WO2010101243A1 - 符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム - Google Patents

符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム Download PDF

Info

Publication number
WO2010101243A1
WO2010101243A1 PCT/JP2010/053651 JP2010053651W WO2010101243A1 WO 2010101243 A1 WO2010101243 A1 WO 2010101243A1 JP 2010053651 W JP2010053651 W JP 2010053651W WO 2010101243 A1 WO2010101243 A1 WO 2010101243A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
puncture pattern
code
rsc
equalization
Prior art date
Application number
PCT/JP2010/053651
Other languages
English (en)
French (fr)
Inventor
政一 三瓶
信介 衣斐
伸一 宮本
一成 横枕
泰弘 浜口
理 中村
貴司 吉本
良太 山田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/254,633 priority Critical patent/US20110320920A1/en
Priority to CN2010800197202A priority patent/CN102414997A/zh
Priority to EP10748836A priority patent/EP2405590A4/en
Publication of WO2010101243A1 publication Critical patent/WO2010101243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/353Adaptation to the channel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6331Error control coding in combination with equalisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/65253GPP LTE including E-UTRA

Definitions

  • the present invention includes an encoding device capable of selecting a turbo code or an RSC code while maintaining a coding rate, a receiving device for equalizing / decoding a transmitted encoded signal, and the transmitting device and the receiving device.
  • the present invention relates to a wireless communication system.
  • Non-Patent Document 1 described later.
  • FIG. 10 shows an example of a frequency domain SC / MMSE (Soft Canceller followed by By Minimum Minimum Mean Square error) turbo equalization receiver 1000.
  • SC / MMSE Soft Canceller followed by By Minimum Minimum Mean Square error turbo equalization receiver 1000.
  • the information bits are error-correction-coded, and after interleaving the code bits, a modulation signal is generated and a signal with CP (Cyclic Prefix) added is transmitted. It is assumed that
  • the received signal received by the receiving antenna and down-converted from the radio frequency is subjected to CP removal by the CP removal unit 1001 and converted to a frequency signal by the first DFT (Discrete Fourier Transform) unit 1002.
  • the obtained reception signal is input to the cancel unit 1003.
  • the cancel unit 1003 cancels the signal when there is prior information fed back from the decoding unit 1008, but the signal is not canceled at the first time.
  • the output from the cancel unit 1003 is subjected to equalization processing in the frequency domain by an equalization unit 1004 based on, for example, a minimum square error (MMSE) standard, and is converted into a time signal by an IDFT (Inverse DFT) unit 1005. Converted.
  • MMSE minimum square error
  • an LLR Log Likelihood Ratio
  • the decoding unit 1008 performs error correction processing based on maximum a posteriori probability (MAP) estimation, and the reliability of the LLR is increased.
  • decoding section 1008 outputs an LLR of information bits to determination section 1012 and outputs an “external” LLR of code bits to interleaving section 1009.
  • “external” represents the reliability of the code bit improved only by the error correction processing, and actually the code bit output from the deinterleave unit 1007 input from the LLR obtained inside the decoding unit 1008. The value obtained by subtracting the LLR.
  • the LLRs of the code bits are input to the interleaving unit 1009, and the LLRs are rearranged again.
  • the soft replica generation unit 1010 generates a soft replica having an amplitude proportional to the reliability represented by the LLR.
  • the modulation method is quaternary phase shift keying (QPSK)
  • QPSK quaternary phase shift keying
  • s soft is a soft replica represented by a complex number
  • j is an imaginary unit
  • tanh (x) is a hyperbolic tangent function
  • the soft replica obtained by Expression (1) is input to the second DFT unit 1011 to generate a frequency signal soft replica and input to the cancel unit 1003 and the equalization unit 1004.
  • the cancellation unit 1003 and the equalization unit 1004 are input to the cancellation unit 1003.
  • the cancellation unit 1003 once cancels all the signals including the desired signal, and reconstructs using the frequency signal input to the equalization unit 1004. This is to reduce the number of operations.
  • the processing after the cancellation unit 1003 is repeated an arbitrary number of times, and finally the determination unit 1012 makes a hard decision on the LLR of the information bits, thereby obtaining a decoded bit sequence.
  • EXIT EXtrinsic Information Transfer
  • FIG. 11 (a) shows a model for observing the EXIT chart in the turbo equalization technology
  • FIG. 11 (b) shows an example of the EXIT chart based on this model.
  • a turbo equalization model is composed of an equalizer 2001 and a decoder 2002.
  • the equalizer 2001 has the functions of a cancellation unit 1003, an equalization unit 1004, an IDFT unit 1005, a demodulation unit 1006, a soft replica generation unit 1010, and a second DFT unit 1011 in FIG. 10, and the decoder 2002 It has the function of the decoding unit 1008 in FIG.
  • the external LLR output from the equalizer 2001 becomes the input LLR of the decoder 2002
  • the external LLR output from the decoder 2002 becomes the input LLR of the equalizer 2001. This is the model.
  • FIG. 11B is an EXIT chart illustrating the behavior of the repetitive processing.
  • the EXIT chart calculates a value called a mutual information amount that quantitatively represents the amount of information obtained from the external LLR about the transmitted code bit, and shows the input / output relationship between the equalizer 2001 and the decoder 2002. Show.
  • H 1 , H 2 , and H 3 are curves approximated by equation (2) so as to minimize the minimum mean square error using values obtained by simulation. It is a coefficient calculated by approximation called fitting, and is treated as a different constant depending on the modulation method.
  • BPSK Binary Phase Shift Keying
  • the constants can be calculated in the same way for signal point arrangements (for example, Non-Patent Document 2 describes the case of signal point arrangements for multilevel encoding).
  • the input / output relationship of the mutual information amount of the equalizer 2001 can be calculated based on the formula (2), since the propagation path actually fluctuates, a snapshot calculated for each transmission opportunity or a 1% value Statistics such as are used. For example, when changing the coding rate so as to follow propagation path fluctuations as in the adaptive coding system shown in Non-Patent Document 2, a snapshot is used.
  • the characteristics of the decoder 2002 are determined by the structure of the encoding device for error correction coding. Since the characteristics can be uniquely acquired once the encoding device is determined, it can be grasped in advance.
  • L2001 represents the input / output characteristics of the equalizer 2001
  • L2002 represents the input / output characteristics of the decoder 2002.
  • the vertical axis represents the equalizer output mutual information amount and the decoder input mutual information amount
  • the horizontal axis represents the equalizer input mutual information amount and the decoder output mutual information amount.
  • the information amount starts from zero, that is, starts from the origin (the point where the horizontal and vertical axes are both zero), and the arrow A2001.
  • the equalizer output mutual information amount becomes the decoder input mutual information amount as it is, the mutual information amount by decoding is obtained in accordance with the arrow A2002-1.
  • equalization processing is performed according to the arrow A2001-2, and the mutual information obtained by decoding is obtained according to the arrow A2002-2.
  • the turbo equalization processing is in a converged state and can be detected without error.
  • the input / output characteristics of the equalizer 2001 intersect with the input / output characteristics of the decoder 2002, if the analysis is performed by pulling the arrows as described above, it does not advance at the intersection and a detection error occurs. .
  • This state is referred to as “stack”, and it is necessary to design an encoding device that does not cause stacking in the turbo equalization technique.
  • turbo equalization needs to be brought into a converged state while improving the mutual information amount to some extent by error correction, there is a situation where an RSC code or the like rather than a turbo code is likely to be brought into a converged state. .
  • the horizontal axis represents the equalizer input mutual information amount and the decoder output mutual information amount
  • the vertical axis represents the equalizer output mutual information amount and the decoder input mutual information amount.
  • L3001 shows an example of the input / output characteristics of the mutual information amount of the turbo code when the number of times of turbo decoding is four
  • L3001 shows an example of the input / output characteristics of the mutual information amount of the RSC code. Since the slopes of the mutual information input / output characteristics L3001 of the turbo code and the mutual information input / output characteristics L3002 of the RSC code are different, it is better to select the most suitable one depending on the slope of the equalizer characteristics. This means that if there is a receiving apparatus to which turbo equalization can be applied, it is necessary to appropriately select the structure of the encoding apparatus.
  • next generation cellular systems such as LTE (Long Term Evolution) and LTE-A
  • turbo codes when turbo codes are used, if the information bit sequence is not long to some extent, the effect of error correction is weak, so only control information is available.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to perform control for appropriately selecting encoding in consideration of equalization / decoding characteristics of a receiving apparatus employing turbo equalization technology. Is to provide an encoding device, a receiving device, a wireless communication system, a puncture pattern selection method, and a program thereof that can achieve high transmission characteristics.
  • the present invention is an encoding device of a transmission device that communicates with a reception device having an equalization unit and a decoding unit that process a signal by turbo equalization technology,
  • a first RSC encoder that RSC-encodes input information bits and outputs systematic bits and parity bits, and RSC-encodes a signal having a different data arrangement with respect to the input information bits and outputs systematic bits and parity bits
  • the puncture pattern control unit switches between a turbo code puncture pattern and an RSC code puncture pattern that does not stack the receiving apparatus while maintaining a coding rate, and causes the puncturing unit to perform puncturing.
  • the puncture pattern control unit includes an RSC code puncture pattern that uses only the output signal of the first RSC code unit, and a turbo code puncture pattern that uses the output signals of the first and second RSC code units. It is characterized by switching.
