WO2010100795A1 - Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same - Google Patents

Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same Download PDF

Info

Publication number
WO2010100795A1
WO2010100795A1 PCT/JP2009/069137 JP2009069137W WO2010100795A1 WO 2010100795 A1 WO2010100795 A1 WO 2010100795A1 JP 2009069137 W JP2009069137 W JP 2009069137W WO 2010100795 A1 WO2010100795 A1 WO 2010100795A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow shaft
photosynthesis
stirrer
carbon dioxide
light
Prior art date
Application number
PCT/JP2009/069137
Other languages
French (fr)
Japanese (ja)
Inventor
孝昭 前川
Original Assignee
株式会社筑波バイオテック研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社筑波バイオテック研究所 filed Critical 株式会社筑波バイオテック研究所
Priority to JP2011502592A priority Critical patent/JP5661028B2/en
Publication of WO2010100795A1 publication Critical patent/WO2010100795A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/04Stirrer or mobile mixing elements with introduction of gas through the stirrer or mixing element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED

Definitions

  • the present invention relates to a photosynthesis stirrer for efficiently producing a useful substance by utilizing the photosynthetic ability of aquatic organisms such as algae, a photobioreactor using the agitator, and a method for culturing aquatic organisms.
  • a stirrer type culture apparatus in which a light source for supplying light to the light emitting part is disposed outside the culture tank, and a device for supplying light and carbon dioxide into a culture tank containing a living organism having a photosynthetic ability and a culture solution.
  • a photosynthetic organism culture device (see Patent Document 2) that supplies light with a movable light emitter composed of a flat transparent material provided in the center of the culture tank, for receiving light from an external light source From a photosynthetic culture apparatus (see Patent Document 3) having an irradiation apparatus made of a plurality of independent plate-like light emitters connected to an optical transmission path in a culture tank (see Patent Document 3), a culture vessel, a carbon dioxide supply means, and a light irradiation means Composed
  • the culture vessel has a first zone for generating an upward flow of the culture solution as the bubbles generated by the supply of carbon dioxide and a second zone for generating a downward flow of the culture solution.
  • An apparatus for cultivating photosynthetic organisms that irradiates light (see Patent Document 4), a liquid film forming plate that causes a culture solution containing photosynthetic organisms to flow down into a liquid film along the surface, and a culture solution containing photosynthetic organisms at the upper end thereof
  • a culture medium supply means and a light source for irradiating the liquid film on the liquid film forming plate with light are provided, and a light reflecting surface is provided around the liquid film forming plate, and a light reflection surface
  • An apparatus for culturing photosynthetic organisms provided with a fiber exit end see Patent Document 5
  • a stirring blade disposed in the center of the culture tank containing the photosynthetic organisms and the culture solution and the rotation range of the stirring blade and the inner wall of the culture tank
  • Photosynthetic culture device with a plurality of plate-shaped light emitters (Patent text) 6), a rotation tank and a culture tank equipped with a field emission lamp fixed to the rotation axis.
  • the rotation axis is controlled to rotate the lamp around the rotation axis to stir the culture solution.
  • the light intensity and lighting of the lamp are controlled while acting as a stirring body to irradiate the medium with the required intensity of light, and the blinking timing of the lamp can be controlled to control the two light-dark reactions of the photosynthetic organism.
  • An optical bioreactor (see Patent Document 7) has been proposed.
  • a light emitting diode is also used as a light source, for example, a water tank having light reflectivity toward the inner surface, and a number of light emitting diodes arranged so that one end thereof is positioned above the culture liquid surface.
  • An apparatus for culturing microalgae equipped with stirring means is known (see Patent Document 8).
  • JP-A-3-58780 (Claims and others) JP-A-4-84883 (Claims and others) Japanese Patent Laid-Open No. 7-163331 (Claims and others) JP-A-7-184630 (Claims and others) JP-A-7-227269 (Claims and others) JP-A-7-289236 (Claims and others) JP 2008-283937 A (claims and others) JP-A-10-98964 (Claims and others)
  • the present invention is capable of uniformly dispersing and irradiating light necessary for a photosynthetic reaction in a culture solution without depending on sunlight, and without damaging aquatic organisms in culture by agitation.
  • An agitator for photosynthesis that can cultivate aquatic organisms efficiently while preventing the attachment of aquatic organisms to the wall, and that can extend the life of the light source, and photobio using the agitator.
  • the object of the present invention is to provide a reactor and a method for culturing aquatic organisms.
  • the present inventors have developed a light emitting diode that generates light having wavelengths of 430 nm, 680 nm, and 700 nm as a light source.
  • a light source, a cathode, a carbon dioxide supply pipe, and a feed pipe for nutrient solution, etc. are arranged at the lower part of the shaft part.
  • the present invention also serves as a carbon dioxide gas supply pipe, and a plurality of cylindrical or conical transparent stirring blades are attached to the hollow shaft constituting the rotating shaft in a radial manner and at different intervals, and the attachment
  • One or more light emitting diodes having three different light qualities of blue, red, and far red are provided in the vicinity of each part, and a nutrient solution or nutrient solution and an alkali solution for neutralizing carbon dioxide are provided below the hollow shaft.
  • a supply pipe for supplying a supply liquid including both of the above and a buffer mechanism for fixing an upward strut force generated by the supply of carbon dioxide gas and the supply liquid is fixed to the upper outer surface of the hollow shaft, Furthermore, the present invention provides a stirrer for photosynthesis characterized in that a power supply mechanism for a light emitting diode is slidably mounted on a hollow shaft.
  • the stirring blade is attached to the hollow shaft by changing the direction at the same angle in the range of 10 ° to 180 °, preferably 15 ° to 120 °. However, if the angle is reduced, it is advantageous that many stirring blades are attached.
  • one blue, one red and one far red light emitting diode must be used.
  • one blue and one far red light emitting diode can be used, and two red light emitting diodes can be used.
  • the range of the preferred red / blue light source intensity ratio (R / B ratio) is 4 to 15, and the range of the red / far red light source intensity ratio (R / FR ratio) is 1.3 to 2.5.
  • the present invention also provides a photobioreactor comprising a culture vessel in which the agitator is disposed.
  • the present invention provides the above-mentioned photosynthesis stirrer in which the photocatalyst for preventing the adhesion of underwater organisms is attached to the surface of the stirring blade is disposed in the culture solution, and is performed while stirring the culture solution.
  • a method for culturing organisms is provided.
  • a light emitting diode having three wavelength ranges is used as a light source, and light emitted from the light source is radiated in a direction perpendicular to the vessel wall surface through a cylindrical or conical transparent stirring blade.
  • the photosynthesis of the algae growing in the culture vessel is activated, the carbon dioxide fed in large quantities from the hollow shaft of the stirrer is used to photosynthesis very quickly, and the algae can be propagated in a short time.
  • the dry matter density of the algae in the culture vessel can be 5 to 15 times that of the conventional one.
  • algae can be produced at extremely low cost, and drying these algae can produce starch, lipids and proteins per unit area several hundred to several thousand times that of corn and sugarcane harvested from the field. become.
  • carbon dioxide with a mass approximately 1.5 times that of the dry matter density of algae is absorbed, so it becomes a carbon dioxide absorption device that is extremely effective in preventing global warming, and can be reused like a forest. Since carbon dioxide is not absorbed over several decades but is absorbed in a few days, it can be used as a device that always absorbs carbon dioxide regardless of location.
  • the dry matter of algae produced by the present invention is useful as it is for livestock feed, and has the advantage that the lipid contained in the dry matter can be used as fuel oil.
  • FIG. 1 is a longitudinal sectional view showing an example of a stirrer part of the present invention.
  • This stirrer part is divided and stored in an upper region and a lower region of a culture vessel, and is packed by an upper flange 9 and a lower flange 11. It is connected across.
  • the hollow shaft 2 constituting the rotating shaft of the stirrer also serves as the carbon dioxide supply pipe 1 and penetrates up and down through the entire culture vessel.
  • the upper end forms a carbon dioxide inlet and the lower end is a carbon dioxide outlet. It has become.
  • the lower end of the hollow shaft is supported via the holding portion 24 with a gap of 50 to 200 ⁇ m from the support member 14.
  • the support member 14 is fixed to the fixed bearing 15.
  • a supply pipe 16 is connected to the fixed bearing 15 to supply a supply liquid (hereinafter referred to as a supply liquid) containing a nutrient solution or both a nutrient solution and a carbon dioxide neutralizing alkaline solution into the lower end portion of the hollow shaft.
  • a supply liquid hereinafter referred to as a supply liquid
  • a cathode 5 is arranged in direct contact with the hollow shaft to form a cathode of a light emitting diode, and an insulator 4 is formed on the upper part.
  • the anode 3 is annularly connected without being in contact with the hollow shaft, and power is supplied to the light emitting diode through the anode 3.
  • a power supply mechanism for supplying power from the light source electrode to the upper stirrer driving portion and the stirrer A shock absorbing mechanism such as a mechanical spring or hydraulic means that generates a force acting in the downward direction against the thrust acting in the upward direction is attached, so that a certain amount of light energy can be supplied into the photobioreactor. It is like that.
  • a plurality of stirring blades 19 are attached to the hollow shaft 2 belonging to the lower stirrer via mounting cylinders 17.
  • the plurality of stirring blades 19 are cylindrical bodies or conical bodies, and are respectively attached at positions whose heights are changed radially at equal angles within a range of 10 ° to 180 °. This figure shows the case where the angle is 120 °. A0 ° B120 ° and C240 ° in the figure indicate the directions of the stirring blades.
  • the stirring blade 19 is preferably formed of a transparent material as a hollow body, and has three light emitting diodes 21, 21 ′, and 21 ′′ having blue, red, and far red light qualities in the vicinity of the mounting plate 18 (see FIG. (Not shown).
  • red / blue light source intensity ratio (R / B ratio) is adjusted to 4 to 15 by combining those having a light output of 0.25 to 10 mW with respect to the cross section of the stirrer.
  • the light source intensity ratio (R / FR ratio) of red / far red is preferably 1.3 to 2.5.
  • the light emitting diodes 21, 21 ′, 21 ′′ are attached to the hollow shaft 2 by cathode mounting screws 12,..., And an anode lead wire (not shown) for power supply is connected through the hole 13.
  • the hollow shaft 2 is held by a holding portion 24 at the lower end and is supported by a fixed bearing 15 via a support member 14.
  • the hollow shaft of this stirrer is made of a metal such as stainless steel, aluminum or copper, and the stirring blade is made of a light transmissive material such as transparent plastic or glass.
