JP2008283937A - Photobioreactor - Google Patents

Photobioreactor Download PDF

Info

Publication number
JP2008283937A
JP2008283937A JP2007134443A JP2007134443A JP2008283937A JP 2008283937 A JP2008283937 A JP 2008283937A JP 2007134443 A JP2007134443 A JP 2007134443A JP 2007134443 A JP2007134443 A JP 2007134443A JP 2008283937 A JP2008283937 A JP 2008283937A
Authority
JP
Japan
Prior art keywords
lamp
culture
culture solution
light
photobioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007134443A
Other languages
Japanese (ja)
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2007134443A priority Critical patent/JP2008283937A/en
Publication of JP2008283937A publication Critical patent/JP2008283937A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/12Rotating light emitting elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform optimum culture, even if the concentration of the culture solution becomes high, by effectively irradiating photosynthetic organisms, such as algae, with the light of a high-efficiency lamp. <P>SOLUTION: The photobioreactor is provided with a culture vessel 4 for holding a culture solution, a rotary shaft 12 rotatably placed in the culture vessel 4 and a field-emission lamp 16 fixed to the rotary shaft 12. The rotary shaft 12 is rotated, in a controlled manner of making the lamp 16 rotate about the rotary shaft, while making the lamp act as a stirring member for the culture solution, the light intensity and lighting of the lamp 16 are controlled to irradiate the culture solution with light of desired intensity, and the on/off timing of the lamp 16 is controlled to control the light reaction and the dark reaction of the photosynthetic organism, such as algae. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、クロレラ、クラミドモナス、ボツリオコッカス等の緑藻類や、スピルリナ、アナベナ等のラン藻類のように繁殖に光を必要とする微生物を培養槽内で人工的に培養するのに使用される光バイオリアクタ(培養装置)に関する。   The present invention is a light used for artificially cultivating microorganisms that require light for breeding, such as green algae such as Chlorella, Chlamydomonas and Botriococcus, and cyanobacterium such as Spirulina and Anavena in a culture tank. The present invention relates to a bioreactor (culture apparatus).

特開2006−014627をはじめとする幾つかの特許文献には、上記藻類は、光と炭酸ガスとから光合成を行なって酸素を生成放出しつつ繁殖するものであり、藻類の光合成能力は一般植物より数百倍高く、また、クロレラ等の藻類は、飼料、食料、燃料等に広範な用途を持ち、大きな繁殖力を利用して大量に培養されている、と記載されている。   In some patent documents including Japanese Patent Application Laid-Open No. 2006-014627, the algae are those that reproduce while generating and releasing oxygen by performing photosynthesis from light and carbon dioxide gas. It is described that it is several hundred times higher and algae such as chlorella have a wide range of uses for feed, food, fuel, etc., and are cultivated in large quantities using a large reproductive potential.

また、特開2002−272447には、光バイオリアクタが記載されている。この光バイオリアクタでは、培養槽の外部にランプを設置して培養槽内の藻類に光を照射して培養する光バイオリアクタが記載されている。人工光培養では、天候に左右される太陽光培養とは異なって、季節や天候に左右されず常時安定した光合成が可能となる。   Japanese Patent Laid-Open No. 2002-272447 describes a photobioreactor. In this photobioreactor, a photobioreactor is described in which a lamp is installed outside the culture tank and the algae in the culture tank are irradiated with light and cultured. Artificial photoculture, unlike solar culture that depends on the weather, enables stable photosynthesis at all times regardless of the season and weather.

また、特開平07−023767にはランプを培養槽内部に固定配置した光バイオリアクタも提案されている、と記載されている。ランプを培養槽内部に配置することで培養槽を透明材料で構成する必要がなく、また、培養槽外部から光を照射するのと異なり培養液に光を届かせ易い。   Japanese Patent Application Laid-Open No. 07-023767 discloses that an optical bioreactor in which a lamp is fixedly arranged inside a culture tank is also proposed. By disposing the lamp inside the culture tank, the culture tank does not need to be made of a transparent material, and the light can easily reach the culture solution unlike the case where light is irradiated from the outside of the culture tank.

上記特開2006−014627では培養槽の外部に配置したランプからの光を培養槽内部で反射させるようにして培養液に光を届かせ易くしている。   In JP-A-2006-014627, light from a lamp arranged outside the culture vessel is reflected inside the culture vessel so that the light can easily reach the culture solution.

また、2005年7月1日の日経産業新聞によれば、藻類の光合成は、光が当たり続けるよりは明と暗の組合わせがより効果的であり、また、その明暗のサイクルにも藻類によって最適なサイクルがあると、記載されている。この明部では藻類は光エネルギを利用して水を水素と酸素とに分解し同時に酵素蛋白質の働きで化学エネルギを生成し蓄積する明反応をなし、暗部では蓄積された水素と化学エネルギと大気中から取り込んだ二酸化炭素とを用いて糖、蛋白質など高付加価値物質を合成する暗反応をなす。   Also, according to the Nikkei Sangyo Shimbun on July 1, 2005, the photosynthesis of algae is more effective in the combination of light and dark than the light continues to strike, and the cycle of light and dark is also influenced by algae. It is stated that there is an optimal cycle. In this bright part, algae uses light energy to decompose water into hydrogen and oxygen, and at the same time, it produces a bright reaction that generates and accumulates chemical energy by the action of enzyme protein, and in the dark part, the accumulated hydrogen, chemical energy and air Using the carbon dioxide taken from the inside, it performs a dark reaction to synthesize high value-added substances such as sugars and proteins.

また、光バイオリアクタには、インターネットのホームページで閲覧することができるものがある。この光バイオリアクタでは、対向する一対の培養槽壁体間に培養液を入れ、両壁体の外側壁面に配置したランプで培養液の壁体寄りの培養液に光を照射して明部領域とする一方、両壁体の中間寄りの培養液に光を届きにくくして暗部領域として藻類の人工培養を行うようにしている。また、この光バイオリアクタでは、藻類の濃度が高くなると光が届かない藻類が発生することを防止するために培養液を攪拌するようにしている。   Some photobioreactors can be viewed on the Internet website. In this photobioreactor, a culture solution is put between a pair of opposing culture vessel walls, and light is irradiated to the culture solution near the culture solution wall with lamps arranged on the outer wall surfaces of both walls. On the other hand, the artificial culture of algae is performed as a dark area by making it difficult for light to reach the culture solution near the middle of both wall bodies. In this photobioreactor, the culture solution is agitated to prevent the generation of algae that do not reach light when the concentration of algae increases.

