JP2006115760A - Cell culture apparatus and optical observation device - Google Patents

Cell culture apparatus and optical observation device Download PDF

Info

Publication number
JP2006115760A
JP2006115760A JP2004306907A JP2004306907A JP2006115760A JP 2006115760 A JP2006115760 A JP 2006115760A JP 2004306907 A JP2004306907 A JP 2004306907A JP 2004306907 A JP2004306907 A JP 2004306907A JP 2006115760 A JP2006115760 A JP 2006115760A
Authority
JP
Japan
Prior art keywords
observation
objective lens
photocatalyst
optical system
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004306907A
Other languages
Japanese (ja)
Other versions
JP2006115760A5 (en
JP4584671B2 (en
Inventor
Atsuhiro Tsuchiya
敦宏 土屋
Hiroaki Kinoshita
博章 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004306907A priority Critical patent/JP4584671B2/en
Publication of JP2006115760A publication Critical patent/JP2006115760A/en
Publication of JP2006115760A5 publication Critical patent/JP2006115760A5/ja
Application granted granted Critical
Publication of JP4584671B2 publication Critical patent/JP4584671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell culture apparatus and an optical observation device free from deterioration of image by cloudiness and stain and capable of preventing proliferation of bacteria and fungi. <P>SOLUTION: In the cell culture apparatus 3 equipped with a transmission window 23 applied to the optical observation device having at least either one of observation optical system and illumination optical system and used for transmitting light of the observation optical system or the illumination optical system, the transmission window 23 is coated with a photocatalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、細胞培養装置や、生きた細胞や生体を観察する為の光学的観察装置の防曇、防汚、抗菌に係る技術に関する。   The present invention relates to a technique related to antifogging, antifouling, and antibacterial of a cell culture device and an optical observation device for observing living cells and living bodies.

まず、第1の従来例として、細胞培養装置を積載した倒立型顕微鏡による培養細胞の観察について説明する。
生きた培養細胞を光学的に観察する場合には図9の倒立型顕微鏡の例で示すように、ステージ14の上に細胞を生かし続ける為の細胞培養装置3を積載して観察している。
First, observation of cultured cells using an inverted microscope equipped with a cell culture device will be described as a first conventional example.
When observing live cultured cells optically, as shown in the example of the inverted microscope of FIG. 9, the cell culture apparatus 3 for keeping the cells alive is loaded on the stage 14 and observed.

以下、図9及び図10を参照して、その詳細な説明を行う。図9は倒立型顕微鏡の全体概略図、図10は標本20(以下、「培養細胞」、「組織細胞」或いは単に「細胞」等と称する)の周辺の拡大図である。   Hereinafter, a detailed description thereof will be given with reference to FIGS. 9 and 10. FIG. 9 is an overall schematic view of an inverted microscope, and FIG. 10 is an enlarged view of the periphery of a specimen 20 (hereinafter referred to as “cultured cells”, “tissue cells”, or simply “cells”).

倒立型顕微鏡16の構成及び動作を透過照明観察、蛍光観察の順に説明する。
透過照明観察をする場合には、光源4から出射した照明光は透過照明光学系5を介して標本となる培養細胞20を照明する。照明された培養細胞20からの観察光が対物レンズ1により結像され、途中のリレー観察光学系57(図9では、観察光学系の光軸上に配置された光学素子を示している)を介して接眼レンズ17により目視で観察可能となる。なお、位相差観察の場合は透過照明光学系5に配したリングスリットを対物レンズ1内の位相膜に投影したり、DIC観察の場合には照明光学系5、観察光学系57中に偏光板やDICプリズムを配置する必要がある。
The configuration and operation of the inverted microscope 16 will be described in the order of transmission illumination observation and fluorescence observation.
In the case of transmission illumination observation, the illumination light emitted from the light source 4 illuminates the cultured cell 20 as a specimen via the transmission illumination optical system 5. Observation light from the illuminated cultured cell 20 is imaged by the objective lens 1 and a relay observation optical system 57 (shown in FIG. 9 shows an optical element arranged on the optical axis of the observation optical system). The eyepiece 17 can be visually observed. In the case of phase difference observation, a ring slit disposed in the transmission illumination optical system 5 is projected onto the phase film in the objective lens 1, or in the case of DIC observation, the illumination optical system 5 and the observation optical system 57 include polarizing plates. It is necessary to arrange a DIC prism.

蛍光観察の場合には、光源7からの照明光は、落射照明光学系8(図9では、落射照明光学系の光軸上に配置された光学素子を示している。以下同様)により集光されると共に、培養細胞20に染色された蛍光色素に最適な励起波長になるように励起フィルタ9により波長選択され、ダイクロイックミラー10で反射され、培養細胞20に照射される。培養細胞20から発した蛍光は、ダイクロイックミラー10を透過し、吸収フィルタ11により観察に必要な蛍光波長のみに選択される。以降、前述の透過照明観察の場合と同様に接眼レンズ17により目視で観察可能となる。   In the case of fluorescence observation, the illumination light from the light source 7 is condensed by the epi-illumination optical system 8 (in FIG. 9, an optical element disposed on the optical axis of the epi-illumination optical system is shown). At the same time, the wavelength is selected by the excitation filter 9 so as to obtain an optimum excitation wavelength for the fluorescent dye stained on the cultured cells 20, reflected by the dichroic mirror 10, and irradiated to the cultured cells 20. The fluorescence emitted from the cultured cells 20 passes through the dichroic mirror 10 and is selected by the absorption filter 11 only for the fluorescence wavelength necessary for observation. Thereafter, the eyepiece 17 can be visually observed as in the case of the above-mentioned transmitted illumination observation.

なお、前記励起フィルタ9、ダイクロイックミラー10、吸収フィルタ11はターレット状のミラーユニットカセット12内に配置されており、ミラーユニットカセット12は回転軸13を中心として回転可能になっている。これにより、上記の3種類のフィルタ9、10、11が一体的に対物レンズの光軸2上へ挿脱可能になっている。   The excitation filter 9, the dichroic mirror 10, and the absorption filter 11 are arranged in a turret-shaped mirror unit cassette 12, and the mirror unit cassette 12 is rotatable about a rotation shaft 13. As a result, the three types of filters 9, 10, 11 can be integrally inserted into and removed from the optical axis 2 of the objective lens.

以上、透過照明観察、蛍光観察を行う場合の光学的な動作を説明したが、実際には培養細胞20を積載したステージ14を図示しないステージハンドルを操作する事で、細胞の観察したい場所を観察光軸2上に持ってきて、さらに準焦ハンドル15を操作する事で対物レンズ1を上下させ細胞20にピントを合わせる事で観察可能となる。   In the above, the optical operation in the case of performing the transmission illumination observation and the fluorescence observation has been described. Actually, the stage 14 loaded with the cultured cells 20 is operated by operating the stage handle (not shown) to observe the place where the cell is to be observed. It can be observed by bringing it onto the optical axis 2 and further operating the semi-focus handle 15 to move the objective lens 1 up and down to focus on the cell 20.

次に、培養細胞20の周辺の説明を行う。
培養細胞20は、ガラスボトムディッシュ21の底の穴の空いた部分に張り付けたカバーガラス19上に積載されている。また、ガラスボトムディッシュ21の外周は、保温箱22と、透過照明光を透過できるようになっている透過窓23で覆われている。保温箱22の底面にはヒータ32が配されており、ガラスボトムディッシュ21を介して培養細胞20を37℃に維持可能になっている。
Next, the periphery of the cultured cell 20 will be described.
The cultured cells 20 are loaded on a cover glass 19 attached to a holed portion of the bottom of the glass bottom dish 21. The outer periphery of the glass bottom dish 21 is covered with a heat insulating box 22 and a transmission window 23 that can transmit the transmitted illumination light. A heater 32 is disposed on the bottom surface of the heat insulating box 22, and the cultured cells 20 can be maintained at 37 ° C. via the glass bottom dish 21.

一方、保温箱22内にはガラスボトムディッシュ21の周りにバスが設けてあり、バスの中には水24が入っている。この水分が適度に蒸発する事で保温箱22内の湿度を100%に保ち、培養液58の蒸発を押さえている。又、保温箱22の側壁にはチューブ27が設けてられており、チューブ27を介してCOボンベ26からCOを供給することで培養細胞のPhを7程度に保っている。 On the other hand, a bath is provided around the glass bottom dish 21 in the heat insulating box 22, and water 24 is contained in the bath. By appropriately evaporating the water, the humidity in the heat insulation box 22 is kept at 100%, and the evaporation of the culture solution 58 is suppressed. Further, a tube 27 is provided on the side wall of the heat insulating box 22, and the cultured cell Ph is maintained at about 7 by supplying CO 2 from the CO 2 cylinder 26 through the tube 27.

なお、高NAのWDの短い対物レンズ1でも培養細胞にピントが合うように保温箱22の底面には穴25が設けており、その中に対物レンズが入るようになっている。又、ステージ14を動かしても穴25の内壁が対物レンズ1と干渉しないように穴25は少し大きめになっている。   In addition, a hole 25 is provided in the bottom surface of the heat insulating box 22 so that the cultured cell is focused even on the objective lens 1 having a high NA and a short WD, and the objective lens can be inserted therein. The hole 25 is slightly larger so that the inner wall of the hole 25 does not interfere with the objective lens 1 even when the stage 14 is moved.

上記のような構成において、保温箱22内は、温度37℃、湿度100%環境であり、一方、対物レンズ1は20℃程度の室温環境にある為、ピントを合わせる為に対物レンズ1を培養細胞20に近づけると、温度の低い対物レンズが急に温度の高い環境にさらされるので、その温度差により対物レンズ1の先玉18の表面が結露し曇ってしまう。顕微鏡の対物レンズはNAが大きい為、わずかな曇りでも顕微鏡画像の劣化につながり、満足の行く観察ができない。特に倒立型顕微鏡の場合は前述したように、高NAでWDの短い対物レンズを使用すると、培養細胞20と共に保温箱22を移動させなくてはならない都合上、保温箱22の底面に穴25を設けなくてはならず、対物レンズが保温箱22内から漏れてきた高湿度の空気にさらされ、さらに対物レンズ1の先玉18が曇り易い状況になる。また、WDが短いので、対物レンズ1の先玉18は温度の高い培養細胞20により近づいてしまい、これも曇り易い要因となっている。   In the configuration as described above, the inside of the heat insulation box 22 is a temperature of 37 ° C. and a humidity of 100%, while the objective lens 1 is in a room temperature environment of about 20 ° C., so that the objective lens 1 is cultured for focusing. When approaching the cell 20, the low-temperature objective lens is suddenly exposed to a high-temperature environment, and the temperature difference causes the surface of the front lens 18 of the objective lens 1 to condense and become cloudy. Since the objective lens of the microscope has a large NA, even a slight cloudiness leads to deterioration of the microscope image, and satisfactory observation cannot be performed. In particular, in the case of an inverted microscope, as described above, when an objective lens having a high NA and a short WD is used, the heat insulation box 22 must be moved together with the cultured cells 20, so that a hole 25 is formed on the bottom surface of the heat insulation box 22. The objective lens must be provided, and the objective lens is exposed to the high-humidity air leaking from the inside of the heat insulating box 22, and the front lens 18 of the objective lens 1 is likely to be cloudy. Further, since the WD is short, the front lens 18 of the objective lens 1 approaches the cultured cell 20 having a high temperature, which is also a factor that tends to be cloudy.

