JP3178460U - Photosynthesis unit device - Google Patents

Photosynthesis unit device Download PDF

Info

Publication number
JP3178460U
JP3178460U JP2011003578U JP2011003578U JP3178460U JP 3178460 U JP3178460 U JP 3178460U JP 2011003578 U JP2011003578 U JP 2011003578U JP 2011003578 U JP2011003578 U JP 2011003578U JP 3178460 U JP3178460 U JP 3178460U
Authority
JP
Japan
Prior art keywords
cell
culture
cyanobacteria
flow
diameter cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2011003578U
Other languages
Japanese (ja)
Inventor
幸雄 米田
Original Assignee
幸雄 米田
米田 美菜恵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸雄 米田, 米田 美菜恵 filed Critical 幸雄 米田
Priority to JP2011003578U priority Critical patent/JP3178460U/en
Application granted granted Critical
Publication of JP3178460U publication Critical patent/JP3178460U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/06Stirrer or mobile mixing elements with horizontal or inclined stirrer shaft or axis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • C12M31/04Mirrors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity

Abstract

【課題】シアノバクテリアを効率良く培養するための光合成ユニット装置を提供する。
【解決手段】光合成ユニット装置は、透明のガラス容器からなる三段の培養セルを枠構造体で固定されている。培養セルは、培養液のオーバーフロー用分岐管及び上部鍔を有する大径円筒部1aと、球体形状の円筒部1bと、球体の底部に接続される小径筒状の突起部1cからなる。培養セルを中心線上に、上段、中段及び下段培養セル1〜3と、三段に垂直に並べる。培養セル内で増殖したシアノバクテリアは、突起部1cの下端に設けられた可動弁を開くことで、上段より中段へ、中段より下段に流下する。
【選択図】図2
A photosynthetic unit device for efficiently culturing cyanobacteria is provided.
In a photosynthetic unit device, a three-stage culture cell made of a transparent glass container is fixed by a frame structure. The culture cell includes a large-diameter cylindrical portion 1a having a branch pipe for overflow of the culture medium and an upper ridge, a spherical cylindrical portion 1b, and a small-diameter cylindrical protrusion 1c connected to the bottom of the spherical body. The culture cells are vertically arranged in three stages, with the upper, middle, and lower culture cells 1 to 3 on the center line. The cyanobacteria grown in the culture cell flows down from the upper stage to the middle stage and from the middle stage to the lower stage by opening a movable valve provided at the lower end of the protrusion 1c.
[Selection] Figure 2

Description

水圏における微細生物のシアノバクテリアは、光量子エネルギーの分子軌道への転化システムが効率良く安定している。このシアノバクテリアを含む微細生物を、最適条件で最大増殖速度に誘導し、光合成性能を発揮させながら、これを維持できるようにした小型でコンパクトにまとまった還元型培養セルユニット装置を構築させる。  Microbiological cyanobacteria in the hydrosphere have a stable and efficient system for converting photon energy into molecular orbitals. A small and compact reduced-type culture cell unit apparatus is constructed that can induce microbiota containing cyanobacteria to the maximum growth rate under optimum conditions and maintain the photosynthetic performance while maintaining it.

無機物質と光エネルギーより増殖生産されたシアノバクテリア(有機物質)を、簡易に分離収穫し、食品に利用できまたバイオテクノロジーによる酸化型発酵技術によって、さらに利用価値を高めながら、還元と酸化の相互共役システムを成立させる技術も可能である。  Cyanobacteria (organic substances) grown and grown from inorganic substances and light energy can be easily separated and harvested for use in foods, and the use of biotechnology oxidative fermentation technology to further increase the utility value while reducing and oxidizing each other. A technique for establishing a conjugated system is also possible.

背景技術を俯瞰して見た時この時空場においては、従来の技術の大半が、自己保存と自己複製と自己有利のベクトルである発エルゴン反応(ギブズエネルギーが正反応方向)に因るものであり、常に自由エネルギーの消費(酸化・発散)を伴う。酸化型技術で人間は膨張し発展してきた、未だ更なるこの傾向の技術に浸っているが、場としての制限があり、この時空場の物理的エネルギーの制約に従うことになる。今までの酸化型技術のみでは資源、食料、人口等に、限界が予測され、逆に環境汚染等となって顕現されてきた。従来の酸化型技術では、一般産業および農業基盤である土壌圏にもエネルギーの衰徴が進行する。現在、一部、還元型技術もあるが総合的な科学技術の急速な進展を汲み取っているとは言い難い。これに対し酸素発生型シアノバクテリアの培養は、太陽の放射する光量子エネルギーを光合成色素で吸収し、分子軌道に転化できる。まず、この様な自由エネルギーを獲得する還元型技術が必要である。  When looking at the background technology, in this space-time field, most of the conventional technology is due to the Ergon reaction (Gibbs energy is the positive reaction direction) which is a vector of self-preservation, self-replication, and self-advantage. Yes, always accompanied by free energy consumption (oxidation / divergence). Humans have expanded and developed with oxidation-type technology, but they are still immersed in this trend of technology. However, there are field limitations, and the physical energy constraints of this space-time field are obeyed. Until now, only the oxidation-type technology has been expected to limit the resources, food, population, etc., and conversely manifested as environmental pollution. In the conventional oxidation type technology, energy declines also in the soil industry, which is a general industry and agricultural base. Currently, there are some reduction-type technologies, but it is hard to say that they are drawing rapid progress in comprehensive science and technology. In contrast, culture of oxygen-generating cyanobacteria can absorb the photon energy emitted by the sun with a photosynthetic dye and convert it into molecular orbitals. First, a reduction technology that acquires such free energy is necessary.

特開2001−231538  JP 2001-231538 A 特開平10−108565  JP-A-10-108565 特開2003−222  JP 2003-222 A 特開2003−24043  JP2003-24043 特開2005−40035  JP2005-40035