しかしながら、培養液を攪拌しても藻類の濃度が高いために外部から培養液に光を照射(外照式)しても光が届く培養液は培養槽壁体の内周壁に極めて近い培養液部分のみとなり実質には濃度が高い培養液には光が届かないようになり極めて効率が悪くなる。光を届かせるには光の照射強度が増加する必要があるが、照射強度の増加にも限界があり、培養コストが急増するものとなる。   However, even if the culture solution is stirred, the concentration of algae is high, so that the culture solution that reaches the light even when the culture solution is externally irradiated (external lighting) is very close to the inner wall of the culture vessel wall. Only the portion becomes substantially light, so that the light does not reach the culture solution having a high concentration, and the efficiency becomes extremely low. Although it is necessary to increase the irradiation intensity of light to reach the light, there is a limit to the increase of the irradiation intensity, and the culture cost increases rapidly.

一方、上記した培養槽内部にランプを配置する内照式の光バイオリアクタではランプが固定配置されているので、ランプから少しでも離れた培養液には光が届かず上記と同様に培養効率が悪い。培養効率を向上するにはそのようなランプを多数、培養槽内に配置することとなり、培養コストが格段に嵩むようになる。   On the other hand, in the internally-illuminated optical bioreactor in which the lamp is arranged inside the culture tank, the lamp is fixedly arranged, so that the light does not reach the culture solution as far as possible from the lamp, and the culture efficiency is the same as above. bad. In order to improve the culture efficiency, a large number of such lamps are arranged in the culture tank, and the culture cost is significantly increased.

また、藻類の増殖にともなって光の透過性が悪くなる、培養効率が極端に低下してくるので、培養液中にランプを配置した場合、ランプの表面が培養液と接触することになるが、ランプ表面が培養液によって著しく汚染されて、ランプから培養液中への光の照射が殆んど行なわれなくなり、培養が困難化してくる。このような場合、ランプの洗浄が必要となるなど、作業コストが嵩む。そこで、洗浄作業を容易化するため、棒状の発光体を培養液中に挿抜自在に配置したものも提案されている。しかしながら、これらも棒状の発光体が位置固定されているから、使用中に培養液で汚染され、頻繁に交換や洗浄が必要となる。
特開2006−014627 特開2002−272447 特開平07−023767 2005年7月1日の日経産業新聞 光合成装置の開発・制御:WEBページ(www.yamaha−motor.co.jp/product/bio/technology/key2/index.html)2006/07/07
In addition, the light transmission becomes worse with the growth of algae, and the culture efficiency is extremely lowered. Therefore, when a lamp is placed in the culture solution, the surface of the lamp comes into contact with the culture solution. The surface of the lamp is significantly contaminated with the culture solution, so that light is hardly irradiated from the lamp into the culture solution, and the culture becomes difficult. In such a case, the work cost increases, such as the need to clean the lamp. Therefore, in order to facilitate the cleaning work, there has been proposed one in which a rod-shaped illuminant is disposed so as to be freely inserted into and extracted from the culture solution. However, since these rod-shaped light emitters are also fixed in position, they are contaminated with the culture medium during use, requiring frequent replacement and washing.
JP 2006-014627 A JP 2002-272447 A JP 07-023767 Nikkei Sangyo Shimbun on July 1, 2005 Development and control of photosynthesis equipment: WEB page (www.yamaha-motor.co.jp/product/bio/technology/key2/index.html) 2006/07/07

したがって、本発明により解決すべき課題は、培養液濃度が高くなっても高効率でランプの光を有効に藻類等の光合成生物に照射することを可能とすることである。   Therefore, the problem to be solved by the present invention is to enable irradiation of photosynthetic organisms such as algae with high efficiency even when the culture solution concentration is high.

本発明による光バイオリアクタは、藻類等の光合成生物を培養液で人工培養する光バイオリアクタにおいて、上記培養液を収容する培養槽と、この培養槽内部に回転可能に配置された回転軸と、この回転軸に固定された電界放射型のランプと、を備え、上記回転軸を回転制御して上記ランプを回転軸周りに回転させて培養液を攪拌する攪拌体として作用させつつ上記ランプの発光強度と点灯とを制御して培養液に所要強度の光を照射し、かつ、当該ランプの点滅タイミングを制御して藻類等の光合成生物の明暗二つの反応を制御可能としたことを特徴とするものである。   The photobioreactor according to the present invention is a photobioreactor in which a photosynthetic organism such as algae is artificially cultured in a culture solution, a culture tank that contains the culture solution, and a rotation shaft that is rotatably disposed inside the culture tank. A field emission type lamp fixed to the rotating shaft, and controlling the rotation of the rotating shaft to rotate the lamp around the rotating shaft and act as an agitator for stirring the culture solution, The intensity and lighting are controlled to irradiate the culture solution with the required intensity of light, and the blinking timing of the lamp is controlled to control the two light-dark reactions of photosynthetic organisms such as algae. Is.

本発明では、ランプが培養液中に回転軸の回転に伴い移動するので、藻類の濃度が高くなっても培養槽内の培養液の隅々にまで光を効率良く照射することができる上に、ランプにより培養液を攪拌することができるので藻類に均等に光を照射することができ、藻類等の光合成生物を高効率で大量培養することができる。   In the present invention, since the lamp moves in the culture solution with the rotation of the rotating shaft, light can be efficiently irradiated to every corner of the culture solution in the culture tank even when the concentration of algae increases. Since the culture solution can be stirred by the lamp, the algae can be irradiated with light evenly, and a large amount of photosynthetic organisms such as algae can be cultured with high efficiency.

本発明では、ランプが攪拌体を同時に兼ねているので、ランプとは別途に攪拌体を設置する場合と比較してコスト的に有利である。   In the present invention, since the lamp also serves as the stirring body at the same time, it is advantageous in terms of cost compared to the case where the stirring body is provided separately from the lamp.

本発明では、ランプとして発熱が無い電界放射型ランプを用いたので、培養液内にランプを設置する方式の多くで問題となっているランプ発熱対策を考慮する必要がなく、熱媒体での培養液温度の管理に影響を及ぼさずに済む。   In the present invention, since a field emission type lamp that does not generate heat is used as the lamp, it is not necessary to consider the lamp heat generation countermeasure, which is a problem in many methods of installing the lamp in the culture solution, and culture in a heat medium. The liquid temperature management is not affected.

