JP2005000121A - Biomass culture tank and biomass culture method - Google Patents

Biomass culture tank and biomass culture method Download PDF

Info

Publication number
JP2005000121A
JP2005000121A JP2003169493A JP2003169493A JP2005000121A JP 2005000121 A JP2005000121 A JP 2005000121A JP 2003169493 A JP2003169493 A JP 2003169493A JP 2003169493 A JP2003169493 A JP 2003169493A JP 2005000121 A JP2005000121 A JP 2005000121A
Authority
JP
Japan
Prior art keywords
culture tank
culture
biomass
photosynthetic organism
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003169493A
Other languages
Japanese (ja)
Other versions
JP4284116B2 (en
Inventor
Kentaro Matsunaga
健太郎 松永
Tetsuo Yoshimitsu
哲夫 吉満
Michihiko Koyama
充彦 小山
Hideshige Moriyama
英重 森山
Nobukazu Suzuki
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003169493A priority Critical patent/JP4284116B2/en
Publication of JP2005000121A publication Critical patent/JP2005000121A/en
Application granted granted Critical
Publication of JP4284116B2 publication Critical patent/JP4284116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • C12M41/10Filtering the incident radiation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomass culture tank capable of efficiently fixing carbon dioxide in air or exhaust gas by biological means at a low cost. <P>SOLUTION: The biomass culture tank is provided with a culture tank 1 for holding photosynthesis organism 2, a culture liquid supplying means 5 for supplying a culture liquid containing carbonate ion to the culture tank, a supplemental nutrient supplying means 6 for supplying nutrients necessary for the culture of the photosynthesis organism to the culture tank, and a discharging means 7 for discharging the culture liquid from the culture tank. Efficient biological fixation of carbon dioxide is performed by using a culture liquid containing carbonate ion for the culture of the photosynthesis organism to accelerate the culture of the organism. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種プラントから排出される排気ガス等に含まれる二酸化炭素を生物的に固定するバイオマス培養槽およびバイオマス培養方法に関する。
【0002】
【従来の技術】
近年における地球温暖化現象の主要原因の1つとして、産業活動における化石燃料燃焼に由来する二酸化炭素の排出が指摘されている。これまでに様々な方法での対策が検討されているが、その1つに光合成生物の培養による二酸化炭素の固定が挙げられる。過去には、フォトバイオリアクターと呼ばれる外界と完全に遮断された閉鎖系システムにおける単一種植物の高効率培養等も検討されている。
【0003】
光合成生物の培養による二酸化炭素の固定は、例えば栄養素を含む培養液を入れた培養槽中に藻体を分散させ、培養槽の底部から二酸化炭素を送り込み、太陽光や人工光を利用して藻体を増殖させることにより行われている(例えば、特許文献1参照。)。
【0004】
また、光合成生物が浮遊性菌体であり、液中の光合成生物の濃度が低く、光合成生物単体では十分に二酸化炭素を固定できないことから、光合成生物を無機性または有機性の担持体に付着させることも検討されている(例えば、特許文献2参照。)。
【0005】
さらに、上述したような液相中での光合成生物の培養に対して、気相中で光合成生物を培養し、二酸化炭素を固定することも検討されている(例えば、特許文献3、4参照。)。
【0006】
しかしながら、上述したような光合成生物の培養方法においては要求される二酸化炭素の固定量とそれに必要なコストとの折り合いをつけることが容易でなく、光合成生物の培養により二酸化炭素を固定するプラントの商用的な運用は未だ実現されていない。
【0007】
一方、一般ごみの焼却によって生じる焼却灰や、石炭火力発電により生じる石炭灰については、その処理方法が問題とされている。特に焼却灰については、その殆どが産業廃棄物として埋め立て処理されており、土地の確保や土壌汚染の問題等により、埋め立て以外の処理方法、出来れば付加価値のある製品への利用が求められている。
【0008】
例えば、上記灰類の焼結体は植物や微細藻類、菌類の生育に適当な材料組成や表面状態を有することから、各種菌類、淡水性および海洋性植物の担持体としての応用が検討されている。
【0009】
石炭灰については漁礁や藻類養殖の培地として既存のコンクリートブロックの代用として海中に沈める等の活用も提案されているが、より積極的な活用、例えば二酸化炭素の効率的な固定等への活用が期待されている。
【0010】
【特許文献1】
特開2001−231538
【特許文献2】
特願平6−319520
【特許文献3】
特開平7−213276
【特許文献4】
特開平8−38158
【0011】
【発明が解決しようとする課題】
上述したように、光合成生物を用いた二酸化炭素の生物的固定においては、単位時間、面積あたりの二酸化炭素の固定量を向上させ、稼動コストを低減することが求められている。また、産業廃棄物として処理されている焼却灰や石炭灰を資源として有効利用することも求められている。
【0012】