  • FIG. 2 is a sectional view showing an example of a buffer mechanism portion of the stirrer in the present invention, and shows an upper portion of the upper flange 9 of the hollow shaft 2 that also serves as the carbon dioxide supply pipe 1. .
  • a power supply mechanism including an anode 3, a cathode 5 of a light emitting diode, and an insulator 4 for maintaining an insulating state therebetween is provided so as to be slidable with respect to the hollow shaft.
  • a lead wire (not shown) is connected to the anode 3 via a fixture, and power is supplied from the power source to the light emitting diodes 21, 21 ', 21 ".
  • buoyancy or supply and supply of carbon dioxide by a gas filled in a space portion generated vertically upward in the stirrer, for example, a space portion accompanying installation of the light source is provided.
  • a buffer mechanism for generating a thrust downward is attached.
  • the shock-absorbing mechanism in this figure is composed of the spring 6, the thrust bearing 7 and the collar 8 that supports them, but other mechanical impacting means, hydraulic means, etc. can be used.
  • FIG. 3 is a cross-sectional view showing an example of the structure of the bottom of the stirrer in the present invention in more detail.
  • a holding part 24 is provided so as to be joined to the lower end 2 ′ of the hollow shaft of the stirrer.
  • the holding part 24 has a space serving as a gas-liquid mixing part 26 and faces the fixed bearing 15, and is 50 to 200 ⁇ m. It is supported by the support member 14 with a certain gap.
  • a check valve 25 is attached to the upper part of the holding part 24 to prevent liquid from entering the hollow shaft when the supply of carbon dioxide or the supply liquid is stopped.
  • the part of the support member 14 that is opposed to the lower end of the hollow shaft is constituted by the porous portion 23, and the supply liquid is supplied into the gas-liquid mixing portion 26 inside the hollow shaft 2 through this porous portion.
  • the fixed bearing 15 has a plenum chamber 22 to which a supply liquid supply pipe 16 is connected. The supply liquid is mixed in the gas-liquid mixing section 26 with the carbon dioxide sent from the carbon dioxide supply pipe 1 through the porous section 23.
  • the photosynthesis stirrer of the present invention when the aquatic organism, for example, algae, adheres to the transparent rotating blade portion close to the light source or the vessel wall surface that receives light from the light source of the culture vessel in which it is disposed, the light amount decreases, Therefore, it is preferable to apply a photo-oxidation catalyst to these surfaces. In this way, the growth rate of aquatic organisms can be increased, the dry matter density can be improved in a short time, and a dry matter density 5 to 15 times that of conventional photobioreactors can be obtained.
  • the photocatalyst used at this time platinum-supported titanium oxide is preferable, but other photocatalysts can also be used.
  • the production rate is controlled by the supply amount of carbon dioxide.
  • the alkaline liquid is supplied from below the hollow shaft 2, neutralizing carbon dioxide, and reducing the gas volume, so that a large amount of carbon dioxide can be supplied, The production efficiency of aquatic organisms can be significantly increased.
  • the light source mounting base 20 to which the light source is mounted is known. Can be reacted with carbon dioxide cooled in advance and maintained at room temperature. In this way, the light source replacement time can be increased by 5 to 10 times by maintaining the light source lifetime below 30% of the theoretical value.
  • the carbon dioxide used in the present invention is not necessarily pure, and may be one in which oxygen, nitrogen or other inert gas is mixed as long as the required photosynthesis reaction is not inhibited.
  • the alkaline solution include aqueous solutions of water-soluble alkali compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate. Used as nutrient solutions in cultures, eg, nitrates, hydrochlorides, sulfates, phosphates, etc. of metals such as sodium, potassium, magnesium, calcium, manganese, zinc, iron, cobalt Is used.
  • the concentration of these liquids is not particularly limited, and can be arbitrarily selected within the range conventionally used for culturing ordinary photosynthesis reactions.
  • the size of the photosynthesis stirrer of the present invention depends on the size of the culture vessel used.
  • the hollow shaft of the stirrer has an inner diameter of 10 to 200 mm, a length of 150 to 2500 mm, a wall thickness of 2 to 25 mm, The ratio of diameter to length is selected from the range of 1: 5 to 1:50, preferably 1:10 to 1:20.
  • the material for the photosynthesis stirrer is a transparent part, that is, the part of the stirring blade 19 and its mounting cylinder 17 is a transparent material such as a transparent hard plastic such as acrylic resin, polycarbonate, ABS resin, polyvinyl chloride, polyester, or the like. It is necessary to use glass, but other than that, it can be arbitrarily selected from materials commonly used in ordinary chemical equipment, such as metal, plastic, and wood.
  • culture conditions such as temperature, pressure, carbon dioxide supply rate, supply liquid supply rate, etc. can be used as they are in the conventional photosynthesis reaction by aquatic organisms.
  • aquatic organisms examples include green algae such as Chlorella, Chlamydomonas, Potricococcus oocystis, and cyanobacteria such as Spirulina, Anabena, Oshiratria, Formidium, and Nostock. Can be mentioned.
  • stirrer for photosynthesis used in the examples is a prototype shown in FIG. 1 in which the product name “MD-501” manufactured by Maruhishi Bioengineer Co., Ltd. is improved by Tsukuba Biotech Laboratories.
  • the spirulina was filtered and the first culture was discarded, and the total amount of spirulina filtered again was added to 4 liters of the culture that had been doubled, and the carbon dioxide gas supply rate was increased to 40 mL / min.
  • the dry matter concentration reached 10 ⁇ 1 g / L.
  • the culture solution formulation was quadrupled, the entire amount of Spirulina filtered by the same method was added, and the carbon dioxide gas supply rate was 80 mL / min, and the treatment was performed for 24 hours, and 15 g ⁇ 1 g / L was obtained in 75 hours.
  • the culture is continued for 24 hours at a rotation speed of 5 revolutions per minute, and the culture solution is continuously supplied from the supply pipe at a rate of 1 mL / min with a metering pump, and is pulled out at a level of 4 liters for HRT 2.8 hours continuous culture. Switching was continued for 10 days. Thereafter, the adhesion of the algae on the surface of the stirring blade glass surface and the inside of the glass wall inside the bioreactor was examined, and no adhesion of the algae wall surface was observed.
  • Example 2 Into a 5 L glass container, 4 liters of the culture solution was added, 1 g of chlorella was added thereto, and the mixture was supplied to the photosynthesis stirrer used in Example 1 at a rate of 20% / minute of 100% concentration carbon dioxide gas.
  • This stirrer had a circular stirrer blade with three glass tubes each having three light-emitting diodes each having a wavelength of 430 nm, 680 nm, and 700 nm disposed in advance.
  • the light reflecting material was spirally applied in an area of 1/3.
  • two light source mounting bases with three pairs of light emitting diodes fixed outside the photobioreactor were installed to create a light environment adjusted to have an R / B ratio of 5.
  • a photocatalyst supporting platinum on titanium oxide was mixed and applied to the glass surface of the stirring blade, and further applied to the inside of the glass wall of the photobioreactor.
  • a nutrient solution obtained by diluting the culture solution twice with distilled water is continuously supplied from the supply pipe at a rate of 1 mL / min with a metering pump, and pulled out. The operation was switched to continuous culture for 8 days and operated continuously for 10 days.
  • the dry matter concentration after 36 hours was 12 ⁇ 1 g / L, and stable production was achieved.
  • the power source was changed to a pulse wave, and production was carried out for 10 days in a light environment with a cycle of 0.2 seconds and a duty ratio of 50%, but the dry matter concentration was hardly changed.
  • light irradiation from the outer wall of the reactor was effective for algae production, and it was clarified that the decrease in yield was not observed even by pulse wave irradiation, leading to energy saving of the power source.
  • a power supply mechanism that supplies power to the light source power source as shown in FIG. 2 and a spring (mechanical coil spring) that generates a downward force opposite to the thrust acting upward of the stirrer are disposed above the thrust bearing.
  • 4 L of water was placed in a 5 L photobioreactor equipped with a photosynthesis stirrer used in Example 1, and 1 mL of 1% strength potassium hydroxide aqueous solution was added from the porous portion of the support member installed at the bottom of the reactor. / Min.
  • a labyrinth packing is attached to the upper part of the stirrer, and a mechanical system installed at the upper part is operated at a rotational speed of 5 revolutions while supplying a pressure of 0.05 MPa and 100% carbon dioxide gas at a rate of 40 mL / min.
  • a pressure of 0.05 MPa and 100% carbon dioxide gas at a rate of 40 mL / min.
  • a 1% strength aqueous potassium hydroxide solution was supplied at a rate of 1 mL / min from the porous portion of the support member installed in the lower part of the photobioreactor, and the pressure was 0.05 MPa, 100 from the upper part of the stirrer. While supplying carbon dioxide gas with a concentration of 40% / min, it was operated at a rotation speed of 5 rpm, and a pressure of 0.05 MPa and 100% carbon dioxide gas were supplied from the top of the stirrer at a rate of 40 mL / min. .
  • Example 1 Used in Example 1 in which a power supply mechanism and a spring (mechanical coil spring) as shown in FIG. 2 are disposed on the upper part of a thrust bearing in a 200 liter volume donut-shaped closed solar cell culture device having a depth of 18 cm.
  • One stirrer for photosynthesis was installed, and a 1% strength potassium hydroxide aqueous solution was added at a rate of 1 mL / min from the porous part of the support member installed at the lower part of the stirrer, and the pressure was 0.05 MPa, 100% from the upper part of the stirrer.
  • the photosynthesis stirrer of the present invention can perform a rapid photosynthesis reaction, it can mass-produce aquatic organisms such as algae, and is useful for the production of livestock feed and fuel oil. Moreover, since this photosynthesis can absorb a large amount of carbon dioxide of about 1.5 times the dry mass of algae, it is also useful as a carbon dioxide absorber.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a stirring machine for photosynthesis by which light required for a photosynthetic reaction can uniformly irradiate a liquid culture medium and disperse therein without depending on sunlight, aquatic organisms can be cultured while avoiding damages on the aquatic organisms' bodies being cultured caused by the stirring and preventing the adhesion of the aquatic organisms to the container wall, and the life of a light source can be extended. A stirring machine comprising: a hollow shaft (2), which also serves as a carbon dioxide gas supply pipe (1), constituting a rotational shaft; a plurality of cylindrical or conical transparent stirring blades (19) being radially attached, at regular intervals and at irregular heights, to the hollow shaft; one or more light-emitting diodes (21) with three different kinds of light qualities including blue, red and far-red, being provided in the vicinity of each of the attachment sites; a supply pipe for supplying a solution to be supplied, which comprises a nutrient salt solution optionally together with an alkali solution for neutralizing carbon dioxide, being provided at the bottom of the hollow shaft; a damping mechanism against an upward thrust force, which is generated by the supply of carbon dioxide gas and said solution to be supplied, being fixed to the outer side face in the upper part of the hollow shaft; and a slidable mechanism for supplying electrical power to the light-emitting diodes being attached around the hollow shaft.