  • the puncture pattern control unit switches between puncture patterns that make the number of parity bits obtained from the first RSC code and the number of parity bits obtained from the second RSC code non-uniform.
  • the puncture pattern control unit switches the puncture pattern according to the transmission method used.
  • the present invention is a receiving device having an equalization unit and a decoding unit for processing a signal encoded by the encoding device by a turbo equalization technique, Based on the slope obtained by the slope calculation unit, the slope calculation unit that calculates the slope of the input / output characteristics of the mutual information amount between the equalization unit and the decoding unit, the encoding is performed so that the reception device is not stacked. And a puncture pattern selection unit that selects a puncture pattern for generating an RSC code by a device or a puncture pattern for generating a turbo code, and transmits the selected puncture pattern to the encoding device.
  • the puncture pattern selection unit selects an RSC code puncture pattern from a turbo code puncture pattern.
  • the present invention is a receiving device having an equalization unit and a decoding unit for processing a signal encoded by the encoding device by a turbo equalization technique, Based on the slope obtained by the slope calculation unit, the slope calculation unit that calculates the slope of the input / output characteristics of the mutual information amount between the equalization unit and the decoding unit, the encoding is performed so that the reception device is not stacked.
  • a puncture pattern selection unit that selects a puncture pattern for generating an RSC code by a device or a puncture pattern for generating a turbo code and transmits the selected puncture pattern to the encoding device, and
  • the puncture pattern selection unit selects a suitable one from among a plurality of puncture patterns that change the transmission rate of the parity bits from the first and second RSC encoding units.
  • the puncture pattern selection unit selects a puncture pattern having the largest inclination among the input / output characteristics of the decoding unit with respect to the mutual information amount of the puncture pattern whose inclination is smaller than the input / output characteristic with respect to the mutual information amount of the equalization unit. It is characterized by selecting.
  • the present invention is a receiving device having an equalization unit and a decoding unit for processing a signal encoded by the encoding device by a turbo equalization technique, Based on the slope obtained by the slope calculation unit, the slope calculation unit that calculates the slope of the input / output characteristics of the mutual information amount between the equalization unit and the decoding unit, the encoding is performed so that the reception device is not stacked.
  • a puncture pattern selection unit that selects a puncture pattern for generating an RSC code by a device or a puncture pattern for generating a turbo code and transmits the selected puncture pattern to the encoding device, and The puncture pattern selection unit selects a puncture pattern according to a transmission method used.
  • the present invention is a wireless communication system including a transmission device including the encoding device and the reception device.
  • the present invention is a method for selecting a puncture pattern used in an encoding device of a transmission device that communicates with a reception device having an equalization unit and a decoding unit that processes a signal using a turbo equalization technique, A slope calculating step for calculating a slope of an input / output characteristic of the mutual information amount of the equalization unit and the decoding unit, a slope of the input / output characteristic of the mutual information amount of the equalization unit and the decoding unit, and a turbo code And a selection step of selecting a puncture pattern in which the receiving apparatus is not stacked, by comparing the slope of input / output characteristics with respect to the mutual information amount of the RSC code.
  • the present invention may be a program for causing a computer to execute this puncture pattern selection method.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the transmission apparatus according to the present embodiment.
  • the transmission apparatus 10 includes an encoding unit 11, a puncture pattern detection unit 12, an interleaving unit 13, a modulation unit 14, a DFT unit 15, a spectrum mapping unit 16, an IDFT unit 17, a pilot signal generation unit 18, a pilot signal multiplexing unit 19, and a CP.
  • the insertion unit 20 is configured.
  • the puncture pattern detection unit 12 receives puncture pattern information (a puncture pattern selected by the reception device) transmitted from the reception device described later and sends the puncture pattern information to the encoding unit 11.
  • the encoding unit 11 is a turbo encoding device in structure, and performs error correction encoding on input information bits, and further changes the puncture pattern while maintaining the encoding rate based on the puncture pattern information (details will be described later).
  • the interleaving unit 13 rearranges the order of the information bits and the redundant bits after puncturing, and increases resistance to burst errors.
  • Modulating section 14 modulates the interleaved information bits and redundant bits by symbol mapping, and DFT section 15 converts the signal into a frequency signal.
  • the spectrum mapping unit 16 maps the transmission data by assigning it to each subcarrier, and outputs it to the IDFT unit 17.
  • the mapped signal is converted into a time signal by the IDFT unit 17.
  • the pilot signal generator 18 generates a pilot signal for estimating the channel characteristics of the radio channel, and the pilot signal multiplexer 19 multiplexes it with the time signal.
  • the CP insertion unit 20 inserts the CP into the multiplexed signal, generates a transmission signal, and transmits it.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the encoding unit of the present embodiment
  • FIG. 3 illustrates an example of the first RSC encoding unit 22 and the second RSC encoding unit 23 that configure the encoding unit of FIG. (Both are the same in the configuration of the sign part.)
  • a description will be given of the case of a coding unit constituting a turbo code having a coding rate of 1/2.
  • the encoding unit 11 basically has the same configuration as that of a conventional turbo encoding device, and includes an interleaving unit 21, a first RSC encoding unit 22, a second RSC encoding unit 23, and a puncturing unit 24.
  • the puncture pattern control unit 25 is configured.
  • the puncture pattern control unit 25 receives puncture pattern information detected by the puncture pattern detection unit 12 (information transmitted from a receiving apparatus described later). Two information bits of a sequence input to the first RSC encoder 22 and a randomly rearranged sequence input to the second RSC encoder 23 via the interleaver 21 with respect to the input information bits
  • the RSC encoding is performed by the first RSC encoding unit 22 and the second RSC encoding unit 23, respectively.
  • the second bit (referred to as a parity bit) encoded by the first RSC encoding unit 22 and the second RSC encoding unit 23 is input to the puncturing unit 24. Since the first bit (referred to as systematic bit) obtained by the first RSC code unit 22 is an information bit itself, the systematic bit obtained by the second RSC code 23 is not transmitted.
  • the puncturing unit 24 performs puncturing according to a predetermined coding rate, and selects the RSC code or turbo coding by the puncture pattern control unit 25 based on the puncture pattern information detected by the puncture pattern detection unit 12 Puncturing is performed.
  • Table 1 shows a puncture pattern for forming a turbo code with a coding rate of 1/2.
  • the first bit, the second bit, and the third bit represent the systematic bits and parity bits of the output of the first RSC encoding unit 22 in FIG. 2, and the parity bits of the second RSC encoding unit 23, respectively.
  • a bit corresponding to 1 in the table is a code bit, and a bit of 0 is punctured.
  • 110010 is obtained by the first RSC code unit 22 and the second RSC code unit 23, when applying to the puncture pattern of Table 1, the third bit 0 and the fifth bit 1 are punctured. 1100 is output. If the bits obtained by the first and second RSC encoding units 22 and 23 are long, the pattern in Table 1 is repeatedly applied.
  • the configuration of the RSC code units 22 and 23 that generate the original code will be described.
  • an example of an RSC code having a constraint length of 4 adopted as a specification in a next-generation mobile communication system called LTE (LongvolutionTerm ⁇ ⁇ Evolution) is shown.
  • the RSC encoding units 22 and 23 are composed of exclusive OR calculation units 26-1, 26-2 and 26-3, and shift registers 27-1, 27-2 and 27-3.
  • the values stored in the shift registers 27-1, 27-2, 27-3 in the initial state are set to 0.
  • the input information bits are output without being encoded as systematic bits.
  • the exclusive OR of the input bit and the output value of the exclusive OR calculating unit 26-2 and the exclusive OR calculating unit 26-1 are calculated and input to the shift register 27-1.
  • the shift register 27-1 and the value stored in the shift register 27-3 and the value of the exclusive OR 26-1 are converted into an exclusive OR by the exclusive OR calculator 26-3. Parity bits are generated that are computed and constrain the input bits.
  • the exclusive OR calculation unit 26-2 calculates the exclusive OR of the values input to the shift register 27-2 and the shift register 27-3, and the exclusive logic is used to constrain the next input bit. Input to the sum 26-1. In this way, each RSC encoding unit 22, 23 generates an original code.
  • the puncture pattern control unit 25 changes the RSC code to the RSC code without changing the configuration of the encoding unit 11 which is the turbo encoding device shown in FIG. Since an RSC code with a coding rate of 1/2 may use the output of the first RSC encoder 22 itself, the puncture pattern in Table 1 is used as shown in Table 2 below in order to use it without changing the configuration. You can do it.
  • Table 2 means that the second RSC encoder 23 is not used. By doing so, it is possible to change the function of the encoder only by switching the puncture pattern for generating the turbo code and the RSC code without changing the configuration of the turbo encoding unit 11.
  • FIG. 4 shows an example of an EXIT chart for explaining the concept of changing the puncture pattern.
  • L21 and L22 indicate the input / output characteristics of the mutual information amount of the turbo code and the input / output characteristics of the mutual information amount of the RSC code as in FIG.