本発明は上記したような課題を解決するためになされたものであり、空気中あるいは排気ガス中の二酸化炭素を効率的かつ低コストに生物固定することが可能なバイオマス培養槽およびバイオマス培養方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明のバイオマス培養槽は、光合成生物および液体培地を保持する培養槽と、前記培養槽に炭酸イオンを含有する培養液を供給する培養液供給手段と、前記培養槽に前記光合成生物の培養に必要な補助栄養素を供給する補助栄養素供給手段と、前記培養槽から液体培地を排出する排出手段とを具備することを特徴とする。
【0014】
また本発明のバイオマス培養方法は、焼却灰および石炭灰から選択される少なくとも1種と水とを接触させた後、これに二酸化炭素を接触させて炭酸イオンを含有する培養液を作製し、この培養液を用いて光合成生物の培養を行うことを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明のバイオマス培養槽について、図面を参照して説明する。
【0016】
図1は本発明のバイオマス培養槽の一例を示した概略図である。本発明のバイオマス培養槽における培養槽1には、例えば光合成生物2、必要に応じて光合成生物2を表面に付着固定できる無機物または有機物からなる担持体3が液体培地4中に分散されている。
【0017】
そして、培養槽1には光合成生物2の培養に主として用られる炭酸イオンを含有する培養液が培養液供給手段5より供給される。また、光合成生物2の培養に必要なその他の補助栄養素が補助栄養素供給手段6より供給される。さらに、培養槽1にはこれら培養液、補助栄養素の供給により過剰となった液体培地4を排出するための排出手段7が設けられている。
【0018】
上述した培養槽1内の液体培地4は淡水または海水に相当するものであり、光合成生物2の種類によって適宜選択されるものである。
【0019】
培養液供給手段5より供給される炭酸イオンを含む培養液は、例えば石炭灰または焼却灰と水とを接触させて得られる溶液に二酸化炭素を接触させて得られるものである。すなわち、石炭灰または焼却灰にはアルカリ金属またはアルカリ土類金属の酸化物が含まれており、これと水とを接触させたものにさらに二酸化炭素を接触させることで炭酸イオンを生成させることができる。
【0020】
上述した炭酸イオンの生成は例えば以下のような反応式で表すことができる。なお、下記反応式では炭酸塩として表しているが、これらの炭酸塩は液中で電離して炭酸イオンを生成するものである。
O + HO → 2KOH
2KOH+ CO → KCO + H
または
NaO + HO → 2NaOH
2NaOH+ CO → NaCO + H
【0021】
具体的には例えば図2に示すように、培養液生成槽8に、一般ごみの焼却所で生じた焼却灰、石炭火力発電所で生じた石炭灰等の灰類9aおよびこれらのものに必要に応じて重金属を除去する処理を行って得られる処理スラグ9bの中から選ばれる少なくとも1種を充填し、水分供給手段10により水分を供給して溶液を調整する。さらに、この培養液生成槽8内の溶液中に焼却所や火力発電所等から排出された二酸化炭素を含む排ガスを二酸化炭素供給手段11により放出し、炭酸イオンを生成させる。
【0022】
上述したような方法により炭酸イオンを含む培養液を作製することで、焼却所、火力発電所から排出される二酸化炭素だけでなく、これらのものから排出される焼却灰や石炭灰を処理することもでき、二酸化炭素の効率的な生物的固定だけでなく、廃棄物量を減らし資源の有効利用が可能となる。また、このような方法により得られた炭酸イオンを含む培養液を主として用いて光合成生物2の培養を行うことで、光合成生物2の培養も促進させることができる。
【0023】
このような培養液については微細藻類の増殖速度を高くするため、その炭酸イオン濃度、水素イオン濃度を所定の濃度に調整することが好ましい。また、炭酸イオン濃度、水素イオン濃度以外の光合成生物の成長に必要な無機成分および有機成分の濃度についても調整することが好ましい。培養液中の炭酸イオン濃度は培養する光合成生物の種類によっても異なるが、例えば最終的な調整が行われた培養液において0.001[mol/l]〜0.01[mol/l]程度であることが好ましい。
【0024】
炭酸イオン濃度、水素イオン濃度の調整は、例えば培養液を製造する際の炭酸イオン等の生成量を調整することにより行ってもよいし、一旦培養液を作製した後、所定の成分を添加することにより調整してもよい。
【0025】
培養液を製造する際の炭酸イオン、水素イオンの生成量を調整することにより濃度を調整する方法としては、例えば培養液生成槽8に充填する灰類9a、処理スラグ9bの量、水分供給手段10により供給する水分の量、二酸化炭素供給手段11により放出する二酸化炭素の量等を適宜調整することにより行う。
【0026】
また、培養液を製造した後における炭酸イオン濃度、水素イオン濃度の調整は、例えば補助栄養素供給手段6等から炭酸イオン濃度、水素イオン濃度を上昇または低下させることのできる物質を添加して行う。
【0027】
炭酸イオン、水素イオン以外の光合成生物の成長に必要な無機成分および有機成分の濃度についても、例えば補助栄養素供給手段6から所定の成分(補助栄養素)を供給して調整する。補助栄養素としては、例えば硫酸マグネシウム、硫酸銅および硫酸亜鉛等が挙げられる。
【0028】
このような炭酸イオン、水素イオン、その他光合成生物の成長に必要な無機成分および有機成分の濃度の調整は、例えば培養液供給手段5の途中にこれらの濃度を測定する濃度測定手段であるセンサ12を設け、このセンサ12の測定結果を基に所定の濃度、組成となるように組成調整手段13で培養液生成槽8における炭酸イオン等の生成量の調整、その後の補助栄養素供給手段6による各成分の添加量の調整を行うことによりなされる。
【0029】
このようにして成分調整が行われた培養液は培養槽1へ供給される。この際の培養液の供給量は、例えば排出手段7に培養槽1から排出される液体培地4中の含有有機物濃度を測定する含有有機物濃度測定手段14を設け、この含有有機物濃度測定手段14の測定結果に応じて供給量を調整する供給量調整手段15により行われることが好ましい。このようにして培養液の供給量を調整することで、培養液の過不足を抑制し、光合成生物2を効率的に培養することができる。
【0030】
本発明における光合成生物2としては上述したような培養液に含まれる炭酸イオンを栄養源として培養できるものであれば特に制限されるものではなく、例えば藻類、微細藻類のような液体培地中で培養するものの他、水耕栽培により培養可能な野菜等であってもよい。二酸化炭素の効率的な処理、すなわち生物的固定という観点からは増殖速度の高いものが好ましく、このようなものとしては微細藻類が好適に用いられる。
【0031】
微細藻類としては、例えばクロレラ、スピルリナ等の微細藻類が増殖速度が高いため好ましく、具体的にはSynechocystis sp.PCC6803、Anabaena Cylindrica等を用いることができる。
【0032】
上述したような光合成生物2として藻類、微細藻類を用いる場合には、これらのものが付着できるように担持体3を用いることが好ましい。担持体3は、例えば一般ごみの焼却所で生じた焼却灰もしくは石炭火力発電所で生じた石炭灰等の灰類またはこれらのものに必要に応じて重金属除去処理を施して得られる処理スラグ等から選ばれる少なくとも1種と、ポリエチレン等のバインダとを混合し、所定の形状に成形することにより得られるものである。
【0033】