Description

光合成用撹拌機、それを用いた光バイオリアクター及び水中生物培養方法Stirrer for photosynthesis, photobioreactor using the same, and underwater biological culture method
 本発明は、藻類のような水中生物の光合成能力を利用して、有用物質を効率よく製造するための光合成用撹拌機、それを用いた光バイオリアクター及び水中生物の培養方法に関するものである。 The present invention relates to a photosynthesis stirrer for efficiently producing a useful substance by utilizing the photosynthetic ability of aquatic organisms such as algae, a photobioreactor using the agitator, and a method for culturing aquatic organisms.
 藻類のような水中生物の光合成能力を活用して、太陽光のもとで深さ30cm程度の浅い池でクロレラやスピルリナを大量に生産させる方法が行われているが、このような方法では、夜間太陽光の供給がない間は、昼間に藻類に蓄積された光合成生成物質が消費されるため増殖の効率が低く、藻類の乾物生産効率が低くなるのを免れない。 Utilizing the photosynthetic ability of aquatic organisms such as algae, a method of mass-producing chlorella and spirulina in a shallow pond about 30 cm deep under sunlight is performed. When no sunlight is supplied at night, the photosynthetic products accumulated in the algae during the day are consumed, so the efficiency of growth is low, and the dry matter production efficiency of the algae is unavoidable.
 このような方法の欠点を改良するために、太陽光に依存しない光バイオリアクターが開発され、これまでに、培養槽内に回転可能な撹拌部材を設け、この撹拌部材に光放出部を取り付け、光放出部へ光を供給する光源を培養槽外に配置した撹拌型培養装置(特許文献1参照)、光合成能力をもつ生物及び培養液を収容した培養槽内に光及び二酸化炭素を供給する装置において、光を培養槽内の中心部に設けた平板状の透明材料で構成した可動式発光体で供給する光合成生物の培養装置(特許文献2参照)、外部光源から光の供給を受けるための光伝送路に接続された、それぞれ独立した複数の平板状発光体からなる照射装置を培養槽内に有する光合成培養装置(特許文献3参照)、培養用容器と二酸化炭素供給手段と光照射手段から構成され、上記培養用容器が、二酸化炭素の供給によって生じる気泡の上昇に伴い培養液の上昇流を生じさせる第一区域と、培養液に下降流を生じさせる第二区域を有し、第二区域で光照射する光合成生物の培養装置(特許文献4参照)、光合成生物を含む培養液を表面に沿って液膜状に流下させる液膜形成板と、その上端に光合成生物を含む培養液を供給する培養液供給手段と、液膜形成板上の液膜に光を照射する光源を備え、かつ液膜形成板の周囲に光反射面を、液膜形成板と光反射面との間に、光ファイバの出射端を設けた光合成生物の培養装置(特許文献5参照)、光合成生物及び培養液を収容した培養槽内の中心に撹拌翼が配置され、この撹拌翼の回転範囲と培養槽の内壁との間に、複数の板状発光体を配置した光合成培養装置(特許文献6参照)、内部に回転軸と、この回転軸に固定された電界放射型ランプを備えた培養槽からなり、回転軸を回転制御してランプを回転軸の周囲に回転させて培養液を撹拌する撹拌体として作用させつつランプの発光強度と点灯とを制御して培養液に所要強度の光を照射し、かつランプの点滅タイミングを制御して光合成生物の明暗二つの反応を制御可能とする光バイオリアクター(特許文献7参照)などが提案されている。 In order to improve the disadvantages of such a method, a photobioreactor that does not depend on sunlight has been developed, and so far, a rotatable stirring member is provided in the culture tank, and a light emitting part is attached to the stirring member. A stirrer type culture apparatus (see Patent Document 1) in which a light source for supplying light to the light emitting part is disposed outside the culture tank, and a device for supplying light and carbon dioxide into a culture tank containing a living organism having a photosynthetic ability and a culture solution. , A photosynthetic organism culture device (see Patent Document 2) that supplies light with a movable light emitter composed of a flat transparent material provided in the center of the culture tank, for receiving light from an external light source From a photosynthetic culture apparatus (see Patent Document 3) having an irradiation apparatus made of a plurality of independent plate-like light emitters connected to an optical transmission path in a culture tank (see Patent Document 3), a culture vessel, a carbon dioxide supply means, and a light irradiation means Composed The culture vessel has a first zone for generating an upward flow of the culture solution as the bubbles generated by the supply of carbon dioxide and a second zone for generating a downward flow of the culture solution. An apparatus for cultivating photosynthetic organisms that irradiates light (see Patent Document 4), a liquid film forming plate that causes a culture solution containing photosynthetic organisms to flow down into a liquid film along the surface, and a culture solution containing photosynthetic organisms at the upper end thereof A culture medium supply means and a light source for irradiating the liquid film on the liquid film forming plate with light are provided, and a light reflecting surface is provided around the liquid film forming plate, and a light reflection surface An apparatus for culturing photosynthetic organisms provided with a fiber exit end (see Patent Document 5), a stirring blade disposed in the center of the culture tank containing the photosynthetic organisms and the culture solution, and the rotation range of the stirring blade and the inner wall of the culture tank Photosynthetic culture device with a plurality of plate-shaped light emitters (Patent text) 6), a rotation tank and a culture tank equipped with a field emission lamp fixed to the rotation axis. The rotation axis is controlled to rotate the lamp around the rotation axis to stir the culture solution. The light intensity and lighting of the lamp are controlled while acting as a stirring body to irradiate the medium with the required intensity of light, and the blinking timing of the lamp can be controlled to control the two light-dark reactions of the photosynthetic organism. An optical bioreactor (see Patent Document 7) has been proposed.
また、光源として発光ダイオードを用いることも行われており、例えば、内面に向け光反射性を有する水槽と、その内部に一端が培養液面上方に位置するように配置された多数の発光ダイオードと撹拌手段を備えた微細藻類の培養装置が知られている(特許文献8参照)。 In addition, a light emitting diode is also used as a light source, for example, a water tank having light reflectivity toward the inner surface, and a number of light emitting diodes arranged so that one end thereof is positioned above the culture liquid surface. An apparatus for culturing microalgae equipped with stirring means is known (see Patent Document 8).
特開平3-58780号公報(特許請求の範囲その他)JP-A-3-58780 (Claims and others) 特開平4-84883号公報(特許請求の範囲その他)JP-A-4-84883 (Claims and others) 特開平7-163331号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 7-163331 (Claims and others) 特開平7-184630号公報(特許請求の範囲その他)JP-A-7-184630 (Claims and others) 特開平7-227269号公報(特許請求の範囲その他)JP-A-7-227269 (Claims and others) 特開平7-289236号公報(特許請求の範囲その他)JP-A-7-289236 (Claims and others) 特開2008-283937号公報(特許請求の範囲その他)JP 2008-283937 A (claims and others) 特開平10-98964号公報(特許請求の範囲その他)JP-A-10-98964 (Claims and others)
 本発明は、太陽光に依存することなく、光合成反応に必要な光を培養液中に均一に分散照射することができ、しかも撹拌により培養中の水中生物体に損傷を与えることなく、また容器壁に水中生物が付着するのを防止しながら、効率よく水中生物の培養を行うことができる上に、光源の寿命を長期化することを可能にした光合成用撹拌機、それを用いた光バイオリアクター及び水中生物の培養方法を提供することを目的としてなされたものである。 The present invention is capable of uniformly dispersing and irradiating light necessary for a photosynthetic reaction in a culture solution without depending on sunlight, and without damaging aquatic organisms in culture by agitation. An agitator for photosynthesis that can cultivate aquatic organisms efficiently while preventing the attachment of aquatic organisms to the wall, and that can extend the life of the light source, and photobio using the agitator The object of the present invention is to provide a reactor and a method for culturing aquatic organisms.
 本発明者らは、工業的な実施に適した、効率のよい光合成用撹拌機を開発するために種々研究を重ねた結果、光源として430nm、680nm及び700nmの波長の光を発生する発光ダイオードを用い、かつ撹拌翼を透明材料による円筒状又は円錐状に形成した撹拌翼の軸部に光源、陰極、二酸化炭素供給管を、及び軸部の下部に栄養塩液などの供給管を配置することにより、その目的を達成し得ることを見出し、この知見に基づいて本発明をなすに至った。 As a result of extensive research to develop an efficient photosynthesis stirrer suitable for industrial implementation, the present inventors have developed a light emitting diode that generates light having wavelengths of 430 nm, 680 nm, and 700 nm as a light source. A light source, a cathode, a carbon dioxide supply pipe, and a feed pipe for nutrient solution, etc. are arranged at the lower part of the shaft part. Thus, it was found that the object can be achieved, and the present invention has been made based on this finding.
 すなわち、本発明は二酸化炭素ガス供給管を兼用し、回転軸を構成する中空軸に、複数の円筒状又は円錐状の透明撹拌翼を放射状かつそれぞれ等間隔で高さを変えて取り付け、その取り付け部近傍に、青、赤及び遠赤の3種の異なった光質を有する発光ダイオードをそれぞれ1個以上付設し、中空軸の下方に栄養塩液又は栄養塩液と二酸化炭素中和用アルカリ液の両方を含む供給液供給用の供給パイプを配置するとともに、中空軸の上部外側面に二酸化炭素ガス及び前記供給液の供給により発生する上向きのストラス力に対抗するための緩衝機構を固定し、さらに中空軸に対して摺動可能に発光ダイオードへの電力供給機構を環設したことを特徴とする光合成用撹拌機を提供するものである。 That is, the present invention also serves as a carbon dioxide gas supply pipe, and a plurality of cylindrical or conical transparent stirring blades are attached to the hollow shaft constituting the rotating shaft in a radial manner and at different intervals, and the attachment One or more light emitting diodes having three different light qualities of blue, red, and far red are provided in the vicinity of each part, and a nutrient solution or nutrient solution and an alkali solution for neutralizing carbon dioxide are provided below the hollow shaft. A supply pipe for supplying a supply liquid including both of the above and a buffer mechanism for fixing an upward strut force generated by the supply of carbon dioxide gas and the supply liquid is fixed to the upper outer surface of the hollow shaft, Furthermore, the present invention provides a stirrer for photosynthesis characterized in that a power supply mechanism for a light emitting diode is slidably mounted on a hollow shaft.
 前記撹拌翼は10°~180°、好ましくは15°~120°の範囲の同じ角度で方向を変えて中空軸に取り付けられるが、角度を小さくすると撹拌翼が多く取り付けられるので有利である。 The stirring blade is attached to the hollow shaft by changing the direction at the same angle in the range of 10 ° to 180 °, preferably 15 ° to 120 °. However, if the angle is reduced, it is advantageous that many stirring blades are attached.