  • L31 is an example of the input / output characteristics of the mutual information indicating the performance of the equalizer suitable for the turbo code
  • L32 is an example of the input / output characteristics of the mutual information indicating the performance of the equalizer suitable for the RSC code. It is.
  • an equalizer having a slope such as L31 has a relatively parallel relationship with the mutual information input / output characteristic L21 of the turbo code, so that the equalizer exceeds the decoder characteristic as shown in the figure.
  • the equalizer exceeds the decoder characteristic as shown in the figure.
  • it becomes easy to reach the mutual information amount 1 without stacking.
  • the probability of stacking increases as shown in FIG.
  • an equalizer having a slope like L32 is in a relatively parallel relationship with the mutual information input / output characteristic L22 of the RSC code, and therefore there is an equalizer characteristic above the decoder characteristic. In this case, the mutual information amount 1 can be easily reached.
  • the turbo code is used for this, the slope of the input / output characteristics of the turbo code is too small. The possibility of getting stuck increases.
  • the puncture pattern control unit 25 may select the RSC code or the turbo code from the gradient of the input / output characteristics of the equalizer and feed back to the encoding unit 11.
  • a method for calculating the slope of the input / output characteristics of the equalizer will be described.
  • a frequency domain SC / MMSE turbo equalization technique will be described as an example.
  • a technique generally referred to as a turbo equalization technique it is essentially the same.
  • FIG. 5 shows an example of the receiving device.
  • the receiving apparatus 30 includes a CP removal unit 31, a pilot signal extraction unit 32, a propagation path estimation unit 33, a slope calculation unit 34, a puncture pattern selection unit 35, a first DFT unit 36, a cancellation unit 37, an equalization unit 38, an IDFT.
  • Unit 39 demodulator 40, deinterleaver 41, decoder 42, interleaver 43, soft replica generator 44, second DFT unit 45, and determiner 46.
  • Those having the same names as in FIG. 10 are basically the same, but here, a pilot signal extraction unit 32, a propagation path estimation unit 33, a slope calculation unit 34, and a puncture pattern selection unit 35 are added.
  • the function newly added in the present invention is a mutual information amount of an equalizer necessary for controlling a puncture pattern.
  • start point and end point correspond to the case where the information about the transmission bit is not grasped at all and the case where the information is completely grasped
  • start point and the end point can be calculated based on this.
  • the reception SNR after equalization at the start point and the end point is calculated by Expression (3) in the case of the MMSE standard type.
  • H (k) is a complex channel gain of the k-th discrete frequency
  • K is the number of points of the frequency signal
  • ⁇ 2 is the thermal noise variance in the receiver 30.
  • ⁇ s is the equivalent amplitude gain at the start point
  • ⁇ e is the equivalent amplitude gain at the end point.
  • the slope of the input / output characteristics of the RSC code and the slope of the input / output characteristics of the turbo code are known in the receiver 30. From FIG. 3, the RSC code is about 0.66 and the turbo code is about 0.125. If the slope of the equalizer characteristic is larger than 0.4, which is approximately between the RSC code characteristic and the turbo code characteristic, the RSC code is If it is smaller than 0.4, a turbo code is selected. Note that this is an example of a code selection method, and the structure is changed by changing the puncture pattern of the encoding device by grasping the inclination.
  • the present invention by grasping the slope of the input / output characteristics of the mutual information amount of the equalizer, it is difficult to generate a stack and information can be transmitted with high transmission characteristics.
  • the present invention may be applied adaptively for each transmission opportunity, or the slope set at the first transmission opportunity may be used for subsequent transmissions.
  • a turbo code configuration having a coding rate of 1/2 is realized by alternately puncturing parity bits. If both the RSC code and turbo code puncture patterns are provided in the encoding device, there is no problem if the puncture pattern is switched from the puncture pattern of each coding rate for turbo code to the RSC code. It is desirable to be able to generate a pattern.
  • the puncture pattern selection unit 35 of the reception apparatus switches from a puncture pattern that generates each coding rate for turbo codes to a puncture pattern for RSC codes having the same coding rate.
  • the RSC code is the third bit, that is, the third bit necessary for turbo decoding that is originally used for the turbo code without using the parity bit of the second RSC code part. This is realized by not transmitting the transmission bit of, but using it for the transmission of the second bit instead.
  • the second bit puncture pattern is defined as the logical sum of the second bit and the third bit, and all the third bits are set to 0.
  • T51 indicates a puncture pattern for realizing a turbo code with a coding rate of 1/2 as an example
  • T52 realizes an RSC code with a coding rate of 1/2 generated by the method of the present embodiment.
  • This is a puncture pattern.
  • the logical sum of the second bit value in the turbo code and the third bit value is calculated as T52 (arrow Y11), and the third bit is set to zero (arrow Y12).
  • the puncture pattern T53 that can obtain the RSC code can be switched without changing not only the conversion rate but also the structure of the turbo encoding device itself.
  • the memory for increasing the puncture table is minimized, and the encoding apparatus using the turbo code as a basis can be changed to the RSC code structure itself.
  • turbo equalization a puncture pattern is used. It is possible to obtain an appropriate code configuration simply by changing the signal, and the detection error of the transmission signal is reduced.
  • FIG. 7 shows an example of an EXIT chart in which this is actually verified by computer simulation.
  • L51 is an EXIT chart of a decoder generated with a conventional turbo code configuration
  • L52 is an EXIT chart calculated using the switching of the present invention. The same performance as FIG. 12 is obtained, and it is confirmed that there is an effect of the present invention.
  • the configuration of the puncture pattern of the RSC code and the configuration of the puncture pattern of the turbo code are switched.
  • the parity bit obtained from the first RSC code and the parity obtained from the second RSC code are used.
  • Tables 3 to 6 show examples of puncture patterns.
  • Type 0 to Type 3 The pattern patterns shown in Tables 3 to 6 are referred to as Type 0 to Type 3, respectively, and Type 0 is the same as that in the first embodiment.
  • These are techniques for changing the transmission rate of parity bits output from the first and second RSC codes while maintaining the coding rate.
  • decoding is performed by turbo decoding.
  • FIG. From the figure, it can be seen that the input / output characteristics can be changed with a low value (near the start point) of the horizontal axis (equalizer input information amount and decoder output mutual information amount). Therefore, for example, by calculating the slope of the decoder characteristics of Type 1 to Type 4 and applying the type having the decoder characteristics having the largest slope among the decoder characteristics of Type having a smaller slope than the equalizer characteristics. Is feasible.
  • FIG. 9 shows an example of a wireless communication system in which multicarrier and single carrier transmission apparatuses are mixed.
  • a first transmission device (mobile station) 61 performs transmission using a single carrier from the viewpoint of power utilization efficiency
  • a second transmission device (mobile station) 62 performs transmission using a multicarrier such as OFDM.
  • the receiving apparatus (base station) 63 is capable of receiving a multicarrier signal and a single carrier signal, and in particular, turbo equalization is also applied as a single carrier signal reception process.
  • the reception device (base station) 63 is turbo-equalized. Perform the reception process.
  • the receiving apparatus (base station) 63 calculates the input / output characteristics of the mutual information amount of the equalization unit from the propagation path characteristics as described above, determines whether the RSC code or the turbo code is suitable, Feedback is provided to the first transmission device (mobile station) 61.
  • the switching feedback method for example, it is only notified whether the structure of the RSC code or the structure of the turbo code, and therefore it can be dealt with by increasing the control information of 1 bit.
  • the second transmission device (mobile station) 62 that performs transmission by OFDM
  • multicarrier transmission is parallel transmission of narrowband subcarriers
  • distortion due to a propagation path is observed as a gain of each subcarrier. Therefore, equalization processing in the receiving device (receiving station) 63 is not necessary.
  • evaluation as an EXIT chart is not necessary.
  • the input / output characteristics of the mutual information of the equalizer can always be regarded as a straight line with a constant slope of output mutual information.
  • Turbo code is suitable. Therefore, the second transmission apparatus (mobile station) 62 is notified to transmit in the turbo code structure, and the reception process does not apply any equalization including turbo equalization.
  • the present invention can be applied to an environment where LTE compatible terminals and LTE-A compatible terminals coexist.
  • the signal transmitted by the single carrier method has been described as being received by a receiving apparatus to which turbo equalization is applied.
  • the present invention is not limited thereto, and the encoding apparatus and the receiving apparatus of the present invention
  • the present invention can be applied if it is received by a receiving apparatus to which an iterative process that performs demodulation and decoding while exchanging LLRs is applied.
  • the present invention can be applied to a case where a signal transmitted by the W-CDMA and MC-CDMA systems is received by a receiving apparatus to which an inter-code interference canceller is applied.
  • the present invention can be applied to a case where a signal transmitted by the OFDM method is received by a receiving apparatus to which an intersymbol interference canceller or an intercarrier interference canceller is applied.
  • changing an interleave pattern called a sub-block interleaver is essentially the same as changing a puncture pattern of the present invention.
  • the puncture pattern selection process according to the present embodiment can be realized by a computer.
  • a program describing the processing content of such a function is provided.
  • the said processing function is implement