このような焼却灰や石炭灰を用いることで、廃棄物として処理されている焼却灰や石炭灰の量を減らすことができるとともに、これら焼却灰や石炭灰には光合成生物2の培養に必要な成分も含まれているため、光合成生物2の培養を促進することもできる。
【0034】
この担持体3には予め培養対象となる光合成生物2の種子、胞子もしくは株を内部に包含または表面に付着させておくことが好ましい。光合成生物2の培養過程で担持体3には光合成生物2が付着するが、予め内部または表面に光合成生物2の種子、胞子もしくは株等を包含または付着しておくことで、より効率的に培養を行うことが可能となる。
【0035】
また、担持体3には培養対象となる光合成生物2の生育に必要な栄養素を内部に包含または表面に付着させておくことが好ましい。光合成生物2の培養過程では培養液供給手段5および栄養素供給手段6により光合成生物2の生育に必要な栄養素が供給されるが、予め内部または表面に光合成生物2の生育に必要な栄養素を包含または付着しておくことで、より効率的に培養を行うことが可能となる。
【0036】
上述したように担持体3の内部に光合成生物2の種子、胞子もしくは株またはその生育に必要な栄養素を含有させるには、例えば一般ごみの焼却所で生じた焼却灰もしくは石炭火力発電所で生じた石炭灰等の灰類またはこれらのものに必要に応じて重金属除去処理を施して得られる処理スラグ等から選ばれる少なくとも1種と、ポリエチレン等のバインダと、光合成生物2の種子、胞子もしくは株またはその生育に必要な栄養素とを混合した後、所定の形状に成形することにより行う。
【0037】
また、担持体3の表面に光合成生物2の種子、胞子もしくは株またはその生育に必要な栄養素を付着させるには、例えば上述したような灰類または処理スラグ等から選ばれる少なくとも1種とポリエチレン等のバインダとを混合し所定の形状に成形した後、その表面に光合成生物2の種子、胞子もしくは株、またはその生育に必要な栄養素を付着させることにより行う。
【0038】
このようにして得られる担持体3は、例えば最大直径2cm以下のペレット状にして培養槽1内の液体培地4に分散させてもよいし、プラスチック、植物繊維または金属等からなる網状またはかご状の構造物の内部に保持してもよいし、そのような構造物に固定してもよい。
【0039】
担持体3をこのような網状またはかご状の構造物の内部に保持または固定することで、培養後における光合成生物2が付着した担持体3の回収が容易になると共に、培養中においても担持体3へ液体培地4を十分に循環させることができ、培養、回収を効率的に行うことができる。
【0040】
光合成生物2の培養は、培養槽1への人工光や太陽光の照射により行われる。光合成生物2は液体培地4に分散したまま成長する他、液体培地4に担持体3が分散されている場合にはその表面でも高密度に成長する。
【0041】
培養槽1中の液体培地4は、光合成生物2およびこれを付着した担持体3を平均的に日光や栄養分と接触させて効率的に培養するために循環させることが好ましい。このような液体培地4の循環は、例えば培養槽1への培養液の流入により、あるいは、焼却所、火力発電所等から排出される排気ガスの培養槽1内への放出により、または、モータ、ポンプ、水車等の利用により行われる。
【0042】
循環方向は特に制限されるものではなく、例えば培養槽1の垂直方向の中心軸を中心として渦を形成するような平面方向の循環方向としてもよいし、培養槽1の底面中心から上方へ湧き上り、周辺部で底部へ沈降するような垂直方向の循環方向としてもよい。
【0043】
また培養槽1は、例えば図3に示すように、その採光部を選択的透光性フィルムもしくはガラス16で覆うことが好ましい。この選択的透光性フィルムもしくはガラス16は、例えば培養槽1に入射する可視光、特に光合成生物2の光合成に用いられる波長の光を透過し、培養槽1内から培養槽1外へ向かう光は透過させず、培養槽1内に反射させるものである。このような選択的透光性フィルムもしくはガラス16で採光部を覆うことで入射光の有効利用が可能となる。
【0044】
また、培養槽1内の側面や底面は鏡面17とすることが好ましい。培養槽1内の側面や底面を鏡面17とすることで、培養槽1内に入射した光が培養槽1内の側面や底面に吸収されることを抑制し、入射光の有効利用が可能となる。
【0045】
さらに、このような鏡面17の表面上には光触媒層18を設けることが好ましい。光触媒層18としては、例えば酸化チタンからなるものが挙げられる。このような光触媒層18を設けることで、鏡面17における光合成生物2、汚れ等の付着を抑制し、鏡面17の反射効率の低下を抑制することができる。
【0046】
培養槽1の液体培地中を浮遊する光合成生物2もしくはこれが付着した担持体3は、適当な回収手段を用いて回収される。回収手段としては、例えばフィルタが好適に用いられる。
【0047】
フィルタは、光合成生物2を担持した担持体3を回収するための比較的目の粗いフィルタと、水中に分散したまま成長した光合成生物2を回収するための目の細かいフィルタとを併用することで、より効率的に光合成生物2を回収することができる。
【0048】
担持体3を回収するためのフィルタとしては、担持体3の最大径よりも目の細かい網目構造や格子構造を有する平面あるいは袋状の構造物が用いられる。また、光合成生物2を回収するためのフィルタとしては、光合成生物2の最大径よりも目の細かい網目・格子構造を有する平面あるいは袋状の構造物、例えば布、紙もしくはプラスチック製のろ紙、不織布、または、多孔質構造を有するスポンジもしくは軽石等を用いることができる。
【0049】
培養槽1内におけるろ過操作により光合成生物2およびこれが付着した担持体3を捕獲したフィルタは、光合成生物2および担持体3と共に液体培地4から引き上げられる。担持体3の表面に付着した光合成生物2は、機械的処理あるいは化学的処理により分離、回収される。光合成生物2が分離され再生された担持体3は適当な返送手段を用いて再度培養槽1中に投入し、光合成生物2の培養に役立ててもよい。
【0050】
また、ろ過操作によりフィルタに付着した光合成生物2は、担持体3の表面に付着した光合成生物2と同様、機械的処理あるいは化学的処理により回収する。フィルタが有機物の場合には、フィルタごとバイオマスとして活用してもよい。
【0051】
【発明の効果】
本発明によれば、光合成生物の培養に炭酸イオンを含有する培養液を用いることで、光合成生物の培養を促進し二酸化炭素の効率的な生物的固定が可能になる。また、炭酸イオンを含有する培養液の製造に二酸化炭素および従来廃棄されていた石炭灰もしくは焼却灰を用いることができ、環境への負荷の低減、資源の有効利用が可能となる。
【図面の簡単な説明】
【図1】本発明のバイオマス培養槽の一例を示した概略図
【図2】本発明のバイオマス培養槽の他の例を示した概略図
【図3】本発明のバイオマス培養槽における培養槽の一例を示した断面図
【符号の説明】
1…培養槽 2…光合成生物 3…担持体 4…液体培地 5…培養液供給手段 6…補助栄養素供給手段 7…排出手段 8…培養液生成槽 9a…灰類 9b…処理スラグ 10…水分供給手段 11…二酸化炭素供給手段 12…濃度測定手段 13…組成調整手段 14…含有有機物濃度測定手段 15…供給量調整手段 16…選択的透光性フィルムまたはガラス 17…鏡面 18…光触媒層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biomass culture tank and a biomass culture method for biologically fixing carbon dioxide contained in exhaust gas discharged from various plants.