還元型技術の背景技術として、上記の特許出願の発明が有る。特許文献1〜5と、本考案に類似性の有るものとの違いを説明する。
(特許文献1)では、光分散担体が配置された上槽と光分散担体の無い下槽に隔てる貫通のスリットのある固定プレートと開閉可能な移動プレートによって藻体を分離する機構と、スパージヤで通気によって培養液を混合攪拌し、下降流によって藻体を下槽に自然沈降させ、藻体を分離することを特徴とする。
本考案は、流動培養であり、常にセル内を循環させるので、上槽・下槽の明暗部は不要である。さらには、軸流により発生する渦流(横循環流)によって流体力学的にセル中央下部に藻体を集合させる。さらに三段構成のセルは、藻体濃縮と藻体濃度の臨界を予防するため、上段・中段セルは連接ドレンによって、下段セルに流下させる。水平方向の移動プレートによる分離機構(スリット)は使用せず,下段セル下部のシリンダーに集合濃縮させ、これを切欠きプランジャーの180°回転とストローク往復によって圧送分離、収穫する。このため、スリットと液送ポンプは不要である。
(特許文献2)は、培養槽に内部照射の発光体を設置し、槽下部の藻体分離部が漏斗状であり、培養部の培養液攪拌と槽下の藻体分離部の藻体分離を通気ガス流量調節によりコントロールすることを特徴とする。
この場合は、対流による流動培養ができない。本考案は、球体セルにおける流動培養を行う。光合成による分裂増殖は対流(縦循環流)で、藻体の集合濃縮は渦流で行う。また、光量子は、太陽光及び人工光の外部照射で十分でありできる限り外部の、つまり太陽からのエネルギー獲得に意義がある。またガス置換翼と流動スクリューによって、確実に光合成を調速リードさせる。
(特許文献3)は、培養槽の溶存酸素濃度を大きくするためのディスクタービン翼を特徴とするが、本考案において、シアノバクテリアは、酸素発生型還元菌であるので、酸素の余分な供給そのものが不要である。
(特許文献4)は投入薬液と圧縮空気をノーズル先端から攪拌翼に投入することを特徴とするが、本考案では、無機塩類の注入は、正確な定量点滴注入法と、ガス置換のための、穴明スプーン翼と軸流スクリューによって垂直上下方向の対流を、球形体セル内で円周流動させ、この対流による流動培養に投入を行う。
(特許文献5)はヘッドタンクとポンプによる強制オーバーフローと密閉型水平培養槽を特徴とするが、本考案では、培養セルは球形であり、開放型である。
オーバーフローは、セルの基準水平面の維持のためのオーバーフローである。ヘッドタンクは、補充液定量点滴注入のためのタンクである。
上記記載の特許文献のみならず、光量子エネルギーの獲得と固定確率が最重要であるとした場合、本考案は、外部エネルギー(太陽光)の獲得と固定のみが、工業生産であれ消費生活であれ、エネルギーの基礎ベースとして先ず、必要であると認識し、理解して装置を考案した。
As a background art of the reduction technique, there is an invention of the above-mentioned patent application. Differences between Patent Documents 1 to 5 and those similar to the present invention will be described.
In (Patent Document 1), a mechanism that separates alga bodies by a fixed plate with a through slit separating the upper tank in which the light dispersion carrier is disposed and the lower tank without the light dispersion carrier, and a movable plate that can be opened and closed, and a spurger The culture solution is mixed and stirred by aeration, and the algal bodies are naturally settled in the lower tank by a downward flow to separate the algal bodies.
Since the present invention is a fluid culture and always circulates in the cell, the light and dark portions of the upper and lower tanks are not necessary. Furthermore, algal bodies are gathered in the lower center of the cell hydrodynamically by vortex flow (lateral circulation flow) generated by the axial flow. Further, in the three-stage cell, in order to prevent the algal body concentration and the criticality of the algal body concentration, the upper and middle cells are caused to flow down to the lower cell by the connected drain. The separation mechanism (slit) by the moving plate in the horizontal direction is not used, but it is concentrated and concentrated in the cylinder at the bottom of the lower cell. For this reason, a slit and a liquid feed pump are unnecessary.
(Patent Document 2) has a light source for internal irradiation installed in a culture tank, the alga body separation part at the bottom of the tank has a funnel shape, and the culture solution agitation in the culture part and the alga body separation at the alga body separation part under the tank Is controlled by adjusting the flow rate of the aeration gas.
In this case, fluid culture by convection cannot be performed. The present invention performs fluid culture in a spherical cell. Mitochondrial growth by photosynthesis is convection (longitudinal circulation flow), and aggregate concentration of algal bodies is performed by vortex. In addition, the photon is significant for obtaining energy from the outside, that is, from the sun as much as possible by external irradiation of sunlight and artificial light. In addition, the gas replacement blade and fluid screw ensure the speed-control of photosynthesis.
(Patent Document 3) is characterized by a disc turbine blade for increasing the dissolved oxygen concentration in the culture tank. In the present invention, cyanobacteria are oxygen-generating reductive bacteria. Is unnecessary.
(Patent Document 4) is characterized in that a charged chemical solution and compressed air are charged into a stirring blade from the tip of a nose. In the present invention, inorganic salts are injected by an accurate quantitative drip injection method and gas replacement. Then, vertical convection in a vertical direction is caused to flow circumferentially in a spherical cell by a perforated spoon blade and an axial screw, and this is introduced into fluid culture by this convection.
(Patent Document 5) features a forced overflow by a head tank and a pump and a sealed horizontal culture tank. In the present invention, the culture cell is spherical and open.
The overflow is an overflow for maintaining the reference horizontal plane of the cell. The head tank is a tank for replenishment liquid fixed amount instillation.
In addition to the above-mentioned patent documents, if the acquisition and fixation probability of photon energy is the most important, the present invention is based on whether the acquisition and fixation of external energy (sunlight) is only in industrial production or consumer life. First, we recognized that it was necessary as a basic base of energy, and devised a device with understanding.

太陽の背景放射による光量子エネルギーを、地球で保存するには還元型生物の光合成に依存しなければならない。
シアノバクテリアの色素多チャンネル光学系とこれに対応する合成系は、この分子軌道への転化効率が優れている。このシアノバクテリアの培養増殖を最適条件で高速分裂を高効率で維持するには、光学的、生化学的にも安定した培養セルと光量子の収率の改善と効果がもたらされる装置が、小型でコンパクトにユニット化され、平面上ばかりではなく空間的、立体的にも設置できるように、意図するべきと思われる。
In order to preserve the photon energy from the solar background radiation on the earth, we must rely on the photosynthesis of reduced organisms.
The cyanobacterial dye multi-channel optical system and the corresponding synthesis system have excellent conversion efficiency to this molecular orbital. In order to maintain high-speed division with high efficiency under the optimum conditions for the growth and growth of cyanobacteria, the optical cell and biochemically stable culture cell and the device that can improve the yield of photons and the effect are small in size. It should be intended to be compact and unitized so that it can be installed not only on a plane but also spatially and three-dimensionally.

この課題を解決するには、物理、化学、生物学的基礎理論と知見が必要であり、しかも現在、食糧、エネルギー、環境、人口問題の人間活動に適合させるためには、合理的集約産業や農業ばかりではなく、各個人、家庭の平面とビル型の空間、立体を樹形とみなして、普遍化配置できるユニット装置が要求される。  To solve this problem, basic physics, chemistry, biological theory and knowledge are necessary, and at present, in order to adapt to human activities of food, energy, environment, and population problems, In addition to agriculture, there is a need for a unit device that can be universally arranged by regarding each individual, home plane, building-shaped space, and solid as a tree shape.

エネルギーを物理的概念の方向から観た場合、生命もエネルギー機関の一種として位置付けすることができる。したがって、このエネルギーの獲得が必要条件となってくる。このための手段として、シアノバクテリアの光合成システムを保存し、増殖させるためには、意識的に技術を集約し、考案した。  When energy is viewed from the direction of a physical concept, life can be positioned as a kind of energy engine. Therefore, the acquisition of this energy becomes a necessary condition. In order to preserve and propagate the cyanobacterial photosynthetic system as a means for this purpose, we intensively devised and devised technologies.

実用化の一つとしてこのシアノバクテリアを透明球形のガラス(金網入ガラス)セル構造体で流動培養する。容量は20L〜30Lでこれを植物の一枚の大きな葉とみなし、光合成反応を行わせる。この培養セルを上中下三段構成ユニットとし、定量点滴注入法と回転型気液混合、軸流スクリューによる対流(縦循環流)で流動培養し、これによって分裂増殖したシアノバクテリアを渦流(横循環流)によって小径の筒状部に集合濃縮させたものを上段・中段同軸連結可動弁を開き、上段から中段へ、中段から下段へ所定量だけ流下させることによってシアノバクテリアの濃度を上げる。この最下段のセルの下端部に切換えシリンダー弁を設け、シアノバクテリアが小径の筒状に集合濃縮したものをシリンダーに吸引、濃縮確保させ、これに弁を設け、所定の時間周期で取り出し方向に切換え開口して、プランジャー駆動力で圧送して,メッシュのセットされたカップで受取り分離収穫する。これらの構造と効果による最適増殖濃度値を平衡に維持させる制御機構とこのコントロール部を装備させた。  As one of the practical applications, the cyanobacteria are fluidly cultured in a transparent spherical glass (wire netting glass) cell structure. The capacity is 20L-30L, and this is regarded as one large leaf of a plant, and a photosynthesis reaction is performed. This culture cell is made up of upper, middle, and lower three-stage units. Fluid culture is performed by quantitative instillation method, rotary gas-liquid mixing, and convection (longitudinal circulation flow) using an axial screw. The concentration of cyanobacteria is increased by opening the upper and middle coaxially-coupled movable valves that have been concentrated and concentrated into a small-diameter cylindrical part by circulating flow) and flowing down a predetermined amount from the upper stage to the middle stage and from the middle stage to the lower stage. A switching cylinder valve is provided at the lower end of the lowermost cell, and the cylinder concentrates and concentrates the cyanobacteria in a small diameter cylinder. Opened by switching, pumped by plunger driving force, received and harvested by cup set with mesh. A control mechanism that maintains the optimal growth concentration value due to these structures and effects in equilibrium and this control unit were equipped.

光合成システムを光量子エネルギーの分子軌道への固定確率(効率)として見た場合、単細胞生物、微細藻類のシアノバクテリアでは分裂速度と増殖数となって顕現してくる。  When the photosynthetic system is viewed as the probability (efficiency) of fixing the photon energy to the molecular orbitals, it manifests itself as the division rate and the number of growth in cyanobacteria of single-celled organisms and microalgae.

透明球体形セル内の、培養液の流動である対流と渦流は単なる攪拌流ではなく、光照射と反照射、シアノバクテリア特にスピルリナの生態は浮遊形であるので、要するに光学系と合成系を考慮した秩序ある円周流動で循環し、光合成作用の詳しくは、チラコイド膜の電子伝達機構とストロマにおける生化学合成系、デンプン合成と細胞質における分解合成系(解糖系と多数の合成経路)の物理生化学的作用と概日リズムに適合させる培養液の流動性を駆使し利用した透明球体セル構造と流体力学と2段階回転翼によるガス置換と栄養塩供給による相乗効果がシアノバクテリアの光合成作用と最大増殖を誘導し、生産性効率を高める効果が現れた。  The convection and vortex flow, which is the flow of the culture solution, in the transparent spherical cell is not a simple stirring flow, but the light and counter-irradiation, and the ecology of cyanobacteria, especially Spirulina, is floating. For details of the photosynthetic action, physics of thylakoid membrane electron transfer mechanism and stroma biochemical synthesis system, starch synthesis and cytoplasmic degradation synthesis system (glycolytic system and multiple synthesis pathways) Transparent sphere cell structure and fluid dynamics utilizing the fluidity of the culture solution adapted to biochemical action and circadian rhythm, synergistic effect by gas replacement by two-stage rotor and nutrient supply, and the photosynthetic action of cyanobacteria The effect of inducing maximum growth and increasing productivity efficiency appeared.