 光源としては青、赤及び遠赤の発光ダイオードをそれぞれ1個ずつ使用しなくてはならないが、例えば青及び遠赤の発光ダイオードを1個ずつとし、赤の発光ダイオードを2個使用してもよい。好ましい赤/青の光源強度比(R/B比)の範囲は4~15であり、赤/遠赤の光源強度比(R/FR比)の範囲は1.3~2.5である。 As the light source, one blue, one red and one far red light emitting diode must be used. For example, one blue and one far red light emitting diode can be used, and two red light emitting diodes can be used. Good. The range of the preferred red / blue light source intensity ratio (R / B ratio) is 4 to 15, and the range of the red / far red light source intensity ratio (R / FR ratio) is 1.3 to 2.5.
 また、本発明は前記の撹拌機を内部に配置した培養容器からなる光バイオリアクターを提供するものである。 The present invention also provides a photobioreactor comprising a culture vessel in which the agitator is disposed.
さらに、本発明は撹拌翼表面に水中生物付着防止のための光触媒を被着させた上記の光合成用撹拌機を、培養液中に配置し、培養液を撹拌しながら行うことを特徴とする水中生物の培養方法を提供するものである。 Further, the present invention provides the above-mentioned photosynthesis stirrer in which the photocatalyst for preventing the adhesion of underwater organisms is attached to the surface of the stirring blade is disposed in the culture solution, and is performed while stirring the culture solution. A method for culturing organisms is provided.
 本発明の光バイオリアクター内部においては、3種の波長域をもつ発光ダイオードを光源とし、その光源から放射する光を円筒又は円錐状の透明撹拌翼を通して容器壁面に対して垂直な方向に放射させる。それにより、培養容器内に生育する藻類の光合成を活性化し、撹拌機の中空軸から大量に送り込まれる二酸化炭素を利用して極めて迅速に光合成し、かつ藻類を短時間に増殖させることができるので、培養容器内の藻類の乾物密度を従来のものに比べ5~15倍にすることができる。 Inside the photobioreactor of the present invention, a light emitting diode having three wavelength ranges is used as a light source, and light emitted from the light source is radiated in a direction perpendicular to the vessel wall surface through a cylindrical or conical transparent stirring blade. . As a result, the photosynthesis of the algae growing in the culture vessel is activated, the carbon dioxide fed in large quantities from the hollow shaft of the stirrer is used to photosynthesis very quickly, and the algae can be propagated in a short time. In addition, the dry matter density of the algae in the culture vessel can be 5 to 15 times that of the conventional one.
 そのため、極めて低コストで藻類が生産でき、これらの藻類を乾燥することによって、畑から収穫されるトウモロコシやサトウキビより数百倍~数千倍の単位面積当たりのデンプン、脂質やタンパク質の生産が可能になる。 Therefore, algae can be produced at extremely low cost, and drying these algae can produce starch, lipids and proteins per unit area several hundred to several thousand times that of corn and sugarcane harvested from the field. become.
 さらに、藻類の乾物密度に対してほぼ1.5倍の質量の二酸化炭素を吸収したことになるので、地球温暖化防止に極めて効果のある二酸化炭素吸収装置となり、森林のように再生利用できるまで数十年かけて二酸化炭素を吸収するのではなく数日で吸収がなされるので、場所を選ばず、常時二酸化炭素を吸収する装置として用いることが可能である。 Furthermore, carbon dioxide with a mass approximately 1.5 times that of the dry matter density of algae is absorbed, so it becomes a carbon dioxide absorption device that is extremely effective in preventing global warming, and can be reused like a forest. Since carbon dioxide is not absorbed over several decades but is absorbed in a few days, it can be used as a device that always absorbs carbon dioxide regardless of location.
 また、本発明によって生産される藻類の乾物は、そのまま、家畜の飼料としても有用であり、その乾物に含有する脂質を燃料油として使うことができるという利点がある。 Also, the dry matter of algae produced by the present invention is useful as it is for livestock feed, and has the advantage that the lipid contained in the dry matter can be used as fuel oil.
本発明の撹拌機の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the stirrer of this invention. 本発明の撹拌機の緩衝機構部分の一例を示す断面図。Sectional drawing which shows an example of the buffer mechanism part of the stirrer of this invention. 本発明の撹拌機底部の構造の一例を示す断面図。Sectional drawing which shows an example of the structure of the stirrer bottom part of this invention.
 次に添付図面に従って本発明の実施の形態を説明する。
 図1は、本発明の撹拌機部分の一例を示す縦断面図であり、この撹拌機部分は、培養容器の上部域と下部域に分かれて収納され、上部フランジ9及び下部フランジ11によりパッキング10を挟んで連結されている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an example of a stirrer part of the present invention. This stirrer part is divided and stored in an upper region and a lower region of a culture vessel, and is packed by an upper flange 9 and a lower flange 11. It is connected across.
 撹拌機の回転軸を構成する中空軸2は、二酸化炭素供給管1を兼用し、培養容器の全体を通じて上下に貫通しており、上端は二酸化炭素導入口を形成し、下端は二酸化炭素排出口になっている。中空軸下端は保持部24を介して、支持部材14と50~200μmの間隙を保って支持されている。支持部材14は固定軸受15に固定されている。固定軸受15には供給パイプ16が連結され、栄養塩液又は栄養塩液と二酸化炭素中和用アルカリ液の両方を含む供給液(以下供給液という)を中空軸下端部中に供給する。 The hollow shaft 2 constituting the rotating shaft of the stirrer also serves as the carbon dioxide supply pipe 1 and penetrates up and down through the entire culture vessel. The upper end forms a carbon dioxide inlet and the lower end is a carbon dioxide outlet. It has become. The lower end of the hollow shaft is supported via the holding portion 24 with a gap of 50 to 200 μm from the support member 14. The support member 14 is fixed to the fixed bearing 15. A supply pipe 16 is connected to the fixed bearing 15 to supply a supply liquid (hereinafter referred to as a supply liquid) containing a nutrient solution or both a nutrient solution and a carbon dioxide neutralizing alkaline solution into the lower end portion of the hollow shaft.
 培養容器の上部域に配置される中空軸2の上部には、電力供給機構として、中空軸に直接接して、陰極5が環設され、発光ダイオードの陰極を形成し、その上部に絶縁体4を介して、中空軸と接触しない状態で陽極3が環設され、これを通って発光ダイオードに電力が供給されるようになっている。 On the upper part of the hollow shaft 2 arranged in the upper region of the culture vessel, as a power supply mechanism, a cathode 5 is arranged in direct contact with the hollow shaft to form a cathode of a light emitting diode, and an insulator 4 is formed on the upper part. The anode 3 is annularly connected without being in contact with the hollow shaft, and power is supplied to the light emitting diode through the anode 3.
 上記陰極5と上部フランジ9との間には、この撹拌機が培養液中に浸漬して使用される場合、上部の撹拌機駆動部分に光源電極から電力を供給させる電力供給機構と撹拌機の上の方向に作用する推力に対抗して下の方向に作用する力を発生させる機械ばね又は油圧手段のような緩衝機構が付設され、これにより光バイオリアクター内に一定量の光エネルギーを供給できるようになっている。 When this stirrer is immersed in a culture solution between the cathode 5 and the upper flange 9, a power supply mechanism for supplying power from the light source electrode to the upper stirrer driving portion and the stirrer A shock absorbing mechanism such as a mechanical spring or hydraulic means that generates a force acting in the downward direction against the thrust acting in the upward direction is attached, so that a certain amount of light energy can be supplied into the photobioreactor. It is like that.
 一方、下部の撹拌機に属する中空軸2には、取付け用シリンダー17を介して複数の撹拌翼19,…が取り付けられている。この複数の撹拌翼19は、円筒体又は円錐体であって、それぞれ10°~180°の範囲内の角度で放射状に、かつ等間隔で高さを変えた位置に取り付けられている。本図においては角度を120°とした場合を示す。図中のA0°B120°及びC240°は、それらの撹拌翼の方向を示している。この撹拌翼19は、透明材料で中空体として形成するのが好ましく、その取付け盤18近傍にそれぞれ青、赤、遠赤の光質をもつ3個の発光ダイオード21,21´,21″(図示せず)が付設されている。 On the other hand, a plurality of stirring blades 19 are attached to the hollow shaft 2 belonging to the lower stirrer via mounting cylinders 17. The plurality of stirring blades 19 are cylindrical bodies or conical bodies, and are respectively attached at positions whose heights are changed radially at equal angles within a range of 10 ° to 180 °. This figure shows the case where the angle is 120 °. A0 ° B120 ° and C240 ° in the figure indicate the directions of the stirring blades. The stirring blade 19 is preferably formed of a transparent material as a hollow body, and has three light emitting diodes 21, 21 ′, and 21 ″ having blue, red, and far red light qualities in the vicinity of the mounting plate 18 (see FIG. (Not shown).
 水中生物の光合成において有効な光質は、430nm、680nm及び700nmに限られるので、本発明においては、青(430nm)、赤(680nm)及び遠赤(700nm)の発光ダイオードが用いられる。これらの発光ダイオードは撹拌機断面に対して、0.25~10mWの光出力のものを組み合わせて、赤/青の光源強度比(R/B比)を4~15に調整したものが好ましい。また、赤/遠赤の光源強度比(R/FR比)は1.3~2.5が好ましい。 Since the effective light quality in the photosynthesis of aquatic organisms is limited to 430 nm, 680 nm and 700 nm, blue (430 nm), red (680 nm) and far red (700 nm) light emitting diodes are used in the present invention. These light-emitting diodes are preferably those in which the red / blue light source intensity ratio (R / B ratio) is adjusted to 4 to 15 by combining those having a light output of 0.25 to 10 mW with respect to the cross section of the stirrer. The light source intensity ratio (R / FR ratio) of red / far red is preferably 1.3 to 2.5.
 上記の発光ダイオード21,21´,21″は、陰極取付けビス12,…により中空軸2に取り付けられ、電力供給用の陽極リード線(図示せず)が穴13を通って接続している。中空軸2は下端において保持部24により保持され、支持部材14を介して固定軸受15に受支されている。 The light emitting diodes 21, 21 ′, 21 ″ are attached to the hollow shaft 2 by cathode mounting screws 12,..., And an anode lead wire (not shown) for power supply is connected through the hole 13. The hollow shaft 2 is held by a holding portion 24 at the lower end and is supported by a fixed bearing 15 via a support member 14.
 この撹拌機の中空軸は、ステンレス鋼、アルミニウム、銅のような金属で作られ、また撹拌翼は透明プラスチック、ガラスのような光透過性材料で作られる。 The hollow shaft of this stirrer is made of a metal such as stainless steel, aluminum or copper, and the stirring blade is made of a light transmissive material such as transparent plastic or glass.
 次に、図2は、本発明における撹拌機の緩衝機構部分の一例を示す断面図であって、二酸化炭素供給管1を兼用している中空軸2の上部フランジ9の上方部分を示している。この部分には、陽極3と発光ダイオードの陰極5とその間を絶縁状態に維持するための絶縁体4とを備える電力供給機構が、中空軸に対して摺動可能に環設されている。そして、上記の陽極3には、取り付け具を介してリード線(図示せず)が接続され、電源から電力が発光ダイオード21,21´,21″に供給される。 Next, FIG. 2 is a sectional view showing an example of a buffer mechanism portion of the stirrer in the present invention, and shows an upper portion of the upper flange 9 of the hollow shaft 2 that also serves as the carbon dioxide supply pipe 1. . In this portion, a power supply mechanism including an anode 3, a cathode 5 of a light emitting diode, and an insulator 4 for maintaining an insulating state therebetween is provided so as to be slidable with respect to the hollow shaft. A lead wire (not shown) is connected to the anode 3 via a fixture, and power is supplied from the power source to the light emitting diodes 21, 21 ', 21 ".