[0002]
[Prior art]
As one of the main causes of the global warming phenomenon in recent years, the emission of carbon dioxide derived from fossil fuel combustion in industrial activities has been pointed out. Various measures have been studied so far, one of which is fixing carbon dioxide by culturing photosynthetic organisms. In the past, high-efficiency culture of single-species plants in a closed system called a photobioreactor that is completely blocked from the outside world has been studied.
[0003]
For example, carbon dioxide is fixed by culturing photosynthetic organisms. For example, algal bodies are dispersed in a culture tank containing a culture solution containing nutrients, carbon dioxide is fed from the bottom of the culture tank, and sunlight or artificial light is used to algae. It is carried out by growing the body (for example, see Patent Document 1).
[0004]
In addition, the photosynthetic organism is attached to an inorganic or organic carrier because the photosynthetic organism is a floating cell, the concentration of the photosynthetic organism in the liquid is low, and the photosynthesis organism alone cannot fix carbon dioxide sufficiently. (For example, see Patent Document 2).
[0005]
Furthermore, in contrast to culturing photosynthetic organisms in the liquid phase as described above, it has been studied to culture photosynthetic organisms in the gas phase and fix carbon dioxide (see, for example, Patent Documents 3 and 4). ).
[0006]
However, in the method for culturing photosynthetic organisms as described above, it is not easy to strike a balance between the required amount of carbon dioxide to be fixed and the cost required for it, and commercial use of a plant that fixes carbon dioxide by culturing photosynthetic organisms. Operation has not been realized yet.
[0007]
On the other hand, regarding incineration ash produced by incineration of general waste and coal ash produced by coal-fired power generation, the treatment method is considered a problem. In particular, most of incineration ash is landfilled as industrial waste, and due to problems such as securing land and soil contamination, it is required to use treatment methods other than landfill, and if possible, products with added value. Yes.
[0008]
For example, since the sintered body of ash has a material composition and surface state suitable for the growth of plants, microalgae and fungi, its application as a carrier for various fungi, freshwater and marine plants has been studied. Yes.
[0009]
Coal ash has been proposed to be submerged in the sea as a substitute for existing concrete blocks as a medium for fishing reefs and algae culture, but more active use, for example, efficient fixation of carbon dioxide, etc. Expected.
[0010]
[Patent Document 1]
JP 2001-231538 A
[Patent Document 2]
Japanese Patent Application No. 6-319520
[Patent Document 3]
JP-A-7-213276
[Patent Document 4]
JP-A-8-38158
[0011]
[Problems to be solved by the invention]
As described above, in the biological fixation of carbon dioxide using a photosynthetic organism, it is required to improve the fixed amount of carbon dioxide per unit time and area and reduce the operating cost. In addition, incineration ash and coal ash treated as industrial waste are also required to be effectively used as resources.
[0012]
The present invention has been made to solve the above-described problems, and provides a biomass culture tank and a biomass culture method capable of biologically fixing carbon dioxide in air or exhaust gas efficiently and at low cost. It is intended to provide.
[0013]
[Means for Solving the Problems]
The biomass culture tank of the present invention comprises a culture tank for holding a photosynthetic organism and a liquid medium, a culture solution supply means for supplying a culture solution containing carbonate ions to the culture tank, and a culture vessel for culturing the photosynthetic organism. Supplemental nutrient supply means for supplying necessary supplemental nutrients and discharge means for discharging the liquid medium from the culture tank are provided.
[0014]
In the biomass culture method of the present invention, after bringing water into contact with at least one selected from incineration ash and coal ash, carbon dioxide is brought into contact therewith to produce a culture solution containing carbonate ions. It is characterized by culturing a photosynthetic organism using a culture solution.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the biomass culture tank of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a schematic view showing an example of a biomass culture tank of the present invention. In the culture tank 1 in the biomass culture tank of the present invention, for example, a photosynthetic organism 2 and, if necessary, a support 3 made of an inorganic substance or an organic substance capable of attaching and fixing the photosynthetic organism 2 to the surface are dispersed in a liquid medium 4.
[0017]
A culture solution containing carbonate ions mainly used for culturing the photosynthetic organism 2 is supplied from the culture solution supply means 5 to the culture tank 1. Further, other supplemental nutrients necessary for culturing the photosynthetic organism 2 are supplied from the supplemental nutrient supply means 6. Furthermore, the culture tank 1 is provided with a discharge means 7 for discharging the liquid medium 4 that has become excessive due to the supply of the culture medium and supplemental nutrients.
[0018]
The liquid medium 4 in the culture tank 1 described above corresponds to fresh water or seawater, and is appropriately selected depending on the type of the photosynthetic organism 2.
[0019]
The culture solution containing carbonate ions supplied from the culture solution supply means 5 is obtained, for example, by bringing carbon dioxide into contact with a solution obtained by bringing coal ash or incineration ash into contact with water. In other words, coal ash or incinerated ash contains an oxide of alkali metal or alkaline earth metal, and carbon dioxide can be generated by bringing carbon dioxide into contact with water in contact with this. it can.
[0020]
The production | generation of the carbonate ion mentioned above can be represented by the following reaction formula, for example. In addition, although it represents as carbonate in the following reaction formula, these carbonates ionize in a liquid and produce | generate a carbonate ion.
K 2 O + H 2 O → 2KOH
2KOH + CO 2 → K 2 CO 3 + H 2 O
Or Na 2 O + H 2 O → 2NaOH
2NaOH + CO 2 → Na 2 CO 3 + H 2 O
[0021]
Specifically, as shown in FIG. 2, for example, as shown in FIG. 2, ash 9a such as incineration ash generated at a general waste incineration plant, coal ash generated at a coal-fired power plant, and the like are necessary. In accordance with the above, at least one selected from the treatment slag 9b obtained by performing the treatment for removing heavy metals is filled, and moisture is supplied by the moisture supply means 10 to adjust the solution. Further, exhaust gas containing carbon dioxide discharged from an incinerator, a thermal power plant, or the like into the solution in the culture solution generation tank 8 is released by the carbon dioxide supply means 11 to generate carbonate ions.