光量子エネルギーと水(以下HOとする)、二酸化炭素(以下COとする)、無機塩類と光合成の環境としての場の条件が適合してエネルギーを獲得したら、これをさらに利用しやすい分子に変換合成させれば、食料のみならずバイオテクノロジーの技術により有機肥料またエタノール、化学製品に転換し応用すれば、ストック(化石)エネルギーの代替エネルギーとしての価値と各個人がこの水圏における生物生産と光合成を実行することによる自給自足と自己保存の精神的安定の効果も望める。Molecules that are easier to use if the quantum energy, water (hereinafter referred to as H 2 O), carbon dioxide (hereinafter referred to as CO 2 ), inorganic salts, and the conditions of the field as the photosynthetic environment are met and energy is acquired. If it is converted to synthesize, it will be converted to organic fertilizer, ethanol, and chemical products using biotechnologies as well as food. And the effect of self-sufficiency and self-preservation mental stability by executing photosynthesis.

以下、本考案を実施するための形態を図1〜図6に基づいて説明する。    Hereinafter, the form for implementing this invention is demonstrated based on FIGS.

シアノバクテリア類の内、Spirulina platensis(スピルリナ)(NIES−39)(IAM M−135)の培養を行う。無機塩類栄養液組成は重曹(NaHCO)が主成分のSOT培地でpHは9.2〜10.0の強アルカリ性でコンタミなどの外来汚染を防止できる。光合成色素の吸収スペクトルは約380nm〜770nmの可視光であり、幅広い吸収スペクトルを持つので、光吸収効率が大きい太陽光下、明るい室内、また蛍光灯などの人工光源でも培養可能である。Among cyanobacteria, Spirulina platensis (Spirulina) (NIES-39) (IAM M-135) is cultured. The inorganic salt nutrient solution composition is an SOT medium mainly composed of sodium bicarbonate (NaHCO 3 ) and has a strong alkaline pH of 9.2 to 10.0 and can prevent foreign contamination such as contamination. Since the absorption spectrum of the photosynthetic dye is visible light of about 380 nm to 770 nm and has a wide absorption spectrum, it can be cultured under sunlight having a high light absorption efficiency, in a bright room, or an artificial light source such as a fluorescent lamp.

この還元・酸素発生型微生物を20L〜30Lの光透過性に支障のないように薄肉の透明容器(金網入ガラスまたは、外側に補強リブ付き)で培養する、培養槽(セル)の構造は、培養液の液面維持オーバーフロー用分岐管1d(図1)付き上部鍔付大径円筒部1aと球体形状の胴体部1bと、この底部球面に小径筒状の突起部1cが中心線上に接続されている形状で胴体部内面が曲面を必要とする透明で球形の培養セル構造体(図1)を形成する。  The structure of the culture tank (cell) in which this reducing / oxygen-generating microorganism is cultured in a thin-walled transparent container (with a wire mesh glass or a reinforcing rib on the outside) so as not to interfere with the light transmittance of 20L to 30L. A large-diameter cylindrical part 1a with an upper flange with a branch pipe 1d (FIG. 1) for maintaining the liquid level of the culture liquid, a spherical body part 1b, and a small-diameter cylindrical projection 1c are connected to the center line on the center line. Thus, a transparent and spherical culture cell structure (FIG. 1) is formed in which the inner surface of the body portion requires a curved surface.

この培養セルを4本支柱の構造体であるラック29(図2)に上・中・下三段構成し、上段セル1・中段セル2・下段セル3は対流A(図1、球状面に沿った培養槽内上下の円周流動の縦循環流を対流として説明する)、渦流B(図1、球状面に沿った培養槽内横方向の円周流動の横循環流を渦流として説明する)の流動を緩やかにつくり、上・中・下各段とも対流によって流動で培養増殖し、渦流によって集合濃縮をさせる。上段セルのシアノバクテリアが小径の筒状部1c内に集合濃縮したものをソレノイド26で可動弁4を開き、筒状部容量を中段のセルに所定量だけ流下させる。
なお、培養セルは、上・中・下三段構成ユニットを基本とし、上段セル数の増減は自由に選択できる。
This culture cell is composed of a rack 29 (FIG. 2), which is a structure of four struts, in three stages, upper, middle and lower, and the upper cell 1, the middle cell 2 and the lower cell 3 are convection A (FIG. 1, on a spherical surface). The vertical circulation flow of the circumferential flow in the culture tank along the upper and lower sides is explained as convection, and the vortex flow B (FIG. 1, the lateral circulation flow in the culture tank along the spherical surface is explained as the vortex flow. ) Gently, and the upper, middle, and lower stages are cultured and grown by convection by convection, and concentrated and concentrated by vortex. The movable cell 4 is opened by the solenoid 26 with the cyanobacteria of the upper cell collected and concentrated in the small-diameter cylindrical portion 1c, and the cylindrical portion capacity is allowed to flow down to the middle cell by a predetermined amount.
The culture cell is basically composed of upper, middle, and lower three-stage units, and the number of upper cells can be freely increased or decreased.

このようにして中段のシアノバクテリアの濃度を上げる。同様にして中段から下段に流下させ、この最下段のセルの下端部に180°回転で切換えできる切欠きプランジャー弁6b・6c(図2)を設け、シリンダーを開口させて、シアノバクテリアが小径の筒状部に集合濃縮したものをシリンダー6a(図2)に吸引集合濃縮させ、この可動弁としての切欠きプランジャー6bを180°回転させて上部の培養セル側を閉鎖し、プランジャーを駆動して下側に流下させるか,プランジャーで圧送し、メッシュのセットされたカップ7で受取り分離収穫する。
この切り欠きプランジャー弁6b・6cは、共に連動させてシリンダーの開閉ができ、プランジャー駆動による吸引と圧送も、手動または自動制御によって運転することができる。
In this way, the concentration of the middle stage cyanobacteria is increased. Similarly, a notch plunger valve 6b, 6c (FIG. 2) that can be switched by rotating 180 ° is provided at the lower end of the cell at the lower stage, and the cylinder is opened so that cyanobacteria have a small diameter. Assembling and concentrating the concentrated product in the cylindrical part of the tube to the cylinder 6a (FIG. 2), rotating the notched plunger 6b as a movable valve by 180 ° to close the upper culture cell side, It is driven to flow downward, or pumped by a plunger, and received and harvested by a cup 7 with a mesh set.
The notched plunger valves 6b and 6c can be linked together to open and close the cylinder, and suction and pressure feeding by the plunger drive can be operated manually or automatically.

渦流によるシアノバクテリアの集合濃縮と分離法。
シアノバクテリアの光学系IIは、光照射によって水(HO)を電気分解し酸素(以下Oとする)ガスを分離させ、細胞内から細胞外に移動させる。この間Oガスによって浮力を発生させ水面に向かって上昇し、Oガスの気泡を開放すると水底に沈む、スピルリナにおいては各個体によって多少異なるが、約0.02〜0.04m/sの浮沈速度で移動する。また、光照射のない場合(夜間)は代謝系の合成系と細胞分裂活動のため水底に静止する。
セル内流動培養の流動様式と流速はこの生態のリズムに順応させる。光照射による光合成では緩やかな対流によって流動(流速0.02〜0.04m/s)させ、光照射の無い水底に静止する状態の時、渦流(セル最外流速は約0.6m/s以下で行う)によって集合濃縮させる。
Collective concentration and separation of cyanobacteria by vortex flow.
The optical system II of cyanobacteria electrolyzes water (H 2 O) by light irradiation to separate oxygen (hereinafter referred to as O 2 ) gas and moves it from the inside of the cell to the outside of the cell. During this time, buoyancy is generated by O 2 gas, and it rises toward the water surface. When O 2 gas bubbles are released, it sinks to the bottom of the water. In Spirulina, the buoyancy of about 0.02 to 0.04 m / s is slightly different depending on each individual. Move at speed. In the absence of light (at night), it remains at the bottom of the water due to the metabolic system and cell division activity.
The flow pattern and flow rate of the flow culture in the cell adapt to this ecological rhythm. In photosynthesis by light irradiation, it flows by gentle convection (flow rate 0.02-0.04 m / s), and when it is stationary on the bottom of the water without light irradiation, vortex flow (outer cell flow velocity is about 0.6 m / s or less) To collect and concentrate.