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 ターボ等化技術を採用している受信装置の等化・復号の特性を考慮して適切に符号化を選択する制御を行うことで、高い伝送特性を達成することができる。 入力情報ビットに対し、第1のRSC符号部22に入力される系列と、インターリーブ部21を介して第2のRSC符号部23に入力される系列の2系統の情報ビットとし、それぞれRSC符号化がなされる。各符号化されたパリティビットはパンクチャリング部24に入力される。第1のRSC符号部22で得られる組織ビットは、情報ビットそのものなので、第2のRSC符号23で得られる組織ビットは送信しない。パンクチャリング部24では、所定の符号化率に応じたパンクチャリングが施されるが、パンクチャパターン制御部25によりRSC符号かターボ符号かを選択が行われる。

Description

符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム
 本発明は、符号化率を維持しながらターボ符号あるいはRSC符号を選択可能な符号化装置、また送信された符号化信号を等化・復号する受信装置、また、これら送信装置と受信装置を備えた無線通信システムに関する。
 近年、ターボ等化と呼ばれる非線形繰り返し等化が注目を集めており、シングルキャリア方式をベースとした伝送方式を用いた受信処理において無線伝搬路のマルチパスのエネルギーを全て合成できるため、良好な特性を得ることができる。このようなシングルキャリア方式をベースとした伝送方式については、後述の非特許文献1等がある。
 図10に、周波数領域SC/MMSE(Soft Canceller followed by Minimum Mean Square Error)ターボ等化の受信装置1000の一例を示す。ここでは送信装置を図示していないが、情報ビットは誤り訂正符号化され、符号ビットに対してインターリーブが施された後、変調信号が生成され、CP(Cyclic Prefix)が付加された信号が送信されているものとする。
 受信アンテナで受信され、無線周波数からダウンコンバートされた受信信号は、CP除去部1001によりCPを除去され、第1のDFT(Discrete Fourier Transform)部1002により周波数信号に変換される。得られた受信信号は、キャンセル部1003に入力されるが、キャンセル部1003は復号部1008からフィードバックされた事前情報がある場合には信号をキャンセルするが、1回目では信号はキャンセルされない。キャンセル部1003からの出力は等化部1004により周波数領域で例えば、最小二乗誤差(MMSE:Minimum Mean Square Error)規範などに基づく等化処理が施され、IDFT(Inverse DFT)部1005により時間信号に変換される。次に、復調部1006により等化後の時間信号から符号ビットの信頼性を示すLLR(Log Likelihood Ratio)が出力され、得られたLLRはデインターリーブ部1007により符号ビットの並びを元に戻す。
 復号部1008において最大事後確率(MAP:Maximum A Posteriori probability)推定に基づく誤り訂正処理が行われ、LLRの信頼性が高まる。ここで、復号部1008では、判定部1012へは情報ビットのLLRを出力するとともに、インターリーブ部1009へは符号ビットの「外部」LLRを出力する。ここで、「外部」とは、誤り訂正処理によってのみ改善した符号ビットの信頼性を表しており、実際には復号部1008内部で得られるLLRから入力したデインターリーブ部1007から出力された符号ビットのLLRを減算した値になる。次に、符号ビットのLLRはインターリーブ部1009に入力され、LLRの並びを再び並び替える。並び替えられた符号ビットのLLRは、ソフトレプリカ生成部1010によりLLRが表す信頼性に比例した振幅を有するソフトレプリカが生成される。例えば、変調方式が四値位相変調(QPSK:Quaternary Phase Shift Keying)の場合、QPSKシンボルを構成する2ビットの符号ビットのLLRをそれぞれλ、λとすると、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、ssoftは複素数で表されるソフトレプリカ、jは虚数単位、tanh(x)は双曲線正接関数である。
 次に、式(1)で得られたソフトレプリカを第2のDFT部1011に入力し、周波数信号のソフトレプリカを生成し、キャンセル部1003と等化部1004に入力する。キャンセル部1003と等化部1004に入力されるのは、キャンセル部1003では希望信号まで含めて一旦すべてキャンセルし、等化部1004に入力された周波数信号を用いて再構成することで、逆行列演算の回数を削減するためである。再び、キャンセル部1003以降の処理を任意の回数繰り返し、最後に判定部1012で情報ビットのLLRを硬判定することで、復号ビット系列を得る。
 このように、等化部と復号部を直列に接続し、独立な拘束条件から互いに得られる符号ビットのLLRを交換することで、徐々に符号ビットの信頼性を高めることができ、情報ビットの検出精度が高くなる。このようなターボ原理に基づく繰り返し処理の振る舞いを視覚的に示したものが外部情報交換(EXIT:EXtrinsic Information Transfer)チャートである。
 図11(a)に、ターボ等化技術におけるEXITチャートを観測するモデル、同図(b)にこのモデルによるEXITチャートの一例を示す。まず、同図(a)において、ターボ等化のモデルは、等化器2001と、復号器2002から構成されている。等化器2001は、図10におけるキャンセル部1003、等化部1004、IDFT部1005、復調部1006、ソフトレプリカ生成部1010、第2のDFT部1011の機能を有しており、復号器2002は図10における復号部1008の機能を有している。同図(a)において、等化器2001から出力される外部LLRは、復号器2002の入力LLRになり、復号器2002から出力される外部LLRは、等化器2001の入力LLRになるため、このようなモデルとなる。
 図11(b)は、繰り返し処理の振る舞いを図示したEXITチャートである。ここで、EXITチャートは外部LLRから、送信された符号ビットに関して知り得た情報量を定量的に表した相互情報量と呼ばれる値を算出し、等化器2001と復号器2002の入出力関係を示している。
 相互情報量の算出方法としては様々な方法が提案されているが、例えば、等化器2001の場合、等化後の受信信号対雑音電力比をSNR(Signal to Noise power Ratio)とすると、相互情報量は式(2)で算出される。
Figure JPOXMLDOC01-appb-M000002
 ただし、Iは0から1までの値の相互情報量、H、H、Hはシミュレーションにより求めた値を用いて最小平均自乗誤差を最小にするように式(2)で近似するカーブフィッティングという近似により算出された係数であり、変調方式により異なる定数として扱われる。Gray符号化の場合、二値位相変調(BPSK:Binary Phase Shift Keying)、QPSKの場合はH=0.3073、H=0.8935、H=1.1064であり、他の変調方式や信号点配置でも同様に定数を算出することができる(例えば、非特許文献2ではマルチレベル符号化の信号点配置の場合について書かれている)。式(2)に基づいて等化器2001の相互情報量の入出力関係は算出可能だが、実際には伝搬路は変動しているため、伝送機会毎に算出されるスナップショットや、1%値などの統計量などが利用される。例えば、非特許文献2に示されるような適応符号化方式のような伝搬路変動に追随するよう符号化率を変更する場合にはスナップショットを利用する。一方、復号器2002の特性は、誤り訂正符号化の符号化装置の構造により決定され、符号化装置が決まれば一意にその特性を取得することができるため、予め把握しておくことができる。
 次に、EXITチャートの見方について説明する。同図(b)において、L2001は等化器2001の入出力特性を表しており、L2002は復号器2002の入出力特性を表している。また、縦軸は等化器出力相互情報量かつ復号器入力相互情報量であり、横軸は等化器入力相互情報量かつ復号器出力相互情報量となる。
 まず、EXITチャートでは、最初に事前情報がない状態で等化処理が行われるので、情報量がゼロ、即ち同図の原点(横軸、縦軸がともにゼロの点)からスタートし、矢印A2001-1に従って等化処理により改善する相互情報量が得られる。次に、等化器出力相互情報量はそのまま復号器入力相互情報量になるため、矢印A2002-1に従って復号による相互情報量が得られる。同様に、得られた相互情報量は等化器2001にフィードバックされるため矢印A2001-2に従って等化処理が施され、矢印A2002-2に従って復号による相互情報量が得られる。以上の処理を繰り返し、最終的に横軸1に到達できればターボ等化処理は収束状態となり、誤りなく検出できる。その一方で、等化器2001の入出力特性と復号器2002の入出力特性が交差するような場合には、上述のように矢印を引いて解析すると、交差したところで進まなくなり、検出誤りが生じる。この状態を「スタック」と言い、ターボ等化技術ではスタックが生じないような符号化装置を設計する必要がある。
 これに対し、スタックが生じるかどうかは符号化装置の構造を変化させることによって変化するため、ターボ等化を適用した場合の繰り返し処理が収束状態になるかどうかにより符号化装置を設計することができる。一般的に、復号器出力相互情報量を1を得るために必要な入力相互情報量は小さいため、ターボ等化を用いない場合は、ターボ符号の方が良好な特性を示すことの方が多い。一方、ターボ符号自体の誤り訂正能力は入力相互情報量が小さい場合には低くなり、畳み込み符号やRSC(Recursive Systematic Convolutional)符号の方が誤り訂正能力は高い。このようにターボ等化は誤り訂正によりある程度の相互情報量の改善をしながら収束状態にする必要があるため、ターボ符号よりもむしろRSC符号などの方が収束状態になりやすいという状況も存在する。
 この概念を図12に示す。同図において、横軸は等化器入力相互情報量かつ復号器出力相互情報量、縦軸が等化器出力相互情報量かつ復号器入力相互情報量である。L3001はターボ復号回数を4回とした場合のターボ符号の相互情報量の入出力特性、L3001はRSC符号の相互情報量の入出力特性の一例を示している。ターボ符号の相互情報量入出力特性L3001とRSC符号の相互情報量入出力特性L3002の傾きが異なるため、等化器特性の傾きにより、いずれか最適な方を選択した方がよい。このことは、ターボ等化を適用可能な受信装置が存在する場合には適切に符号化装置の構造を選択する必要があることを意味している。
M. Tuchler, and J. Hagenauer, "Linear Time and Frequency DomainTurbo Equalization," in Proc. VTC2001-Spring, pp. 1449-1453, May 2001. S. IBI, T. Matsumoto, R. Thoma, S. Sampei, and N. Morinaga, "EXIT Chart-Aided Adaptive Coding for MMSE Turbo Equalization with Multilevel BICM infrequency Selective MIMO Channels," IEEE Trans. VT,Vol. 56,No. 6,pp. 3749-3756. Nov. 2007.
 しかしながら、スタックを生じないような設計を行う際には、等化器の入出力特性を見て適切な符号を選択することが必要であり、符号化装置として畳み込み符号やRSC符号を選択した場合とターボ符号を選択した場合で入出力特性が大きく異なるため、確率的に変化する等化器の伝送時刻における入出力特性を把握した上で適切な符号を選択する必要がある。
 さらに、これに対して、LTE(Long Term Evolution)やLTE-Aなどの次世代のセルラシステムでは、ターボ符号を用いる場合、ある程度情報ビット列が長くなければ誤り訂正の効果が弱いことから制御情報のみには畳み込み符号を使用し、データにはターボ符号を使う機能が存在する。これはあくまでデータの長さに応じて符号化装置を2種類切り替える概念ものであり、データ伝送における誤り訂正符号はターボ符号が基本となるため、できる限りターボ符号の構成のまま符号化装置の構造をRSC符号に変更することが望ましく、ターボ等化を適用可能な受信装置が存在することを意識して符号化装置の構造を変更するという手段はこれまでにはなかった。
 また、今後の無線通信システムでは同一システム内で等化を必要としない直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)などのマルチキャリア信号だけでなく、シングルキャリア信号が混在した環境になることも予想されるため、ターボ等化を使用する受信装置が混在するかどうかだけでなく、ターボ等化が導入される受信装置でもどちらの符号が適しているかを考慮して適切な符号化装置を選択しなければならないという問題も新たに生じる。