[0022]
Treating not only carbon dioxide emitted from incinerators and thermal power plants, but also incinerated ash and coal ash emitted from these by producing a culture solution containing carbonate ions by the method described above In addition to efficient biological fixation of carbon dioxide, the amount of waste can be reduced and resources can be used effectively. Moreover, culture | cultivation of the photosynthetic organism 2 can also be promoted by culturing the photosynthetic organism 2 mainly using the culture solution containing the carbonate ion obtained by such a method.
[0023]
In order to increase the growth rate of microalgae for such a culture solution, it is preferable to adjust its carbonate ion concentration and hydrogen ion concentration to predetermined concentrations. Moreover, it is preferable to adjust also the density | concentration of the inorganic component and organic component which are required for growth of photosynthetic organisms other than carbonate ion concentration and hydrogen ion concentration. The carbonate ion concentration in the culture solution varies depending on the type of photosynthetic organism to be cultured. For example, in the culture solution in which final adjustment has been performed, Preferably there is.
[0024]
The adjustment of the carbonate ion concentration and the hydrogen ion concentration may be carried out, for example, by adjusting the production amount of carbonate ions or the like when producing the culture solution. You may adjust by.
[0025]
As a method of adjusting the concentration by adjusting the production amount of carbonate ions and hydrogen ions when producing the culture solution, for example, ashes 9a to be filled in the culture solution production tank 8, the amount of the treated slag 9b, water supply means The amount of water supplied by 10 and the amount of carbon dioxide released by the carbon dioxide supply means 11 are appropriately adjusted.
[0026]
Further, the adjustment of the carbonate ion concentration and the hydrogen ion concentration after the production of the culture solution is performed by adding a substance capable of increasing or decreasing the carbonate ion concentration and the hydrogen ion concentration from the supplementary nutrient supply means 6 or the like, for example.
[0027]
Concentrations of inorganic components and organic components necessary for the growth of photosynthetic organisms other than carbonate ions and hydrogen ions are also adjusted by, for example, supplying predetermined components (auxiliary nutrients) from the supplementary nutrient supply means 6. Examples of supplemental nutrients include magnesium sulfate, copper sulfate, and zinc sulfate.
[0028]
The adjustment of the concentrations of such carbonate ions, hydrogen ions, and other inorganic and organic components necessary for the growth of photosynthetic organisms is performed by, for example, a sensor 12 which is a concentration measuring means for measuring these concentrations in the middle of the culture solution supply means 5. And adjusting the production amount of carbonate ions and the like in the culture medium production tank 8 by the composition adjusting means 13 so as to obtain a predetermined concentration and composition based on the measurement result of the sensor 12, and each of the supplementary nutrient supplying means 6 thereafter This is done by adjusting the amount of components added.
[0029]
The culture solution whose components have been adjusted in this way is supplied to the culture tank 1. In this case, the supply amount of the culture solution is, for example, provided in the discharge means 7 with the contained organic substance concentration measuring means 14 for measuring the contained organic substance concentration in the liquid medium 4 discharged from the culture tank 1. It is preferably performed by the supply amount adjusting means 15 that adjusts the supply amount according to the measurement result. Thus, by adjusting the supply amount of a culture solution, the excess and deficiency of a culture solution can be suppressed and the photosynthetic organism 2 can be cultured efficiently.
[0030]
The photosynthetic organism 2 in the present invention is not particularly limited as long as it can be cultured using the carbonate ions contained in the culture solution as described above as a nutrient source. For example, it is cultured in a liquid medium such as algae and microalgae. In addition to what to do, it may be a vegetable that can be cultured by hydroponics. From the viewpoint of efficient treatment of carbon dioxide, that is, biological fixation, those having a high growth rate are preferred, and microalgae are preferably used as such.
[0031]
As the microalgae, for example, microalgae such as chlorella and spirulina are preferable because of their high growth rates. Specifically, Synochcystis sp. PCC6803, Anabaena Cylindrica, etc. can be used.
[0032]
When using algae or microalgae as the photosynthetic organism 2 as described above, it is preferable to use the carrier 3 so that these can adhere. The carrier 3 is, for example, incineration ash generated at a general waste incinerator or ash such as coal ash generated at a coal-fired power plant, or a processing slag obtained by subjecting these to heavy metal removal treatment as necessary. And a binder such as polyethylene are mixed and molded into a predetermined shape.
[0033]
By using such incineration ash and coal ash, the amount of incineration ash and coal ash treated as waste can be reduced, and these incineration ash and coal ash are necessary for culturing photosynthetic organisms 2. Since the component is also included, the culture of the photosynthetic organism 2 can be promoted.
[0034]
It is preferable that the carrier 3 contains seeds, spores or strains of the photosynthetic organism 2 to be cultured in advance or is attached to the surface. The photosynthetic organism 2 adheres to the carrier 3 during the cultivation process of the photosynthetic organism 2, but the seeds, spores, strains, etc. of the photosynthetic organism 2 are included or attached to the inside or the surface in advance, thereby culturing more efficiently. Can be performed.
[0035]
Moreover, it is preferable that nutrients necessary for the growth of the photosynthetic organism 2 to be cultured are contained inside or attached to the surface of the support 3. In the process of culturing the photosynthetic organism 2, nutrients necessary for the growth of the photosynthetic organism 2 are supplied by the culture medium supply means 5 and the nutrient supply means 6, and the nutrients necessary for the growth of the photosynthetic organism 2 are included in the interior or surface in advance. By adhering, it becomes possible to culture more efficiently.
[0036]
As described above, in order to contain the seeds, spores or strains of the photosynthetic organism 2 or nutrients necessary for the growth thereof in the support 3, for example, incineration ash generated in a general waste incinerator or generated in a coal-fired power plant Ashes such as coal ash, or at least one selected from treated slag obtained by subjecting these to ash as necessary, binders such as polyethylene, seeds, spores or strains of photosynthetic organisms 2 Or after mixing with nutrients necessary for the growth, it is performed by molding into a predetermined shape.
[0037]
In order to attach seeds, spores or strains of the photosynthetic organism 2 or nutrients necessary for their growth to the surface of the support 3, for example, at least one selected from ash or treated slag as described above, polyethylene and the like This is carried out by mixing with a binder and forming a predetermined shape, and then attaching seeds, spores or strains of the photosynthetic organism 2 or nutrients necessary for their growth to the surface thereof.
[0038]
The carrier 3 thus obtained may be in the form of a pellet having a maximum diameter of 2 cm or less and dispersed in the liquid medium 4 in the culture tank 1, or a net or basket made of plastic, plant fiber, metal, or the like. You may hold | maintain inside this structure, and you may fix to such a structure.