また、保温箱22の上面の透過窓23も対物レンズと同様の状況にあり、その下側(保温箱内面)は曇りやすくなる。透過窓23は透過照明光が透過する部分であるが、特に位相差観察の場合は透過照明光学系5中のリングスリットを対物レンズ内の億相膜に投影している為、この透過窓23が曇っているとリングスリットが位相膜に適正に投影されず像のコントラストが悪くなってしまう。DIC観察の場合も標本上で2本に分離した照明光を干渉させる事でコントラストを付けて観察しているが、透過窓23が曇っていると適性な干渉が起きず、やはり像のコントラストが悪くなってしまう。   Further, the transmission window 23 on the upper surface of the heat insulating box 22 is also in the same situation as the objective lens, and the lower side (the inner surface of the heat insulating box) tends to be cloudy. The transmission window 23 is a part through which the transmission illumination light is transmitted. In particular, in the case of phase difference observation, the ring slit in the transmission illumination optical system 5 is projected onto the billion phase film in the objective lens. If it is cloudy, the ring slit is not properly projected on the phase film, and the contrast of the image is deteriorated. In the case of DIC observation, the observation is performed with a contrast by interfering with the illumination light separated into two on the specimen. However, if the transmission window 23 is cloudy, appropriate interference does not occur, and the contrast of the image is also reduced. It gets worse.

透過窓をヒータで暖める事で曇りを防止している例もあるが、わざわざヒータを設けなくてはならず経済的ではない。又、保温箱22内の培養液58や、図示していないが、細胞の生理反応を観察する為に添加された様々な薬品が揮発して、透過窓23の下面や、対物レンズ1の先玉18を汚してしまう事もある。これも前述した曇りと同様に顕微鏡画像の劣化となる。   Although there is an example in which fogging is prevented by warming the transmission window with a heater, a heater must be purposely provided, which is not economical. In addition, although not shown, the culture solution 58 in the heat insulation box 22 and various chemicals added for observing the physiological reaction of the cells volatilize, and the lower surface of the transmission window 23 and the tip of the objective lens 1 are volatilized. The ball 18 may be soiled. This also deteriorates the microscopic image as in the above-described cloudiness.

さらに、前述したように保温箱22内は外部に対して完全に密閉されていない為、外部から細菌などが侵入してくる場合がある。そして培養細胞が細菌に感染して細胞が弱ったり、死滅してしまう事態も発生する。   Furthermore, since the inside of the heat insulation box 22 is not completely sealed with respect to the outside as described above, bacteria or the like may enter from the outside. In some cases, the cultured cells are infected with bacteria and the cells become weak or die.

次に、第2の従来例として、正立顕微鏡で組織細胞やラットなどの生体内の観察を行う場合の従来技術を、後述する第2及び第3の実施形態で参照する図4から図6を参照して説明する。   Next, as a second conventional example, the prior art when observing a living body such as a tissue cell or a rat with an upright microscope is referred to in second and third embodiments described later with reference to FIGS. Will be described with reference to FIG.

図4は全体概略構成を示す図であり、図5及び図6は標本周りの詳細図である。なお、図4から図6において、図9及び図10と同じ部分には同じ符号を付している。   FIG. 4 is a diagram showing an overall schematic configuration, and FIGS. 5 and 6 are detailed views around the specimen. 4 to 6, the same parts as those in FIGS. 9 and 10 are denoted by the same reference numerals.

図4を参照して正立型顕微鏡の全体の構成と動作を説明する。基本的な構成は第1の従来例と同様であり、標本を観察する為の対物レンズ1、標本を移動させる為のステージ14、対物レンズ1を上下させてピントを合わせる為の準焦ハンドル15、落射照明の為の光源7、落射照明光学系8、蛍光観察の為の励起フィルタ9、ダイクロイックミラー10、吸収フィルタ11、3種類の前記フィルタ9.10、11を対物レンズ光軸2上へ挿脱する為の回転軸13、透過照明の為の光源4、透過照明光学系5、コンデンサレンズ33から成っており、第1の従来例と同様の動作により接眼レンズ17で目視により観察可能となっている。第1の従来例と異なる部分は標本よりも対物レンズ1が上にあり、上から観察するようになっている点である。   The overall configuration and operation of the upright microscope will be described with reference to FIG. The basic configuration is the same as that of the first conventional example, the objective lens 1 for observing the specimen, the stage 14 for moving the specimen, and the semi-focus handle 15 for moving the objective lens 1 up and down to focus. , A light source 7 for epi-illumination, an epi-illumination optical system 8, an excitation filter 9 for fluorescence observation, a dichroic mirror 10, an absorption filter 11, and the three types of filters 9.10 and 11 are placed on the optical axis 2 of the objective lens. The rotating shaft 13 for insertion / removal, the light source 4 for transmitted illumination, the transmitted illumination optical system 5 and the condenser lens 33 are included, and can be visually observed with the eyepiece 17 by the same operation as in the first conventional example. It has become. The difference from the first conventional example is that the objective lens 1 is located above the specimen and is observed from above.

図5を参照して組織細胞20の周辺の説明を行う。この場合も第1の従来例と殆ど同じである為、その詳細な説明は省略し、異なる部分に関してのみ説明する。   The periphery of the tissue cell 20 will be described with reference to FIG. Since this case is also almost the same as the first conventional example, detailed description thereof is omitted, and only different portions will be described.

対物レンズ1が、標本(組織細胞)20の上に配置されており、培養液58の中に対物レンズ1を浸して観察する水浸対物レンズとなっている。また、保温箱22の上面は第1の従来例のように透過照明光は透過しないので、側壁と一体の不透明な材質で構成されているが、その替わりに対物レンズ1が入るように保温箱22の上面に穴59が空いている。保温箱22と共に組織細胞20がステージ14により移動するため、穴59はそのぶん少し大きめになっている。また、組織細胞20が移動しても保温箱22内の細胞培養空間が外部に対して密閉できるように、対物レンズ1の外周に嵌合し、かつそのフランジ部が保温箱22の上面に自重で密着するようなリング222bが設けてある。ただ、自重で密着させているだけなので、完全な密閉にはなっていない。なお、第1の従来例と異なり、保温箱22の下には対物レンズ1の替わりに透過照明光を集光する為のコンデンサレンズ33が配されているが、対物レンズよりもWDが長いので、保温箱22の底面には穴をあける必要がなく、その替わりに透過照明光を透過するガラス部材から成る透過窓22aを保温箱22の底面に構成し密閉性を向上させている。   The objective lens 1 is disposed on the specimen (tissue cell) 20 and is a water immersion objective lens for immersing the objective lens 1 in the culture solution 58 for observation. In addition, the upper surface of the heat insulation box 22 does not transmit transmitted illumination light as in the first conventional example, and is therefore made of an opaque material integrated with the side wall. Instead, the heat insulation box is provided so that the objective lens 1 can be inserted. The hole 59 is vacant on the upper surface of 22. Since the tissue cell 20 is moved by the stage 14 together with the heat insulating box 22, the hole 59 is slightly larger. In addition, the cell culture space in the heat insulation box 22 is fitted to the outer periphery of the objective lens 1 so that the cell culture space in the heat insulation box 22 can be sealed from the outside even when the tissue cells 20 move, and the flange portion of the cell 20 A ring 222b is provided so as to be in close contact with each other. However, it is not completely sealed because it is in close contact with its own weight. Unlike the first conventional example, a condenser lens 33 for condensing the transmitted illumination light is arranged under the heat insulation box 22 instead of the objective lens 1, but the WD is longer than the objective lens. In addition, it is not necessary to make a hole in the bottom surface of the heat insulation box 22, and instead, a transmission window 22 a made of a glass member that transmits transmitted illumination light is formed on the bottom surface of the heat insulation box 22 to improve the sealing performance.

このように、組織細胞を観察する場合は、第1の従来例と異なり、水浸対物レンズ1を使用しているので、対物レンズ1の先玉18が曇る心配はないが、常に培養液58に浸されている為に対物レンズ1の先玉18は汚れやすい状態にあり、この汚れが像の劣化の要因となっている。また、透過照明光を透過させる為の透過窓22aは第1の従来例と同様に曇り易く、特に位相差検鏡やDIC検鏡で像を劣化させる。さらに、第1の従来例と同様に保温箱22内面は培養液等の揮発により汚れたり、密閉不足により細菌に汚染されたりして、やはり第1の従来例と同様の問題が発生する。   Thus, when observing tissue cells, unlike the first conventional example, the water immersion objective lens 1 is used, so there is no concern about the tip 18 of the objective lens 1 becoming cloudy, but the culture solution 58 is always present. Therefore, the front lens 18 of the objective lens 1 is easily contaminated, and this contamination causes deterioration of the image. Further, the transmission window 22a for transmitting the transmitted illumination light is likely to be clouded as in the first conventional example, and the image is deteriorated particularly by a phase difference mirror or a DIC microscope. Further, as in the first conventional example, the inner surface of the heat insulating box 22 becomes dirty due to volatilization of the culture solution or the like, or is contaminated by bacteria due to insufficient sealing, which also causes the same problem as in the first conventional example.

図6を参照して標本を生本であるラット60にした場合の説明を行う。組織細胞観察の場合と異なる点は、装置構成としては対物レンズ1の形状のみである。ラットの内臓などを観察する為に体表の一部を切開し穴をあけ、対物レンズ1を挿入して観察するので、対物レンズ1は組織細胞観察の場合よりも外径が小さくなっており、φ10mm以下である。この場合、照明光は殆ど透過しないので、主に落射観察が主となり、コンデンサレンズは不要となる。   With reference to FIG. 6, the case where the specimen is a rat 60, which is an original, will be described. The difference from the case of tissue cell observation is only the shape of the objective lens 1 as an apparatus configuration. In order to observe the internal organs of the rat, a part of the body surface is incised, a hole is made, and the objective lens 1 is inserted for observation. The objective lens 1 has a smaller outer diameter than that for tissue cell observation. , Φ10 mm or less. In this case, the illumination light hardly transmits, so that the epi-illumination is mainly used, and the condenser lens is unnecessary.