本発明では、ランプによる攪拌により熱媒体との熱交換をより均等かつ効率的に行うことができる。   In the present invention, heat exchange with the heat medium can be performed more evenly and efficiently by stirring with a lamp.

本発明では、ランプの点滅タイミングを制御することができるので、培養液全体の藻類を最適な明暗反応サイクルで培養することができる。   In the present invention, the blinking timing of the lamp can be controlled, so that the algae in the entire culture solution can be cultured in an optimal light-dark reaction cycle.

本発明では、ランプが回転軸の回転に同期して回転し培養液を攪拌するので、換言すれば、ランプを培養液中に配置して培養液と直接接触することになるが、ランプ表面が培養液によって汚染されにくくなり、ランプから培養液中への光の照射を長期に効率良く行なうことができ、最適培養が可能となる。   In the present invention, the lamp rotates in synchronization with the rotation of the rotating shaft and stirs the culture solution. In other words, the lamp is placed in the culture solution and is in direct contact with the culture solution. It is less likely to be contaminated by the culture solution, and light irradiation from the lamp into the culture solution can be performed efficiently over a long period of time, enabling optimum culture.

以上の特徴を有する本発明では、さらに、回転軸に電気配線を設け、培養槽外から上記電気配線を通じてランプに駆動電源を供給可能とすることが好ましい。   In the present invention having the above characteristics, it is preferable that an electric wiring is further provided on the rotating shaft so that driving power can be supplied to the lamp from the outside of the culture tank through the electric wiring.

上記ランプは、表面に透明撥水膜が形成されていることが好ましい。透明撥水膜により、ランプ表面には培養液で汚染されにくくなり、光を効果的に培養液に照射することができ、また、円滑に培養液を攪拌することができるようになる。   The lamp preferably has a transparent water-repellent film formed on the surface. The transparent water-repellent film makes the surface of the lamp less likely to be contaminated with the culture solution, so that the culture solution can be effectively irradiated with light, and the culture solution can be stirred smoothly.

本発明は、複数のランプを軸方向斜めに固定することが好ましい。ランプを軸方向斜めに固定した場合、培養液全体に光をより効率的に照射することができることに加えて、培養液全体をより効率的に攪拌することができるようになる。   In the present invention, it is preferable to fix a plurality of lamps obliquely in the axial direction. When the lamp is fixed obliquely in the axial direction, in addition to being able to irradiate light to the whole culture solution more efficiently, the whole culture solution can be more efficiently stirred.

本発明は、回転軸をクランク状とし、この回転軸回りにランプを自転可能とし、かつ、回転軸のクランク動作で公転可能とすることが好ましい。この構成では、ランプ長さが短くても、培養液に対する光照射と攪拌とを効率的に行うことができるようになる。   In the present invention, it is preferable that the rotating shaft has a crank shape, the ramp can rotate around the rotating shaft, and can revolve by cranking the rotating shaft. With this configuration, even when the lamp length is short, the light irradiation and stirring can be performed efficiently on the culture solution.

本発明は、培養液の濃度の上昇に対応してランプの回転速度を低下側に制御することが好ましい。   In the present invention, it is preferable to control the rotation speed of the lamp to the lower side in response to the increase in the concentration of the culture solution.

本発明の光バイオリアクタは、閉鎖形、開放形を問わず、適用することができる。   The photobioreactor of the present invention can be applied regardless of whether it is a closed type or an open type.

本発明によれば、培養液濃度が高くなっても高効率でランプの光を有効に藻類等の光合成生物に照射し最適な培養を実施することができる。   According to the present invention, even when the culture solution concentration becomes high, it is possible to effectively irradiate light-synthesizing organisms such as algae with high efficiency and perform optimal culture.

以下、添付した図面を参照して、本発明の実施形態に係る光バイオリアクタを説明する。   Hereinafter, an optical bioreactor according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1ないし図4を参照して実施の形態の光バイオリアクタを説明する。図1は、実施の形態の光バイオリアクタの概略構成を示す。図1(a)はその断面図、図1(b)はその平面図を示す。図2は電界放射型管状ランプ(以下、単にランプ)の点滅周期を示す図、図3は横軸に時間、縦軸に培養液濃度と回転軸の回転速度とを示す図、図4はランプの構成を示す図である。   The photobioreactor of the embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 shows a schematic configuration of the photobioreactor of the embodiment. FIG. 1A is a sectional view thereof, and FIG. 1B is a plan view thereof. FIG. 2 is a diagram showing the blinking cycle of a field emission tubular lamp (hereinafter simply referred to as “lamp”), FIG. 3 is a diagram showing time on the horizontal axis, culture medium concentration on the vertical axis, and rotational speed of the rotary shaft, and FIG. FIG.

光バイオリアクタ2は、藻類等の光合成生物を培養液で人工培養するものである。光バイオリアクタ2は、円筒状の培養槽4を備える。培養槽4は、培養液6を収容するものである。培養槽4は二重筒体からなる槽壁を有し、この内側筒体で取り囲むスペースを培養液6の収容スペースに用いるとともに、両筒体間を熱媒体収容スペース8としている。熱媒体収容スペース8には、熱媒体10が収容されている。熱媒体収容スペース8は、内部の熱媒体10により培養槽4内の培養液6と熱交換して培養液6を所定温度範囲に保つことができるようになっている。熱媒体10は例えば冷水や温水、その他の熱媒体である。その温度は培養する藻類等の光合成生物の種類に応じて適宜に設定管理することができる。熱媒体10の温度は、藻類等の光合成生物の種類に応じて制御する。例えば、低温菌、中温菌、高温菌で熱媒体の温度を管理制御することができる。この熱媒体10の供給、排出の構造ならびにその温度管理や制御についてはその構造の図示および説明を略する。   The photobioreactor 2 artificially cultures photosynthetic organisms such as algae with a culture solution. The photobioreactor 2 includes a cylindrical culture tank 4. The culture tank 4 accommodates the culture solution 6. The culture tank 4 has a tank wall made of a double cylinder, and a space surrounded by the inner cylinder is used as a storage space for the culture solution 6 and a space between the two cylinders is a heat medium storage space 8. A heat medium 10 is accommodated in the heat medium accommodation space 8. The heat medium storage space 8 is configured to be able to keep the culture medium 6 in a predetermined temperature range by exchanging heat with the culture medium 6 in the culture tank 4 by the internal heat medium 10. The heat medium 10 is, for example, cold water, hot water, or other heat medium. The temperature can be appropriately set and managed according to the type of photosynthetic organism such as algae to be cultured. The temperature of the heat medium 10 is controlled according to the type of photosynthetic organism such as algae. For example, the temperature of the heat medium can be managed and controlled with a low-temperature bacterium, a mesophilic bacterium, and a high-temperature bacterium. The illustration and explanation of the structure of supply and discharge of the heat medium 10 and the temperature management and control thereof are omitted.