 一方、上部フランジ9と上記陰極5との間には、撹拌機において垂直上方に向って発生する空間部、例えば光源の設置に伴う空間部に充填される気体による浮力や二酸化炭素の供給及び供給液の供給に起因するスラスト力に対抗するために下方に向って推力を発生させる緩衝機構が付設されている。 On the other hand, between the upper flange 9 and the cathode 5, buoyancy or supply and supply of carbon dioxide by a gas filled in a space portion generated vertically upward in the stirrer, for example, a space portion accompanying installation of the light source, is provided. In order to counter the thrust force resulting from the supply of the liquid, a buffer mechanism for generating a thrust downward is attached.
 この図における緩衝機構は、スプリング6、スラストベアリング7及びこれらを支持するカラー8で構成されているが、それ以外の機械式弾発手段や油圧手段などを用いることもできる。 The shock-absorbing mechanism in this figure is composed of the spring 6, the thrust bearing 7 and the collar 8 that supports them, but other mechanical impacting means, hydraulic means, etc. can be used.
 また、図3は、本発明における撹拌機底部の構造の一例をさらに詳細に示した断面図である。撹拌機の中空軸下端部2´に接合して保持部24が設けられており、この保持部24は気液混合部26となる空間を有し、かつ固定軸受15に対向し、50~200μm程度の間隙を保って支持部材14により支持されている。保持部24の上部分には、二酸化炭素や前記供給液の供給停止時に中空軸内への液の浸入を防止するための逆止弁25が付設されている。 FIG. 3 is a cross-sectional view showing an example of the structure of the bottom of the stirrer in the present invention in more detail. A holding part 24 is provided so as to be joined to the lower end 2 ′ of the hollow shaft of the stirrer. The holding part 24 has a space serving as a gas-liquid mixing part 26 and faces the fixed bearing 15, and is 50 to 200 μm. It is supported by the support member 14 with a certain gap. A check valve 25 is attached to the upper part of the holding part 24 to prevent liquid from entering the hollow shaft when the supply of carbon dioxide or the supply liquid is stopped.
 一方、支持部材14は、中空軸下端部に対向する部分が、多孔質部23で構成され、供給液はこの多孔質部を通して中空軸2の内部の気液混合部26内に供給される。固定軸受15は、プレナムチャンバー22を有しており、これに供給液供給パイプ16が連結している。供給液は、上記多孔質部23を通って、二酸化炭素供給管1から送られる二酸化炭素と気液混合部26において混合される。 On the other hand, the part of the support member 14 that is opposed to the lower end of the hollow shaft is constituted by the porous portion 23, and the supply liquid is supplied into the gas-liquid mixing portion 26 inside the hollow shaft 2 through this porous portion. The fixed bearing 15 has a plenum chamber 22 to which a supply liquid supply pipe 16 is connected. The supply liquid is mixed in the gas-liquid mixing section 26 with the carbon dioxide sent from the carbon dioxide supply pipe 1 through the porous section 23.
 そして、二酸化炭素や供給液の供給が緊急的に停止された場合には、スプリング6の弾発力により、撹拌機底部が固定軸受15に密着するので、中空軸内への液の侵入は防止でき、逆止弁25の作用が加わって、二重に液の浸入防止が行われることになる。 When the supply of carbon dioxide or the supply liquid is urgently stopped, the bottom of the stirrer comes into close contact with the fixed bearing 15 due to the elastic force of the spring 6, thus preventing liquid from entering the hollow shaft. In addition, the action of the check valve 25 is added to prevent the liquid from entering twice.
 本発明の光合成用撹拌機においては、光源に近接する透明回転翼部分や、これを配置した培養容器の光源から光を受ける容器壁面に水中生物、例えば藻類が付着すると光量が低下し、水中生物の増殖効率低下をもたらすので、これらの面に光酸化触媒を塗布するのが好ましい。このようにすれば、水中生物の増殖速度を高め、乾物密度を短時間で向上させ、従来の光バイオリアクターに比べ5~15倍の乾物密度を得ることができる。この際に用いる光触媒としては、白金担持酸化チタンが好ましいが、その他の光触媒も用いることができる。 In the photosynthesis stirrer of the present invention, when the aquatic organism, for example, algae, adheres to the transparent rotating blade portion close to the light source or the vessel wall surface that receives light from the light source of the culture vessel in which it is disposed, the light amount decreases, Therefore, it is preferable to apply a photo-oxidation catalyst to these surfaces. In this way, the growth rate of aquatic organisms can be increased, the dry matter density can be improved in a short time, and a dry matter density 5 to 15 times that of conventional photobioreactors can be obtained. As the photocatalyst used at this time, platinum-supported titanium oxide is preferable, but other photocatalysts can also be used.
 また、一般に光合成においては、二酸化炭素の供給量により生産速度を律速することが知られている。そして、本発明においては、上記のように中空軸2の下方からアルカリ液を供給し、二酸化炭素を中和し、気体体積を縮小させているので、二酸化炭素を大量に供給することができ、著しく水中生物の生産効率を高めることができる。 Further, it is generally known that in photosynthesis, the production rate is controlled by the supply amount of carbon dioxide. And in the present invention, as described above, the alkaline liquid is supplied from below the hollow shaft 2, neutralizing carbon dioxide, and reducing the gas volume, so that a large amount of carbon dioxide can be supplied, The production efficiency of aquatic organisms can be significantly increased.
 一方において、反応中における光源温度の上昇を抑制し、例えば常時室温で行われれば、光源寿命を長くし得ることが知られているので、本発明においては、光源を取り付けている光源取付け基盤20を、あらかじめ冷却した二酸化炭素により冷却し、室温を維持しながら反応させることもできる。このようにして、光源寿命を理論値の30%未満に維持することにより、光源交換時間を5~10倍長くすることができる。 On the other hand, it is known that the light source temperature during the reaction can be suppressed, for example, if it is always performed at room temperature, the life of the light source can be extended. Therefore, in the present invention, the light source mounting base 20 to which the light source is mounted is known. Can be reacted with carbon dioxide cooled in advance and maintained at room temperature. In this way, the light source replacement time can be increased by 5 to 10 times by maintaining the light source lifetime below 30% of the theoretical value.
 本発明において用いる二酸化炭素は、必ずしも純粋なものである必要はなく、所要の光合成反応を阻害しない範囲で、酸素、窒素その他の不活性ガスを混入したものであってもよい。また、アルカリ液としては、例えば水溶性アルカリ化合物、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどの水溶液が、栄養塩液としては、通常、光合成の際に培養液の栄養塩液として用いられているもの、例えばナトリウム、カリウム、マグネシウム、カルシウム、マンガン、亜鉛、鉄、コバルトのような金属の硝酸塩、塩酸塩、硫酸塩、リン酸塩などの混合物が用いられる。 The carbon dioxide used in the present invention is not necessarily pure, and may be one in which oxygen, nitrogen or other inert gas is mixed as long as the required photosynthesis reaction is not inhibited. Examples of the alkaline solution include aqueous solutions of water-soluble alkali compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate. Used as nutrient solutions in cultures, eg, nitrates, hydrochlorides, sulfates, phosphates, etc. of metals such as sodium, potassium, magnesium, calcium, manganese, zinc, iron, cobalt Is used.
 これらの液の濃度としては特に制限はなく、通常の光合成反応の培養に際して慣用されている範囲で任意に選ぶことができる。 The concentration of these liquids is not particularly limited, and can be arbitrarily selected within the range conventionally used for culturing ordinary photosynthesis reactions.
 本発明の光合成用撹拌機のサイズは、使用する培養容器のサイズにより左右されるが、通常、撹拌機の中空軸としては、内径10~200mm、長さ150~2500mm、壁厚2~25mm、直径と長さの比1:5ないし1:50、好ましくは1:10ないし1:20の範囲内から選ばれる。 The size of the photosynthesis stirrer of the present invention depends on the size of the culture vessel used. Usually, the hollow shaft of the stirrer has an inner diameter of 10 to 200 mm, a length of 150 to 2500 mm, a wall thickness of 2 to 25 mm, The ratio of diameter to length is selected from the range of 1: 5 to 1:50, preferably 1:10 to 1:20.
 また、光合成用撹拌機の材質としては透明部分、すなわち撹拌翼19及びその取り付け用シリンダー17の部分は透明材料、例えばアクリル樹脂、ポリカーボネート、ABS樹脂、ポリ塩化ビニル、ポリエステルなどの透明な硬質プラスチック又はガラスを用いることが必要であるが、それ以外は通常の化学装置に慣用されている材料、例えば金属、プラスチック、木材などの中から任意に選んで用いることができる。 The material for the photosynthesis stirrer is a transparent part, that is, the part of the stirring blade 19 and its mounting cylinder 17 is a transparent material such as a transparent hard plastic such as acrylic resin, polycarbonate, ABS resin, polyvinyl chloride, polyester, or the like. It is necessary to use glass, but other than that, it can be arbitrarily selected from materials commonly used in ordinary chemical equipment, such as metal, plastic, and wood.
 次に、培養条件、例えば温度、圧力、二酸化炭素供給速度、供給液の供給速度なども、これまで水中生物による光合成反応において用いられていた培養条件をそのまま用いることができるが、培養温度としては光源寿命を長くするために前述したように室温以下に保って行うのが望ましい。 Next, culture conditions such as temperature, pressure, carbon dioxide supply rate, supply liquid supply rate, etc. can be used as they are in the conventional photosynthesis reaction by aquatic organisms. In order to extend the life of the light source, it is desirable to keep the temperature below room temperature as described above.
 本発明の光バイオリアクターで用いることができる水中生物としては、例えばクロレラ、クラミドモナス、ポツリオコッカスオオシスティスのような緑藻類や、スピルリナ、アナベナ、オシラトリア、フォルミディウム、ノストックのような藍藻類を挙げることができる。 Examples of aquatic organisms that can be used in the photobioreactor of the present invention include green algae such as Chlorella, Chlamydomonas, Potricococcus oocystis, and cyanobacteria such as Spirulina, Anabena, Oshiratria, Formidium, and Nostock. Can be mentioned.
 次に、実施例により、本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.
 なお、実施例において用いた光合成用撹拌機は、丸菱バイオエンジ社製、製品名「MD-501」を(株)筑波バイオテック研究所で改良した図1に示す試作品である。 In addition, the stirrer for photosynthesis used in the examples is a prototype shown in FIG. 1 in which the product name “MD-501” manufactured by Maruhishi Bioengineer Co., Ltd. is improved by Tsukuba Biotech Laboratories.
 また、培養液としては、1リットル中に、KHPO 0.5g、NaNO 0.1g、KSO 0.5g、MgSO・7HO 0.2g、CaCl・2HO 0.04g、FeSO・7HO 0.001g及び微量成分(pH9)3mLを含むものを用いた。ただし、微量成分の内容は以下のとおりであった。
 