このように、ラットを観察する場合は、20℃程度の室温に近い状態の対物レンズ1を37℃のラット体内に挿入するので、ドライ対物レンズの場合は先玉18が非常に曇り易い。実際に対物レンズ1の先玉18が曇った場合は、対物レンズ1を引き抜いてお湯等で温めてから再度挿入していたが、この操作は煩雑である。また、生きたラットを観察しているので、なるべく短時間で観察を終わらせ、手術により切開した穴を縫ってふさぐ必要がある。そうでなければ、ラットが衰弱したり、最悪の場合には死に至ってしまう。これでは次に実験を継続的に行うことができなくなり、非常に無駄が多くなる。もちろん、対物レンズ1が突然曇ってしまったら、実験で得ようとしていたデータが取り直しになる場合もあるが、このような場合もやはり無駄が多い。
上記のように、生きたラットを観察する場合には、対物レンズ1の外周なども汚れやすくなり、細菌やカビの繁殖の原因になるので、次回の実験時にラットに感染する恐れもある。
Thus, when observing a rat, since the objective lens 1 in a state close to room temperature of about 20 ° C. is inserted into the body of the rat at 37 ° C., the tip 18 is very easily clouded in the case of a dry objective lens. When the front lens 18 of the objective lens 1 is actually fogged, the objective lens 1 is pulled out and warmed with hot water or the like and then inserted again. However, this operation is complicated. In addition, since a living rat is being observed, it is necessary to finish the observation in as short a time as possible and sew and close the hole opened by surgery. Otherwise, the rat will be debilitated or in the worst case dead. This makes it impossible to continue the experiment next time, which is very wasteful. Of course, if the objective lens 1 suddenly becomes cloudy, the data that was about to be obtained in the experiment may be re-acquired, but such a case is also wasteful.
As described above, when observing a live rat, the outer periphery of the objective lens 1 and the like are easily soiled, causing bacteria and mold to propagate, and there is a risk of infecting the rat during the next experiment.

また、光により励起されて防曇、防汚、抗菌効果を発揮する光触媒が一般に知られている(特許文献1、特許文献2、又は特許文献3等参照)。しかし、顕微鏡の対物レンズや細胞培養装置の窓などに適用された例はない。   In addition, photocatalysts that are excited by light and exhibit antifogging, antifouling, and antibacterial effects are generally known (see Patent Document 1, Patent Document 2, or Patent Document 3, etc.). However, there is no example applied to an objective lens of a microscope or a window of a cell culture device.

また、光触媒は光を照射しないと、その防曇、防汚、抗菌効果を持続できない為、主に太陽光の当たらない室内で使用する光学的観察装置や細胞培養装置の場合には光触媒を励起させる為の光源が別途必要となるが、多くのスペースを占有し、又経済的でない。   In addition, the photocatalyst can not sustain its anti-fogging, antifouling and antibacterial effects unless it is irradiated with light, so it excites the photocatalyst in the case of optical observation devices and cell culture devices that are used indoors where sunlight does not shine. A separate light source is required, but it occupies a lot of space and is not economical.

更に、光触媒は空気との境界面での反射が多くなるので、光学的観察装置の観察光学系内にコートするとフレアーにより像のコントラストが低下するという問題もある。
特開平5−4816号公報 特開平6−65012号公報 特開平6−298532号公報
Further, since the photocatalyst is reflected at the interface with the air, there is a problem in that the contrast of the image is lowered by flare when it is coated in the observation optical system of the optical observation apparatus.
Japanese Patent Laid-Open No. 5-4816 JP-A-6-65012 JP-A-6-298532

本発明は、曇りや汚れによる像の劣化がなく、細菌やカビの繁殖を防止できる細胞培養装置、光学的観察装置を提供することを目的とする。   It is an object of the present invention to provide a cell culture device and an optical observation device that can prevent the growth of bacteria and fungi without causing image deterioration due to cloudiness or dirt.

本発明の局面に係る発明は、観察光学系又は照明光学系の少なくともどちらか一方を有する光学的観察装置に適用され、前記観察光学系又は照明光学系の光線を透過させる為の透過窓を備えた細胞培養装置において、前記透過窓を光触媒でコートしたことを特徴とする。なお、この技術は、このような細胞培養装置を備えた光学的観察装置や、光触媒をコートした対物レンズで生体を直接観察するような光学的観察装置にも適用できる。   The invention according to the aspect of the present invention is applied to an optical observation apparatus having at least one of an observation optical system and an illumination optical system, and includes a transmission window for transmitting light beams of the observation optical system or the illumination optical system. In the cell culture apparatus, the permeation window is coated with a photocatalyst. This technique can also be applied to an optical observation apparatus equipped with such a cell culture apparatus and an optical observation apparatus that directly observes a living body with an objective lens coated with a photocatalyst.

本発明によれば、曇りや汚れによる像の劣化がなく、細菌やカビの繁殖を防止できる細胞培養装置、光学的観察装置を提供することができる。   According to the present invention, it is possible to provide a cell culture device and an optical observation device that can prevent the growth of bacteria and fungi without causing image deterioration due to cloudiness or dirt.

図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態を、図1から図3を参照して説明する。
図1は第1の実施形態に係る光学的観察装置の全体の概略構成を示す図、図2は図1における標本(培養細胞)20周辺の詳細図、図3は図1より落射照明部分を抜き出して、別の変形例を説明する為の図である。なお、本実施形態は、第1の従来例と構成はほぼ同じであり、異なる部分に関してのみ説明を行う。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing an overall schematic configuration of the optical observation apparatus according to the first embodiment, FIG. 2 is a detailed view around a specimen (cultured cell) 20 in FIG. 1, and FIG. 3 shows an epi-illumination portion from FIG. It is a figure for extracting and explaining another modification. The configuration of the present embodiment is almost the same as that of the first conventional example, and only different portions will be described.

まず、図1の全体構成から説明する。
透過照明光学系5の光路中には、光源4からの照明光の内、光触媒を励起する為に必要な360nmのUV光のみを選択的に透過する励起フィルタ30が照明光路上に着脱可能に配置されている。なお、励起フィルタ30の挿脱手段は公知のスライダ、ターレット等の切換え手段を用いれば良い。
First, the overall configuration of FIG. 1 will be described.
In the optical path of the transmission illumination optical system 5, an excitation filter 30 that selectively transmits only the 360-nm UV light necessary for exciting the photocatalyst in the illumination light from the light source 4 is detachable on the illumination optical path. Has been placed. Note that the switching means such as a known slider or turret may be used as the means for inserting / removing the excitation filter 30.

ミラーユニットカセット12内のフィルタは、図1の状態では490nm励起用の蛍光観察フィルタセット9、10、11が光路に配されており、その反対側に光触媒励起用のフィルタセット28、29が配置されている。励起フィルタ28は光源7からの照明光のうち、光触媒を効率良く励起する360nmのUV光のみを選択的に透過させるようになっており、ミラー29はアルミ又は銀コートされたミラーで、U∨から可視域までを90%以上反射できるようになっている。   In the state shown in FIG. 1, the filter in the mirror unit cassette 12 is provided with fluorescence observation filter sets 9, 10, 11 for excitation at 490 nm in the optical path, and filter sets 28, 29 for photocatalyst excitation are arranged on the opposite side. Has been. The excitation filter 28 selectively transmits only the 360 nm UV light that efficiently excites the photocatalyst among the illumination light from the light source 7, and the mirror 29 is a mirror coated with aluminum or silver. 90% or more from the visible region to the visible region.

なお、培養細胞20は、例えば499nmで励起される蛍光色素FITCで染色されている。   The cultured cells 20 are stained with a fluorescent dye FITC excited at, for example, 499 nm.

次に図2を参照して標本(培胞)20周辺の説明を行う。
本実施の形態では、図中太い実線で示す部分、すなわち、対物レンズ1の先玉18の外側の表面と、透過窓23の両面と、保温箱22の内面に、酸化チタンからなる光触媒がコートしてある。又、保温箱22内には細菌を死滅させる為の殺菌灯31が設けられており、この殺菌灯31は光触媒を励起できる360nmのUV光も含んでいる。
Next, the periphery of the specimen (cultured cell) 20 will be described with reference to FIG.
In the present embodiment, a photocatalyst made of titanium oxide is coated on a portion indicated by a thick solid line in the drawing, that is, on the outer surface of the front lens 18 of the objective lens 1, both surfaces of the transmission window 23, and the inner surface of the heat insulating box 22. It is. Further, a sterilizing lamp 31 for killing bacteria is provided in the heat insulating box 22, and the sterilizing lamp 31 also includes 360 nm UV light that can excite the photocatalyst.

以上の構成により、光触媒の効果を発揮させるための作用を以下に説明する。
まず、図1の状態では、従来例で説明したようにミラーユニットカセット内のフィルタセットは、蛍光観察フィルタセット9、10、11が光路に配置されており蛍光観察可能な状態となっている。この状態では励起フィルタ9により光源7からの光触媒励起用のUV光はカットされているので、光触媒励起用のUV光が観察光へのフレアーとなる心配はない。もちろん落射照明光源7は点灯状態になっており、透過照明光源4と殺菌灯31は消灯状態になっている。この状態で、接眼レンズ17で蛍光像を観察する。蛍光観察が終わったら落射照明光源7を消灯する。
The operation for exerting the effect of the photocatalyst with the above configuration will be described below.
In the state of FIG. 1, as described in the prior art, the filter set in the mirror unit cassette is in a state in which fluorescence observation filter sets 9, 10, 11 are arranged in the optical path and fluorescence observation is possible. In this state, the UV light for photocatalyst excitation from the light source 7 is cut by the excitation filter 9, so there is no concern that the UV light for photocatalyst excitation becomes a flare to the observation light. Of course, the epi-illumination light source 7 is turned on, and the transmitted illumination light source 4 and the germicidal lamp 31 are turned off. In this state, the fluorescent image is observed with the eyepiece 17. When the fluorescence observation is finished, the epi-illumination light source 7 is turned off.