回転軸12は、培養槽4内部中央に軸受14を介して回転可能に培養槽4底部に立設されている。回転軸12の素材は特に限定されず、金属製、樹脂製でよく、また、外周面に撥水膜を形成してもよいし、回転軸12の素材に摩擦係数が小さい材料を選択してもよい。   The rotary shaft 12 is erected on the bottom of the culture tank 4 so as to be rotatable via a bearing 14 in the center of the culture tank 4. The material of the rotating shaft 12 is not particularly limited, and may be made of metal or resin, a water repellent film may be formed on the outer peripheral surface, and a material having a small friction coefficient is selected as the material of the rotating shaft 12. Also good.

ランプ16は、複数、回転軸12に軸方向および円周方向等間隔に固定されている。ランプ16は回転軸12の軸方向に対して円周方向180度間隔で固定されている。ランプ16の設置個数は培養の規模に従い、特に限定されない。ランプ16の先端側は回転軸12に対して半径方向に直管状に延びている。ランプ16の形状は特に限定しないが、直管状が好ましく、また、曲管状でもよい。回転軸12の下端側は上記のように耐水性で堅牢な密封型軸受12を介して培養槽4底部に支持される一方、上端側は培養槽4外に突出し、その突出した上端にロータリコネクタ18を内装したギヤ20が固定され、このギヤ20にモータ22のギヤ24が噛合している。ロータリコネクタ18は、パルス電源26に接続されている。これらモータ22の種類、ギヤ20,24の組み合わせや種類は、種々、適宜選択することができる。   A plurality of lamps 16 are fixed to the rotary shaft 12 at equal intervals in the axial direction and the circumferential direction. The lamps 16 are fixed at an interval of 180 degrees in the circumferential direction with respect to the axial direction of the rotary shaft 12. The number of lamps 16 is not particularly limited according to the scale of culture. The front end side of the lamp 16 extends in a straight tube shape in the radial direction with respect to the rotating shaft 12. The shape of the lamp 16 is not particularly limited, but a straight tube shape is preferable, and a curved tube shape may also be used. While the lower end side of the rotating shaft 12 is supported by the bottom part of the culture tank 4 via the water-resistant and robust sealed bearing 12 as described above, the upper end side protrudes outside the culture tank 4, and a rotary connector is provided at the projected upper end. A gear 20 having an interior 18 is fixed, and a gear 24 of a motor 22 is engaged with the gear 20. The rotary connector 18 is connected to a pulse power source 26. Various types of motors 22 and combinations and types of gears 20 and 24 can be selected as appropriate.

回転軸12は内部にロータリコネクタ18を介してランプ16にパルス電源26の電圧を印加するための配線28が内設されている。ロータリコネクタ18は周知の構造であるからその詳細は略するが、パルス電源26側に固定コネクタ、回転軸12側に回転コネクタを備え、これら両コネクタの接点を通じてパルス電源26の電圧をランプ16に印加することができるようになっている。   The rotary shaft 12 is internally provided with wiring 28 for applying the voltage of the pulse power supply 26 to the lamp 16 via the rotary connector 18. Since the rotary connector 18 has a well-known structure, the details thereof are omitted. However, a fixed connector is provided on the pulse power source 26 side and a rotary connector is provided on the rotary shaft 12 side. The voltage of the pulse power source 26 is supplied to the lamp 16 through the contacts of both connectors. It can be applied.

この場合、パルス電源26ではなく通常の直流電源を用いるとともに、この直流電源にスイッチを設け、このスイッチを開閉制御することによりランプ16に電圧を印加することができるようにしてもよい。   In this case, a normal DC power supply may be used instead of the pulse power supply 26, and a switch may be provided in the DC power supply so that a voltage can be applied to the lamp 16 by controlling the opening and closing of the switch.

制御部30は、マイクロコンピュータから構成され、モータ22の回転制御、パルス電源26の制御を通じてランプ16の点滅周期の制御、熱媒体8による培養液6の温度制御を行う。   The control unit 30 is constituted by a microcomputer, and controls the rotation of the motor 22, the blinking cycle of the lamp 16 through the control of the pulse power supply 26, and the temperature control of the culture solution 6 by the heat medium 8.

制御部30は、図2で示すようにパルス電源26を制御してランプ16の点灯周期T1(ランプ16に点灯電圧を印加する周期)と消灯周期T2(ランプ16に点灯電圧の印加を停止する周期)とのデューティ比を制御することができる。点灯周期T1は培養液6に光を照射して明反応させるための周期であり、消灯周期T2は培養液6に光を照射せず暗反応させるための周期である。また、ランプ16に対する点灯電圧の大きさを制御することによりランプ16の回転速度(攪拌速度)を制御することができる。   As shown in FIG. 2, the control unit 30 controls the pulse power source 26 to stop the lighting period T1 of the lamp 16 (the period for applying the lighting voltage to the lamp 16) and the extinguishing period T2 (the application of the lighting voltage to the lamp 16). The duty ratio can be controlled. The lighting cycle T1 is a cycle for irradiating the culture solution 6 with light to cause a bright reaction, and the turn-off cycle T2 is a cycle for causing the culture solution 6 to perform a dark reaction without irradiating light. Further, the rotation speed (stirring speed) of the lamp 16 can be controlled by controlling the magnitude of the lighting voltage for the lamp 16.

この点灯、消灯の周期T1,T2の制御は培養効率向上、照明省電力化向上に好ましく、マイクロコンピュータで構成する制御部30に培養内容に応じた培養管理データベースを蓄積し、このデータベースに基づいて上記点灯、消灯の周期T1,T2を制御することができる。   The control of the turn-on and turn-off periods T1 and T2 is preferable for improving the culture efficiency and improving the power saving of the lighting. A culture management database corresponding to the culture contents is stored in the control unit 30 constituted by a microcomputer, and based on this database. The lighting and extinguishing periods T1 and T2 can be controlled.