 本発明は、このような事情を鑑みてなされたもので、その目的は、ターボ等化技術を採用している受信装置の等化・復号の特性を考慮して適切に符号化を選択する制御を行うことで、高い伝送特性を達成することができる符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラムを提供することにある。
 本発明は、ターボ等化技術により信号を処理する等化部と復号部を有する受信装置と通信を行う送信装置の符号化装置であって、
 入力情報ビットをRSC符号化して組織ビットとパリティビットを出力する第1のRSC符号部と、前記入力情報ビットに対して異なるデータ配列とした信号をRSC符号化して組織ビットとパリティビットを出力する第2のRSC符号部と、前記第1及び第2のRSC符号部の符号化信号をパンクチャリングするパンクチャリング部と、前記パンクチャリング部を制御するパンクチャパターン制御部と、を備え、
 前記パンクチャパターン制御部は、符号化率を維持しながら、ターボ符号用パンクチャパターンと、RSC符号用パンクチャパターンのうち前記受信装置をスタックさせない方に切り替えて前記パンクチャリング部にパンクチャリングさせることを特徴とする。
 ここで、前記パンクチャパターン制御部は、第1のRSC符号部の出力信号のみを利用するRSC符号用パンクチャパターンと、第1及び第2のRSC符号部の出力信号を利用するターボ符号用パンクチャパターンを切り替えることを特徴とする。
 また、前記パンクチャパターン制御部は、第1のRSC符号から得られるパリティビットと、第2のRSC符号から得られるパリティビットの数を不均一にするパンクチャパターンを切り替えることを特徴とする。
 また、前記パンクチャパターン制御部は、使用伝送方式によりパンクチャパターンを切り替えることを特徴とする。
 また、本発明は、前記符号化装置により符号化された信号をターボ等化技術により処理する等化部と復号部を有する受信装置であって、
 前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出部と、前記傾き算出部が求めた傾きに基づいて、前記受信装置をスタックさせないように、前記符号化装置によりRSC符号を生成させるパンクチャパターンか、ターボ符号の生成をさせるパンクチャパターンかを選択して前記符号化装置に送信するパンクチャパターン選択部と、を備えることを特徴とする。
 ここで、前記パンクチャパターン選択部は、ターボ符号用パンクチャパターンからRSC符号用パンクチャパターンを選択することを特徴とする。
 また、本発明は、前記符号化装置により符号化された信号をターボ等化技術により処理する等化部と復号部を有する受信装置であって、
 前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出部と、前記傾き算出部が求めた傾きに基づいて、前記受信装置をスタックさせないように、前記符号化装置によりRSC符号を生成させるパンクチャパターンか、ターボ符号の生成をさせるパンクチャパターンかを選択して前記符号化装置に送信するパンクチャパターン選択部と、を備え、
 前記パンクチャパターン選択部は、前記第1及び第2のRSC符号部からの前記パリティビットの送信割合を変更する複数のパンクチャパターンの中から適するものを選択することを特徴とする。
 ここで、前記パンクチャパターン選択部は、前記等化部の相互情報量に対する入出力特性より傾きが小さいパンクチャパターンの前記復号部の相互情報量に対する入出力特性のうち、最も傾きの大きなパンクチャパターンを選択することを特徴とする。
 また、本発明は、前記符号化装置により符号化された信号をターボ等化技術により処理する等化部と復号部を有する受信装置であって、
 前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出部と、前記傾き算出部が求めた傾きに基づいて、前記受信装置をスタックさせないように、前記符号化装置によりRSC符号を生成させるパンクチャパターンか、ターボ符号の生成をさせるパンクチャパターンかを選択して前記符号化装置に送信するパンクチャパターン選択部と、を備え、
 前記パンクチャパターン選択部は、使用伝送方式によりパンクチャパターンを選択することを特徴とする。
 また、本発明は、前記符号化装置を備えた送信装置と、前記受信装置と、を備えた無線通信システムである。
 また、本発明は、ターボ等化技術により信号を処理する等化部と復号部を有する受信装置と通信を行う送信装置の符号化装置に用いるパンクチャパターンの選択方法であって、
 前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出ステップと、求めた前記等化部と前記復号部の相互情報量の入出力特性の傾きと、ターボ符号とRSC符号の相互情報量に対する入出力特性の傾きとを比較し、前記受信装置をスタックさせないパンクチャパターンを選択する選択ステップと、を備えたことを特徴とする。
 本発明は、このパンクチャパターンの選択方法をコンピュータに実行させるためのプログラムとしてもよい。
 本発明を適用することにより、ターボ等化を行う受信装置が混在したとしても符号器そのものの構造を符号化装置の構成を変更することなく、適切なものに変更することができ、より良好な伝送特性が得られる。
 さらに、様々な無線伝送方式の信号が混在する環境下においても、同様の手法で符号化装置の構造を変更することで、いかなる伝送方式の信号を受信する受信装置にとっても最適な符号化を選択できる。
第1実施形態の送信装置の構成の一例を示すブロック図である。 第1実施形態の符号部の構成の一例を示すブロック図である。 符号部を構成する第1のRSC符号部および第2のRSC符号部の一例を示す図である。 パンクチャパターンを変更する概念を説明するEXITチャートの一例を示す図である。 第1実施形態の受信装置の構成の一例を示すブロック図である。 ターボ符号用の各符号化率を生成するパンクチャパターンから同一の符号化率のRSC符号用のパンクチャパターンに切り替える手法を説明する図である。 第1実施形態における計算機シミュレーションにより検証したEXITチャートの例を示す図である。 第2実施形態における計算機シミュレーションにより検証したEXITチャートの例を示す図である。 第3実施形態におけるマルチキャリアとシングルキャリアの送信装置が混在する無線通信システムの例を示す図である。 従来の受信装置の構成の一例を示すブロック図である。 (a)は、ターボ等化技術におけるEXITチャートを観測するモデルを示すブロック図、(b)は、このモデルによるEXITチャートの一例を示す図である。 ターボ符号とRSC符号におけるEXITチャートの一例を示す図である。
 以下、本発明の実施の形態を添付図面を参照して説明する。
[第1の実施形態]
 図1は、本実施形態の送信装置の構成の一例を示すブロック図である。
 この送信装置10は、符号部11、パンクチャパターン検出部12、インターリーブ部13、変調部14、DFT部15、スペクトルマッピング部16、IDFT部17、パイロット信号生成部18、パイロット信号多重部19、CP挿入部20から構成される。
 パンクチャパターン検出部12は、後述する受信装置から送信されたパンクチャパターン情報(受信装置が選択したパンクチャパターン)を受信して符号部11へ送る。符号部11は、構造としてはターボ符号化装置であり、入力情報ビットを誤り訂正符号化して、さらにパンクチャパターン情報に基づいて符号化率を維持しながらパンクチャパターンを変更する(詳しくは後述)。インターリーブ部13は、情報ビットおよびパンクチャ後の冗長ビットの順序を並び替え、バースト誤りに対する耐性を高める。変調部14は、インターリーブ後の情報ビットおよび冗長ビットをシンボルマッピングして変調し、DFT部15はその信号を周波数信号に変換する。スペクトルマッピング部16は、送信データを各サブキャリアに割り当てることによりマッピングし、IDFT部17に出力する。マッピングされた信号は、IDFT部17により時間信号に変換される。パイロット信号生成部18は、無線伝搬路の伝搬路特性を推定するためのパイロット信号を生成し、パイロット信号多重部19で時間信号と多重化する。CP挿入部20が多重化信号にCPを挿入して送信信号を生成して送信する。
 図2は、本実施形態の符号部の構成の一例を示すブロック図であり、図3は、図2の符号部を構成する第1のRSC符号部22および第2のRSC符号部23の一例(ともに符号部の構成は同一である。)を示す図である。ここでは、符号化率1/2のターボ符号を構成する符号部の場合で説明する。
 図2において、符号部11は、基本的に従来のターボ符号化装置と同じ構成をしており、インターリーブ部21、第1のRSC符号部22、第2のRSC符号部23、パンクチャリング部24、パンクチャパターン制御部25から構成される。パンクチャパターン制御部25には、パンクチャパターン検出部12で検出されたパンクチャパターン情報(後述する受信装置より送信された情報)が入力される。入力情報ビットに対し、第1のRSC符号部22に入力される系列と、インターリーブ部21を介して第2のRSC符号部23に入力されるランダムに並び替えられた系列の2系統の情報ビットとし、第1のRSC符号部22と、第2のRSC符号部23でそれぞれRSC符号化がなされる。次に、第1のRSC符号部22と第2のRSC符号部23で符号化された2ビット目(パリティビットと称する)の符号ビットはパンクチャリング部24に入力される。第1のRSC符号部22で得られる1ビット目(組織ビットと称する)は、情報ビットそのものなので、第2のRSC符号23で得られる組織ビットは送信しない。パンクチャリング部24では、所定の符号化率に応じたパンクチャリングが施されるが、パンクチャパターン検出部12で検出されたパンクチャパターン情報に基づきパンクチャパターン制御部25によりRSC符号かターボ符号化を選択するためのパンクチャリングが行われる。
 次に、パンクチャパターン制御部25の動作について説明する。表1に、符号化率1/2のターボ符号を構成するためのパンクチャパターンを示す。
Figure JPOXMLDOC01-appb-T000003
 同表において、1ビット目、2ビット目、3ビット目は、図2における第1のRSC符号部22の出力の組織ビット、パリティビット、第2のRSC符号部23のパリティビットを表しており(以下、原符号と称する)、表中の1に該当するビットを符号ビットとし、0となっているものはパンクチャリングする。例えば、110010が第1のRSC符号部22と第2のRSC符号部23で得られた場合は、表1のパンクチャパターンに当てはめると、3ビット目の0と5ビット目の1がパンクチャリングされ、1100が出力される。なお、第1と第2のRSC符号部22,23で得られるビットが長い場合には表1のパターンを繰り返して当てはめる。
 原符号を生成するRSC符号部22,23の構成を説明する。ここでは、LTE(Long Term Evolution)と呼ばれる次世代の移動通信システムで仕様として採用されている拘束長4のRSC符号の例を示す。図3において、RSC符号部22,23は排他的論理和計算部26-1、26-2、26-3、シフトレジスタ27-1、27-2、27-3から構成される。まず、初期状態のシフトレジスタ27-1、27-2、27-3に保存されている値を0とする。入力された情報ビットは、組織ビットとして符号化されることなく出力される。一方、入力ビットは排他的論理和計算部26-2の出力の値と排他的論理和計算部26-1により排他的論理和が計算され、シフトレジスタ27-1に入力する際に、同時に全てのシフトレジスタを動作させ、シフトレジスタ27-1とシフトレジスタ27-3に保存されていた値と排他的論理和26-1の値を排他的論理和計算部26-3により排他的論理和が計算され、入力ビットを拘束するパリティビットが生成される。
 同時に、シフトレジスタ27-2とシフトレジスタ27-3に入力されていた値も排他的論理和計算部26-2において排他的論理和を計算し、次の入力ビットの拘束のために排他的論理和26-1に入力する。このように、各RSC符号部22,23は原符号を生成する。
 次に、図2で示したターボ符号化装置である符号部11の構成を変更することなくRSC符号にパンクチャパターン制御部25のみで変更する場合を説明する。符号化率1/2のRSC符号は、第1のRSC符号部22の出力そのものを使用すればよいため、構成を変更することなく用いるためには表1のパンクチャパターンを次の表2のようにすればよい。
Figure JPOXMLDOC01-appb-T000004
 表2は、第2のRSC符号部23を使用しないことを意味している。こうすることにより、ターボ符号部11の構成を変更することなくターボ符号とRSC符号の生成をパンクチャパターンの切り替えだけで符号器の機能を変更することができる。
 図4に、パンクチャパターンを変更する概念を説明するEXITチャートの一例を示す。同図において、L21、L22は図3と同じターボ符号の相互情報量の入出力特性およびRSC符号の相互情報量の入出力特性を示している。L31は、ターボ符号に適した等化器の性能を示す相互情報量の入出力特性の例であり、L32はRSC符号に適した等化器の性能を示す相互情報量の入出力特性の例である。
 まず、L31のような傾きを有する等化器は、比較的ターボ符号の相互情報量入出力特性L21と平行な関係になっていることから、図のような復号器特性より上に等化器特性が存在する場合には、スタックすることなく相互情報量1に到達しやすくなる。このとき、L32のような傾きを有する特性の等化器に使用してしまうと、等化器の傾きが急峻なので、同図のようにスタックしてしまう確率が高くなる。