流動培養によるセル内円周長は約1.2m、流動速度0.03m/sの場合セル内一周は約40秒となり、光照射側時間は約20秒、反照射側時間は約20秒となる。
自動制御では、スクリュー軸はあらかじめセル軸心に対して対向角約15°(図3)の角度でモーターベースに取り付けておき、対流時(培養時)スクリュー軸捩れ角の傾きは垂直で、回転数を正回転(図3回転方向)約15rpmとし対流させ、渦流時(夜間)、スクリュー軸捩れ角の傾きは約30°でモーター取付ベースに支点を設けソレノイド30(図3)で傾きを構成させる、回転数を正回転約200rpmで渦流を発生させ培養セル全体に渦流が行き渡った時点に停止させ、待機(停止)4時間で集合濃縮させる。このインターバル駆動を3回繰り返すことによって上段より中段へ、中段より下段へ流下させる。最下段の集合分離は、一回に約50cc、光照射の無い時か、または夜間に4時間毎に一回で一日2回、シリンダーとプランジャーによって一日約100cc、メッシュカップへ移動させる。メッシュカップで固液分離されたシアノバクテリアはペースト状のものである。これをメッシュカップのまま水洗・洗浄し、水切りをしたものが生産物(ペースト状)である。
When the circumference in the cell by flow culture is about 1.2 m and the flow rate is 0.03 m / s, the circumference in the cell is about 40 seconds, the light irradiation side time is about 20 seconds, and the counter irradiation side time is about 20 seconds. Become.
In automatic control, the screw shaft is mounted in advance on the motor base at an angle of about 15 ° (Fig. 3) with respect to the cell axis, and the inclination of the screw shaft twist angle during convection (culture) is vertical and rotates. Number is forward rotation (rotation direction in Fig. 3) is about 15rpm and convection is performed. During vortex (nighttime), the inclination of the screw shaft twist angle is about 30 ° and a fulcrum is provided on the motor mounting base, and the solenoid 30 (Fig. 3) forms the inclination. The vortex is generated at a rotation speed of about 200 rpm, stopped when the vortex has spread over the entire culture cell, and concentrated and concentrated for 4 hours on standby (stop). By repeating this interval driving three times, it is caused to flow down from the upper stage to the middle stage and from the middle stage to the lower stage. The bottom separation is about 50cc at a time, when there is no light irradiation, or at night every 4 hours, twice a day, about 100cc per day by cylinder and plunger, moved to a mesh cup . The cyanobacteria separated into solid and liquid by the mesh cup are pasty. The product (paste-like) is obtained by washing / washing this with a mesh cup and draining it.

培養液中へ空気およびCOガスを投入し溶解させながら、培養液中に光合成炭酸同化作用によって発生するOガスを抜き取り、これは、還元型微生物の場合、酸素感受性による各種酵素の不活性化の阻害を回避させるため行う。同時に新しい無機塩類栄養液の補充は、ユニット架台の上面にステンレス製のヘッドタンク10(図3)を設置し、無機塩類補充液をストックさせ、ニードルバルブ等による流量調整バルブ11とチューブ配管12によって透明ガラス製連結管13(図3)に滴下させ、管内で各滴を空気および、COガスと接触融解させる定量点滴注入法を行う。While injecting air and CO 2 gas into the culture solution and dissolving it, O 2 gas generated by the photosynthetic carbon dioxide assimilation is extracted from the culture solution, which is the inactivation of various enzymes due to oxygen sensitivity in the case of reducing microorganisms. This is done to avoid inhibition of crystallization. At the same time, a new inorganic salt nutrient solution is replenished by installing a stainless steel head tank 10 (FIG. 3) on the upper surface of the unit base, stocking the inorganic salt replenisher, and using a flow rate adjusting valve 11 such as a needle valve and a tube pipe 12. A quantitative drip infusion method is performed in which each drop is dropped into the transparent glass connecting tube 13 (FIG. 3), and each drop is contact-melted with air and CO 2 gas in the tube.

球形セル内全体のバクテリアにCOと無機塩類をまんべんなく供給するための機能を備えた回転型気液混合、ガス置換翼17と各セル所定の流動形態の形式が維持できるスクリュー18を、同軸上に上段位置は気液混合とガス置換用穴明スプーン翼17と下段位置には下向きの軸流発生用スクリュー18を備えた培養セルとその装置。The rotary gas-liquid mixing with the function to supply CO 2 and inorganic salts to all the bacteria in the spherical cell evenly, the gas replacement blade 17 and the screw 18 that can maintain the predetermined flow form of each cell on the same axis The upper position is a culture cell equipped with gas-liquid mixing and gas replacement perforated spoon blades 17 and the lower position is a downward axial flow generating screw 18 and its apparatus.

回転穴明スプーン翼17の中央に補充液の供給ができるように、スプーン翼の中央から上部はU字型に切欠きをして、上部から差し込んである定量点滴テフロンチューブ14が、接触せずに回転運動ができる構造とする。スプーンの回転方向を、凹面側を進行方向に回転することによって(図3回転方向)、培養液を含み込んで凹面側の内圧を高くし、裏側(凸面側)の外圧を低くするので、スプーンに加工されている流通穴によって、液体は流速を加速して貫流する。この貫流によってスプーン後方に乱流ができ、COガスは、穴明きスプーン翼の表側(凹面側)の加圧効果によって培養液に混入される。Oガスは、培養液からスプーン裏側(凸面側)の減圧効果によって培養液から脱気されて、最終的には大気放出によってガス置換させる。The center of the spoon blade is cut into a U-shape so that the replenisher can be supplied to the center of the rotary punch spoon blade 17, and the fixed-dose teflon tube 14 inserted from the top does not come into contact. The structure is capable of rotating motion. By rotating the rotating direction of the spoon in the direction of travel on the concave side (the rotating direction in FIG. 3), the culture pressure is included to increase the internal pressure on the concave side and the external pressure on the back side (convex side) to be reduced. Through the flow holes processed into the liquid, the liquid flows through at an accelerated flow rate. This through flow creates a turbulent flow behind the spoon, and CO 2 gas is mixed into the culture solution by the pressurizing effect on the front side (concave surface) of the perforated spoon blade. O 2 gas is degassed from the culture solution by the pressure reducing effect on the back side (convex surface side) of the spoon from the culture solution, and finally gas is replaced by release into the atmosphere.

点滴補充液は、スプーン裏側(凸面)後方の乱流によって、セル内培養液に混入できる。このスプーン翼の効果によって、造られた新しい栄養液と培養液の混入された液はただちに、スプーン翼下部の同軸に隣接設置されたスクリューの軸流に移動し、セル内流動培養に供給されながら対流となる。  The drip replenisher can be mixed into the culture medium in the cell by the turbulent flow behind the back side (convex surface) of the spoon. Due to the effect of the spoon blade, the new nutrient solution and the culture fluid mixed immediately move to the axial flow of the screw installed coaxially adjacent to the lower portion of the spoon blade, and supplied to the fluid culture in the cell. It becomes convection.

ヘッドタンク10(図3)の無機塩類補充液(栄養液、液体培地)は、定量点滴で上・中・下段セルの光合成と発散による栄養液の消耗を各セルに補填し、各セルの培養液の容量を一定に保つ。各セルの培養液の変動量が一定容量の上限を超えた場合には、セルの所定の位置に設置されたオーバーフロー用分岐管1d(図1)とオーバーフローホース8(図2)によって、上段セルより中段セルに、中段セルより下段セルに流下させ、下段セルのオーバーフロー液はオーバーフロータンク9(図2)にストックされる。  The inorganic salt replenisher (nutrient solution, liquid medium) in the head tank 10 (Fig. 3) supplements each cell with nutrient solution depletion due to photosynthesis and divergence of the upper, middle and lower cells by quantitative infusion. Keep liquid volume constant. When the fluctuation amount of the culture solution in each cell exceeds the upper limit of a certain volume, the upper branch cell 1d (FIG. 1) and the overflow hose 8 (FIG. 2) are installed at the predetermined position of the cell. The middle cell is caused to flow down from the middle cell to the lower cell, and the overflow liquid in the lower cell is stocked in the overflow tank 9 (FIG. 2).

セル内培養液は、モーター駆動による気液混合ガス置換翼とスクリューを設けて、連結管13(図3)からの補充栄養液とCOガスおよび、空気C(図3)を混入させながら、かつ、球状面に沿った培養槽内上下の円周流動を対流A(図1)とし、横方向の円周流動を渦流B(図1)として循環流動させる。The culture medium in the cell is provided with a gas-liquid mixed gas replacement blade driven by a motor and a screw, and is mixed with supplementary nutrient solution, CO 2 gas, and air C (FIG. 3) from the connection pipe 13 (FIG. 3). In addition, the upper and lower circumferential flows along the spherical surface are circulated and flowed as convection A (FIG. 1) and the lateral circumferential flow as vortex B (FIG. 1).