 
   化合物      含有割合 
BO       2.86g
MnCl・4HO  1.81g
ZnSO・7HO  0.22g
CuSO・5HO  0.08g
NaMoO     0.021g
純水         1000mL
Moreover, as a culture solution, 0.5 g of K 2 HPO 4 , 0.1 g of NaNO 3 , 0.5 g of K 2 SO 4 , 0.2 g of MgSO 4 .7H 2 O, CaCl 2 .2H 2 O in 1 liter 0.04 g, was used containing FeSO 4 · 7H 2 O 0.001g and trace elements (pH 9) 3 mL. However, the contents of the trace components were as follows.


Compound content
H 3 BO 3 2.86 g
MnCl 2 .4H 2 O 1.81 g
ZnSO 4 · 7H 2 O 0.22g
CuSO 4 · 5H 2 O 0.08g
Na 2 MoO 4 0.021 g
1000mL pure water
 図1に示す光合成用撹拌機を内部に配置した5L体積のガラス容器からなる光バイオリアクターの容器内に培養液4リットルを入れ、これにスピルリナ1gを加え、100%濃度二酸化炭素ガスを20mL/分の速度で光合成用撹拌機に供給した。この撹拌機は430nm、680nm、700nmの波長をもつ発光ダイオードをそれぞれ3個ずつ配設したガラス管を先止めした円形撹拌翼を有していた。R/B比10、有効照射電力3W、回転数毎分5回転で、24時間培養した。 4 liters of a culture solution is placed in a container of a photobioreactor composed of a 5 L volume glass container in which the stirrer for photosynthesis shown in FIG. 1 is placed, and 1 g of spirulina is added thereto, and 100% concentration carbon dioxide gas is added at 20 mL / It was fed to the photosynthesis stirrer at a rate of minutes. This stirrer had a circular stirring blade with a glass tube in which three light emitting diodes each having a wavelength of 430 nm, 680 nm, and 700 nm were disposed. The cells were cultured for 24 hours at an R / B ratio of 10, an effective irradiation power of 3 W, and a rotation speed of 5 rotations per minute.
 その後、スピルリナをろ過して最初の培養液を捨て、約2倍の液濃度にした培養液4リットルに、再度ろ過したスピルリナを全量入れ、二酸化炭素ガス供給量を40mL/分に増加して24時間培養した結果、乾物濃度は10±1g/Lに達した。その後、培養液の処方を4倍にし、同様な方法でろ過したスピルリナ全量を入れ、二酸化炭素ガス供給量を80mL/分として24時間処理し、75時間で15g±1g/Lを得た。 Thereafter, the spirulina was filtered and the first culture was discarded, and the total amount of spirulina filtered again was added to 4 liters of the culture that had been doubled, and the carbon dioxide gas supply rate was increased to 40 mL / min. As a result of time culture, the dry matter concentration reached 10 ± 1 g / L. Thereafter, the culture solution formulation was quadrupled, the entire amount of Spirulina filtered by the same method was added, and the carbon dioxide gas supply rate was 80 mL / min, and the treatment was performed for 24 hours, and 15 g ± 1 g / L was obtained in 75 hours.
 実施例1で用いたスピルリナ1gに替えてクロレラ1gを用いた以外は実施例1と同様にして100%濃度二酸化炭素ガスを光合成用撹拌機に供給した。この撹拌機は430nm、680nm、700nmの波長をもつ発光ダイオードをそれぞれ3個ずつ配設したガラス管を先止めした円形撹拌翼を有していたが、その撹拌翼のガラス表面に酸化チタンに白金を担持した光触媒を接着剤と混ぜて塗布し、これをさらに光バイオリアクターのガラス製壁体の内側に塗布した。 100% concentration carbon dioxide gas was supplied to the photosynthesis stirrer in the same manner as in Example 1 except that 1 g of chlorella was used instead of 1 g of Spirulina used in Example 1. This stirrer had a circular stirring blade with a glass tube in which three light emitting diodes each having a wavelength of 430 nm, 680 nm, and 700 nm were disposed, and platinum on titanium oxide on the glass surface of the stirring blade. The photocatalyst carrying A was mixed with an adhesive and applied, and this was further applied to the inside of the glass wall of the photobioreactor.
 次いで、回転数毎分5回転で、24時間培養し、培養液を定量ポンプで1mL/分の速度で供給パイプから連続供給し、液量4リットルのレベルで引き抜くHRT2.8時間の連続培養に切り替え、10日間連続運転した。その後、撹拌翼ガラス面の表面及びバイオリアクター内部のガラス壁の内側の藻類の付着を調べたところ、まったく藻類の壁面の付着は認められなかった。 Next, the culture is continued for 24 hours at a rotation speed of 5 revolutions per minute, and the culture solution is continuously supplied from the supply pipe at a rate of 1 mL / min with a metering pump, and is pulled out at a level of 4 liters for HRT 2.8 hours continuous culture. Switching was continued for 10 days. Thereafter, the adhesion of the algae on the surface of the stirring blade glass surface and the inside of the glass wall inside the bioreactor was examined, and no adhesion of the algae wall surface was observed.
 その後、撹拌翼及び内壁部分に塗布した酸化チタンに白金を担持した光触媒を溶剤で洗い落とし、同様の連続培養を実施したところ、培養開始後6日ごろより、撹拌翼への藻類の付着が認められ、壁体の方も同じく藻類の付着が顕著になった。この結果から撹拌翼及び内壁部分に塗布した酸化チタンに白金を担持した光触媒の塗布は藻類の付着防止に極めて有効であることが分かった。 Thereafter, the photocatalyst carrying platinum on titanium oxide applied to the stirring blade and the inner wall portion was washed away with a solvent and subjected to the same continuous culture.From around 6 days after the start of the culture, algae was attached to the stirring blade, Algal adhesion was also noticeable on the wall. From this result, it was found that application of a photocatalyst in which platinum was supported on titanium oxide applied to the stirring blade and the inner wall portion was extremely effective in preventing the adhesion of algae.
 5L体積のガラス容器内に培養液4リットルを入れ、これにクロレラ1gを加え、100%濃度二酸化炭素ガス20mL/分の速度で実施例1で用いた光合成用撹拌機に供給した。この撹拌機は430nm、680nm、700nmの波長をもつ発光ダイオードをそれぞれ3個ずつ配設したガラス管を先止めしたもの3個をもつ円形撹拌翼を有していたが、このガラス管の内側に光反射材料をらせん状に1/3の面積で塗布した。さらに光バイオリアクター外部に3対の発光ダイオードを固定した光源取付け基盤を2枚設置し、R/B比5になるように調整した光環境を作り出した。 Into a 5 L glass container, 4 liters of the culture solution was added, 1 g of chlorella was added thereto, and the mixture was supplied to the photosynthesis stirrer used in Example 1 at a rate of 20% / minute of 100% concentration carbon dioxide gas. This stirrer had a circular stirrer blade with three glass tubes each having three light-emitting diodes each having a wavelength of 430 nm, 680 nm, and 700 nm disposed in advance. The light reflecting material was spirally applied in an area of 1/3. In addition, two light source mounting bases with three pairs of light emitting diodes fixed outside the photobioreactor were installed to create a light environment adjusted to have an R / B ratio of 5.
 さらに撹拌翼のガラス表面に酸化チタンに白金を担持した光触媒を接着剤に混ぜて塗布し、さらに光バイオリアクターのガラス製壁体の内側に塗布した。次いで、回転数毎分5回転で、24時間培養したのち、培養液を蒸留水で2倍に希釈した栄養塩液を定量ポンプにより1mL/分の速度で供給パイプから連続供給し、引き抜くHRT2.8日とする連続培養に切り替え、10日間連続運転した。 Further, a photocatalyst supporting platinum on titanium oxide was mixed and applied to the glass surface of the stirring blade, and further applied to the inside of the glass wall of the photobioreactor. Next, after culturing for 24 hours at a rotational speed of 5 revolutions per minute, a nutrient solution obtained by diluting the culture solution twice with distilled water is continuously supplied from the supply pipe at a rate of 1 mL / min with a metering pump, and pulled out. The operation was switched to continuous culture for 8 days and operated continuously for 10 days.