 一方、L32のような傾きを有する等化器は、RSC符号の相互情報量入出力特性L22と比較的平行な関係になっていることから、復号器特性より上に等化器特性が存在する場合には、相互情報量1に到達しやすくなるが、これにターボ符号を使用してしまうと、ターボ符号の入出力特性の傾きが小さすぎるため、同図のように小さい相互情報量付近でスタックしてしまう可能性が高くなる。
 そのため、等化器の入出力特性の傾きから、パンクチャパターン制御部25はRSC符号にするかターボ符号にするかを選択し、符号部11にフィードバックすればよい。次に、等化器の入出力特性の傾きを計算する手法について説明する。ここでは、周波数領域SC/MMSEターボ等化技術を例に説明するが、一般的にターボ等化技術と呼ばれる技術を採用する場合でも本質的には同一である。
 図5に、受信装置の一例を示す。受信装置30は、CP除去部31、パイロット信号抽出部32、伝搬路推定部33、傾き算出部34、パンクチャパターン選択部35、第1のDFT部36、キャンセル部37、等化部38、IDFT部39、復調部40、デインターリーブ部41、復号部42、インターリーブ部43、ソフトレプリカ生成部44、第2のDFT部45、判定部46から構成される。図10と同一名称のものは基本的には同じであるが、ここでは、パイロット信号抽出部32、伝搬路推定部33、傾き算出部34、パンクチャパターン選択部35を追加しており、通常、パイロット信号から伝搬路の周波数応答を推定する手段を有する機能は公知技術として存在しているので、本発明で新たに追加した機能はパンクチャパターンを制御するために必要な等化器の相互情報量の入出力特性の傾きを算出する傾き算出部34、RSC符号の構成を取らせるかターボ符号の構成を取らせるかを選択するパンクチャパターン選択部35である。選択されたパンクチャパターンは、送信装置10へ送信されるとともに、誤り訂正復号にも使用する必要があるので、復号部42に入力される。
 次に、等化器の相互情報量の入出力特性の始点と終点を算出する手法について述べる。始点と終点は、送信ビットに関する情報を全く把握できていない場合と完全に把握できている場合に相当するので、これを基に算出可能である。
 一般に、等化処理による送信信号に対する利得を表す等価振幅利得をμとすると、始点と終点における等化後の受信SNRは、MMSE基準型の場合、式(3)で算出される。
Figure JPOXMLDOC01-appb-M000005
 始点と終点の等価振幅利得はそれぞれ式(4)、式(5)で表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ただし、H(k)はk番目の離散周波数の複素数の伝搬路利得、Kは周波数信号のポイント数、σは受信装置30内における熱雑音の分散である。また、μは始点の等価振幅利得、μは終点の等価振幅利得であり、これを基に式(3)により始点と終点の受信SNRを算出し、式(2)により相互情報量を算出する。
 式(2)により得られた始点と終点の相互情報量をそれぞれI、Iとすると、傾き算出部34において等化器近似直線の傾きは、I-Iで算出される。
 次に、このように得られた傾きから、RSC符号を選択させるかターボ符号を選択させるかを決定する。まず、RSC符号の入出力特性の傾きとターボ符号の入出力特性の傾きは受信装置30内で把握しておく。図3より、RSC符号はおよそ0.66、ターボ符号はおよそ0.125であり、等化器特性の傾きがRSC符号特性とターボ符号特性のほぼ中間である0.4より大きければRSC符号を選択し、0.4より小さければターボ符号を選択する。なお、これは符号の選択法の一例であり、傾きを把握して符号化装置のパンクチャパターンを変更することで構造を変化させるものについては本質的に同一である。
 このように、本発明は等化器の相互情報量の入出力特性の傾きを把握することで、スタックを生じにくくし、高い伝送特性で情報を伝送することができる。また、本発明は伝送機会ごとに適応的に施してもよいし、最初の伝送機会で設定された傾きをその後の伝送で使い続けてもよい。
 次に、ターボ符号化装置におけるターボ符号用の符号化率を変更するためのパンクチャパターンから、RSC符号のパンクチャパターンを生成する手法について説明する。
 第1の実施形態の表1に示されるように、ターボ符号の構成で、符号化率1/2で構成されるターボ符号の構成はパリティビットが交互にパンクチャリングされることで実現される。符号化装置内でRSC符号用とターボ符号用のパンクチャパターンを両方具備していれば切り替えるだけで問題ないが、メモリの関係でターボ符号用の各符号化率のパンクチャパターンからRSC符号に切り替えるパンクチャパターンを生成できることが望ましい。
 そこで、本実施形態では、受信装置のパンクチャパターン選択部35において、ターボ符号用の各符号化率を生成するパンクチャパターンから同一の符号化率のRSC符号用のパンクチャパターンに切り替える手法を説明する。まず、表1と表2より、RSC符号は、3ビット目、即ち第2のRSC符号部のパリティビットを使用せず、本来ターボ符号のために使われているターボ復号に必要な3ビット目の送信ビットを送信せず、代わりに2ビット目の送信に使用することで実現される。
 したがって、パンクチャパターンのテーブルにおいて、2ビット目のパンクチャパターンを2ビット目と3ビット目の論理和として規定し、3ビット目をすべて0にすることで実現される。この考え方の一例を図6に示す。図6においてT51は例として符号化率1/2のターボ符号を実現するためのパンクチャパターンを示しており、T52は本実施形態の手法で生成された符号化率1/2のRSC符号を実現するパンクチャパターンである。同図に示されるように、ターボ符号における2ビット目に3ビット目の値の論理和をT52のように計算し(矢印Y11)、3ビット目をゼロにすることで(矢印Y12)、符号化率だけでなくターボ符号化装置自体の構造も変えることなく、RSC符号を得られるパンクチャパターンT53により切り替えることができる。
 本実施形態により、パンクチャテーブルを増やすためのメモリが必要最小限となり、基本をターボ符号とする符号化装置でRSC符号の構造そのものに変えることができ、ターボ等化を適用する際に、パンクチャパターンを変更するだけで適切な符号の構成にすることができ、送信信号の検出誤りが減る。
 図7に、これを実際に計算機シミュレーションにより検証したEXITチャートの例を示す。L51は、従来のターボ符号の構成で生成される復号器のEXITチャート、L52は、本発明の切り替えを用いて算出されたEXITチャートである。図12と同じ性能が得られており、本発明の効果があることが確認される。
[第2の実施形態]
 第1の実施形態では、RSC符号のパンクチャパターンの構成とターボ符号のパンクチャパターンの構成を切り替えたが、ここでは第1のRSC符号から得られるパリティビットと、第2のRSC符号から得られるパリティビットの数を不均一にすることで、復号器の相互情報量の入出力特性の傾きをより詳細に制御する。
 表3~6に、パンクチャパターンの一例を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表3~表6で表されるパクチャパターンをそれぞれType0~Type3と称し、Type0は第1の実施形態と同じものである。これらは、第1と第2のRSC符号から出力されたパリティビットの送信割合を、符号化率を維持したまま変更するという手法である。Type1~Type3については、ターボ符号器内の第1と第2のRSC符号器から生成されたパリティビットの両方が送信されるので、復号はターボ復号により行うものとする。計算機シミュレーションにより得られた結果を図8に示す。同図より、横軸(等化器入力情報量かつ復号器出力相互情報量)が低い値(始点付近)で入出力特性を変化させることができていることがわかる。したがって、例えば、Type1~Type4の復号器特性の傾きを算出しておき、等化器特性より傾きが小さいTypeの復号器特性のうち、最も傾きの大きな復号器特性を有するTypeを適用することで、実現可能である。
 このように、符号化率を変更せずにより多くのパンクチャパターンを設定すれば、より細かい制御が可能となり、ターボ等化に適した符号を構成することができる。
[第3の実施形態]
 第3の実施形態としては、セルラシステムの上り回線を例とした適用環境について説明する。図9に、マルチキャリアとシングルキャリアの送信装置が混在する無線通信システムの例を示している。同図において、第1の送信装置(移動局)61は、電力利用効率の観点からシングルキャリアで伝送を行い、第2の送信装置(移動局)62は、OFDMのようなマルチキャリアで伝送を行っているものとする。受信装置(基地局)63はマルチキャリア信号の受信とシングルキャリア信号の受信が可能であるものとし、特にシングルキャリア信号の受信処理としてターボ等化も適用する。
 まず、第1の送信装置(移動局)61は、受信装置(基地局)63から遠く、電力利用効率の高いシングルキャリア方式を使用しているため、受信装置(基地局)63はターボ等化による受信処理を行う。このとき、受信装置(基地局)63は上述のように伝搬路特性から等化部の相互情報量の入出力特性を算出し、RSC符号が適しているかターボ符号が適しているかを判断し、第1の送信装置(移動局)61にフィードバックする。このとき、切り替えのフィードバック方法としては、例えばRSC符号の構造かターボ符号の構造かを通知するだけなので、1ビットの制御情報の増加で対応できる。
 一方で、OFDMで伝送を行う第2の送信装置(移動局)62の場合には、マルチキャリア伝送は狭帯域サブキャリアの並列送信となるため、伝搬路による歪みは各サブキャリアの利得として観測されることになるため、受信装置(受信局)63における等化処理は必要ない。そのため、本来EXITチャートという評価は必要ないが、仮にEXITチャートとして観測した場合には、等化器の相互情報量の入出力特性は常に出力相互情報量が一定の傾き0の直線と捉えることができ、ターボ符号が適している。そのため、第2の送信装置(移動局)62へはターボ符号の構造で送信するよう通知し、ターボ等化を含めた一切の等化を適用しない受信処理となる。
 このように、無線システムや環境、伝送方式に応じて適切な符号器構造を通知し、送信装置でパンクチャパターンを切り替えることで実現可能であり上述の実施形態2を用いれば符号化装置の構成を変えることなく符号器そのものの構造を変化させることができ、その結果、高い伝送特性が得られる。これは、繰り返し伝搬路推定のように、ターボ等化の内部に伝搬路推定が組み込まれる場合には、伝搬路推定精度も繰り返しにより変化するので、そのような受信処理が組み込まれている受信処理は、複数の送受信アンテナを用いて空間的に並列に信号を送信するMIMO(Multiple-Input Multiple-Output)システムなどでも同様に考慮することができる。また、LTEとLTE-A(LTE-Advanced)システムで想定されるようにLTE対応端末とLTE-A対応端末が混在する環境などに適用することができる。
 なお、本実施形態では、シングルキャリア方式で送信された信号を、ターボ等化を適用した受信装置で受信する場合で説明したが、これに限らず、本発明の符号化装置および受信装置は、LLRをやり取りしながら復調、復号を行う繰り返し処理を適用した受信装置で受信する場合あれば適用できる。例えば、W-CDMA、MC-CDMA方式で送信された信号を、コード間干渉キャンセラを適用した受信装置で受信する場合に適用することができる。
 また、OFDM方式で送信された信号を、シンボル間干渉キャンセラあるいはキャリア間干渉キャンセラを適用した受信装置で受信する場合に適用することができる。
 また、LTEの符号化装置として規定されている手法があるが、サブブロックインターリーバと呼ばれるインターリーブパターンを変更することが本発明のパンクチャパターンを変更することと本質的に同一である。
 本実施形態に係るパンクチャパターンの選択処理については、コンピュータによって実現することができる。その場合、このような機能の処理内容を記述したプログラムが提供される。そして、そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。
10 送信装置
11 符号部
12 パンクチャパターン検出部
13 インターリーブ部
14 変調部
15 DFT部
16 スペクトルマッピング部
17 IDFT部
18 パイロット信号生成部
19 パイロット信号多重部
20 CP挿入部
21 インターリーブ部
22 符号部
22,23 RSC符号部
24 パンクチャリング部
25 パンクチャパターン制御部
26 排他的論理和計算部
27 シフトレジスタ
30 受信装置
31 CP除去部
32 パイロット信号抽出部
33 伝搬路推定部
34 傾き算出部
35 パンクチャパターン選択部
36 第1のDFT部
37 キャンセル部
38 等化部
39 IDFT部
40 復調部
41 デインターリーブ部
42 復号部
43 インターリーブ部
44 ソフトレプリカ部
45 第2のDFT部
46 判定部
1000 受信装置
1001 CP除去部
1002 第1のDFT部
1003 キャンセル部
1004 等化部
1005 IDFT部
1006 復調部
1007 デインターリーブ部
1008 復号部
1009 インターリーブ部
1010 ソフトレプリカ生成部
1011 第2のDFT部
1012 判定部
2001 等化器
2002 復号器
 