コントロールボックス28(図2)の自動制御により、これらの流動を緩やかに作り、球形セル1a,1b内に培養液を対流流動させながら、光吸収と光量調整を行い無機塩類投入とガス置換及び培養液の恒温(20℃〜40℃)の維持には、フィルムヒーター24(図3)および空調25(図4)エアコンによって保持された最適条件の20℃〜35℃で最大培養増殖速度を維持させる。また穴明スプーン翼と軸流スクリューの同軸回転の回転数の制御とON、OFFのインターバルはコントロールボックス28(図2)によって渦流の流速を変化させる。  With the automatic control of the control box 28 (FIG. 2), these flows are made gently, and light is absorbed and light intensity is adjusted while the culture solution is convectively flowed into the spherical cells 1a and 1b, and inorganic salts are added, gas is replaced and cultured. In order to maintain the constant temperature of the liquid (20 ° C. to 40 ° C.), the maximum culture growth rate is maintained at 20 ° C. to 35 ° C. under the optimum conditions maintained by the film heater 24 (FIG. 3) and the air conditioner 25 (FIG. 4). . In addition, the control of the rotational speed of the coaxial rotation of the perforated spoon blade and the axial screw and the ON / OFF interval change the flow velocity of the vortex by the control box 28 (FIG. 2).

培養分裂増殖時は対流A(図1)でバクテリアの色素体アンテナを流動によってセルの光照射面に移動させ、光量子収率を上げて光量子を吸収させる。そして、合成系作用時にはセルの受光面の反対側の弱受光面を球面に沿って移動させる。これを概日リズムに従って、秩序よく行わせる。  During culture division growth, the bacterial plastid antenna is moved to the light irradiation surface of the cell by convection A (FIG. 1), and the photon is absorbed by increasing the photon yield. Then, the weak light-receiving surface opposite to the light-receiving surface of the cell is moved along the spherical surface during the synthesis system action. This is done in order according to the circadian rhythm.

セルの底部内面は、球面になっているので、培養液の渦流B(図1)の流体力学の応用によって、流速に従って分裂増殖したバクテリアをこの球面に沿って円周流動しながら沈み込み移動させる作用が発生し、最終的には、中心線上の下端部の小径筒状部1c内に集合濃縮させる。濃縮培養液ドレン用に上、中段セルが同軸5(図2)で連結された可動弁4を設け、意図された時間間隔で動作させることができる。これは分裂増殖したシアノバクテリア濃度の臨界に達することを予防するためでもある。  Since the inner surface of the bottom of the cell is a spherical surface, the bacteria that have proliferated and divided according to the flow velocity are submerged and moved along the spherical surface by the fluid dynamics application of the vortex B (FIG. 1) of the culture solution. The action is generated, and finally, it is concentrated in the small-diameter cylindrical portion 1c at the lower end portion on the center line. For the concentrated culture fluid drain, a movable valve 4 in which a middle cell is connected on the same axis 5 (FIG. 2) can be provided and operated at an intended time interval. This is also to prevent reaching the critical concentration of mitotic cyanobacteria.

透明球形のガラスセルである根拠と利点。
透明で球形のガラスセルであれば、全球面に光量子の入射が可能である、一部分に反射板27(鏡等)を使用することによって、この反射光の利用もできる。半球面光照射の場合、セルの光照射側(表側とする)の場所領域が、光合成炭酸同化作用(明反応)側であり、反照射側(裏側とする)の場所領域が、代謝系窒素同化(暗反応)側である。
透明球形ガラスセルの表側と裏側の場所領域区分をしておき、培養液の対流による流動によって、この表・裏の場所領域の一方向の流動移動による場所替えと、循環ができる。
Grounds and advantages of being a transparent spherical glass cell.
In the case of a transparent and spherical glass cell, the reflected light can be used by using a reflecting plate 27 (a mirror or the like) in a part of which the photon can be incident on the entire spherical surface. In the case of hemispherical light irradiation, the location area on the light irradiation side (front side) of the cell is the photosynthetic carbon dioxide assimilation (light reaction) side, and the location area on the counter-irradiation side (back side) is metabolic nitrogen. It is the assimilation (dark reaction) side.
The front and back side area regions of the transparent spherical glass cell are divided, and by the flow of the culture solution by convection, the place can be changed and circulated by the unidirectional flow movement of the front and back place areas.

この光合成による炭素同化と代謝による窒素同化の同化バランスの調節も分裂速度と増殖量を決定する要因の一つとなる。この対流の流速によって各領域滞留時間、移動時間が確保でき、この流速調節で両同化バランスと維持の調節を行うことができ、光量子エネルギーの吸収効率と同化物質の生産性を高めることができる。  The regulation of the assimilation balance between carbon assimilation by photosynthesis and nitrogen assimilation by metabolism is one of the factors that determine the division rate and growth rate. The convection flow rate can secure the residence time and travel time of each region, and by adjusting the flow rate, both assimilation balance and maintenance can be adjusted, and the absorption efficiency of photon energy and the productivity of anabolic substances can be improved.

光量子エネルギーの吸収効率では、光強度は光学系では大きい方が有利であるが、合成系ではその必要はなく、長時間の連続強照射は光障害およびストレスを発生させるので、シアノバクテリアをセル内に円周流動させる対流がこの光阻害を回避予防できる。  In terms of the absorption efficiency of photon energy, it is advantageous that the light intensity is higher in the optical system, but this is not necessary in the synthesis system, and continuous intense irradiation for a long time generates light damage and stress. The convection that is caused to flow circumferentially can prevent and prevent this light inhibition.

培養槽(セル)が透明球形のガラスセルで流動培養できる利点は、培養槽内の総べてのシアノバクテリアに培養液の軸流スクリューによるセル内対流ができ、この対流には外周と内周の流速が異なり、層流としての全体的な流動秩序も、微細な領域では相対的な流速の差異が生じているので、個々のシアノバクテリアには回転(自転)力が働き、回転(自転)する。
また大きな対流では、縦の円周回転(公転)があり循環する。上記の自転と公転によりシアノバクテリアの光色素アンテナに、光量子獲得確率を均等に配分させて、光合成を進行させてセル内全域にシアノバクテリアの均一な濃度分布を保ち得る。
The advantage that the culture vessel (cell) can be cultured in a transparent spherical glass cell is that all cyanobacteria in the culture vessel are capable of convection in the cell by an axial screw of the culture solution. Since the flow velocity of the fluid is different and the overall flow order as a laminar flow also has a relative flow velocity difference in a fine region, the rotation (spinning) force acts on each cyanobacteria, and the rotation (spinning) To do.
Moreover, in a large convection, there is a vertical circumferential rotation (revolution) that circulates. By the rotation and revolution described above, the photochromic antennas of cyanobacteria can be evenly distributed with the photon acquisition probability, and the photosynthesis proceeds to maintain a uniform concentration distribution of cyanobacteria throughout the cell.

分子軌道によるπ電子雲のアンテナ。
光量子は真夏で、1mの受光面積に約380〜770nm波長(可視光)で毎秒1021個数入射している。これを効率よく受信するためのシアノバクテリアが有する光合成色素にクロロフィル(a,b,d)、カロテノイド(カロテン、キサントフィル)、フィコビリン(フィコシアニン、フィコエリスン)の波長体バンドチャンネルがあり、これらは炭素の共役二重結合となっているためπ電子雲のアンテナ指向性が生じる、シアノバクテリアの光量子収率はこのアンテナ側の受光機構と電子の存在確率に依存しているため、受光面での入射光量子の少ししか獲得できていない。この光量子収率の改善策として本発明では、流動培養の対流によるシアノバクテリア各個体の前記(0032)による自転と公転によって光量子入射光軸に対しπ電子雲アンテナの角度を回転可変させることにより光量子の入射によってπ電子雲中の電子の共鳴(電子スピン共鳴・量子収率)確率を大きくすることができる、分子軌道の遷移(分子軌道転化)確率も大きくなる。つまり、分子は基底状態から励起状態となる率が高くなり、エネルギー(ATP,NADPH)の獲得と保存も大きくなる。このエネルギーの流用と酸化によってエネルギーは常に必要に応じて供給されて、つまり、バクテリアの代謝系による多数の合成回路とヌクレオチド合成経路と、発エルゴン反応の進行がDNA自己複製プロモーターに供与されて、分裂と増殖が誘導され目的の光合成産物が増量されることになる。
Π electron cloud antenna by molecular orbitals.
The photon is in midsummer and is incident on the light receiving area of 1 m 2 at a wavelength of about 380 to 770 nm (visible light) 10 21 per second. The photosynthetic pigments possessed by cyanobacteria for efficiently receiving these are wavelength body band channels of chlorophyll (a, b, d), carotenoids (carotene, xanthophylls) and phycobilins (phycocyanin, phycoerythin), which are carbon conjugates. Because it is a double bond, the antenna directivity of the π-electron cloud is generated. The photon yield of cyanobacteria depends on the light-receiving mechanism on this antenna side and the existence probability of electrons. Only a few have been earned. As a measure for improving the photon yield, in the present invention, the photon quantum antenna is rotated by varying the angle of the π-electron cloud antenna with respect to the photon incident optical axis by rotation and revolution of each individual cyanobacteria by convection in fluid culture. Can increase the probability of electron resonance (electron spin resonance / quantum yield) in the π-electron cloud, and also increase the probability of molecular orbital transition (molecular orbital conversion). That is, the rate at which the molecule is changed from the ground state to the excited state is increased, and acquisition and storage of energy (ATP, NADPH) are also increased. Energy diversion and oxidation always provide energy as needed, that is, a number of synthetic circuits and nucleotide synthesis pathways by the bacterial metabolic system and the progress of the ergonomic reaction are donated to the DNA self-replicating promoter, Division and proliferation are induced, and the target photosynthetic product is increased.

