線通信システム。
  4.  前記複数の周波数帯域には、それぞれサービス種別が定義されており、
     前記第1の通知手段は、前記主たる周波数帯域として利用される周波数帯域のサービス種別に基づいて、前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する手段を含む、請求項1に記載の無線通信システム。
  5.  前記複数の周波数帯域は、前記従たる周波数帯域を複数含んでおり、
     前記第1の通知手段は、切り替え対象の従たる周波数帯域を示す情報を含む前記切り替えの準備要求を通知する手段を含む、請求項1~4のいずれか1項に記載の無線通信システム。
  6.  前記第1の通知手段は、前記基地局装置に設けられ、
     前記判断手段および前記第2の通知手段は、前記通信端末に設けられる、請求項1~5のいずれか1項に記載の無線通信システム。
  7.  前記第1の通知手段は、前記基地局装置に接続されている複数の前記通信端末に対して、前記切り替えの準備要求を一斉に通知する手段を含み、
     前記判断手段は、前記切り替えの準備要求の対象でなければ、周波数帯域を切り替える処理を行わないことを通知する手段を含む、請求項6に記載の無線通信システム。
  8.  前記第1の通知手段は、前記通信端末に設けられ、
     前記判断手段および前記第2の通知手段は、前記基地局装置に設けられる、請求項1~5のいずれか1項に記載の無線通信システム。
  9.  前記切り替え手段は、前記基地局装置および前記通信端末の一方における周波数帯域の切り替えを完了した後、新たに前記主たる周波数帯域として利用される周波数帯域を利用して、周波数帯域の切り替えを指示する切り替えの要求を前記基地局装置および前記通信端末の他方へ通知する手段を含む、請求項1~8のいずれか1項に記載の無線通信システム。
  10.  基地局装置と、複数の周波数帯域を利用して前記基地局装置と通信可能な通信端末との間の通信方法であって、前記複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含み、
     前記基地局装置および前記通信端末の一方で、前記複数の周波数帯域のうち前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を前記基地局装置および前記通信端末の他方へ通知するステップと、
     前記基地局装置および前記通信端末の他方で、前記切り替えの準備要求に応答して、前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断するステップと、
     前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を前記基地局装置および前記通信端末の一方へ通知するステップと、
     前記切り替えの準備完了に応答して、前記基地局装置と前記通信端末との間で前記主たる周波数帯域として利用される周波数帯域を切り替える処理を開始するステップとを備える、通信方法。
  11.  複数の周波数帯域を利用して通信端末と通信可能な基地局装置であって、前記複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含み、
     前記複数の周波数帯域のうち前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を前記通信端末へ通知する通知手段と、
     前記通信端末からの周波数帯域の切り替えの準備完了に応答して、前記基地局装置と前記通信端末との間で前記主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する切り替え手段とを備える、基地局装置。
  12.  複数の周波数帯域を利用して通信端末と通信可能な基地局装置であって、前記複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含み、
     前記通信端末からの切り替えの準備要求に応答して、前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する判断手段と、
     前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を前記通信端末へ通知する通知手段とを備える、基地局装置。
  13.  複数の周波数帯域を利用して基地局装置と通信可能な通信端末であって、前記複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含み、
     前記複数の周波数帯域のうち前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であることを検出すると、切り替えの準備要求を前記基地局装置へ通知する通知手段と、
     前記基地局装置からの周波数帯域の切り替えの準備完了に応答して、前記基地局装置と前記通信端末との間で前記主たる周波数帯域として利用される周波数帯域を切り替える処理を開始する切り替え手段とを備える、通信端末。
  14.  複数の周波数帯域を利用して基地局装置と通信可能な通信端末であって、前記複数の周波数帯域は、主たる周波数帯域と少なくとも1つの従たる周波数帯域とを含み、
     前記基地局装置からの切り替えの準備要求に応答して、前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であるか否かを判断する判断手段と、
     前記主たる周波数帯域として利用される周波数帯域を切り替えるべき状況であると判断されたことに応答して、周波数帯域の切り替えの準備完了を前記基地局装置へ通知する通知手段とを備える、通信端末。
PCT/JP2013/053632 2012-03-12 2013-02-15 無線通信システム、通信方法、基地局装置、および通信端末 WO2013136906A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/381,672 US20150050941A1 (en) 2012-03-12 2013-02-15 Wireless communication system, communication method, base station, and communication terminal
CN201380013818.0A CN104160769B (zh) 2012-03-12 2013-02-15 无线通信系统、通信方法、基站装置以及通信终端