制御部30は、図3で示すように、培養液6の濃度が高くなるに従い、回転軸12の回転速度を低下させてランプ16による攪拌速度を低下させている。ランプ16は、図1(b)で示す矢印向きに、一定期間、回転させた後、それとは反対向きに回転させて、照射タイミングと、攪拌効果をより高めることができるように制御してもよい。ランプ16の正逆の回転方向を培養液濃度の分布状況に合わせて適宜に制御することにより、より適切に培養制御することができる。   As shown in FIG. 3, the control unit 30 decreases the rotation speed of the rotating shaft 12 and decreases the stirring speed by the lamp 16 as the concentration of the culture solution 6 increases. The lamp 16 may be controlled so that the irradiation timing and the stirring effect can be further enhanced by rotating the lamp 16 in the direction of the arrow shown in FIG. 1B for a certain period and then rotating in the opposite direction. Good. By appropriately controlling the forward / reverse rotation direction of the lamp 16 in accordance with the distribution state of the culture solution concentration, the culture can be controlled more appropriately.

ランプ16は、図4で示すように、陽・陰極の対向空間に電界を形成して陰極から電子を放出させて蛍光体を励起発光させる電界放射型のランプである。より具体的に、ランプ16は、真空封止されたガラス管32内に、蛍光体34付きの陽極36と、線状の陰極38とが対向配置されて構成されている。陰極38はガラス管32の略中央を管長手方向に線状に延びている。陽極36はITO(酸化インジウム・錫)やアルミニウム等の金属をスパッタリングやEB蒸着等により薄膜状にして形成されている。蛍光体34は、陽極36にスラリー塗布法、スクリーン印刷法、電気永動法、沈降法等により塗布等により形成されている。陰極38は、導線38aと、該導線38aの表面に形成された、nmオーダーの微細突起を電子放出点として多数有する炭素膜38bとを備えたものである。この炭素膜38bは電界集中することができる鋭利なチューブ状、ウォール状、針状端部を備えたものであればよく、例えばカーボンナノチューブ、カーボンナノウォール、針状炭素膜、等である。   As shown in FIG. 4, the lamp 16 is a field emission type lamp that emits electrons from the cathode by forming an electric field in the space between the positive and negative electrodes to excite the phosphor. More specifically, the lamp 16 is configured such that an anode 36 with a phosphor 34 and a linear cathode 38 are opposed to each other in a vacuum-sealed glass tube 32. The cathode 38 extends linearly in the longitudinal direction of the tube at the approximate center of the glass tube 32. The anode 36 is formed as a thin film of a metal such as ITO (indium oxide / tin) or aluminum by sputtering or EB vapor deposition. The phosphor 34 is formed on the anode 36 by a slurry coating method, a screen printing method, an electric perturbation method, a sedimentation method, or the like. The cathode 38 includes a conductive wire 38a and a carbon film 38b formed on the surface of the conductive wire 38a and having a number of fine protrusions on the order of nm as electron emission points. The carbon film 38b only needs to have a sharp tube shape, wall shape, or needle-like end portion that can concentrate an electric field, such as a carbon nanotube, a carbon nanowall, or a needle-like carbon film.

ランプ16は、電界放射型の冷陰極であるので、熱陰極とは異なり、陰極38を予備加熱する必要なく電子放出させて蛍光体34を励起発光させることができるので点滅周期を高速で制御することができる。また、ランプ16はガラス管32内に無水銀であり、有水銀のランプとは異なり、環境に好ましい。   Since the lamp 16 is a field emission type cold cathode, unlike the hot cathode, the phosphor 34 can be excited to emit light by emitting electrons without the need to preheat the cathode 38, so that the blinking cycle is controlled at high speed. be able to. Further, the lamp 16 is made of anhydrous silver in the glass tube 32 and is preferable to the environment unlike a mercury-containing lamp.

ランプ16は、電界放射型であり、発熱が無く、藻類等の最適培養に必要な温度管理に支障を来たさずに済むうえで好ましい。   The lamp 16 is of a field emission type and is preferable in that it does not generate heat and does not interfere with the temperature management necessary for optimal culture of algae and the like.

ランプ16はそのガラス管32の表面が撥水処理されて撥水膜40が形成されて汚れ付着防止可能にしている。また、撥水膜の成膜に際して、安価に効率よく機械的膜強度および耐久性ならびに各種機能を発揮する酸化物薄膜で成るゾルゲル膜を下地層とし、この下地層上に撥水膜を成膜することにより、耐摩耗性ならびに耐光性能を格段に向上し、より長期的に優れた撥水性能を維持することができるようにしてもよい。撥水膜40は透明で光透過性を有することが好ましい。撥水剤をコーティングして撥水膜を形成する技術として、その撥水剤にシラザンオリゴマー[CF3(CE27(CH22SiNH3/2]を用いると、透明で高絶縁性の撥水膜を形成することができる。また、ガラス管32に撥水性の透明ガラスを用いることができる。 In the lamp 16, the surface of the glass tube 32 is subjected to water repellent treatment to form a water repellent film 40, thereby preventing dirt from being adhered. In addition, when forming a water-repellent film, a sol-gel film made of an oxide thin film that exhibits low-cost and efficient mechanical film strength and durability and various functions is used as a base layer, and a water-repellent film is formed on this base layer. By doing so, it may be possible to remarkably improve the wear resistance and light resistance performance, and to maintain excellent water repellency performance in the long term. The water repellent film 40 is preferably transparent and light transmissive. As a technique for forming a water-repellent film by coating a water-repellent agent, if a silazane oligomer [CF 3 (CE 2 ) 7 (CH 2 ) 2 SiNH 3/2 ] is used as the water-repellent agent, it is transparent and highly insulating. A water-repellent film can be formed. Further, a water-repellent transparent glass can be used for the glass tube 32.

透明撥水膜を形成するには、シリコン系の例えばシリコンアルコキシドとフッ素系の例えばパーフロロアルコキシドとを混合し、その混合液に、水および酸とアルコール系の液体を添加してゾルゲル液を得る。そして、そのゾルゲル液をガラス管32表面に均一に塗布し、乾燥後に焼成することにより形成することができる。   In order to form a transparent water-repellent film, a silicon-based, for example, silicon alkoxide and a fluorine-based, for example, perfluoroalkoxide are mixed, and water, an acid, and an alcohol-based liquid are added to the mixture to obtain a sol-gel solution. . And it can form by apply | coating the sol-gel liquid uniformly on the glass tube 32 surface, and baking after drying.