培養液の流動によって起こるシアノバクテリアの自転と公転は、光合成によるシアノバクテリアの分裂と増殖の必要条件として、シアノバクテリア細胞膜に接触する領域の栄養塩、COガスは光合成によって使用されて不足と欠乏を来すので、この部分の培養液を移動除去し、新しい補充液による必要物質の供給とガス置換を円滑に行わなければならず、培養液の流動がこれを行う。特に、光合成によって生成したOガスは速やかに細胞膜表面から除去されて、カルボキシラーゼ、還元・再生の反応群に活性酸素による酸化反応を回避することができ、細胞膜の領域に光合成による最適な分裂と増殖の必要条件を満たし、これを維持する。The rotation and revolution of cyanobacteria caused by the flow of the culture solution is a necessary condition for the division and growth of cyanobacteria by photosynthesis. Nutrient salts and CO 2 gas in contact with the cell membrane of cyanobacteria are used by photosynthesis and lack and deficiency Therefore, it is necessary to move and remove the culture solution in this part, smoothly supply necessary substances and replace the gas with a new replenishment solution, and the flow of the culture solution performs this. In particular, the O 2 gas generated by photosynthesis is quickly removed from the cell membrane surface, so that the oxidation reaction by active oxygen can be avoided in the reaction group of carboxylase and reduction / regeneration. Meet and maintain growth requirements.

培養槽(セル)が透明で球形のガラスである理由。
太陽の光量子エネルギーのスペクトルは地球の海面で約300〜3000(nm)で水圏における微細藻類のシアノバクテリアの色素体による光学系II、Iは、吸収スペクトルが約380〜770(nm)の可視光であり、この可視光の透過が可能な材質でなければない。しかも、セル内培養液は、pH9.2〜10のアルカリ性であるので、耐薬品の物性を持つガラスが最適である。このガラスの強度の関係と培養液の流動と循環性から、セル内面は球形が適している。
The reason why the culture vessel (cell) is transparent and spherical glass.
The spectrum of solar photon energy is about 300 to 3000 nm on the surface of the earth, and the optical systems II and I with cyanobacterial plastids of microalgae in the hydrosphere are visible light having an absorption spectrum of about 380 to 770 (nm). The material must be capable of transmitting visible light. Moreover, since the culture medium in the cell is alkaline with a pH of 9.2 to 10, glass having chemical resistance is optimal. From the relationship of the strength of the glass and the flow and circulation of the culture solution, a spherical shape is suitable for the cell inner surface.

セル直径が約0.4mである理由。
培養液中のバクテリア密度と濃度が大きくなると、光量子が吸収されて、その光量子の到達深度が小さくなるので培養槽の表面から中心部までの距離寸法に制限が出てくる。よって、半径約0.2mが限界として設定した。
The reason why the cell diameter is about 0.4 m.
As the bacterial density and concentration in the culture medium increase, the photons are absorbed and the depth of arrival of the photons decreases, which limits the distance from the surface of the culture tank to the center. Therefore, a radius of about 0.2 m was set as a limit.

球形セル容量が20L〜30Lである理由。
緯度が30度以上では、光強度は半減し、気温(室温)も変動しやすいので、セル内培養液の温度もこれに左右される。バクテリア臨界直前濃度と、光量子の到達深度0.1m〜0.15mと培養液の液温約20℃〜40℃の調整関係から容量約25L程度とした。
Reason why the spherical cell capacity is 20L-30L.
When the latitude is 30 degrees or more, the light intensity is halved and the air temperature (room temperature) is likely to fluctuate, so that the temperature of the culture medium in the cell also depends on this. The volume was about 25 L due to the adjustment of the concentration just before the bacteria critical, the depth of arrival of photons from 0.1 m to 0.15 m, and the temperature of the culture solution from about 20 ° C. to 40 ° C.

培養槽が三段である根拠。
・三段以上では、ドレン弁の連結軸の軸心の調整が困難になる。
・三段1.8m以上では、高さ寸法が大きくなり、窓際に設置する場合、窓からの採光 が悪くなる。
・三段以上では、ユニット高さ寸法が大きいと重心が高くなり不安定となる。
・三段以上では、補充液ヘッドタンクが高い位置になり、管理が難しくなる。
Grounds for three-stage culture tanks.
・ If there are more than three stages, it will be difficult to adjust the axis of the connecting shaft of the drain valve.
-If the height is 3m or higher, the height will be large, and if it is installed near a window, the lighting from the window will be poor.
・ In three or more stages, if the unit height is large, the center of gravity increases and becomes unstable.
・ In three or more stages, the replenisher head tank is in a high position, making management difficult.

このような構造と機能を持つ培養セルを、小スペースでコンパクトにセットした装置ユニットが、一般家庭の家屋内外19(図4、図5)の入射光のあるベランダおよび窓辺19のような適当な半日蔭の場所に設置させる。  An apparatus unit in which a culture cell having such a structure and function is compactly set in a small space is suitable for a veranda and a window side 19 having incident light outside and inside the home 19 (FIGS. 4 and 5) of a general household. Install it in a half-day place.

水圏における光合成生産物を大量生産する場合も、この小型セルユニットをビル型(マンション等)21に光合成を考慮した空間的立体配置にすると、植物(樹木等)と同じ樹形となり、光合成の生産性はさらに上がる。  Even in the case of mass production of photosynthetic products in the hydrosphere, if this small cell unit is arranged in a spatial configuration in consideration of photosynthesis in a building type (apartment etc.) 21, it will be the same tree shape as plants (trees etc.), and photosynthesis production Sex goes up further.

この培養装置ユニット(図2、図5、図6)の一般家庭による運転により、光量子エネルギーと無機物質から有機物質が自動的に生産され、シアノバクテリアを自家収穫することができる。  By operating the culture apparatus unit (FIGS. 2, 5, and 6) by a general household, an organic substance is automatically produced from the photon energy and the inorganic substance, and cyanobacteria can be harvested in-house.

エネルギーの蓄積システムでは、まず、光量子エネルギーの転化である還元型バイオリアクター(シアノバクテリア)19によるCC鎖である糖を基礎ベースにする有機物質(生命物質)として生産固定されたエネルギーを一部食品用、また一部は酸化型バイオリアクター20に投入し、バイオテクノロジー、解糖系と多数の合成経路による発酵過程を経由して、熱、エネルギー(エタノール等)、有機肥料、その他の有用物質に変換できる(図6)。  In the energy storage system, first, a part of the energy that is produced and fixed as an organic substance (biological substance) based on sugar, which is a CC chain, is produced by a reducing bioreactor (Cyanobacteria) 19 that is the conversion of photon energy. And part of it is put into the oxidation bioreactor 20 and converted into heat, energy (ethanol, etc.), organic fertilizer, and other useful substances through fermentation processes using biotechnology, glycolysis and many synthetic pathways. Can be converted (FIG. 6).