Claims (12)

  1.  ターボ等化技術により信号を処理する等化部と復号部を有する受信装置と通信を行う送信装置の符号化装置であって、
     入力情報ビットをRSC符号化して組織ビットとパリティビットを出力する第1のRSC符号部と、
     前記入力情報ビットに対して異なるデータ配列とした信号をRSC符号化して組織ビットとパリティビットを出力する第2のRSC符号部と、
     前記第1及び第2のRSC符号部の符号化信号をパンクチャリングするパンクチャリング部と、
     前記パンクチャリング部を制御するパンクチャパターン制御部と、
    を備え、
     前記パンクチャパターン制御部は、符号化率を維持しながら、ターボ符号用パンクチャパターンと、RSC符号用パンクチャパターンのうち前記受信装置をスタックさせない方に切り替えて前記パンクチャリング部にパンクチャリングさせることを特徴とする符号化装置。
  2.  前記パンクチャパターン制御部は、第1のRSC符号部の出力信号のみを利用するRSC符号用パンクチャパターンと、第1及び第2のRSC符号部の出力信号を利用するターボ符号用パンクチャパターンを切り替えることを特徴とする請求項1に記載の符号化装置。
  3.  前記パンクチャパターン制御部は、第1のRSC符号から得られるパリティビットと、第2のRSC符号から得られるパリティビットの数を不均一にするパンクチャパターンを切り替えることを特徴とする請求項1に記載の符号化装置。
  4.  前記パンクチャパターン制御部は、使用伝送方式によりパンクチャパターンを切り替えることを特徴とする請求項1又は2に記載の符号化装置。
  5.  請求項1又は2に記載の符号化装置により符号化された信号をターボ等化技術により処理する等化部と復号部を有する受信装置であって、
     前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出部と、
     前記傾き算出部が求めた傾きに基づいて、前記受信装置をスタックさせないように、前記符号化装置によりRSC符号を生成させるパンクチャパターンか、ターボ符号の生成をさせるパンクチャパターンかを選択して前記符号化装置に送信するパンクチャパターン選択部と、
    を備えることを特徴とする受信装置。
  6.  前記パンクチャパターン選択部は、ターボ符号用パンクチャパターンからRSC符号用パンクチャパターンを選択することを請求項5に記載の受信装置。
  7.  請求項3に記載の符号化装置により符号化された信号をターボ等化技術により処理する等化部と復号部を有する受信装置であって、
     前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出部と、
     前記傾き算出部が求めた傾きに基づいて、前記受信装置をスタックさせないように、前記符号化装置によりRSC符号を生成させるパンクチャパターンか、ターボ符号の生成をさせるパンクチャパターンかを選択して前記符号化装置に送信するパンクチャパターン選択部と、
    を備え、
     前記パンクチャパターン選択部は、前記第1及び第2のRSC符号部からの前記パリティビットの送信割合を変更する複数のパンクチャパターンの中から適するものを選択することを特徴とする受信装置。
  8.  前記パンクチャパターン選択部は、前記等化部の相互情報量に対する入出力特性より傾きが小さいパンクチャパターンの前記復号部の相互情報量に対する入出力特性のうち、最も傾きの大きなパンクチャパターンを選択することを特徴とする請求項7に記載の受信装置。
  9.  請求項4に記載の符号化装置により符号化された信号をターボ等化技術により処理する等化部と復号部を有する受信装置であって、
     前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出部と、
     前記傾き算出部が求めた傾きに基づいて、前記受信装置をスタックさせないように、前記符号化装置によりRSC符号を生成させるパンクチャパターンか、ターボ符号の生成をさせるパンクチャパターンかを選択して前記符号化装置に送信するパンクチャパターン選択部と、
    を備え、
     前記パンクチャパターン選択部は、使用伝送方式によりパンクチャパターンを選択することを特徴とする受信装置。
  10.  請求項1乃至4いずれかに記載の符号化装置を備えた送信装置と、請求項5乃至9いずれかに記載の受信装置と、を備えた無線通信システム。
  11.  ターボ等化技術により信号を処理する等化部と復号部を有する受信装置と通信を行う送信装置の符号化装置に用いるパンクチャパターンの選択方法であって、
     前記等化部と前記復号部の相互情報量の入出力特性の傾きを算出する傾き算出ステップと、
     求めた前記等化部と前記復号部の相互情報量の入出力特性の傾きと、ターボ符号とRSC符号の相互情報量に対する入出力特性の傾きとを比較し、前記受信装置をスタックさせないパンクチャパターンを選択する選択ステップと、
    を備えたパンクチャパターンの選択方法。
  12.  請求項11に記載のパンクチャパターンの選択方法をコンピュータに実行させるためのプログラム。
PCT/JP2010/053651 2009-03-06 2010-03-05 符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム WO2010101243A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/254,633 US20110320920A1 (en) 2009-03-06 2010-03-05 Coding apparatus, receiving apparatus, wireless communication system, puncturing pattern selecting method and program thereof
CN2010800197202A CN102414997A (zh) 2009-03-06 2010-03-05 编码设备、接收设备、无线通信系统、打孔模式选择方法及其程序
EP10748836A EP2405590A4 (en) 2009-03-06 2010-03-05 CODING DEVICE, RECEIVER, WIRELESS COMMUNICATION SYSTEM, PUNCTURE PATTERN SELECTION PROCESS AND PROGRAM THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-053568 2009-03-06
JP2009053568A JP5356073B2 (ja) 2009-03-06 2009-03-06 符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム

Publications (1)

Publication Number Publication Date
WO2010101243A1 true WO2010101243A1 (ja) 2010-09-10

Family

ID=42709796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053651 WO2010101243A1 (ja) 2009-03-06 2010-03-05 符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム

Country Status (5)

Country Link
US (1) US20110320920A1 (ja)
EP (1) EP2405590A4 (ja)
JP (1) JP5356073B2 (ja)
CN (1) CN102414997A (ja)
WO (1) WO2010101243A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952489B1 (fr) * 2009-11-09 2014-05-02 Korea Electronics Telecomm Appareil et procede de codage utilisant un turbo-code, et unite et procede de permutation
US8769365B2 (en) 2010-10-08 2014-07-01 Blackberry Limited Message rearrangement for improved wireless code performance
JP5581967B2 (ja) * 2010-10-22 2014-09-03 日本電気株式会社 分散推定方法、分散推定装置、変調信号生成方法、変調信号生成装置、および、コンピュータ・プログラム
JP5642572B2 (ja) * 2011-01-24 2014-12-17 シャープ株式会社 無線制御装置、無線端末装置、無線通信システム、制御プログラムおよび集積回路
WO2013169330A1 (en) 2012-05-11 2013-11-14 Research In Motion Limited Method and system for uplink harq and csi multiplexing for carrier aggregation
JP6160802B2 (ja) * 2012-08-14 2017-07-12 シャープ株式会社 ビット符号化装置、ビット復号装置、送信装置、受信装置、ビット符号化方法、ビット復号方法、送信方法、受信方法およびプログラム
JP6628124B2 (ja) * 2014-05-30 2020-01-08 パナソニックIpマネジメント株式会社 送信装置、受信装置、送信方法および受信方法
JP2015057905A (ja) * 2014-10-29 2015-03-26 シャープ株式会社 無線制御装置、無線端末装置、無線通信システム、制御プログラムおよび集積回路
CN112291040B (zh) * 2015-03-02 2024-01-26 三星电子株式会社 发送方法和接收方法
CN111213346B (zh) * 2017-10-13 2021-08-27 中兴通讯股份有限公司 用于促进多用户检测的方法和计算设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514459A (ja) * 1997-08-22 2001-09-11 シーメンス アクチエンゲゼルシヤフト デジタル伝送システムにおける伝送チャネルのサービス品質を評価するための方法及び装置
JP2001326578A (ja) * 2000-05-17 2001-11-22 Seiko Epson Corp データ誤り訂正装置
JP2006510333A (ja) * 2002-12-16 2006-03-23 インターディジタル テクノロジー コーポレイション ターボ符号を実装する場合に使用するパリティビットのストリームにおける問題のあるパンクチャパターンの検出、回避および/または訂正
WO2009022709A1 (ja) * 2007-08-13 2009-02-19 Sharp Kabushiki Kaisha 無線通信システム、無線通信方法、無線通信装置、受信装置およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736625C1 (de) * 1997-08-22 1998-12-03 Siemens Ag Verfahren zur Datenübertragung auf Übertragungskanälen in einem digitalen Übertragungssystem
US6490260B1 (en) * 1998-08-03 2002-12-03 Samsung Electronics, Co., Ltd. Transmitter with increased traffic throughput in digital mobile telecommunication system and method for operating the same
KR100373965B1 (ko) * 1998-08-17 2003-02-26 휴우즈 일렉트로닉스 코오포레이션 최적 성능을 갖는 터보 코드 인터리버
US6584080B1 (en) * 1999-01-14 2003-06-24 Aero-Vision Technologies, Inc. Wireless burstable communications repeater
AU759741B2 (en) * 1999-06-28 2003-05-01 Samsung Electronics Co., Ltd. Apparatus and method of controlling forward link power when in discontinuous transmission mode in a mobile communication system
FR2805418B1 (fr) * 2000-02-23 2003-05-30 Mitsubishi Electric Inf Tech Procede de transmission numerique de type a codage correcteur d'erreurs
US20030137975A1 (en) * 2001-07-10 2003-07-24 Jian Song Ethernet passive optical network with framing structure for native Ethernet traffic and time division multiplexed traffic having original timing
JP3540782B2 (ja) * 2001-08-06 2004-07-07 三洋電機株式会社 無線基地装置、無線端末装置、移動体通信システム、および受信動作制御プログラム
CN101483440B (zh) * 2002-12-16 2014-04-16 美商内数位科技公司 实施涡轮码时所用同位位流中问题穿刺型态的检测、避免及/或改正
CN101053269B (zh) * 2004-10-29 2011-09-28 艾利森电话股份有限公司 通信网络中的资源分配
US20060098662A1 (en) * 2004-11-09 2006-05-11 Sunil Gupta Memory and processor efficient network communications protocol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514459A (ja) * 1997-08-22 2001-09-11 シーメンス アクチエンゲゼルシヤフト デジタル伝送システムにおける伝送チャネルのサービス品質を評価するための方法及び装置
JP2001326578A (ja) * 2000-05-17 2001-11-22 Seiko Epson Corp データ誤り訂正装置
JP2006510333A (ja) * 2002-12-16 2006-03-23 インターディジタル テクノロジー コーポレイション ターボ符号を実装する場合に使用するパリティビットのストリームにおける問題のあるパンクチャパターンの検出、回避および/または訂正
WO2009022709A1 (ja) * 2007-08-13 2009-02-19 Sharp Kabushiki Kaisha 無線通信システム、無線通信方法、無線通信装置、受信装置およびプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. TUCHLER, J. HAGENAUER: "Linear Time and Frequency DomainTurbo Equalization", PROC. VTC2001-SPRING, May 2001 (2001-05-01), pages 1449 - 1453
S. IBI, T. MATSUMOTO, R. THOMA, S. SAMPEI, N. MORINAGA: "EXIT Chart-Aided Adaptive Coding for MMSE Turbo Equalization with Multilevel BICM infrequency Selective MIMO Channels", IEEE TRANS. VT, vol. 56, no. 6, November 2007 (2007-11-01), pages 3749 - 3756

Also Published As

Publication number Publication date
JP2010212757A (ja) 2010-09-24
EP2405590A1 (en) 2012-01-11
EP2405590A4 (en) 2012-10-10
CN102414997A (zh) 2012-04-11
JP5356073B2 (ja) 2013-12-04
US20110320920A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
JP5356073B2 (ja) 符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム
KR101280734B1 (ko) Mimo 통신 시스템에서의 증분 리던던시 송신
US9503203B2 (en) Wireless interference cancellation
EP2247019A1 (en) Communication device, communication system, reception method, and communication method
EP2271012A1 (en) Communication device, communication system, reception method, and program
KR20060106223A (ko) 직교 주파수 분할 다중 시스템에서 비트 삽입 및 코드 변조방식의 송신 장치 및 방법
WO2011155468A1 (ja) 移動端末装置、無線基地局装置及び無線通信方法
US8874985B2 (en) Communication system, transmission device, reception device, program, and processor
JP5327808B2 (ja) Idma受信機
Wu et al. A quasi-random approach to space–time codes
JP5995203B2 (ja) 無線受信装置および無線受信方法
JP5679771B2 (ja) 無線通信装置及び無線通信方法
KR101040605B1 (ko) 공간 변조 방법과 장치, 그리고 공간 변조된 신호의 복조 방법과 장치
Lüders et al. Improving UMTS LTE performance by UEP in high order modulation
US11700040B2 (en) Method for enhancing the performance of downlink multi-user MIMO systems
KR101407172B1 (ko) 터보 코드를 이용한 데이터 전송 방법
RU2369021C2 (ru) Передача с инкрементной избыточностью в системе связи mimo
Xu et al. Iteratively Detected Sphere Packing Modulated OFDM: An Exit Chart Perspective
WO2012147474A1 (ja) 受信装置、無線通信システム、受信装置の制御プログラムおよび集積回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019720.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13254633

Country of ref document: US

Ref document number: 2010748836

Country of ref document: EP