また、抗菌性と、ガラス並の透明性と、フッ素樹脂並の撥水性を併せ持つ抗菌性透明撥水膜が、汚れが付着しやすい環境で使用する場合に有用であり、好ましい。この抗菌性透明撥水膜には、例えば、酸化珪素を主成分とするガラス、フルオロアルキル鎖を有する分子、および、抗菌性微粒子から構成することができる。抗菌性微粒子は、銀や酸化チタン等がある。   In addition, an antibacterial transparent water-repellent film having antibacterial properties, transparency comparable to glass, and water repellency comparable to that of a fluororesin is useful and preferable when used in an environment where dirt easily adheres. This antibacterial transparent water repellent film can be composed of, for example, glass mainly composed of silicon oxide, molecules having a fluoroalkyl chain, and antibacterial fine particles. Antibacterial fine particles include silver and titanium oxide.

以上説明した構成を備えた光バイオリアクタ2においては、制御部30で回転軸12の回転を制御してランプ16を回転軸12周りに回転させて培養液6を攪拌する攪拌体として作用させ、また、ランプ16の発光強度と点滅周期とを制御して培養液6に所要強度の光の照射と培養液6の明暗二つの反応の制御を行うことができる。   In the optical bioreactor 2 having the configuration described above, the control unit 30 controls the rotation of the rotating shaft 12 to rotate the lamp 16 around the rotating shaft 12 to act as a stirring body for stirring the culture solution 6; Further, the light intensity of the lamp 16 and the blinking period can be controlled to control the culture medium 6 to be irradiated with light having a required intensity and to control the light and dark reactions of the culture medium 6.

(他の実施の形態)
ランプ16は、図5(a)の断面図、図5(b)の平面図で示すように、回転軸12に対して軸方向等間隔で円周方向同一位置に配置してもよい。ランプ16は、図6(a)の断面図、図6(b)の平面図で示すように、回転軸12に対して軸方向斜め等間隔で円周方向180度間隔で配置してもよい。ランプ16は、図7(a)の断面図、図7(b)の平面図で示すように、回転軸12に対して軸方向斜めでかつ円周方向同一位置に配置してもよい。ランプ16は、図8(a)の断面図、図8(b)の平面図で示すように、回転軸12をクランク状とし、複数のランプ16を各クランク部分周りに図示略の駆動機構で自転可能とし、かつ、回転軸12回りの公転軌道を公転可能とし、培養槽4内の培養液を照射することができるようにしてもよい。
(Other embodiments)
The lamp 16 may be disposed at the same position in the circumferential direction at equal intervals in the axial direction with respect to the rotating shaft 12, as shown in the sectional view of FIG. 5A and the plan view of FIG. The lamps 16 may be arranged at an interval of 180 degrees in the circumferential direction at equal intervals in the axial direction with respect to the rotating shaft 12, as shown in the cross-sectional view of FIG. 6A and the plan view of FIG. 6B. . The lamp 16 may be disposed at an axially inclined position and at the same circumferential position with respect to the rotating shaft 12, as shown in the cross-sectional view of FIG. 7A and the plan view of FIG. 7B. As shown in the sectional view of FIG. 8 (a) and the plan view of FIG. 8 (b), the ramp 16 has a rotating shaft 12 in a crank shape, and a plurality of ramps 16 are arranged around each crank portion by a drive mechanism (not shown). It may be configured to be able to rotate and revolve around the rotation axis 12 so that the culture solution in the culture vessel 4 can be irradiated.

図1(a)は本発明の実施の形態に係る光バイオリアクタの断面図、図1(b)はその平面図である。FIG. 1A is a sectional view of a photobioreactor according to an embodiment of the present invention, and FIG. 1B is a plan view thereof. 図2はランプの点滅周期を示す図である。FIG. 2 is a diagram showing the blinking cycle of the lamp. 図3は横軸に時間、縦軸に培養液濃度と回転軸の回転速度とを示す図である。FIG. 3 is a graph showing time on the horizontal axis and the culture solution concentration and the rotation speed of the rotation axis on the vertical axis. 図4はランプの構成を示す図である。FIG. 4 is a diagram showing the configuration of the lamp. 図5(a)は他の実施の形態に係る光バイオリアクタの断面図、図5(b)はその平面図である。FIG. 5A is a cross-sectional view of a photobioreactor according to another embodiment, and FIG. 5B is a plan view thereof. 図6(a)はさらに他の実施の形態に係る光バイオリアクタの断面図、図6(b)はその平面図である。6A is a cross-sectional view of a photobioreactor according to still another embodiment, and FIG. 6B is a plan view thereof. 図7(a)はさらに他の実施の形態に係る光バイオリアクタの断面図、図7(b)はその平面図である。FIG. 7A is a sectional view of a photobioreactor according to still another embodiment, and FIG. 7B is a plan view thereof. 図8(a)はさらに他の実施の形態に係る光バイオリアクタの断面図、図8(b)はその平面図である。FIG. 8A is a sectional view of a photobioreactor according to still another embodiment, and FIG. 8B is a plan view thereof.

符号の説明Explanation of symbols

2 光バイオリアクタ
4 培養槽
6 培養液
8 熱媒体収容槽
10 熱媒体
12 回転軸
14 軸受
16 ランプ
18 ロータリコネクタ
20 ギヤ
22 モータ
24 ギヤ
26 パルス電源
28 電気配線
30 制御部
2 Photobioreactor 4 Culture tank 6 Culture solution 8 Heat medium storage tank 10 Heat medium 12 Rotating shaft 14 Bearing 16 Lamp 18 Rotary connector 20 Gear 22 Motor 24 Gear 26 Pulse power supply 28 Electric wiring 30 Controller

Claims (8)