また、還元型、酸化型バイオリアクターの接続システムを相互共役システムとして、温室21に同居(図4)した場合、バイオスフェアー的システムとなり、この相互共役システムに補助加担するソーラー発電22を温室の屋根に十分な隙間を取って、光量子がセルに適度に届くようにすると、シアノバクテリアは直射日光及び長時間の露光による光学反応系は合成系の速度に律速されるシステムになっているので、光照射阻害予防のため、温室の屋根および壁面は光量子が適度に入射できるように設置する。  In addition, when the reduction type and oxidation type bioreactor connection system is used as a mutual conjugate system and lives in the greenhouse 21 (FIG. 4), the system becomes a biosphere-like system, and the solar power generation 22 that supplements the mutual conjugate system is installed on the roof of the greenhouse. If a sufficient amount of space is provided to allow the photons to reach the cell moderately, the optical reaction system of cyanobacteria by direct sunlight and long exposure is controlled by the speed of the synthesis system. In order to prevent irradiation inhibition, the roof and walls of the greenhouse will be installed so that photons can enter properly.

温室内外の電源を必要とするコントロール及び温室内の空調と、各バイオリアクターの適温を保持させ稼働を通年行えば、石油、石炭等、ストックエネルギーの補填として、太陽発の量子力学的物理量である光量子エネルギーによる環境に配慮した純粋な有機物質生産と、エネルギーの効率の良い獲得と蓄積をさせる構成システムができる。  Controls that require power sources inside and outside the greenhouse, air conditioning inside the greenhouse, and the appropriate temperature of each bioreactor are maintained throughout the year, so that it is a quantum mechanical physical quantity originating from the sun as a supplement for petroleum, coal, and other stock energy. It is possible to produce a pure organic material with consideration for the environment by photon energy, and a configuration system that can efficiently acquire and store energy.

シアノバクテリアには、空中窒素の固定能があり、工業的化学肥料の製造法のように大きなエネルギー消費工程を経ず、原核生物特有のこの能力が有機肥料の生産に繋がり、この多種類の元素および分子を含む有機肥料が環境汚染をもたらさないで、植物栽培に利用できる。  Cyanobacteria have the ability to fix air nitrogen, which does not go through a large energy consumption process like the manufacturing method of industrial chemical fertilizer, and this ability peculiar to prokaryotes leads to the production of organic fertilizer. And organic fertilizers containing molecules can be used for plant cultivation without causing environmental pollution.

本考案の実施の形態による、小型透明(金網入、強化ガラス)で球体形状の水圏微細生物培養セルの縦断面図である。Aは上下(鉛直)方向の円周流動である対流(縦循環流)を示す。Bは横(水平)方向の円周流動である渦流(横循環流)を示す。  It is a longitudinal cross-sectional view of the small-sized transparent (wire netting, tempered glass) and spherical shape aquatic microbiological culture cell according to an embodiment of the present invention. A indicates convection (vertical circulation flow) which is a circumferential flow in the vertical (vertical) direction. B shows a vortex flow (transverse circulation flow) which is a circumferential flow in the horizontal (horizontal) direction. 図1に示すセルの上段・中段・下段セルの三段構成と上段・中段連接ドレン、分離シリンダー、メッシュカップ、オーバーフローとオーバーフロータンクを示す、また右側の図はシリンダー部断面A−A´矢視の拡大図である。  1 shows the three-stage configuration of the upper, middle and lower cells of the cell and upper and middle connected drains, separation cylinders, mesh cups, overflow and overflow tanks. FIG. 補充液部とガス置換穴明スプーン翼と軸流スクリューの同軸回転部とこの角度変換機構である。CはCOガスおよび空気の流入方向を示す。This is the angle conversion mechanism and the replenisher part, the gas displacement drilling spoon blade, the coaxial rotating part of the axial flow screw. C indicates the inflow direction of CO 2 gas and air. シアノバクテリアの還元バイオリアクターシステムと、酸化型バイオリアクターシステムの、温室同居と太陽光発電システムの装備された縦断面図である。  FIG. 2 is a longitudinal sectional view of a cyanobacterial reduction bioreactor system and an oxidation bioreactor system equipped with a greenhouse and a photovoltaic power generation system. 培養装置ユニットの一般家屋及びビル型家屋の設置例を示す。  The installation example of the general house of a culture apparatus unit and a building type house is shown. 還元型流動培養システムと酸化型発酵システムの接続による相互共役のブロックダイヤフラムを示す。  An interconjugated block diaphragm is shown by connecting a reduced flow culture system and an oxidized fermentation system.

1 上段培養セル
1a 鍔付大径円筒部
1b 球体形状胴体部
1c 小径筒状突起部
1d オーバーフロー用分岐管
1e 横リブ(透明ガラス)
1f 縦リブ(透明ガラス)
2 中段培養セル
3 下段培養セル
4 ドレン弁
5 連接棒
6 シリンダー
6a シリンダー
6b プランジャー1
6c プランジャー2
7 メッシュカップ(フィルター付きカップ)
8 オーバーフローホース
9 オーバーフロータンク
10 補充液タンク(ヘッドタンク)
11 流量調整バルブ
12 接続チューブ
13 連結管
14 ノーズル(テフロンチューブ)
15 ギヤードモーター
16 駆動シャフト
17 穴明スプーン翼
18 軸流スクリュー
19 ユニットシステム
20 バイオリアクター(酸化型)
21 温室
22 ソーラー(太陽光)発電パネルユニット
23 蛍光灯
24 フィルムヒーター
25 空調(温室制御)システム
26 ソレノイド(直動型ソレノイド)
27 反射板(鏡)
28 コントロールボックス
29 ラック
30 ソレノイド(ロータリーソレノイド)
DESCRIPTION OF SYMBOLS 1 Upper culture | cultivation cell 1a Large diameter cylindrical part 1b A spherical body part 1c Small diameter cylindrical projection part 1d The branch pipe 1e for overflows A horizontal rib (transparent glass)
1f Vertical rib (transparent glass)
2 Middle culture cell 3 Lower culture cell 4 Drain valve 5 Connecting rod 6 Cylinder 6a Cylinder 6b Plunger 1
6c Plunger 2
7 Mesh cup (cup with filter)
8 Overflow hose 9 Overflow tank 10 Replenisher tank (head tank)
11 Flow control valve 12 Connecting tube 13 Connecting tube 14 Nozzle (Teflon tube)
15 Geared Motor 16 Drive Shaft 17 Hole Spoon Blade 18 Axial Screw 19 Unit System 20 Bioreactor (Oxidized Type)
21 Greenhouse 22 Solar power generation panel unit 23 Fluorescent lamp 24 Film heater 25 Air conditioning (greenhouse control) system 26 Solenoid (direct acting solenoid)
27 Reflector (mirror)
28 Control box 29 Rack 30 Solenoid (rotary solenoid)

回転穴明スプーン翼17の中央に補充液の供給ができるように、スプーン翼の中央から上部はU字型に切欠きをして、上部から差し込んである定量点滴耐腐食性樹脂チューブ14が、接触せずに回転運動ができる構造とする。スプーンの回転方向を、凹面側を進行方向に回転することによって(図3回転方向)、培養液を含み込んで凹面側の内圧を高くし、裏側(凸面側)の外圧を低くするので、スプーンに加工されている流通穴によって、液体は流速を加速して貫流する。この貫流によってスプーン後方に乱流ができ、COガスは、穴明きスプーン翼の表側(凹面側)の加圧効果によって培養液に混入される。Oガスは、培養液からスプーン裏側(凸面側)の減圧効果によって培養液から脱気されて、最終的には大気放出によってガス置換させる。In order to supply the replenisher to the center of the rotary perforated spoon blade 17, the quantitative drip corrosion-resistant resin tube 14, which is notched in a U shape from the center to the top of the spoon blade and inserted from the top, A structure that can rotate without touching. By rotating the rotating direction of the spoon in the direction of travel on the concave side (the rotating direction in FIG. 3), the culture pressure is included to increase the internal pressure on the concave side and the external pressure on the back side (convex side) to be reduced. Through the flow holes processed into the liquid, the liquid flows through at an accelerated flow rate. This through flow creates a turbulent flow behind the spoon, and CO 2 gas is mixed into the culture solution by the pressurizing effect on the front side (concave surface) of the perforated spoon blade. O 2 gas is degassed from the culture solution by the pressure reducing effect on the back side (convex surface side) of the spoon from the culture solution, and finally gas is replaced by release into the atmosphere.