 その結果、36時間後以降の乾物濃度は12±1g/Lで安定した生産ができた。同様に電源をパルス波に変え、0.2秒周期、50%デユーティ比の光環境で10日間の生産を行ったが、乾物濃度はほとんど変わらなかった。この結果リアクター外壁からの光照射は藻類生産に有効であり、パルス波照射によっても収穫量の減少は認められなかったことから、電源の省エネルギーにつながることが明確になった。 As a result, the dry matter concentration after 36 hours was 12 ± 1 g / L, and stable production was achieved. Similarly, the power source was changed to a pulse wave, and production was carried out for 10 days in a light environment with a cycle of 0.2 seconds and a duty ratio of 50%, but the dry matter concentration was hardly changed. As a result, light irradiation from the outer wall of the reactor was effective for algae production, and it was clarified that the decrease in yield was not observed even by pulse wave irradiation, leading to energy saving of the power source.
 図2に示すような光源電源に電力を供給する電力供給機構と撹拌機の上方向に働く推力に対向する下方向力を発生させるスプリング(機械式コイルバネ)をスラストベアリングの上部に配設している実施例1で使用した光合成用撹拌機を備えた、5L体積の光バイオリアクター内に水4リットルを入れ、リアクター下部に設置した支持部材の多孔質部から1%濃度水酸化カリウム水溶液を1mL/分の速度で供給した。 A power supply mechanism that supplies power to the light source power source as shown in FIG. 2 and a spring (mechanical coil spring) that generates a downward force opposite to the thrust acting upward of the stirrer are disposed above the thrust bearing. 4 L of water was placed in a 5 L photobioreactor equipped with a photosynthesis stirrer used in Example 1, and 1 mL of 1% strength potassium hydroxide aqueous solution was added from the porous portion of the support member installed at the bottom of the reactor. / Min.
 次いで撹拌機上部にラビリンスパッキングを取り付け、この上部から圧力0.05MPa、100%二酸化炭素ガスを40mL/分の速度で供給しながら、回転数毎分5回転で運転し、上部に設置した機械式コイルバネの下方に向けた力を調整しながら、液のpHを測定したところ、下方の支持部材と撹拌機の中空軸下端部の二酸化炭素の吹き出し口との間隙は90~120μmの間で安定化した。 Next, a labyrinth packing is attached to the upper part of the stirrer, and a mechanical system installed at the upper part is operated at a rotational speed of 5 revolutions while supplying a pressure of 0.05 MPa and 100% carbon dioxide gas at a rate of 40 mL / min. When the pH of the liquid was measured while adjusting the downward force of the coil spring, the gap between the lower support member and the carbon dioxide outlet at the lower end of the hollow shaft of the stirrer was stabilized between 90 and 120 μm. did.
 以上の結果から、撹拌機に負荷する上方推力に対向させるバネや油圧装置の有効性が確認できた。 From the above results, the effectiveness of the spring and the hydraulic device opposed to the upward thrust applied to the stirrer was confirmed.
 上記実施例4と同様にして、光バイオリアクター下部に設置した支持部材の多孔質部から1%濃度水酸化カリウム水溶液を1mL/分の速度で供給し、撹拌機上部から圧力0.05MPa、100%濃度の二酸化炭素ガスを40mL/分の速度で供給しながら、回転数毎分5回転で運転し、撹拌機上部から圧力0.05MPa、100%二酸化炭素ガスを40mL/分の速度で供給した。 In the same manner as in Example 4 above, a 1% strength aqueous potassium hydroxide solution was supplied at a rate of 1 mL / min from the porous portion of the support member installed in the lower part of the photobioreactor, and the pressure was 0.05 MPa, 100 from the upper part of the stirrer. While supplying carbon dioxide gas with a concentration of 40% / min, it was operated at a rotation speed of 5 rpm, and a pressure of 0.05 MPa and 100% carbon dioxide gas were supplied from the top of the stirrer at a rate of 40 mL / min. .
 次いで、水酸化カリウム水溶液及び撹拌機上部から圧力0.05MPa、100%濃度の二酸化炭素ガスの供給を瞬時に停止した。撹拌機下部に設置した逆止弁の機能を発揮できないように施した条件の悪い仕組みの状態とし、これを複数回実施した。その結果、撹拌機下部は、対向する支持部材と接合した。その後光バイオリアクター内の水を排出し、撹拌機の中空軸への水の浸入を調べたところ、水の中空軸内への浸入はほとんど認められなかった。 Next, the supply of carbon dioxide gas having a pressure of 0.05 MPa and a concentration of 100% was instantaneously stopped from the aqueous potassium hydroxide solution and the upper part of the stirrer. The state of the poor condition was set so that the function of the check valve installed at the lower part of the agitator could not be exhibited, and this was carried out several times. As a result, the lower part of the agitator was joined to the opposing support member. Thereafter, the water in the photobioreactor was drained, and when water intrusion into the hollow shaft of the stirrer was examined, almost no water intrusion into the hollow shaft was observed.
 深さ18cmの200リットル体積ドーナッツ状のクローズド太陽光型培養装置に、図2に示すような電力供給機構とスプリング(機械式コイルバネ)をスラストベアリングの上部に配設している実施例1で使用した光合成用撹拌機を一基設置し、撹拌機下部に設置した支持部材の多孔質部から1%濃度水酸化カリウム水溶液を1mL/分の速度で、撹拌機上部から圧力0.05MPa、100%濃度の二酸化炭素ガスを40mL/分の速度で供給しながら、回転数毎分5回転で運転した。撹拌機下部に設置した保持部と撹拌機の中空軸下端部の間隙を100μmに設定し、上部に設置したスプリングの下方に向けた力を調整して5日間夜間だけ光源を点灯し、昼間は太陽エネルギー直接利用する運転をした結果、スピルリナの乾物濃度で5±1g/Lを得た。ドーナッツ状のクローズド太陽光型培養装置の得られる乾物濃度は1.5g/L程度なので、このことから夜間の人工光の供給が有効であることが分かる。 Used in Example 1 in which a power supply mechanism and a spring (mechanical coil spring) as shown in FIG. 2 are disposed on the upper part of a thrust bearing in a 200 liter volume donut-shaped closed solar cell culture device having a depth of 18 cm. One stirrer for photosynthesis was installed, and a 1% strength potassium hydroxide aqueous solution was added at a rate of 1 mL / min from the porous part of the support member installed at the lower part of the stirrer, and the pressure was 0.05 MPa, 100% from the upper part of the stirrer. While supplying carbon dioxide gas at a concentration of 40 mL / min, the system was operated at a rotational speed of 5 revolutions per minute. Set the gap between the holding part installed at the lower part of the stirrer and the lower end of the hollow shaft of the stirrer to 100 μm, adjust the downward force of the spring installed at the upper part, and turn on the light source for only 5 days at night. As a result of driving using solar energy directly, 5 ± 1 g / L was obtained in the dry matter concentration of Spirulina. Since the dry matter concentration obtained by the doughnut-shaped closed solar cell culture device is about 1.5 g / L, it can be seen that the supply of artificial light at night is effective.
 本発明の光合成用撹拌機は、迅速な光合成反応を行うことができるので、水中生物、例えば藻類を大量生産することができ、家畜の飼料や燃料油の製造に有用である。
 また、この光合成により藻類の乾燥質量に対し、ほぼ1.5倍という多量の二酸化炭素を吸収することができるので、二酸化炭素吸収装置としても有用である。
Since the photosynthesis stirrer of the present invention can perform a rapid photosynthesis reaction, it can mass-produce aquatic organisms such as algae, and is useful for the production of livestock feed and fuel oil.
Moreover, since this photosynthesis can absorb a large amount of carbon dioxide of about 1.5 times the dry mass of algae, it is also useful as a carbon dioxide absorber.
1 二酸化炭素供給管
2 中空軸
2´ 中空軸下端部
3 陽極
4 絶縁体
5 陰極
6 スプリング
7 スラストベアリング
8 カラー
9 上部フランジ
10 パッキング
11 下部フランジ
12 陰極取付けビス
13 穴
14 支持部材
15 固定軸受
16 供給パイプ
17 取付け用シリンダー
18 取付け盤
19 撹拌翼
20 光源取付け基盤
21,21´,21″ 発光ダイオード
22 プレナムチャンバー
23 多孔質部
24 保持部
25 逆止弁
26 気液混合部
DESCRIPTION OF SYMBOLS 1 Carbon dioxide supply pipe 2 Hollow shaft 2 'Lower end of hollow shaft 3 Anode 4 Insulator 5 Cathode 6 Spring 7 Thrust bearing 8 Collar 9 Upper flange 10 Packing 11 Lower flange 12 Cathode mounting screw 13 Hole 14 Support member 15 Fixed bearing 16 Supply Pipe 17 Mounting cylinder 18 Mounting board 19 Stirring blade 20 Light source mounting base 21, 21 ′, 21 ″ Light emitting diode 22 Plenum chamber 23 Porous portion 24 Holding portion 25 Check valve 26 Gas-liquid mixing portion