藻類等の光合成生物を培養液で人工培養する光バイオリアクタにおいて、
上記培養液を収容する培養槽と、
この培養槽内部に回転可能に配置された回転軸と、
この回転軸に固定された電界放射型のランプと、
を備え、
上記回転軸を回転制御して上記ランプを回転軸周りに回転させて培養液を攪拌する攪拌体として作用させつつ上記ランプの発光強度と点灯とを制御して培養液に所要強度の光を照射し、かつ、当該ランプの点滅タイミングを制御して藻類等の光合成生物の明暗二つの反応を制御可能とした、ことを特徴とする光バイオリアクタ。
In a photobioreactor that artificially cultures photosynthetic organisms such as algae in a culture solution,
A culture tank containing the culture solution;
A rotating shaft rotatably disposed inside the culture tank;
A field emission lamp fixed to the rotating shaft;
With
Rotating the rotating shaft and rotating the lamp around the rotating shaft to act as a stirrer that stirs the culture solution, and controls the light emission intensity and lighting of the lamp to irradiate the culture solution with the required intensity of light. In addition, the photobioreactor is characterized in that the light and dark reactions of photosynthetic organisms such as algae can be controlled by controlling the blinking timing of the lamp.
回転軸に電気配線を設け、培養槽外から上記電気配線を通じてランプに駆動電源を供給可能とした、ことを特徴とする請求項1に記載の光バイオリアクタ。   2. The photobioreactor according to claim 1, wherein an electric wiring is provided on the rotating shaft so that driving power can be supplied to the lamp from the outside of the culture tank through the electric wiring. 上記ランプ表面に透明撥水膜が形成されている、ことを特徴とする請求項1または2に記載の光バイオリアクタ。   The photobioreactor according to claim 1, wherein a transparent water-repellent film is formed on the surface of the lamp. 上記ランプが、管状に延びるガラス管と、このガラス管内面に設けた蛍光体付き陽極と、このガラス管内部中央を管軸方向にワイヤ状に延び表面に電界放射用炭素膜が成膜されたワイヤ状陰極と、を備えたものである、ことを特徴とする請求項1ないし3のいずれかに記載の光バイオリアクタ。   The lamp has a glass tube extending in a tubular shape, an anode with a phosphor provided on the inner surface of the glass tube, and a carbon film for field emission is formed on the surface extending in the shape of a wire in the tube axis direction in the center of the glass tube. The photobioreactor according to any one of claims 1 to 3, wherein the photobioreactor comprises a wire-like cathode. 複数のランプを軸方向斜めに固定する、ことを特徴とする請求項1ないし4のいずれかに記載の光バイオリアクタ。   The photobioreactor according to any one of claims 1 to 4, wherein a plurality of lamps are fixed obliquely in the axial direction. 回転軸をクランク状とし、この回転軸回りにランプを自転可能とし、かつ、回転軸のクランク動作で培養槽内を公転可能とした、ことを特徴とする請求項1ないし4のいずれかに記載の光バイオリアクタ。   The rotary shaft has a crank shape, the ramp can rotate around the rotary shaft, and the inside of the culture tank can revolve by cranking the rotary shaft. Optical bioreactor. 上記培養槽の槽壁を二重筒体となし、この内側筒体で取り囲むスペースを培養液収容に用いるとともに、両筒体間を熱媒体収容スペースとした、ことを特徴とする請求項1ないし6のいずれかに記載の光バイオリアクタ。   The tank wall of the culture tank is formed as a double cylinder, and a space surrounded by the inner cylinder is used for accommodating a culture solution, and a space between both cylinders is used as a heat medium accommodation space. 7. The photobioreactor according to any one of 6. 藻類等の光合成生物を培養液で人工培養する光バイオリアクタにおいて、
上記培養液を収容する培養槽と、
上記培養槽の槽壁をなし内部に熱媒体を収容する熱媒体収容部と、
この培養槽内部に回転可能に配置された回転軸と、
この回転軸に固定された、複数の電界放射型のランプと、
上記熱媒体、回転軸、およびランプを制御する制御部と、
を備え、
上記回転軸は、上記ランプに駆動電源を供給するための配線が設けられており、かつ、培養槽外から上記配線を通じてランプに駆動電源を供給可能になっており、
上記ランプは、管状に延びるガラス管と、このガラス管内面に設けた蛍光体付き陽極と、このガラス管内部中央を管軸方向にワイヤ状に延び表面に電界放射用炭素膜が成膜されたワイヤ状陰極と、を備えたものであり、
上記制御部は、回転軸を回転制御して上記ランプを回転軸周りに回転させて培養液を攪拌する攪拌体として作用させ、かつ、上記ランプの発光強度と点灯とを制御して培養液に所要強度の光を照射し、かつ、当該ランプの点滅タイミングを制御して藻類等の光合成生物の明暗二つの反応を制御可能とした、ことを特徴とする光バイオリアクタ。
In a photobioreactor that artificially cultures photosynthetic organisms such as algae in a culture solution,
A culture tank containing the culture solution;
A heat medium container that forms a tank wall of the culture tank and houses a heat medium therein;
A rotating shaft rotatably disposed inside the culture tank;
A plurality of field emission lamps fixed to the rotating shaft;
A control unit for controlling the heat medium, the rotation shaft, and the lamp;
With
The rotating shaft is provided with wiring for supplying driving power to the lamp, and can supply driving power to the lamp through the wiring from outside the culture tank,
The lamp has a glass tube extending in a tubular shape, an anode with a phosphor provided on the inner surface of the glass tube, and a carbon film for field emission is formed on the surface extending in a wire shape in the tube axis direction in the center of the glass tube. A wire-like cathode,
The controller controls the rotation axis to rotate the lamp around the rotation axis to act as a stirring body for stirring the culture solution, and controls the emission intensity and lighting of the lamp to the culture solution. A photobioreactor characterized by irradiating light of a required intensity and controlling the blinking timing of the lamp to control two reactions of light and darkness of photosynthetic organisms such as algae.
JP2007134443A 2007-05-21 2007-05-21 Photobioreactor Pending JP2008283937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134443A JP2008283937A (en) 2007-05-21 2007-05-21 Photobioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134443A JP2008283937A (en) 2007-05-21 2007-05-21 Photobioreactor

Publications (1)

Publication Number Publication Date
JP2008283937A true JP2008283937A (en) 2008-11-27

Family

ID=40144261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134443A Pending JP2008283937A (en) 2007-05-21 2007-05-21 Photobioreactor

Country Status (1)