Claims (3)

還元・酸素発生型微生物において、水圏で繁殖する微細藻類の内、シアノバクテリアの培養を行う、この光栄養生物(独立栄養微生物)を数十リットルの透明容器(金網入ガラス)で培養する、培養槽(セル)の構造は、培養液の液面維持オーバーフロー用分岐管付き上部鍔付き大径円筒部と球体形状の胴体部と、この底部球面に小径筒状の突起部が中心線上に接続されている形状で、主たる培養槽構造の胴体部内面が曲面を必要とする透明で球形の培養槽(セル)と、水圏における還元型微細生物のシアノバクテリア培養液中へ空気および、COガスを投入し溶解作用させながら、培養液中に光合成炭酸同化作用によって発生するOガスを抜き取り、同時に新しい栄養液の補充は定量点滴注入法で行い、球形セル内全体のバクテリアにCOと無機塩類をまんべんなく供給するための効果を備えた回転型気液混合、ガス置換翼と各セル所定の流動形態の形式が維持できるスクリューを、同軸上に上段は気液混合とガス置換用穴明スプーン翼と下段には下向きの軸流発生用スクリューを備えた培養セルとその装置で、回転穴明スプーン翼の中央に補充液の供給ができるように、スプーン翼の中央から上部はU字型に切欠きをして、この切欠き部に上部から差し込んである定量点滴ノーズル部は自由度のある耐薬品性チューブが、接触せずに回転運動ができる構造とし、上段・中段・下段の各セル内培養液は、軸回転手段による気液混合ガス置換翼とスクリューによって、CO、空気、補充栄養液を混入させながら、かつ、対流と渦流を緩やかに作り、培養槽に培養液を流動することによって、光吸収と光量調整を行い無機塩類投入とガス置換及び培養液の恒温(20℃〜40℃)に保持された最適条件で最大増殖速度を維持させる培養槽(セル)。Cultivation of cyanobacteria among microalgae that grow in the hydrosphere in reducing / oxygen-generating microorganisms, this phototrophic organism (autotrophic microorganism) is cultured in a tens of liters of transparent containers (wire-mesh glass) The structure of the tank (cell) is that a large-diameter cylindrical part with an upper gutter with a branch pipe for maintaining the liquid level of the culture medium, a spherical body part, and a small-diameter cylindrical projection on the bottom spherical surface are connected on the center line. Air and CO 2 gas into the cyanobacterial culture of reduced micro-organisms in the hydrosphere, and a transparent and spherical culture tank (cell) that requires a curved inner surface of the main culture tank structure. while the charged solvent action, pull the O 2 gas generated by the photosynthesis carbon dioxide assimilation in the culture, at the same time replenishment of new nutrient solution is carried out in a quantitative instillation, the whole in a spherical cell bacteria CO 2 and inorganic salt evenly rotary gas-liquid mixture having an effect for feeding, the screw type can be maintained for each cell a given flowing form and gas replacement blade, upper coaxially liquid mixture and the gas replacement In order to supply the replenisher to the center of the rotary punching spoon blade, the upper part from the center of the spoon blade is The U-shaped cutout is inserted into the cutout from the top, and the fixed-dose nosepiece is structured so that a flexible chemical-resistant tube can rotate without contact. The culture solution in each cell in the lower stage is cultivated in a culture tank while gently mixing convection and vortex while mixing CO 2 , air, and supplementary nutrient solution with gas-liquid mixed gas replacement blades and screws by means of shaft rotation. Fluid flow By doing this, the culture tank (cell) which adjusts light absorption and light quantity, and maintains the maximum growth rate under the optimal conditions maintained at the constant temperature (20 ° C. to 40 ° C.) of the input of inorganic salts, gas replacement, and culture medium. 球形の培養槽(セル)の曲率は流体力学の理論が応用でき、スクリューの軸流発生により、対流(縦循環流)と渦流(横循環流)を一定の時間間隔をおいて緩やかに構成させ、主に対流時に光合成反応を行わせる流動培養で、この光合成培養によって増殖したシアノバクテリアを渦流の作用によって、培養槽(セル)の底面曲率に沿って下降させ、下部中心に位置する小径筒状部へ集合濃縮させる請求項1の構造で、培養槽(セル)の中心線上に上段セル・中段セル・下段セルとに三段構成し、光合成によって増殖したシアノバクテリアを、渦流の作用によって各セル下部の小径筒状部へ集合濃縮させる、このシアノバクテリアを小径筒状部下端部に設けた可動弁を上段、中段同軸連結させて意図された時間間隔で同時動作させ、この弁を開き、上段より中段へ、中段より下段に所定量だけ流下させる、この様に中段、下段のシアノバクテリアの濃度を順次上げる請求項1に記載の培養槽(セル)の光合成ユニット装置。  Hydrodynamic theory can be applied to the curvature of the spherical culture tank (cell), and the convection (longitudinal circulation flow) and vortex flow (transverse circulation flow) can be gently configured at regular intervals by the axial flow of the screw. A small-diameter cylindrical tube located in the center of the lower part, which is a fluid culture that performs a photosynthetic reaction mainly during convection. The structure according to claim 1, wherein the cells are aggregated and concentrated in a three-stage structure on the center line of the culture tank (cell), the upper cell, the middle cell, and the lower cell. A movable valve with the cyanobacteria provided at the lower end of the small-diameter cylindrical part is concentrated and concentrated in the lower small-diameter cylindrical part. , The middle than the upper, to flow down by a predetermined amount in the lower than the middle, photosynthesis device apparatus of the culture tank according to claim 1, such as the middle, sequentially increasing the concentration of lower cyanobacteria (cell). 前記請求項1、2に記載した構造によって光合成で分裂増殖したシアノバクテリアの濃度の臨界を前もって予防するように、この最下段のセルの小径筒状下端部に切換えプランジャー弁を設け、シリンダーを開口させて、シアノバクテリアがこれと小径の筒状部に集合濃縮したものをシリンダーに吸引、濃縮確保させ、これに弁を設け、所定の時間周期で取り出し方向に切換え開口して、プランジャー駆動力で圧送して、メッシュのセットされたカップで受取り分離収穫する、これらを装備しコンパクトにまとめて一般家庭に設置できるようにした請求項1、2に記載の光合成ユニット装置。  In order to prevent in advance the criticality of the concentration of cyanobacteria divided and proliferated by photosynthesis by the structure described in claims 1 and 2, a switching plunger valve is provided at the lower end of the small-diameter cylindrical tube of the lowermost cell, and the cylinder is Opened, the cyanobacteria gathered and concentrated in this small diameter cylindrical part is sucked into the cylinder and concentrated, secured, and provided with a valve, switched in the take-out direction at a predetermined time cycle, and driven by a plunger The photosynthetic unit device according to claim 1, wherein the photosynthetic unit device is equipped with these, which are pumped by force and received and separated and harvested by a cup in which a mesh is set, and can be installed in a general household in a compact manner.
JP2011003578U 2011-06-07 2011-06-07 Photosynthesis unit device Expired - Lifetime JP3178460U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003578U JP3178460U (en) 2011-06-07 2011-06-07 Photosynthesis unit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003578U JP3178460U (en) 2011-06-07 2011-06-07 Photosynthesis unit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007283105A Continuation JP2009106218A (en) 2007-10-31 2007-10-31 Photosynthesis unit system

Publications (1)

Publication Number Publication Date
JP3178460U true JP3178460U (en) 2012-09-20

Family

ID=48005196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003578U Expired - Lifetime JP3178460U (en) 2011-06-07 2011-06-07 Photosynthesis unit device

Country Status (1)

Country Link
JP (1) JP3178460U (en)

Similar Documents

Publication Publication Date Title
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
US9688951B2 (en) Algae growth system
Tredici et al. Efficiency of sunlight utilization: tubular versus flat photobioreactors
Pulz et al. Photobioreactors: design and performance with respect to light energy input
KR100897019B1 (en) High efficiency photo-bioreactor for culturing micro algae
ES2645251T3 (en) Continuous or discontinuous flow photobioreactor and use procedure
Cañedo et al. Considerations for photobioreactor design and operation for mass cultivation of microalgae
CN103820318B (en) Photo bio cultivation apparatus
EP2667963B1 (en) A fluid agitator device for facilitating development of algae or micro-algae in trays or photobioreactors
KR101222145B1 (en) Photobioreactor
MX2008010770A (en) Photobioreactor and uses therefor.
CN103289887A (en) Half-dry solid-state adherent culture device for microalgae industrial production
Dębowski et al. Microalgae–cultivation methods
KR100897018B1 (en) Photo-bioreactor for culturing micro algae and apparatus for production of micro algae having the same
CN103289886A (en) Microalgae half-dry solid state adherent cultivation device for alternate illumination of bright and dark light
CN104560637A (en) Rotatable film-forming type microalgae photosynthetic reactor
CN103205361A (en) Aerosol microalgae illuminating reaction device
KR20160000206A (en) Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
KR20190094622A (en) Apparatus for cultivating microalgae
CN204474658U (en) Multistage potential energy differential driving microdisk electrode dedicated optical bioreactor system
JP2009106218A (en) Photosynthesis unit system
CN204918572U (en) U type runway pond photobioreactor
EP2871228A1 (en) Microalgae culture system under external conditions
JP3178460U (en) Photosynthesis unit device
CN204529840U (en) A kind of rotatable biofilm declines algae photosynthetic reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150829

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250