Claims (10)

  1.  二酸化炭素ガス供給管を兼用し、回転軸を構成する中空軸に複数の円筒状又は円錐状の透明撹拌翼を放射状かつそれぞれ等間隔で高さを変えて取り付け、その取り付け部近傍に、青、赤及び遠赤の3種の異なった光質を有する発光ダイオードをそれぞれ1個以上付設し、中空軸の下方に栄養塩液又は栄養塩液と二酸化炭素中和用アルカリ液の両方を含む供給液供給用の供給パイプを配置するとともに、中空軸の上部外側面に二酸化炭素ガス及び前記供給液の供給により発生する上向きのストラス力に対抗するための緩衝機構を固定し、さらに中空軸に対して摺動可能に発光ダイオードへの電力供給機構を環設したことを特徴とする光合成用撹拌機。 Combined with the carbon dioxide gas supply pipe, a plurality of cylindrical or conical transparent stirring blades are attached to the hollow shaft that constitutes the rotating shaft in a radial and equidistant manner, and blue, One or more light emitting diodes with three different light qualities of red and far red, respectively, and a feed solution containing nutrient solution or both nutrient solution and carbon dioxide neutralizing solution below the hollow shaft A supply pipe for supply is arranged, and a buffer mechanism for countering upward strut force generated by the supply of carbon dioxide gas and the supply liquid is fixed to the upper outer surface of the hollow shaft, and further, with respect to the hollow shaft A stirrer for photosynthesis, wherein a power supply mechanism for a light emitting diode is slidably mounted.
  2.  発光ダイオードへの電力供給機構が、中空軸に接触して環設された導電体からなる陰極と、絶縁体を介して陰極と対向して設けられた陽極電源から構成されている請求項1記載の光合成用撹拌機。 2. The power supply mechanism for the light emitting diode comprises a cathode made of a conductor provided in contact with the hollow shaft and an anode power source provided to face the cathode through an insulator. Stirrer for photosynthesis.
  3.  撹拌翼が中空体で形成された請求項1記載の光合成用撹拌機。 The photosynthesis stirrer according to claim 1, wherein the stirring blade is formed of a hollow body.
  4.  撹拌翼が10°~180°の範囲の同じ角度で方向を変えて中空軸に取り付けられた請求項1記載の光合成用撹拌機。 The stirrer for photosynthesis according to claim 1, wherein the stirring blades are attached to the hollow shaft while changing directions at the same angle in the range of 10 ° to 180 °.
  5.  二酸化炭素ガス、前記供給液の供給停止時に中空軸中空部に液体が侵入するのを防止するための逆止弁機構を中空軸下方に付設した請求項1記載の光合成用撹拌機。 The photosynthesis stirrer according to claim 1, wherein a check valve mechanism is provided below the hollow shaft to prevent liquid from entering the hollow shaft hollow portion when the supply of carbon dioxide gas and the supply liquid is stopped.
  6.  請求項1記載の光合成用撹拌機を内部に配置した培養容器からなる光バイオリアクター。 A photobioreactor comprising a culture vessel in which the photosynthesis stirrer according to claim 1 is disposed.
  7.  撹拌翼表面又は培養容器内壁面或いはその両方に、水中生物付着防止のための光触媒を被着させた請求項6記載の光バイオリアクター。 The photobioreactor according to claim 6, wherein a photocatalyst for preventing underwater organism adhesion is adhered to the surface of the stirring blade, the inner wall surface of the culture vessel, or both.
  8.  撹拌翼表面に水中生物付着防止のための光触媒を被着させた請求項1記載の光合成用撹拌機を、培養液中に配置し、培養液を撹拌しながら行うことを特徴とする水中生物培養方法。 An underwater biological culture characterized in that the photosynthesis stirrer according to claim 1, wherein a photocatalyst for preventing the adhesion of underwater organisms is deposited on the surface of the stirring blade, is placed in the culture solution, and the culture solution is stirred. Method.
  9.  光合成用撹拌機の中空軸上端部から冷却気体を導入し、発光ダイオードを冷却しながら行う請求項8記載の培養方法。 The culture method according to claim 8, which is carried out while cooling the light emitting diode by introducing a cooling gas from the upper end of the hollow shaft of the photosynthesis stirrer.
  10.  水中生物が藻類である請求項8記載の培養方法。
     
    The culture method according to claim 8, wherein the aquatic organism is an algae.
PCT/JP2009/069137 2009-03-04 2009-11-10 Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same WO2010100795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011502592A JP5661028B2 (en) 2009-03-04 2009-11-10 Stirrer for photosynthesis, photobioreactor using the same, and underwater biological culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-051101 2009-03-04
JP2009051101 2009-03-04

Publications (1)

Publication Number Publication Date
WO2010100795A1 true WO2010100795A1 (en) 2010-09-10

Family

ID=42709369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069137 WO2010100795A1 (en) 2009-03-04 2009-11-10 Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same

Country Status (2)

Country Link
JP (1) JP5661028B2 (en)
WO (1) WO2010100795A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509870A (en) * 2011-03-29 2014-04-24 スレインテ アルガ テオランタ Microbial growth
CN106430063A (en) * 2016-11-24 2017-02-22 宣威市农硕农特产品开发有限公司 Automatic quantitative filling system for tissue culture solution
JP2019017263A (en) * 2017-07-12 2019-02-07 エイブル株式会社 Culture container and culture device
KR102274961B1 (en) * 2020-08-11 2021-07-07 독일에프에이유에를랑겐유체역학연구소 부산지사 Fluid in/outlet connector based on 3D printing and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119771A (en) * 1988-10-29 1990-05-07 Nitto Denko Corp Cell culturing method and agitating fan for cell culture used in the same method
JPH0358780A (en) * 1989-07-25 1991-03-13 P C C Technol:Kk Agitation-type culture apparatus
JP2005000121A (en) * 2003-06-13 2005-01-06 Toshiba Corp Biomass culture tank and biomass culture method
JP2008283937A (en) * 2007-05-21 2008-11-27 Dialight Japan Co Ltd Photobioreactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119771A (en) * 1988-10-29 1990-05-07 Nitto Denko Corp Cell culturing method and agitating fan for cell culture used in the same method
JPH0358780A (en) * 1989-07-25 1991-03-13 P C C Technol:Kk Agitation-type culture apparatus
JP2005000121A (en) * 2003-06-13 2005-01-06 Toshiba Corp Biomass culture tank and biomass culture method
JP2008283937A (en) * 2007-05-21 2008-11-27 Dialight Japan Co Ltd Photobioreactor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG, W. ET AL.: "A review on artificial lighting of tissue cultures and transplants", TRANSPL. PROD. 21ST CENTURY, 2000, pages 108 - 113 *
GOINS, G.D. ET AL.: "Salad crop production under different wavelengths of red light-emitting diodes (LEDs)", SAE TECH. PAP. SER., 2001, pages 1 - 9 *
KENSEI OKAMOTO ET AL.: "RGB 3-shoku Ko Kodo LED o Mochiita Shokubutsu Saibai to Seiiku Sensing", OYO BUTSURI, vol. 68, no. 2, 1999, pages 156 - 160 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509870A (en) * 2011-03-29 2014-04-24 スレインテ アルガ テオランタ Microbial growth
CN106430063A (en) * 2016-11-24 2017-02-22 宣威市农硕农特产品开发有限公司 Automatic quantitative filling system for tissue culture solution
CN106430063B (en) * 2016-11-24 2018-04-03 宣威市农硕农特产品开发有限公司 A kind of tissue culture liquid automatic ration bulking system
JP2019017263A (en) * 2017-07-12 2019-02-07 エイブル株式会社 Culture container and culture device
KR102274961B1 (en) * 2020-08-11 2021-07-07 독일에프에이유에를랑겐유체역학연구소 부산지사 Fluid in/outlet connector based on 3D printing and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2010100795A1 (en) 2012-09-06
JP5661028B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US11505771B2 (en) Methods and materials for cultivation and/or propagation of a photosynthetic organism
US8449172B2 (en) Mixing device for creating an output mixture by mixing a first material and a second material
US20120282677A1 (en) Photobioreactor comprising rotationally oscillating light sources
JP5661028B2 (en) Stirrer for photosynthesis, photobioreactor using the same, and underwater biological culture method
KR101043583B1 (en) Photobioreactor having baffles integrally provided with internal light source for high density cultivation of microalgae
US20100144019A1 (en) Photobioreactor
KR20110098622A (en) Photobioreactor with spiral light source
EP3081628B1 (en) Algae culturing apparatus and algae culturing system
JP3283982B2 (en) Culture device for photosynthetic organisms
WO2011065445A1 (en) Microalgae cultivation device
JP4839437B2 (en) Method for culturing isochrysis algae
JP2009106218A (en) Photosynthesis unit system
KR101408800B1 (en) Photobioreactor including multilayered structure
AU2014200893A1 (en) Mixing device and output fluids of same
JP2923931B2 (en) Photosynthetic culture device
CN118044484A (en) Shellfish offspring seed circulating water breeding/breeding system
JP3178460U (en) Photosynthesis unit device
JPH0646826A (en) Organism culture device
CN111979097A (en) Photobioreactor for microalgae culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011502592

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09841155

Country of ref document: EP

Kind code of ref document: A1