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012054744A JP5981172B2 (ja) 2012-03-12 2012-03-12 無線通信システム、通信方法、基地局装置、および通信端末
JP2012-054744 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013136906A1 true WO2013136906A1 (ja) 2013-09-19

Family

ID=49160825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053632 WO2013136906A1 (ja) 2012-03-12 2013-02-15 無線通信システム、通信方法、基地局装置、および通信端末

Country Status (4)

Country Link
US (1) US20150050941A1 (ja)
JP (1) JP5981172B2 (ja)
CN (1) CN104160769B (ja)
WO (1) WO2013136906A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509119A (ja) * 2015-03-20 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. キャリア構成方法およびデバイス

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291218B (zh) * 2010-06-21 2016-06-15 夏普株式会社 信道状态信息反馈资源分配方法和信道状态信息反馈方法
FR3022096B1 (fr) * 2014-06-06 2018-11-02 Airbus Ds Sas Basculement progressif de bande de frequences radio dans un noeud relais
US9755767B2 (en) * 2014-10-31 2017-09-05 Qualcomm Incorporated Mechanism to measure, report, and allocate a highest possible rank for each cell in a carrier aggregation (CA) mode receiver-limited user equipment (UE)
WO2016074185A1 (en) 2014-11-13 2016-05-19 Qualcomm Incorporated Standalone carrier sense adaptive transmission (csat) in unlicensed spectrum
EP3346784B1 (en) * 2015-09-29 2019-08-28 Huawei Technologies Co., Ltd. Carrier selection method and device in carrier aggregation technology
EP3363223B1 (en) 2015-10-16 2022-05-18 Telefonaktiebolaget LM Ericsson (PUBL) Apparatus and method for cell frequency change procedure signal timing selection
KR102396800B1 (ko) * 2015-11-19 2022-05-11 삼성전자 주식회사 무선 통신 시스템에서 공공 안전망 접속 지원 방법 및 장치
JP2017151593A (ja) * 2016-02-23 2017-08-31 Necプラットフォームズ株式会社 通信状態制御装置及び通信状態制御方法、組み込み装置、並びにコンピュータ・プログラム
CN107509224B (zh) * 2016-06-14 2021-01-05 展讯通信(上海)有限公司 搜索高铁专网的方法、装置及终端
WO2018000378A1 (zh) * 2016-06-30 2018-01-04 华为技术有限公司 频带处理方法及装置
US11109290B2 (en) * 2017-08-04 2021-08-31 Charter Communications Operating, Llc Switching connections over frequency bands of a wireless network
US10945277B2 (en) * 2018-01-11 2021-03-09 Huawei Technologies Co., Ltd. Methods and apparatus for switching between bandwidth parts
US11902948B1 (en) * 2018-11-30 2024-02-13 T-Mobile Innovations Llc Adaptive primary component carrier switching in massive MIMO based on beamforming calibration status
GB201905222D0 (en) * 2019-04-12 2019-05-29 Airspan Networks Inc Air-to-ground (ATG) communication technologies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140347A1 (ja) * 2009-06-02 2010-12-09 シャープ株式会社 無線通信システム、無線通信方法、基地局装置、および端末局装置
WO2011024646A1 (ja) * 2009-08-25 2011-03-03 シャープ株式会社 無線通信システム、無線通信装置および無線通信方法
JP2011101369A (ja) * 2009-11-06 2011-05-19 Intel Corp マルチキャリアスイッチングのための方法びユーザ装置
WO2011087022A1 (ja) * 2010-01-12 2011-07-21 シャープ株式会社 無線通信システム、基地局装置、移動局装置、通信制御方法、及び、通信制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482756B1 (en) * 2001-05-25 2007-09-12 NTT DoCoMo, Inc. Radio communication system for reducing interferences with respect to other communication system using close frequency band
US7058367B1 (en) * 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US8441998B2 (en) * 2009-07-06 2013-05-14 Electronics And Telecommunications Research Institute Method of transmitting broadcast information in multiple carrier system
WO2011043396A1 (ja) * 2009-10-06 2011-04-14 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び移動通信方法
KR101708928B1 (ko) * 2010-01-19 2017-02-22 삼성전자주식회사 무선 통신 시스템에서 할당 주파수 스위칭 방법 및 장치
CN102378363B (zh) * 2010-08-11 2016-03-16 北京三星通信技术研究有限公司 多载波技术中进行载波转换的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140347A1 (ja) * 2009-06-02 2010-12-09 シャープ株式会社 無線通信システム、無線通信方法、基地局装置、および端末局装置
WO2011024646A1 (ja) * 2009-08-25 2011-03-03 シャープ株式会社 無線通信システム、無線通信装置および無線通信方法
JP2011101369A (ja) * 2009-11-06 2011-05-19 Intel Corp マルチキャリアスイッチングのための方法びユーザ装置
WO2011087022A1 (ja) * 2010-01-12 2011-07-21 シャープ株式会社 無線通信システム、基地局装置、移動局装置、通信制御方法、及び、通信制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509119A (ja) * 2015-03-20 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. キャリア構成方法およびデバイス
US10476640B2 (en) 2015-03-20 2019-11-12 Huawei Technologies Co., Ltd. Carrier configuration method and device