次に蛍光観察が終わり、光触媒を励起する場合の手順を説明する。
まず、ミラーユニットカセット内のフィルタセットを切り替えて、光触媒励起用のフィルタセット28、29を光路に挿入する。次に、落射照明光源7を点灯すると、落射照明光源7からの照明光は励起フィルタ28により光触媒を励起可能なUV光に波長選択された後に、ミラー29で対物レンズ1に向けて反射されて、対物レンズ1の先玉18や保温箱22の上面の透過窓23にコートされた光触媒を励起する。また、必要に応じて保温箱22内の殺菌灯31を点灯すれば、落射照明光源7では照射しづらい保温箱22の隅のほうのまで照明できるので、保温箱22内面の光触媒まで均−に励起する事ができる。
Next, a procedure for exciting the photocatalyst after fluorescence observation will be described.
First, the filter sets in the mirror unit cassette are switched, and the filter sets 28 and 29 for photocatalyst excitation are inserted into the optical path. Next, when the epi-illumination light source 7 is turned on, the illumination light from the epi-illumination light source 7 is selected by the excitation filter 28 as UV light that can excite the photocatalyst, and then reflected by the mirror 29 toward the objective lens 1. The photocatalyst coated on the front lens 18 of the objective lens 1 and the transmission window 23 on the upper surface of the heat insulating box 22 is excited. Further, if the germicidal lamp 31 in the heat insulation box 22 is turned on as necessary, the incident light source 7 can illuminate the corners of the heat insulation box 22 that are difficult to irradiate. Can be excited.

さらに光触媒を強力に励起したい場合は、透過照明光学系5中に励起フィルタ30を挿入して、透過照明光源4を点灯させれば良い。これにより殺菌灯31の裏側などの照明光が照射されにくい部位の光触媒も励起する事ができる。   In order to excite the photocatalyst further, an excitation filter 30 may be inserted into the transmission illumination optical system 5 to turn on the transmission illumination light source 4. Thereby, the photocatalyst of the site | part which is hard to irradiate illumination light, such as the back side of the germicidal lamp 31, can also be excited.

そして、光触媒の励起が十分になったら、各光源を消灯させる。   When the photocatalyst is sufficiently excited, each light source is turned off.

次に、透過照明観察を行う場合の手順を説明する。
透過照明光源4を点灯させる。なお、この場合には、落射照明光源7及び殺菌灯31は消灯しておく。次に、ミラーユニットカセット内のフィルタセットは4種類切換えできるようになっているが、ミラーユニットカセット内のフィルタセットを切り替えて図示していない空穴にして、接眼レンズ17で観察する。
Next, a procedure for performing transmitted illumination observation will be described.
The transmitted illumination light source 4 is turned on. In this case, the epi-illumination light source 7 and the germicidal lamp 31 are turned off. Next, four types of filter sets in the mirror unit cassette can be switched. The filter sets in the mirror unit cassette are switched to form holes (not shown) and observed with the eyepiece 17.

上記の蛍光観察や、光触媒の励起や、透過照明観察の一連の動作は電動化することで自動的に実行させるようにしてもよく、又、観察していない時にタイマ一等を使用して定期的に光触媒を励起させるようにしても良い。   The above series of operations for fluorescence observation, photocatalyst excitation, and transmitted illumination observation may be automatically performed by motorization. Alternatively, the photocatalyst may be excited.

なお、本実施形態では光触媒励起用フィルタとして励起フィルタ28とミラー29とをセットで使用しているが、例えば励起フィルタ28及びミラー29に替えて360nmを反射するダイクロイックミラーを使用してもよい。この場合、1枚のダイクロイックミラーをミラー29の位置に配置して、励起フィルタ28をなくすことができるので、フィルタが1枚減ることになり安価になる。   In the present embodiment, the excitation filter 28 and the mirror 29 are used as a set as the photocatalyst excitation filter, but for example, a dichroic mirror that reflects 360 nm may be used instead of the excitation filter 28 and the mirror 29. In this case, since one dichroic mirror can be arranged at the position of the mirror 29 and the excitation filter 28 can be eliminated, the number of filters is reduced and the cost is reduced.

また、励起フィルタ28と上記の360nmを反射するダイクロイックミラーを併せて使用しても良い。これであれば、360nm励起のDAPI等の蛍光色素を観察する為の励起フィルタ、ダイクロイックミラー、吸収フィルタのフィルタセットがそのまま使用できるので、既に所持している場合には新たに購入する必要がなく、DAPI観察にも使用できるので経済的である。   Further, the excitation filter 28 and the dichroic mirror that reflects 360 nm may be used in combination. In this case, a filter set of an excitation filter, a dichroic mirror, and an absorption filter for observing a fluorescent dye such as 360 nm excitation DAPI can be used as it is, so there is no need to purchase a new one if you already have it. It is economical because it can be used for DAPI observation.

さらに、光触媒を励起している状態の図3に示すように、ダイクロイックミラーを、360nmと490nmを反射する特性にし、吸収フィルタ11をFITC用の特性にしておく。そして、励起フィルタを図示のように落射照明光学系の光路の途中にスライダ、ターレット等の公知の切換え機能により複数種類挿脱可能に配置しておき、光触媒を励起する時は光触媒用励起フィルタ28を、FITC観察する場合は、FITC用励起フィルタ9を光路に挿入する事で、光触媒励起と単光観察を切り替えることができる。   Further, as shown in FIG. 3 in a state where the photocatalyst is excited, the dichroic mirror has a characteristic of reflecting 360 nm and 490 nm, and the absorption filter 11 has a characteristic for FITC. As shown in the figure, an excitation filter is arranged in the middle of the optical path of the epi-illumination optical system so that a plurality of types can be inserted and removed by a known switching function such as a slider and a turret. When performing FITC observation, it is possible to switch between photocatalytic excitation and single light observation by inserting the FITC excitation filter 9 into the optical path.

光触媒用の励起光も蛍光観察用の励起光も強度が十分な場合にはダイクロイックミラーの変わりにハーフミラーやガラスを使用しても良い。このようにすれば、光触媒専用にミラーユニットカセット内のフィルタセットのスペースを占有する事がない為、4種類の限られたフィルタセット装着スペースを他の蛍光色素の観察に有効に利用することができる。   If the excitation light for photocatalyst and the excitation light for fluorescence observation are sufficiently strong, a half mirror or glass may be used instead of the dichroic mirror. In this way, since the filter set space in the mirror unit cassette is not occupied exclusively for the photocatalyst, the four limited filter set mounting spaces can be used effectively for observation of other fluorescent dyes. it can.

なお、本実施形態では、光触媒を360nmのUV励起の物を、蛍光色素を490nm励起のFITCを使用したが、観察したい蛍光色素に応じて、蛍光色素を励起しない励起特性をもつ光触媒を使用しても良く、又それに応じて前述したような様々なフィルタを自由に組み合わせることができる。   In this embodiment, the photocatalyst is UV-excited at 360 nm, and the fluorescent dye is FITC with 490 nm excitation. However, depending on the fluorescent dye to be observed, a photocatalyst having an excitation characteristic that does not excite the fluorescent dye is used. In addition, various filters as described above can be freely combined accordingly.

(第2の実施形態)
本発明の第2の実施形態を、図4及び図5を参照して説明する。
図4及び図5の説明は第2の従来例で説明したので、詳細な説明は省略する。本実施形態においては、正立顕微鏡において、曇りや汚れを防止する方法について説明する。図4は全体概略構成を示す図であり、図5は標本周りの詳細図である。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS.
4 and 5 have been described in the second conventional example, detailed description thereof will be omitted. In the present embodiment, a method for preventing fogging and dirt in an upright microscope will be described. FIG. 4 is a diagram showing an overall schematic configuration, and FIG. 5 is a detailed view around the specimen.

本実施形態では、第1の実施形態と異なり、対物レンズ1が、標本(組織細胞)20の上に配置されており、培養液58の中に対物レンズ1を浸して観察する水浸対物レンズとなっている。このため、本実施形態では、図5に示すように、太い実線で示すように、保温箱22の内面と、ガラス製の透過窓22aの内側露出部と、コンデンサレンズ33の先玉(太い破線)に光触媒をコートしている。これにより、第1の実施形態と同様の効果が得られる。   In the present embodiment, unlike the first embodiment, the objective lens 1 is disposed on the specimen (tissue cell) 20, and the immersion objective lens for immersing and observing the objective lens 1 in the culture solution 58. It has become. For this reason, in this embodiment, as shown in FIG. 5, as shown by a thick solid line, the inner surface of the heat insulating box 22, the inner exposed portion of the glass transmission window 22a, and the tip of the condenser lens 33 (thick broken line) ) Is coated with a photocatalyst. Thereby, the effect similar to 1st Embodiment is acquired.

(第3の実施形態)
本発明の第3の実施形態を、図6を参照して説明する。なお、本実施形態において、全体構成は図4とほぼ同じであって、図4に係る構成において、細胞培養装置をラットとしている。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the overall configuration is substantially the same as in FIG. 4, and in the configuration according to FIG. 4, the cell culture device is a rat.

この場合において、曇りや汚染等を防止するために、ラットに直接接する可能性のある部分を光触媒でコートしている。具体的には、対物レンズ1の本体の外表面と、先端部、及び内表面のうち先端部から先玉まで、更に、先玉の露出部分に光触媒をコートしている。なお、本実施形態において、対物レンズ1の先端に図示しないカバーガラスを設けて、カバーガラスより先玉側へは汚れがいかないようにしても良く、その場合には、カバーガラスに光触媒をコートしても良い。   In this case, in order to prevent fogging, contamination, and the like, a portion that may be in direct contact with the rat is coated with a photocatalyst. Specifically, the photocatalyst is coated on the outer surface of the main body of the objective lens 1, the tip portion, and the inner surface from the tip portion to the tip lens, and further on the exposed portion of the tip lens. In the present embodiment, a cover glass (not shown) may be provided at the tip of the objective lens 1 so that the front glass side is not soiled from the cover glass. In this case, the cover glass is coated with a photocatalyst. May be.

(第4の実施形態)
本発明の第4の実施形態を、図7を参照して説明する。図7において、図1と同じ部分には同じ符号を付している。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIG. In FIG. 7, the same parts as those in FIG.

図7において、光源部53と、検出器46を含む検出部と、走査部35を含むハウジング36とが、それぞれシングルモードファイバ47とマルチモードファイバ40とで接続されている。光源部53に配置された3種類の異なる波長の光源50〜52からのレーザ光は、ダイクロイックミラー49a、49b、及びミラー49cを介して、それぞれの光又は合成光(説明の便宜上「レーザ光」と称する)が、シングルモードファイバ48の接続点に導かれる。シングルモードファイバ48の接続端45を介して検出部に導かれたレーザ光はミラー44及びダイクロイックミラー43で反射されてマルチモードファイバ40に導かれてハウジング36に導かれる。   In FIG. 7, a light source unit 53, a detection unit including a detector 46, and a housing 36 including a scanning unit 35 are connected by a single mode fiber 47 and a multimode fiber 40, respectively. Laser light from light sources 50 to 52 of three different wavelengths arranged in the light source unit 53 is transmitted through the dichroic mirrors 49a and 49b and the mirror 49c, respectively, or combined light ("laser light" for convenience of explanation). Is referred to as the connection point of the single mode fiber 48. The laser beam guided to the detection unit via the connection end 45 of the single mode fiber 48 is reflected by the mirror 44 and the dichroic mirror 43 and guided to the multimode fiber 40 and guided to the housing 36.