[0039]
By holding or fixing the carrier 3 inside such a net-like or basket-like structure, the carrier 3 to which the photosynthetic organisms 2 adhere after the culture can be easily recovered, and the carrier can be used even during the culture. The liquid medium 4 can be sufficiently circulated to 3, and culture and recovery can be performed efficiently.
[0040]
The photosynthetic organism 2 is cultured by irradiating the culture tank 1 with artificial light or sunlight. The photosynthetic organism 2 grows while being dispersed in the liquid medium 4, and when the carrier 3 is dispersed in the liquid medium 4, it grows at a high density on the surface.
[0041]
The liquid medium 4 in the culture tank 1 is preferably circulated in order to cultivate the photosynthetic organism 2 and the carrier 3 attached thereto in an average manner in contact with sunlight or nutrients for efficient cultivation. Such circulation of the liquid medium 4 may be caused by, for example, inflow of a culture solution into the culture tank 1, or by discharge of exhaust gas discharged from an incinerator, a thermal power plant, or the like into the culture tank 1, or a motor. , Using pumps, water wheels, etc.
[0042]
The circulation direction is not particularly limited. For example, the circulation direction may be a planar circulation direction in which a vortex is formed around the central axis in the vertical direction of the culture tank 1, or the spring flows upward from the center of the bottom of the culture tank 1. It is good also as a vertical circulation direction which goes up and sinks to a bottom part at a peripheral part.
[0043]
In addition, as shown in FIG. 3, for example, the culture tank 1 preferably covers the daylighting portion with a selective translucent film or glass 16. This selective translucent film or glass 16 transmits, for example, visible light incident on the culture tank 1, in particular, light having a wavelength used for photosynthesis of the photosynthetic organism 2, and light traveling from the culture tank 1 to the outside of the culture tank 1. Is not transmitted but is reflected in the culture tank 1. Covering the daylighting portion with such a selective light-transmitting film or glass 16 makes it possible to effectively use incident light.
[0044]
Further, the side surface and the bottom surface in the culture tank 1 are preferably mirror surfaces 17. By making the side surface and bottom surface in the culture tank 1 into the mirror surface 17, it is possible to suppress the light incident in the culture tank 1 from being absorbed by the side surface and bottom surface in the culture tank 1, and to effectively use the incident light. Become.
[0045]
Furthermore, it is preferable to provide a photocatalytic layer 18 on the surface of the mirror surface 17. Examples of the photocatalyst layer 18 include those made of titanium oxide. By providing such a photocatalyst layer 18, adhesion of the photosynthetic organism 2 and dirt on the mirror surface 17 can be suppressed, and a decrease in the reflection efficiency of the mirror surface 17 can be suppressed.
[0046]
The photosynthetic organism 2 floating in the liquid medium of the culture tank 1 or the carrier 3 to which it is attached is recovered using an appropriate recovery means. For example, a filter is preferably used as the collecting means.
[0047]
The filter uses a relatively coarse filter for recovering the carrier 3 carrying the photosynthetic organisms 2 and a fine filter for recovering the photosynthetic organisms 2 grown while dispersed in water. The photosynthetic organism 2 can be recovered more efficiently.
[0048]
As a filter for recovering the carrier 3, a flat or bag-like structure having a mesh structure or a lattice structure finer than the maximum diameter of the carrier 3 is used. Further, as a filter for recovering the photosynthetic organism 2, a planar or bag-like structure having a mesh / lattice structure finer than the maximum diameter of the photosynthetic organism 2, such as cloth, paper or plastic filter paper, non-woven fabric Alternatively, a sponge or pumice having a porous structure can be used.
[0049]
The filter that has captured the photosynthetic organisms 2 and the carrier 3 to which the photosynthetic organisms 2 are attached by the filtration operation in the culture tank 1 is pulled up from the liquid medium 4 together with the photosynthetic organisms 2 and the carriers 3. The photosynthetic organism 2 attached to the surface of the carrier 3 is separated and recovered by mechanical treatment or chemical treatment. The carrier 3 from which the photosynthetic organisms 2 have been separated and regenerated may be put into the culture tank 1 again using an appropriate return means to be useful for culturing the photosynthetic organisms 2.
[0050]
In addition, the photosynthetic organism 2 attached to the filter by the filtration operation is recovered by mechanical treatment or chemical treatment in the same manner as the photosynthetic organism 2 attached to the surface of the carrier 3. If the filter is organic, the filter may be used as biomass.