Country Link
JP (1) JP2008283937A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100795A1 (en) * 2009-03-04 2010-09-10 株式会社筑波バイオテック研究所 Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same
WO2011065445A1 (en) * 2009-11-27 2011-06-03 株式会社筑波バイオテック研究所 Microalgae cultivation device
KR101043583B1 (en) 2010-07-13 2011-06-22 한국과학기술원 Photobioreactor having baffles integrally provided with internal light source for high density cultivation of microalgae
CN101735948B (en) * 2010-01-11 2012-07-04 新奥科技发展有限公司 Method and device for cultivating microalgae
JP2012183002A (en) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp Apparatus for continuous culture of microalgae and method for continuous culture of microalgae using the apparatus
EP2505633A1 (en) 2011-03-29 2012-10-03 Algae Health Photobioreactor for growing organisms
CN107429211A (en) * 2015-08-14 2017-12-01 国家开发投资公司 Stacked thin plate bioreactor
EP3167043A4 (en) * 2014-07-08 2018-03-07 Biosystem AS Bioreactor for production and harvesting of microalgae
US10039244B2 (en) 2014-03-04 2018-08-07 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
CN108929843A (en) * 2018-07-23 2018-12-04 河南农业大学 A kind of biomass photosynthetic bacteria hydrogen production device
CN110184168A (en) * 2019-05-21 2019-08-30 荆楚理工学院 A kind of simple astaxanthin incubator and the method using its culture astaxanthin
US10416686B2 (en) 2012-06-18 2019-09-17 Greenonyx Ltd Compact apparatus for continuous production of a product substance from a starter material grown in aquaculture conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358780A (en) * 1989-07-25 1991-03-13 P C C Technol:Kk Agitation-type culture apparatus
JPH078263A (en) * 1993-06-28 1995-01-13 Mitsubishi Chem Corp Internal irradiation-type jar fermenter
JP2006294494A (en) * 2005-04-13 2006-10-26 Dialight Japan Co Ltd Fluorescent lamp
JP2007103109A (en) * 2005-10-03 2007-04-19 Dialight Japan Co Ltd Field emission type illumination lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358780A (en) * 1989-07-25 1991-03-13 P C C Technol:Kk Agitation-type culture apparatus
JPH078263A (en) * 1993-06-28 1995-01-13 Mitsubishi Chem Corp Internal irradiation-type jar fermenter
JP2006294494A (en) * 2005-04-13 2006-10-26 Dialight Japan Co Ltd Fluorescent lamp
JP2007103109A (en) * 2005-10-03 2007-04-19 Dialight Japan Co Ltd Field emission type illumination lamp

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100795A1 (en) * 2009-03-04 2010-09-10 株式会社筑波バイオテック研究所 Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same
JP5661028B2 (en) * 2009-03-04 2015-01-28 株式会社筑波バイオテック研究所 Stirrer for photosynthesis, photobioreactor using the same, and underwater biological culture method
WO2011065445A1 (en) * 2009-11-27 2011-06-03 株式会社筑波バイオテック研究所 Microalgae cultivation device
CN101735948B (en) * 2010-01-11 2012-07-04 新奥科技发展有限公司 Method and device for cultivating microalgae
KR101043583B1 (en) 2010-07-13 2011-06-22 한국과학기술원 Photobioreactor having baffles integrally provided with internal light source for high density cultivation of microalgae
JP2012183002A (en) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp Apparatus for continuous culture of microalgae and method for continuous culture of microalgae using the apparatus
EP2505633A1 (en) 2011-03-29 2012-10-03 Algae Health Photobioreactor for growing organisms
WO2012130777A1 (en) 2011-03-29 2012-10-04 Algae Health Growing organisms
US10416686B2 (en) 2012-06-18 2019-09-17 Greenonyx Ltd Compact apparatus for continuous production of a product substance from a starter material grown in aquaculture conditions
US10039244B2 (en) 2014-03-04 2018-08-07 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US11570959B2 (en) 2014-03-04 2023-02-07 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US11746314B2 (en) 2014-03-04 2023-09-05 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US10149443B2 (en) 2014-03-04 2018-12-11 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US11612119B2 (en) 2014-03-04 2023-03-28 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US10716270B2 (en) 2014-03-04 2020-07-21 Greenonxy Ltd Systems and methods for cultivating and distributing aquatic organisms
US10426109B2 (en) 2014-03-04 2019-10-01 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US10524432B2 (en) 2014-03-04 2020-01-07 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
US10624283B2 (en) 2014-03-04 2020-04-21 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
EP3167043A4 (en) * 2014-07-08 2018-03-07 Biosystem AS Bioreactor for production and harvesting of microalgae
CN107429211A (en) * 2015-08-14 2017-12-01 国家开发投资公司 Stacked thin plate bioreactor
CN108929843A (en) * 2018-07-23 2018-12-04 河南农业大学 A kind of biomass photosynthetic bacteria hydrogen production device
CN108929843B (en) * 2018-07-23 2024-06-04 河南农业大学 Biomass photosynthetic bacteria hydrogen production device
CN110184168A (en) * 2019-05-21 2019-08-30 荆楚理工学院 A kind of simple astaxanthin incubator and the method using its culture astaxanthin

Similar Documents

Publication Publication Date Title
JP2008283937A (en) Photobioreactor
Arun et al. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products
Su et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation
Strik et al. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)
US20130102076A1 (en) Systems and methods for growing photosynthetic organisms
Tian et al. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production
CN207347568U (en) The Photosynthetic bacteria culturing device of automatic light source
CN104112868B (en) A kind of single chamber is without amboceptor alga microbial fuel cell construction method and device
KR20150144782A (en) Reactor with integrated illumination
CN102306802A (en) Nanotube array fuel battery of visible light response
CN1202555C (en) Method for exciting optical catalyst action, optical catalyst discharge lamp and products using said lamp production
JP5658938B2 (en) Algae culture equipment
CN106904728A (en) The denitrogenation of waste water method and apparatus of optical drive
JP5661028B2 (en) Stirrer for photosynthesis, photobioreactor using the same, and underwater biological culture method
JPH05501649A (en) photobioreactor
CN108410702B (en) Photosynthetic bacteria culture instrument
CN1889297A (en) Non-amboceptor microbial fuel cell
US20070037268A1 (en) Hydrogen producing bioreactor with sand for the maintenance of a high biomass bacteria
CN114634241A (en) Method for simultaneously removing sulfate and florfenicol in water
CN208413918U (en) Purifier
JP7009341B2 (en) Alkaline water electrolyzer
CN108485941B (en) Photosynthetic bacterium culture method
KR101012960B1 (en) A microbial culture device using perpendicular immersed light
CN114671513B (en) Photoelectrocatalysis method for degrading sulfamethoxazole by utilizing synergistic effect of microorganisms
Starovoytov et al. The Rationale for the Fish Farms Circulating Water Biological Treatment Intensification

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100512

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100513

A521 Written amendment

Effective date: 20100531

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A02