ハウジング36に導かれたレーザ光は、ミラー35a及び35bを有する走査部35で偏向され、結像レンズ37、リレーレンズ38及び対物レンズ1を介してラット60上で走査される。なお、対物レンズ1は、駆動機構34の保持部1aで着脱可能に保持され、駆動機構34によって光軸方向に移動可能になっている。ラット60からの光(蛍光及び反射光を含む)は、レーザ光と逆の経路をたどり、対物レンズ1から走査部35を介してカップリングレンズ39を介してマルチモードファイバ40に入射する。なお、マルチモードファイバ40の入射端面のコアは共焦点顕微鏡におけるピンホールの機能を有している。マルチモードファイバ40を出射した光は、検出部のリレーレンズ41、ダイクロイックミラー43及びバリアフィルタ42を介して、所定の波長のみの光が検出器46に入射する。   The laser light guided to the housing 36 is deflected by the scanning unit 35 having mirrors 35 a and 35 b and scanned on the rat 60 through the imaging lens 37, the relay lens 38 and the objective lens 1. The objective lens 1 is detachably held by the holding portion 1a of the drive mechanism 34, and can be moved in the optical axis direction by the drive mechanism 34. Light (including fluorescence and reflected light) from the rat 60 follows a path opposite to that of the laser light, and enters the multimode fiber 40 from the objective lens 1 through the scanning unit 35 and the coupling lens 39. Note that the core of the incident end face of the multimode fiber 40 has a pinhole function in the confocal microscope. The light emitted from the multimode fiber 40 is incident only on the detector 46 through the relay lens 41, the dichroic mirror 43, and the barrier filter 42 of the detection unit.

上記の構成において、本実施形態では、図中太い実線で示すハウジング36の表面と対物レンズ1の表面露出部に光触媒をコートしている。   In the above configuration, in the present embodiment, the photocatalyst is coated on the surface of the housing 36 and the exposed surface portion of the objective lens 1 indicated by a thick solid line in the drawing.

本実施形態では、第3の実施形態とは異なり、対物レンズ1をラット60に接触させないで、その表面を観察しているが、やはりラット60に近い部分は細菌等による汚染の危険があり、光触媒による抗菌が有効となる。   In the present embodiment, unlike the third embodiment, the surface of the objective lens 1 is observed without contacting the objective lens 1 with the rat 60, but the portion close to the rat 60 is also at risk of contamination by bacteria, etc. Antibacterial effect by photocatalyst becomes effective.

(第5の実施形態)
本発明の第5の実施形態を、図8を参照して説明する。図8において、図1及び図7と同じ部分には、同じ符号を付している。
(Fifth embodiment)
A fifth embodiment of the present invention will be described with reference to FIG. 8, the same parts as those in FIGS. 1 and 7 are denoted by the same reference numerals.

本実施形態では、光源として落射照明光源7を使用しており、第3の実施形態と同様に、体表の一部を切開し穴をあけ、対物レンズ1をラット60に挿入して観察している。なお、本実施形態においても、検出器(CCD)15と光源7を含む部分と、ハウジング36とがバンドルファイバ54で接続されており、更に、第4の実施形態と同様に、図中太い実線で示すハウジング36の表面と対物レンズ1の表面露出部に光触媒をコートしている。   In the present embodiment, the epi-illumination light source 7 is used as the light source. As in the third embodiment, a part of the body surface is opened and a hole is formed, and the objective lens 1 is inserted into the rat 60 and observed. ing. In the present embodiment, the detector (CCD) 15 and the portion including the light source 7 and the housing 36 are connected by the bundle fiber 54, and, as in the fourth embodiment, a thick solid line in the figure. The surface of the housing 36 and the exposed surface of the objective lens 1 are coated with a photocatalyst.

なお、本実施形態は、第4の実施形態とは異なり、走査部35は存在せず、対物レンズ1とカップリングレンズ37によりラット60の2次元像がバンドルファイバ54の端面に結像され、その2次元像が、そのままバンドルファイバ54の出射端面に伝送される。さらに、この伝送された像をコリメートレンズ61、リレーレンズ55により検出器(CCD)56により撮像して、図示しないモニタで観察可能になる。ここで、光源7は水銀ランプなどの白色光源で、励起フィルタ62によりラット60に染色された蛍光色素に必要な励起波長に波長選択され、コレクタレンズ57、コリメートレンズ61により、バンドルファイバ54端面が均一に照明されるようになっている。よって、バンドルファイバ54端面と光学的に共役な標本面であるラット60を均一に照射する。この際、ダイクロイックミラー43は励起光を反射して、ラット60から発する蛍光を透過し、吸収フィルタ42により、観察可能な受光波長に選択されて検出器56に導かれる。   In the present embodiment, unlike the fourth embodiment, the scanning unit 35 does not exist, and a two-dimensional image of the rat 60 is formed on the end surface of the bundle fiber 54 by the objective lens 1 and the coupling lens 37. The two-dimensional image is transmitted to the exit end face of the bundle fiber 54 as it is. Further, the transmitted image is picked up by a detector (CCD) 56 with a collimator lens 61 and a relay lens 55 and can be observed on a monitor (not shown). Here, the light source 7 is a white light source such as a mercury lamp, and the wavelength is selected to an excitation wavelength necessary for the fluorescent dye stained on the rat 60 by the excitation filter 62, and the end face of the bundle fiber 54 is formed by the collector lens 57 and the collimator lens 61. It is designed to be illuminated uniformly. Therefore, the rat 60 which is a sample surface optically conjugate with the end face of the bundle fiber 54 is uniformly irradiated. At this time, the dichroic mirror 43 reflects the excitation light, transmits the fluorescence emitted from the rat 60, is selected by the absorption filter 42 as an observable light receiving wavelength, and is guided to the detector 56.

上記の各実施形態に係る構成により、下記の効果が得られる。   With the configuration according to each of the above embodiments, the following effects can be obtained.

1. 観察光学系又は照明光学系の光線を透過させる為の細胞培養装置の透過窓に光触媒をコートしたので、温度差が大きくて曇りやすい透過窓が曇りにくくなり、観察像の劣化がなく、かつ適切な照明が可能である。また、光触媒には抗菌効果があるので、透過窓の細胞培養空間側にコートした場合には細胞が細菌で死滅する事を防止できる。さらに、光触媒には汚れ防止効果があるので、曇り防止効果と同様に、汚れによる観察や照明への悪影響が少なくなり、鮮明な観察像が得られる。   1. Since the photocatalyst is coated on the transmission window of the cell culture device for transmitting the light of the observation optical system or illumination optical system, the transmission window that has a large temperature difference and tends to become cloudy is less likely to cloud, and the observation image does not deteriorate and is appropriate. Lighting is possible. In addition, since the photocatalyst has an antibacterial effect, it is possible to prevent cells from being killed by bacteria when coated on the cell culture space side of the transmission window. Further, since the photocatalyst has a stain prevention effect, similarly to the fog prevention effect, the observation due to the stain and the adverse effect on the illumination are reduced, and a clear observation image can be obtained.

2. 細胞培養空間の内面に光触媒をコートしたので、抗菌効果が得られる。すなわち、光学的観察装置を備えた細胞培養装置では、高NAで観察しようとすると光学的観察装置の対物レンズ小を標本(細胞)に近づけ、その状態で観察位置を変更する為には対物レンズか標本(細胞)を相対的に移動させなくてはならないので、観察空間と細胞培養空間を完全に遮断する事が難しく、観察空間からの細菌が培養空間に侵入しやすいという問題があったが、細胞培養空間側内面に光触媒をコートすることで光触媒の抗菌効果により細胞が細菌で死滅する事を防止できる。   2. Since the inner surface of the cell culture space is coated with a photocatalyst, an antibacterial effect is obtained. In other words, in a cell culture device equipped with an optical observation device, when an observation is made with a high NA, a small objective lens of the optical observation device is brought close to a specimen (cell), and an objective lens is used to change the observation position in that state. However, since the specimen (cell) must be moved relatively, it is difficult to completely block the observation space and the cell culture space, and bacteria from the observation space can easily enter the culture space. By coating the inner surface of the cell culture space with a photocatalyst, it is possible to prevent the cells from being killed by bacteria due to the antibacterial effect of the photocatalyst.

3. 光学的観察装置のうち、光触媒によるコーティングを、特に曇り、汚れの影響を受けて像が劣化しやすい顕微鏡に適用したので、画像劣化防止効果が大きく、より鮮明な顕微鏡画像が観察可能となる。   3. In the optical observation apparatus, the photocatalyst coating is applied to a microscope in which the image is easily deteriorated due to the influence of cloudiness and dirt, so that the effect of preventing image deterioration is great, and a clearer microscope image can be observed.

4. 細胞培養装置は細胞培養空間を殺菌する為の殺菌灯を捕えている場合が多く、殺菌灯に光触媒を励起可能な波長を含ませるようにしておけば、殺菌灯で光触媒の励起が可能となるので、光触媒を励起させる為の専用の光源を別に設ける必要がなく、省スペースで経済的である。   4). In many cases, the cell culture apparatus captures a germicidal lamp for sterilizing the cell culture space. If the germicidal lamp includes a wavelength capable of exciting the photocatalyst, the photocatalyst can be excited by the germicidal lamp. Therefore, it is not necessary to provide a dedicated light source for exciting the photocatalyst, which is space-saving and economical.

5. 生体又は生細胞を観察する場合、光学的観察装置の対物レンズを生体や生細胞に近づけたり、挿入して観察する事が多い。通常、対物レンズは20℃程度の室温で、生体はもちろん、生細胞も培養環境下にあると37℃程度なので、その温度差により対物レンズ先玉が曇り易いが、対物レンズ先玉に光触媒をコートすることにより、上記の効果に加え、レンズが曇りにくくなり、鮮明な観察像が得られる。   5. When observing living organisms or living cells, the objective lens of an optical observation apparatus is often observed close to or inserted into the living organism or living cells. Usually, the objective lens is at a room temperature of about 20 ° C., and living cells as well as living cells are about 37 ° C. in a culture environment. By coating, in addition to the above effects, the lens is less likely to be clouded and a clear observation image is obtained.