Also Published As

Publication number Publication date
JP2013191925A (ja) 2013-09-26
US20150050941A1 (en) 2015-02-19
JP5981172B2 (ja) 2016-08-31
CN104160769B (zh) 2018-05-18
CN104160769A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5981172B2 (ja) 無線通信システム、通信方法、基地局装置、および通信端末
JP6475885B2 (ja) 無線基地局、ユーザ端末及びプロセッサ
US20220046743A1 (en) Mobile communication system, user terminal, and base station
JP6668378B2 (ja) ワイヤレス通信ネットワークにおけるリレー接続を管理するためのシステム、方法、および装置
CN107113689B (zh) 针对多跳基础网络的网络发起的发现和路径选择程序
US10555254B2 (en) Wireless network access control method, device and system
TWI612839B (zh) 使用者設備及其裝置對裝置通訊選擇方法
KR101728990B1 (ko) 릴레이 구성 방법 및 디바이스
JP6062088B2 (ja) ユーザ端末、及びプロセッサ
US10425881B2 (en) User terminal, network apparatus, and processor
JPWO2014034572A1 (ja) 移動通信システム、ユーザ端末及びプロセッサ
WO2017026440A1 (ja) 基地局及び無線端末
WO2016031662A1 (ja) 基地局及び無線lan終端装置
WO2014053416A1 (en) Methods and apparatuses for device-to-device communication
WO2015046105A1 (ja) 通信制御方法、基地局、及びユーザ端末
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
WO2016163268A1 (ja) ユーザ端末及び移動通信方法
WO2024066812A1 (zh) 小区切换的方法、终端设备和网络设备
WO2024024740A1 (ja) 通信制御方法
JP2024503410A (ja) 統合アクセスおよびバックホールにおける同時接続性のモード
CN117296280A (zh) Pdcch监听方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14381672

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13761676

Country of ref document: EP

Kind code of ref document: A1