[0051]
【The invention's effect】
According to the present invention, by using a culture solution containing carbonate ions for cultivation of photosynthetic organisms, the cultivation of photosynthetic organisms can be promoted and carbon dioxide can be efficiently biologically fixed. In addition, carbon dioxide and conventionally discarded coal ash or incinerated ash can be used for the production of a culture solution containing carbonate ions, thereby reducing the burden on the environment and effectively using resources.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a biomass culture tank of the present invention. FIG. 2 is a schematic diagram showing another example of a biomass culture tank of the present invention. Sectional view showing an example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Culture tank 2 ... Photosynthesis organism 3 ... Carrier 4 ... Liquid culture medium 5 ... Culture solution supply means 6 ... Supplementary nutrient supply means 7 ... Discharge means 8 ... Culture solution production tank 9a ... Ash 9b ... Process slag 10 ... Water supply Means 11 ... Carbon dioxide supply means 12 ... Concentration measurement means 13 ... Composition adjustment means 14 ... Concentration organic substance concentration measurement means 15 ... Supply amount adjustment means 16 ... Selective translucent film or glass 17 ... Mirror surface 18 ... Photocatalyst layer

Claims (13)

光合成生物および液体培地を保持する培養槽と、前記培養槽に炭酸イオンを含有する培養液を供給する培養液供給手段と、前記培養槽に前記光合成生物の培養に必要な補助栄養素を供給する補助栄養素供給手段と、前記培養槽から液体培地を排出する排出手段とを具備することを特徴とするバイオマス培養槽。A culture tank for holding a photosynthetic organism and a liquid medium, a culture solution supply means for supplying a culture solution containing carbonate ions to the culture tank, and an auxiliary for supplying supplementary nutrients necessary for culturing the photosynthetic organism to the culture tank A biomass culture tank comprising nutrient supply means and discharge means for discharging a liquid medium from the culture tank. 前記液体培地には前記光合成生物が分散されると共に、前記光合成生物を表面に付着可能な無機物または有機物からなる担持体が分散されていることを特徴とする請求項1記載のバイオマス培養槽。The biomass culture tank according to claim 1, wherein the photosynthetic organism is dispersed in the liquid medium, and a carrier made of an inorganic substance or an organic substance capable of adhering the photosynthetic organism to the surface is dispersed. 前記培養槽から前記光合成生物およびこの光合成生物が付着した担持体を回収する回収手段と、前記回収された担持体から光合成生物を取り除いた後、前記担持体を前記培養槽に返送する返送手段とを具備することを特徴とする請求項2記載のバイオマス培養槽。A recovery means for recovering the photosynthetic organism and the carrier attached to the photosynthetic organism from the culture tank; and a return means for returning the carrier to the culture tank after removing the photosynthetic organism from the recovered carrier. The biomass culture tank according to claim 2, comprising: 前記担持体は、焼却灰、石炭灰およびこれらのものから重金属を除去して得られる処理スラグの中から選ばれる少なくとも1種を含むことを特徴とする請求項2または3記載のバイオマス培養槽。The biomass carrier according to claim 2 or 3, wherein the carrier includes at least one selected from incineration ash, coal ash, and treated slag obtained by removing heavy metals from these. 前記担持体は、前記光合成生物の種子、胞子もしくは株またはその生育に必要な栄養素を包含または付着させたものであることを特徴とする請求項2乃至4のいずれか1項記載のバイオマス培養槽。The biomass carrier according to any one of claims 2 to 4, wherein the carrier includes or attaches seeds, spores or strains of the photosynthetic organism or nutrients necessary for the growth thereof. . 前記担持体を最大直径2cm以下のペレット状にすると共に、前記培養槽内の液体培地を循環させることにより、前記担持体を前記培養槽内で循環させることを特徴とする請求項2乃至5のいずれか1項記載のバイオマス培養槽。6. The carrier according to claim 2, wherein the carrier is made into a pellet having a maximum diameter of 2 cm or less, and the carrier is circulated in the culture tank by circulating a liquid medium in the culture tank. The biomass culture tank of any one of Claims. 前記担持体は、プラスチック、植物繊維もしくは金属からなる網状もしくはかご状の構造物の内部に保持され、または、前記構造物に固定されている特徴とする請求項2乃至5のいずれか1項記載のバイオマス培養槽。The said support body is hold | maintained inside the net-like or cage-like structure which consists of a plastic, a vegetable fiber, or a metal, or is fixed to the said structure. Biomass culture tank. 前記炭酸イオンを含有する培養液は、石炭灰または焼却灰と水とを接触させて得られる溶液に二酸化炭素を接触させて炭酸イオンとして生成させたものを含むことを特徴とする請求項1乃至7のいずれか1項記載のバイオマス培養槽。The culture solution containing carbonate ions includes a solution obtained by bringing carbon ash into contact with a solution obtained by bringing coal ash or incineration ash into contact with water to produce carbonate ions. The biomass culture tank according to any one of 7. 前記培養液中の炭酸イオン、水素イオン、その他前記光合成生物の成長に必要な無機成分および有機成分の中から選ばれる少なくとも1種の濃度を測定する濃度測定手段と、この濃度測定手段の結果に応じて前記補助栄養素供給手段からの各種補助栄養素の供給量を調整し前記培養液を所定の組成とする組成調整手段とを有することを特徴とする請求項1乃至8のいずれか1項記載のバイオマス培養槽。Concentration measuring means for measuring at least one concentration selected from carbonate ions, hydrogen ions, and other inorganic and organic components necessary for the growth of the photosynthetic organism in the culture solution, and the results of the concentration measuring means 9. The composition adjusting device according to claim 1, further comprising: a composition adjusting unit that adjusts a supply amount of various supplemental nutrients from the supplemental nutrient supplying unit to make the culture solution have a predetermined composition. Biomass culture tank. 前記排出手段において前記培養槽から排出された液体培地中の含有有機物濃度を測定する含有有機物濃度測定手段と、この含有有機物濃度測定手段の測定結果に応じて前記培養液供給手段からの培養液供給量を調整する供給量調整手段とを有することを特徴とする請求項1乃至9のいずれか1項記載のバイオマス培養槽。Contained organic matter concentration measuring means for measuring the concentration of contained organic matter in the liquid medium discharged from the culture tank in the discharging means, and supply of the culture solution from the culture solution supplying means according to the measurement result of the contained organic matter concentration measuring means The biomass culture tank according to any one of claims 1 to 9, further comprising supply amount adjusting means for adjusting the amount. 前記培養槽内部の壁面および底面の少なくとも一方を鏡面とし、その鏡面上に光触媒層を設けたことを特徴とする請求項1乃至10のいずれか1項記載のバイオマス培養槽。The biomass culture tank according to any one of claims 1 to 10, wherein at least one of a wall surface and a bottom surface inside the culture tank is a mirror surface, and a photocatalyst layer is provided on the mirror surface. 前記培養槽における前記光合成生物の光合成に用いる光を取り入れる採光部に、前記光合成に用いられる波長の光を前記培養槽外部から内部に透過し、内部から外部への透過を抑制する選択的透光性フィルムまたはガラスを設けたことを特徴とする請求項1乃至11のいずれか1項記載のバイオマス培養槽。Selective translucency that transmits light of the wavelength used for photosynthesis from the outside to the inside of the culture tank and suppresses the transmission from the inside to the outside in the daylighting section that incorporates light used for photosynthesis of the photosynthetic organism in the culture tank The biomass culture tank according to any one of claims 1 to 11, wherein a biofilm or glass is provided. 光合成生物の培養において、焼却灰および石炭灰から選択される少なくとも1種と水とを接触させた後、これに二酸化炭素を接触させて炭酸イオンを含有する培養液を作製し、この培養液を用いて光合成生物の培養を行うことを特徴とするバイオマス培養方法。In the cultivation of photosynthetic organisms, at least one selected from incineration ash and coal ash is brought into contact with water, and then carbon dioxide is brought into contact therewith to prepare a culture solution containing carbonate ions. A biomass culturing method comprising culturing a photosynthetic organism using the method.
JP2003169493A 2003-06-13 2003-06-13 Biomass culture tank and biomass culture method Expired - Fee Related JP4284116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169493A JP4284116B2 (en) 2003-06-13 2003-06-13 Biomass culture tank and biomass culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169493A JP4284116B2 (en) 2003-06-13 2003-06-13 Biomass culture tank and biomass culture method

Publications (2)

Publication Number Publication Date
JP2005000121A true JP2005000121A (en) 2005-01-06
JP4284116B2 JP4284116B2 (en) 2009-06-24

Family

ID=34094618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169493A Expired - Fee Related JP4284116B2 (en) 2003-06-13 2003-06-13 Biomass culture tank and biomass culture method

Country Status (1)

Country Link
JP (1) JP4284116B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115760A (en) * 2004-10-21 2006-05-11 Olympus Corp Cell culture apparatus and optical observation device
JP2009011197A (en) * 2007-07-02 2009-01-22 Univ Of Miyazaki Culture medium for photosynthetic organism utilizing incineration ash and method for producing the same and method for culturing photosynthetic organism
JP2009050809A (en) * 2007-08-28 2009-03-12 Toa Nekken Kk Reduction agent of carbon dioxide in combustion flue gas and carbon dioxide reduction method
JP2010004868A (en) * 2008-05-30 2010-01-14 Ccs Inc Culturing system for aquatic photosynthesizing organism
WO2010016538A1 (en) * 2008-08-06 2010-02-11 シーシーエス株式会社 Aquatic photosynthetic organism-culture apparatus
WO2010100795A1 (en) * 2009-03-04 2010-09-10 株式会社筑波バイオテック研究所 Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same
JP2011024462A (en) * 2009-07-23 2011-02-10 Akazawa Sogo Kenkyusho:Kk Culture apparatus
JP2012115236A (en) * 2010-12-03 2012-06-21 Ihi Corp Phospholescence illuminator, and culture device and method
WO2013051747A1 (en) * 2011-10-04 2013-04-11 주식회사 삼에스코리아 Microalgae gathering method for carbon dioxide-fixing device
CN114053967A (en) * 2020-07-31 2022-02-18 珊瑚湾科技有限公司 Calcium reaction control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804640B1 (en) * 2015-12-08 2017-12-05 한국생산기술연구원 System for farming microalgae and method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115760A (en) * 2004-10-21 2006-05-11 Olympus Corp Cell culture apparatus and optical observation device
JP4584671B2 (en) * 2004-10-21 2010-11-24 オリンパス株式会社 Cell culture device and optical observation device
JP2009011197A (en) * 2007-07-02 2009-01-22 Univ Of Miyazaki Culture medium for photosynthetic organism utilizing incineration ash and method for producing the same and method for culturing photosynthetic organism
JP2009050809A (en) * 2007-08-28 2009-03-12 Toa Nekken Kk Reduction agent of carbon dioxide in combustion flue gas and carbon dioxide reduction method
JP2010004868A (en) * 2008-05-30 2010-01-14 Ccs Inc Culturing system for aquatic photosynthesizing organism
WO2010016538A1 (en) * 2008-08-06 2010-02-11 シーシーエス株式会社 Aquatic photosynthetic organism-culture apparatus
WO2010100795A1 (en) * 2009-03-04 2010-09-10 株式会社筑波バイオテック研究所 Stirring machine for photosynthesis, photobioreactor using same and method for culturing aquatic organisms using same
JP5661028B2 (en) * 2009-03-04 2015-01-28 株式会社筑波バイオテック研究所 Stirrer for photosynthesis, photobioreactor using the same, and underwater biological culture method
JP2011024462A (en) * 2009-07-23 2011-02-10 Akazawa Sogo Kenkyusho:Kk Culture apparatus
JP2012115236A (en) * 2010-12-03 2012-06-21 Ihi Corp Phospholescence illuminator, and culture device and method
WO2013051747A1 (en) * 2011-10-04 2013-04-11 주식회사 삼에스코리아 Microalgae gathering method for carbon dioxide-fixing device
CN114053967A (en) * 2020-07-31 2022-02-18 珊瑚湾科技有限公司 Calcium reaction control method and device

Also Published As

Publication number Publication date
JP4284116B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US4966096A (en) Water purification system and apparatus
JP4284116B2 (en) Biomass culture tank and biomass culture method
CN107285472A (en) Black-odor river stereo in-situ Ecosystem restoration system and ecological restoring method in situ
JP2019524152A (en) Sterile medium for high-density culture of microalgae and air compression, air cooling, automatic carbon dioxide supply, sealed vertical photobioreactor, collection and drying equipment, and carbon dioxide biomass conversion using them Method for purifying air and water, characterized by providing fixation
CN102348647A (en) Filter medium using granular activated coal for purifying eutrophic sewage caused by nitrogen or phosphorus, water purification plant utilizing same, method of treating sludge with fine activated-coal powder as ion-exchange material, and various recy
CN105209591A (en) Photobioreactor for CO2 biosequestration with immobilised biomass of algae or cyanobacteria
CN110092481A (en) Ecological device and the ecosystem
JP4185973B2 (en) Useful marine organisms cultivated on land, useful marine organisms obtained by the method and apparatus
KR102651694B1 (en) Ecological circulation agriculture and livestock integrated production system.
RU2595670C2 (en) System for decomposition of organic compounds and operating method thereof
CN106359236A (en) Ecological fish tank system
Suresh et al. Microalgae-based biomass production for control of air pollutants
US20080044892A1 (en) Air pollutants reduction system
CN1646982A (en) Water clarifying agent inducing catalytic reaction and method of clarifying water through activation of microorganism
JPH1057745A (en) Recovering and fixing method of carbon dioxide
JPH1084800A (en) Culture device
CN208956743U (en) A kind of raising fish and shrimp pond convenient for blowdown
ES2262432B1 (en) PROCEDURE FOR SETTING CARBON DIOXIDE THROUGH THE USE OF A CIANOBACTERIA CULTURE.
JP3981731B2 (en) Sludge treatment apparatus and sludge treatment method
CN106045054A (en) Acquiring method of ecological enzymes and water purifying system formed by using ecological enzymes
JP2001231394A (en) Method for culturing capitella sp.1 for cleaning organic substance sludge and method for cleaning organic substance sludge
JP2005224720A (en) Bacteria reactor and algae reactor for water treatment, and water purification apparatus using them
JPH11343181A (en) Production of porous formed body, culture method, culture system and filtration system using the same porous body
JP2005013970A (en) Eutrophication prevention system of water, and eutrophication prevention method of water
WO1996013970A1 (en) Algal turf water purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

LAPS Cancellation because of no payment of annual fees