6. スキャナを内蔵し、且つ対物レンズが着脱可能に装着されたハウンジングを持つ光学的観察装置においては、標本の近くの装置をより小型化することが可能であるため、特に生体観察に用いられる場合が多い。このため、曇りの影響を受け易いが、対物レンズ先玉を光触媒でコートする事により、防曇効果を有し、鮮明な観察像が得られる。なお、抗菌、防汚効果も同様に得られる。   6). In an optical observation apparatus having a housing with a built-in scanner and an objective lens that is detachably mounted, the apparatus near the specimen can be made smaller, so that it may be used particularly for in vivo observation. Many. For this reason, it is easily affected by fogging, but by coating the objective lens tip with a photocatalyst, it has an antifogging effect and a clear observation image can be obtained. In addition, antibacterial and antifouling effects can be obtained similarly.

7. 標本像を伝達するためのバンドルファイバが装着され、且つ対物レンズが着脱可能に装着されたハウジングを持つ光学的観察装置においては、上記と同様に標本の近くの装置をより小型化することが可能であるため、特に生体観察に用いられる場合が多い。このため、曇りの影響を受け易いが、対物レンズ先玉を光触媒でコートする事により、防曇効果を有し、鮮明な観察像が得られる。なお、抗菌、防汚効果も同様に得られる。   7. In an optical observation device having a housing with a bundle fiber for transmitting a sample image and a detachably mounted objective lens, the device near the sample can be made smaller in the same manner as described above. Therefore, it is often used for living body observation. For this reason, it is easily affected by fogging, but by coating the objective lens tip with a photocatalyst, it has an antifogging effect and a clear observation image can be obtained. In addition, antibacterial and antifouling effects can be obtained similarly.

8. 光学的観察装置が顕微鏡の場合には、対物レンズはNAが大きいので、曇りや汚れによる画像劣化の影響を受けやすい。また、WDが比較的小さいために、生体内に挿入しなくても、生体の熟の影響で先玉が曇りやすかったり、血液等がかかりやすく汚れやすい。しかし、対物レンズ先玉を光触媒でコートすることで、上記と同様の防曇、防汚効果を有し、鮮明な観察像が得られる。   8). When the optical observation apparatus is a microscope, the objective lens has a large NA, and therefore is easily affected by image deterioration due to fogging or dirt. In addition, since the WD is relatively small, even if the WD is not inserted into the living body, the tip is easily clouded due to the ripening of the living body, or blood or the like is easily applied to the lens. However, by coating the objective lens tip with a photocatalyst, the same antifogging and antifouling effects as described above can be obtained, and a clear observation image can be obtained.

9. 対物レンズの外径がφ10以下の大きさの場合には、生体内に穴をあけて挿入したり、耳やロなどの空いている穴に挿入して観察することが多い為、より対物レンズ先玉が曇り易く、汚れやすい状況になると同時に、挿入した対物レンズを引き抜かないと曇りや汚れをふき取れないので、ふき取り作業が大変になるが、先玉を光触媒でコートする事で、防曇、防汚、効果を有し、鮮明な観察像が得られる。   9. When the objective lens has an outer diameter of φ10 or less, it is often observed by inserting a hole in a living body or inserting it into a vacant hole such as an ear or a rod. The tip is easily cloudy and dirty, and at the same time, the fog cannot be removed unless the inserted objective lens is pulled out. It has antifouling and effects, and a clear observation image can be obtained.

10. スキャナを内蔵し、且つ対物レンズが着脱可能に装着されたハウジングを持つ光学的観察装置においては、上記と同様に標本の近くの装置をより小型化することが可能であるため、特に生体観察に用いられる場合が多い。このため、曇りの影響を受け易いが、ハウジングや対物レンズ外周を光触媒でコートする事により、防曇効果を有し、鮮明な観察像が得られる。更に、抗菌、防汚効果も同様に得られ、当該部分が清浄に保たれるので細菌やカビの発生が押さえられ、生体や検鏡者への不用意な感染を押さえる事ができる。さらに光触媒には生体との摩擦低減効果もあるので、対物レンズを生体内にスムーズに挿入する事ができる.
11. 標本像を伝達する為のバンドルファイバが装着されて、且つ対物レンズが着脱可能に装着されたハウジングを有する光学的観察装置において、標本の近くの装置をより小型化する事が可能で、特に生体観察に用いられる場合が多い為、ハウジングや対物レンズ外周も生体の近くに配置されて汚れやすい状況になるが、ハウジングや対物レンズ外周や光触媒をコートする事で、防汚、抗菌効果が発揮され、清浄に保たれるので細菌やカビの発生が押さえられ、生体や検鏡者への不用意な感染を押さえる事ができる。さらに光触媒には生体との摩擦低減効果もあるので、対物レンズを生体内にスムーズに挿入する事ができる.
12. ドライ対物レンズでは、空気との境界面で反射率の高い光触媒を先玉にコートするとフレアー等により画像が劣化するが、対物レンズを液浸にすると、光触媒は屈折率が近い水などの液体と接する事になり、その境界面での反射率を下げる事ができるので、フレアーのない鮮明な画像を確保すると共に、防汚、杭菌効果を得られる。
10. In an optical observation apparatus having a housing with a built-in scanner and an objective lens detachably mounted, the apparatus near the specimen can be made smaller in the same manner as described above. Often used. For this reason, it is easy to be affected by fogging, but by coating the outer periphery of the housing or objective lens with a photocatalyst, it has an antifogging effect and a clear observation image is obtained. Furthermore, the antibacterial and antifouling effects can be obtained in the same manner, and the portions are kept clean, so that the generation of bacteria and mold can be suppressed, and careless infection to the living body and the examiner can be suppressed. Furthermore, the photocatalyst also has an effect of reducing friction with the living body, so that the objective lens can be smoothly inserted into the living body.
11. In an optical observation apparatus having a housing to which a bundle fiber for transmitting a specimen image is attached and an objective lens is detachably attached, the apparatus near the specimen can be further reduced in size. Since it is often used for observation, the outer periphery of the housing and objective lens is also placed near the living body, making it easy to get dirty. However, antifouling and antibacterial effects are demonstrated by coating the outer periphery of the housing and objective lens and a photocatalyst. Because it is kept clean, the generation of bacteria and mold is suppressed, and careless infection to the living body and the examiner can be suppressed. Furthermore, the photocatalyst also has an effect of reducing friction with the living body, so that the objective lens can be smoothly inserted into the living body.
12 With a dry objective lens, if the tip is coated with a photocatalyst with high reflectivity at the interface with air, the image deteriorates due to flare, etc. Since the reflectance at the boundary surface can be lowered, a clear image with no flare can be secured, and antifouling and stake fungus effects can be obtained.

13. 光学的観察装置が対物レンズ光軸と同軸的に標本を照明する照明手段を有しており、前記照明手段は前記光触媒を励起できるようになっている(すなわち、励起できる波長を含んでいる)ので、光触媒を励起させる為の専用の光源を設ける必要がなく、省スペースで経済的である。   13. The optical observation device has illumination means for illuminating the sample coaxially with the optical axis of the objective lens, and the illumination means can excite the photocatalyst (that is, includes a wavelength that can be excited). Therefore, there is no need to provide a dedicated light source for exciting the photocatalyst, which is space-saving and economical.

14. 標本を照明する為の光源と、光源からの照明光を対物レンズを介して標本へ向けて反射すると共に、対物レンズと同軸的に導光し、且つ標本から発した光線を透過する光路分割手段と、前記光路分割手段と同一位置に配置可能であり、前記光源からの照朋光の内、光触媒を励起可能な波長のみを反射する反射手段とを備えており、前記光路分割手段と前記反射手段を対物レンズ光軸上に挿脱可能に構成したので、観察時は光路分割手段を光路に挿入する事で観察に必要な照明光のみを標本に照射して観察可能になり、かつ観察していない時には光触媒を効率良く励起できる波長のみを反射する反射手段を光路に挿入する事で、光触媒をより多く励起でき、防曇、抗菌、防汚効果を長く維持する事ができる。   14 A light source for illuminating the specimen, and an optical path dividing means for reflecting the illumination light from the light source toward the specimen through the objective lens, guiding the light coaxially with the objective lens, and transmitting the light emitted from the specimen And a reflecting means that reflects only the wavelength that can excite the photocatalyst among the illumination light from the light source, and the optical path dividing means and the reflecting Since the means can be inserted into and removed from the optical axis of the objective lens, it is possible to observe by irradiating the specimen with only the illumination light necessary for observation by inserting the optical path dividing means into the optical path during observation. By inserting a reflection means that reflects only the wavelength that can efficiently excite the photocatalyst into the optical path, more photocatalyst can be excited and antifogging, antibacterial, and antifouling effects can be maintained for a long time.

15. 光触媒を酸化チタンとした為、防曇、防汚、抗薗効果が大きい。   15. Because the photocatalyst is made of titanium oxide, the antifogging, antifouling and antifungal effects are great.

16. 光触媒の励起波長を標本に染色した蛍光色素の励起波長と異なる波長にした為、光触媒に必要な波長のみ照射すれば、蛍光色素を励起しないので、光触媒を励起している最中に、蛍光色素が褪色してしまう心配がなく、明るい蛍光観察が可能となる。すなわち、例えば、光触媒の励起波長は360nmのUV光なので、培養細胞20に染色してある蛍光色素FITCの励起波長490nmと異なり、FITCが褪色する心配がない。   16. Since the excitation wavelength of the photocatalyst is different from the excitation wavelength of the fluorescent dye dyed on the specimen, the fluorescent dye will not be excited if only the wavelength required for the photocatalyst is irradiated. There is no fear of fading, and bright fluorescence observation becomes possible. That is, for example, since the excitation wavelength of the photocatalyst is 360 nm UV light, unlike the excitation wavelength of 490 nm of the fluorescent dye FITC that is stained on the cultured cells 20, there is no concern that FITC will fade.

17. 透過照明光学系の光路にも光触媒用の励起フィルタを挿脱可能に配置したので、より強力な光触媒の励起が可能となる。また光触媒の種類によって励起されやすい波長が異なるが、その波長が落射照明光源や殺菌灯の波長では弱い場合にも、透過照明光源による光触媒の励起が有効になる。このように、蛍光用フィルタと光触媒用フィルタを兼用したり、励起フィルタだけを切換えたりする事で経済効果や汎用性が高まる。   17. Since the excitation filter for the photocatalyst is detachably disposed in the optical path of the transmitted illumination optical system, more powerful excitation of the photocatalyst is possible. Further, although the wavelength that is easily excited differs depending on the type of the photocatalyst, excitation of the photocatalyst by the transmitted illumination light source is effective even when the wavelength is weak at the wavelength of the epi-illumination light source or the germicidal lamp. Thus, economic effects and versatility are enhanced by using both the fluorescence filter and the photocatalyst filter, or by switching only the excitation filter.

上記の各実施形態により、以下の発明を抽出することができる。なお、下記の発明は、単独で適用しても良いし、適宜組み合わせて適用しても良い。   The following inventions can be extracted by the above embodiments. In addition, the following invention may be applied independently and may be applied in combination as appropriate.

本発明の第1の局面に係る細胞培養装置は、観察光学系又は照明光学系の少なくともどちらか一方を有する光学的観察装置に適用され、前記観察光学系又は照明光学系の光線を透過させる為の透過窓を備えた細胞培養装置であって、前記透過窓を光触媒でコートしたことを特徴とする。
本発明の第2の局面に係る細胞培養装置は、観察光学系又は照明光学系の少なくともどちらか一方を有する光学的観察装置に適用され、前記観察光学系又は照明光学系の光線を透過させる為の透過窓を備えた細胞培養装置であって、細胞培養空間の内面を光触媒でコートしたことを特徴とする。第1及び第2の局面において、以下の態様が好ましい。
(1) 光学的観察装置は顕微鏡であること。
(2) 細胞培養装置は殺菌灯を備えており、前記殺菌灯は前記光触媒を励起可能な波長を含むこと。
(3) 前記光学的観察装置が標本を照明する照明手段を更に備え、前記照明手段からの光が前記光触媒を励起可能な波長を含むこと。
(4) 標本を照明する為の光源と、光源からの照明光を対物レンズを介して標本へ向けて反射すると共に、対物レンズと同軸的に導光し、且つ標本から発した光線を透過する光路分割手段と、前記光路分割手段と同一位置に配置可能であり、前記光源からの照明光の内、光触媒を励起可能な波長のみを反射する反射手段とを備えており、前記光路分割手段と前記反射手段を対物レンズ光軸上に挿脱可能に構成したこと。
(5) 前記光触媒が酸化チタンであること。
(6) 前記光触媒の励起波長が標本に染色した蛍光色素の励起波長と異なる波長であること。
The cell culture device according to the first aspect of the present invention is applied to an optical observation device having at least one of an observation optical system and an illumination optical system, and transmits light rays of the observation optical system or illumination optical system. A cell culture apparatus provided with a permeation window, wherein the permeation window is coated with a photocatalyst.
The cell culture device according to the second aspect of the present invention is applied to an optical observation device having at least one of an observation optical system and an illumination optical system, and transmits light rays of the observation optical system or illumination optical system. A cell culture device provided with a transparent window, characterized in that the inner surface of the cell culture space is coated with a photocatalyst. In the first and second aspects, the following embodiments are preferable.
(1) The optical observation device is a microscope.
(2) The cell culture device includes a germicidal lamp, and the germicidal lamp includes a wavelength capable of exciting the photocatalyst.
(3) The optical observation apparatus further includes an illuminating unit that illuminates the specimen, and light from the illuminating unit includes a wavelength capable of exciting the photocatalyst.
(4) A light source for illuminating the specimen, and the illumination light from the light source is reflected toward the specimen through the objective lens, and is guided coaxially with the objective lens and transmits the light emitted from the specimen. An optical path splitting means; and a reflecting means that can be arranged at the same position as the optical path splitting means and reflects only a wavelength capable of exciting a photocatalyst among illumination light from the light source, and the optical path splitting means; The reflecting means is configured to be detachable from the optical axis of the objective lens.
(5) The photocatalyst is titanium oxide.
(6) The excitation wavelength of the photocatalyst is different from the excitation wavelength of the fluorescent dye stained on the specimen.

本発明の第3の局面に係る光学的観察装置は、対物レンズと照明光を標本へ集光するコンデンサレンズとを有し、生体又は生細胞が観察可能な光学的観察装置であって、前記対物レンズ又は前記コンデンサレンズの先玉を光触媒でコートしたことを特徴とする。第3の局面において、以下の態様が好ましい。
(1) 前記対物レンズ又は前記コンデンサレンズの先玉の周囲と先端部とをさらに光触媒でコートしたこと。
(2) (1)において、前記対物レンズ又は前記コンデンサレンズの外周部をさらに光触媒でコートしたこと。
(3) 光源像を標本上でスキャンする為のスキャナを内蔵し、前記対物レンズが着脱可能に装着されたハウジングを備え、前記ハウジングの外側を光触媒でコートしたこと。
(4) 標本像を伝達する為のバンドルファイバが装着され、前記対物レンズが着脱可能に装着されたハウンジングを備え、前記ハウジングの外側を光触媒でコートしたこと。
(5) 光学的観察装置が顕微鏡であること。
(6) 前記対物レンズが生体内に挿入可能なφ10以下の大きさの外径を有すること。
An optical observation apparatus according to a third aspect of the present invention is an optical observation apparatus that includes an objective lens and a condenser lens that collects illumination light onto a specimen, and is capable of observing a living body or living cells, The tip of the objective lens or the condenser lens is coated with a photocatalyst. In the third aspect, the following embodiment is preferable.
(1) The periphery and the tip of the front lens of the objective lens or the condenser lens are further coated with a photocatalyst.
(2) In (1), the outer periphery of the objective lens or the condenser lens is further coated with a photocatalyst.
(3) A built-in scanner for scanning a light source image on a sample, a housing on which the objective lens is detachably mounted, and the outside of the housing is coated with a photocatalyst.
(4) A bundle fiber for transmitting the specimen image is mounted, the housing is provided with a detachable mounting, and the outside of the housing is coated with a photocatalyst.
(5) The optical observation device is a microscope.
(6) The objective lens has an outer diameter of φ10 or less that can be inserted into a living body.

本発明の第4の局面に係る光学的観察装置は、光源像を標本上でスキャンする為のスキャナを内蔵し、かつ対物レンズが着脱可能に装着されたハウジングを有する光学的観察装置であって、前記ハウジングと前記対物レンズのそれぞれの外周に光触媒をコートしたことを特徴とする。   An optical observation apparatus according to a fourth aspect of the present invention is an optical observation apparatus having a housing with a built-in scanner for scanning a light source image on a specimen and having an objective lens detachably attached thereto. The outer periphery of each of the housing and the objective lens is coated with a photocatalyst.

本発明の第5の局面に係る光学的観察装置は、標本像を伝達する為のバンドルファイバが装着され、対物レンズが着脱可能に装着されたハウジングを有する光学的観察装置であって、前記ハウジング及び前記対物レンズのそれぞれの外周に光触媒をコートしたことを特徴とする。第3から第5の局面において、以下の態様が好ましい。
(1) 対物レンズが液浸型であること。
(2) 標本を照明する照明手段を更に備え、前記照明手段からの光が前記光触媒を励起可能な波長を含むこと。
(3) (2)において、標本を照明する為の光源と、光源からの照明光を対物レンズを介して標本へ向けて反射すると共に、対物レンズと同軸的に導光し、且つ標本から発した光線を透過する光路分割手段と、前記光路分割手段と同一位置に配置可能であり、前記光源からの照明光の内、光触媒を励起可能な波長のみを反射する反射手段とを更に備え、前記光路分割手段と前記反射手段を対物レンズ光軸上に挿脱可能に構成したこと。
(4) 前記光触媒が酸化チタンであること。
(5) 前記光触媒の励起波長が標本に染色した蛍光色素の励起波長と異なる波長であること。
An optical observation apparatus according to a fifth aspect of the present invention is an optical observation apparatus having a housing on which a bundle fiber for transmitting a specimen image is mounted and an objective lens is detachably mounted. And a photocatalyst is coated on the outer periphery of each of the objective lenses. In the third to fifth aspects, the following embodiments are preferable.
(1) The objective lens is immersion type.
(2) It further includes an illuminating means for illuminating the specimen, and the light from the illuminating means includes a wavelength capable of exciting the photocatalyst.
(3) In (2), the light source for illuminating the specimen and the illumination light from the light source are reflected toward the specimen through the objective lens, guided coaxially with the objective lens, and emitted from the specimen. An optical path splitting unit that transmits the light beam, and a reflecting unit that can be disposed at the same position as the optical path splitting unit, and reflects only the wavelength that can excite the photocatalyst in the illumination light from the light source, The optical path dividing means and the reflecting means are configured to be detachable from the optical axis of the objective lens.
(4) The photocatalyst is titanium oxide.
(5) The excitation wavelength of the photocatalyst is different from the excitation wavelength of the fluorescent dye stained on the specimen.

本発明の第6の局面に係る光学的観察装置は、観察光学系または証明光学系の少なくとも一方を有する光学的観察装置であって、照明光又は観察光が、前記光学系を透過又は反射する部分に光触媒をコートしたことを特徴とする。第6の局面において、前記光学的観察装置は顕微鏡であることが好ましい。   An optical observation apparatus according to a sixth aspect of the present invention is an optical observation apparatus having at least one of an observation optical system and a proof optical system, and illumination light or observation light transmits or reflects the optical system. The photocatalyst is coated on the part. In the sixth aspect, the optical observation device is preferably a microscope.

本発明は、上記各実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

また、例えば各実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   In addition, for example, even if some structural requirements are deleted from all the structural requirements shown in each embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the effect of the invention Can be obtained as an invention.

第1の実施形態に係る光学的観察装置の全体の概略構成を示す図。The figure which shows schematic structure of the whole optical observation apparatus which concerns on 1st Embodiment. 図1における標本(培養細胞)周辺の詳細図。FIG. 2 is a detailed view around a specimen (cultured cell) in FIG. 1. 図1より落射照明部分を抜き出して、別の変形例を説明する為の図。The figure for extracting an epi-illumination part from FIG. 1 and demonstrating another modification. 第2の実施形態に係る光学的観察装置の全体の概略構成を示す図。The figure which shows schematic structure of the whole optical observation apparatus which concerns on 2nd Embodiment. 図2における標本(培養細胞)周辺の詳細図。FIG. 3 is a detailed view around a specimen (cultured cell) in FIG. 2. 第3の実施形態を説明するための図。The figure for demonstrating 3rd Embodiment. 第4の実施形態に係る光学的観察装置の全体の概略構成を示す図。The figure which shows schematic structure of the whole optical observation apparatus which concerns on 4th Embodiment. 第5の実施形態に係る光学的観察装置の全体の概略構成を示す図。The figure which shows schematic structure of the whole optical observation apparatus which concerns on 5th Embodiment. 従来の光学的観察装置の全体の概略構成を示す図。The figure which shows the schematic structure of the whole of the conventional optical observation apparatus. 図9における標本(培養細胞)周辺の詳細図。FIG. 10 is a detailed view around the specimen (cultured cell) in FIG. 9.

符号の説明Explanation of symbols

1…対物レンズ
1a…保持部
3…細胞培養装置
4…透過照明光源
5…透過照明光学系
7…落射照明光源
8…落射照明光学系
9…FITC用励起フィルタ
10…ダイクロイックミラー
11…吸収フィルタ
12…ミラーユニットカセット
13…回転軸
14…ステージ14
15…準焦ハンドル
16…倒立型顕微鏡
17…接眼レンズ
18…先玉
19…カバーガラス
20…標本
21…ガラスボトムディッシュ
22…保温箱
22a…透過窓
23…透過窓
25…穴
26…ボンベ
27…チューブ
28…励起フィルタ
29…ミラー
30…励起フィルタ
31…殺菌灯
32…ヒータ
33…コンデンサレンズ
34…駆動機構
35…走査部
35a…ミラー
36…ハウジング
37…リレーレンズ
38…結像レンズ
39…コンデンサレンズ
40…マルチモードファイバ
41…リレーレンズ
43…ダイクロイックミラー
44…ミラー
45…接続端
46…検出器
47…シングルモードファイバ
48…シングルモードファイバ
49a、49b…ダイクロイックミラー
49c…ミラー
50〜52…光源
53…光源部
54…マルチモードファイバ
57…観察光学系
59…穴
60…ラット
DESCRIPTION OF SYMBOLS 1 ... Objective lens 1a ... Holding part 3 ... Cell culture apparatus 4 ... Transmission illumination light source 5 ... Transmission illumination optical system 7 ... Epi-illumination light source 8 ... Epi-illumination optical system 9 ... Excitation filter for FITC 10 ... Dichroic mirror 11 ... Absorption filter 12 ... Mirror unit cassette 13 ... Rotating shaft 14 ... Stage 14
DESCRIPTION OF SYMBOLS 15 ... Semi-focus handle 16 ... Inverted microscope 17 ... Eyepiece 18 ... Tip lens 19 ... Cover glass 20 ... Sample 21 ... Glass bottom dish 22 ... Insulation box 22a ... Transmission window 23 ... Transmission window 25 ... Hole 26 ... Cylinder 27 ... Tube 28 ... excitation filter 29 ... mirror 30 ... excitation filter 31 ... sterilization lamp 32 ... heater 33 ... condenser lens 34 ... drive mechanism 35 ... scanning unit 35a ... mirror 36 ... housing 37 ... relay lens 38 ... imaging lens 39 ... condenser lens DESCRIPTION OF SYMBOLS 40 ... Multimode fiber 41 ... Relay lens 43 ... Dichroic mirror 44 ... Mirror 45 ... Connection end 46 ... Detector 47 ... Single mode fiber 48 ... Single mode fiber 49a, 49b ... Dichroic mirror 49c ... Mirror 50-52 ... Light source 53 ... Light source 54 Multi-mode fiber 57 ... observation optical system 59 ... hole 60 ... rat

Claims (6)

観察光学系又は照明光学系の少なくともどちらか一方を有する光学的観察装置に適用され、前記観察光学系又は照明光学系の光線を透過させる為の透過窓を備えた細胞培養装置において、前記透過窓を光触媒でコートしたことを特徴とする細胞培養装置。 In the cell culture apparatus, which is applied to an optical observation apparatus having at least one of an observation optical system and an illumination optical system, and has a transmission window for transmitting light beams of the observation optical system or the illumination optical system, the transmission window A cell culture device characterized in that is coated with a photocatalyst. 観察光学系又は照明光学系の少なくともどちらか一方を有する光学的観察装置に適用され、前記観察光学系又は照明光学系の光線を透過させる為の透過窓を備えた細胞培養装置において、細胞培養空間の内面を光触媒でコートしたことを特徴とする細胞培養装置。 A cell culture space, which is applied to an optical observation apparatus having at least one of an observation optical system and an illumination optical system, and includes a transmission window for transmitting light beams of the observation optical system or the illumination optical system. A cell culture device, wherein the inner surface of the substrate is coated with a photocatalyst. 対物レンズと照明光を標本へ集光するコンデンサレンズとを有し、生体又は生細胞が観察可能な光学的観察装置において、前記対物レンズ又は前記コンデンサレンズの先玉を光触媒でコートしたことを特徴とする光学的観察装置。 An optical observation apparatus having an objective lens and a condenser lens for condensing illumination light onto a specimen, wherein the objective lens or the front lens of the condenser lens is coated with a photocatalyst. An optical observation device. 光源像を標本上でスキャンする為のスキャナを内蔵し、かつ対物レンズが着脱可能に装着されたハウジングを有する光学的観察装置において、前記ハウジングと前記対物レンズのそれぞれの外周に光触媒をコートしたことを特徴とする光学的観察装置。 In an optical observation apparatus having a housing for scanning a light source image on a specimen and having a housing in which an objective lens is detachably mounted, a photocatalyst is coated on the outer periphery of each of the housing and the objective lens An optical observation device. 標本像を伝達する為のバンドルファイバが装着され、対物レンズが着脱可能に装着されたハウジングを有する光学的観察装置において、前記ハウジング及び前記対物レンズのそれぞれの外周に光触媒をコートしたことを特徴とする光学的観察装置。 In an optical observation apparatus having a housing in which a bundle fiber for transmitting a specimen image is mounted and an objective lens is detachably mounted, the outer periphery of each of the housing and the objective lens is coated with a photocatalyst. An optical observation device. 観察光学系または証明光学系の少なくとも一方を有する光学的観察装置において、照明光又は観察光が、前記光学系を透過又は反射する部分に光触媒をコートしたことを特徴とする光学的観察装置。 An optical observation apparatus having at least one of an observation optical system and a proof optical system, wherein a photocatalyst is coated on a portion where illumination light or observation light transmits or reflects through the optical system.
JP2004306907A 2004-10-21 2004-10-21 Cell culture device and optical observation device Expired - Fee Related JP4584671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306907A JP4584671B2 (en) 2004-10-21 2004-10-21 Cell culture device and optical observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306907A JP4584671B2 (en) 2004-10-21 2004-10-21 Cell culture device and optical observation device

Publications (3)

Publication Number Publication Date
JP2006115760A true JP2006115760A (en) 2006-05-11
JP2006115760A5 JP2006115760A5 (en) 2007-12-06
JP4584671B2 JP4584671B2 (en) 2010-11-24

Family

ID=36534229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306907A Expired - Fee Related JP4584671B2 (en) 2004-10-21 2004-10-21 Cell culture device and optical observation device

Country Status (1)

Country Link
JP (1) JP4584671B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077387B2 (en) 2007-10-30 2011-12-13 Olympus Corporation Optical microscope
WO2022234836A1 (en) * 2021-05-06 2022-11-10 味の素株式会社 Fermentation control device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728042B2 (en) * 2012-08-20 2015-06-03 株式会社Screenホールディングス Imaging device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209162A (en) * 2001-01-10 2002-07-26 Nissan Motor Co Ltd Projection device
JP2002286592A (en) * 2001-03-22 2002-10-03 Olympus Optical Co Ltd Method of selecting one portion from sample, carrier used for selecting method, method of manufacturing carrier for selection, and device for conducting selection
JP2003036705A (en) * 2001-07-25 2003-02-07 Toshiba Lighting & Technology Corp Lighting device
JP2003185566A (en) * 2001-12-13 2003-07-03 Matsushita Electric Ind Co Ltd Optical disk for analysis and measuring device therefor
JP2003207601A (en) * 2002-01-15 2003-07-25 Ricoh Co Ltd Objective lens, optical pickup module and optical disk device
JP2003227898A (en) * 2002-02-01 2003-08-15 Nikon Corp Multi-layer film reflecting mirror, soft x-ray optical equipment, exposure device and method for cleaning it
JP2004184447A (en) * 2002-11-29 2004-07-02 Olympus Corp Optical address spatial light modulator and microscope system using the same
JP2005000121A (en) * 2003-06-13 2005-01-06 Toshiba Corp Biomass culture tank and biomass culture method
JP2006065042A (en) * 2004-08-27 2006-03-09 Fuji Photo Film Co Ltd Optical element, lens unit, and imaging device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209162A (en) * 2001-01-10 2002-07-26 Nissan Motor Co Ltd Projection device
JP2002286592A (en) * 2001-03-22 2002-10-03 Olympus Optical Co Ltd Method of selecting one portion from sample, carrier used for selecting method, method of manufacturing carrier for selection, and device for conducting selection
JP2003036705A (en) * 2001-07-25 2003-02-07 Toshiba Lighting & Technology Corp Lighting device
JP2003185566A (en) * 2001-12-13 2003-07-03 Matsushita Electric Ind Co Ltd Optical disk for analysis and measuring device therefor
JP2003207601A (en) * 2002-01-15 2003-07-25 Ricoh Co Ltd Objective lens, optical pickup module and optical disk device
JP2003227898A (en) * 2002-02-01 2003-08-15 Nikon Corp Multi-layer film reflecting mirror, soft x-ray optical equipment, exposure device and method for cleaning it
JP2004184447A (en) * 2002-11-29 2004-07-02 Olympus Corp Optical address spatial light modulator and microscope system using the same
JP2005000121A (en) * 2003-06-13 2005-01-06 Toshiba Corp Biomass culture tank and biomass culture method
JP2006065042A (en) * 2004-08-27 2006-03-09 Fuji Photo Film Co Ltd Optical element, lens unit, and imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077387B2 (en) 2007-10-30 2011-12-13 Olympus Corporation Optical microscope
WO2022234836A1 (en) * 2021-05-06 2022-11-10 味の素株式会社 Fermentation control device and method

Also Published As

Publication number Publication date
JP4584671B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US8575570B2 (en) Simultaneous orthogonal light sheet microscopy and computed optical tomography
JP5587727B2 (en) Laser scanning microscope
JP2004086009A5 (en)
JP2005121796A (en) Laser microscope
US20180106729A1 (en) Imaging platform based on nonlinear optical microscopy for rapid scanning large areas of tissue
US20040263959A1 (en) Scanning beam optical imaging system for macroscopic imaging of an object
JP4854880B2 (en) Laser microscope
JP2010085420A (en) Microscope system
JPWO2018062215A1 (en) Observation device
JP2011118264A (en) Microscope device
JP2003270538A (en) Microscope system
US11977214B2 (en) Phase difference observation apparatus and cell treatment apparatus
JP2011196873A (en) Fluorescence detection method and fluorescence detection device
JP2001221953A (en) Microscope
JP4285807B2 (en) Epi-illumination microscope
JP2008225096A (en) Microscope apparatus and microscope observation method
JP2003344777A (en) Optical fiber microscope and endoscope
JP4584671B2 (en) Cell culture device and optical observation device
JPH10253895A (en) Revolver for microscope and microscope
JP2003307682A (en) Microscope apparatus
JP2008102535A (en) Stereo microscope
JP4422425B2 (en) Microscope system
JP4989423B2 (en) Optical microscope
JP2001013413A (en) Microscope
JP4694760B2 (en) microscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

R151 Written notification of patent or utility model registration

Ref document number: 4584671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees