WO2010100740A1 - 計算機及び計算機の電力管理システム - Google Patents

計算機及び計算機の電力管理システム Download PDF

Info

Publication number
WO2010100740A1
WO2010100740A1 PCT/JP2009/054164 JP2009054164W WO2010100740A1 WO 2010100740 A1 WO2010100740 A1 WO 2010100740A1 JP 2009054164 W JP2009054164 W JP 2009054164W WO 2010100740 A1 WO2010100740 A1 WO 2010100740A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
processor
computer
upper limit
interrupt signal
Prior art date
Application number
PCT/JP2009/054164
Other languages
English (en)
French (fr)
Inventor
雄一朗 柴
英則 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/147,518 priority Critical patent/US8880922B2/en
Priority to PCT/JP2009/054164 priority patent/WO2010100740A1/ja
Priority to JP2011502543A priority patent/JP5256340B2/ja
Priority to EP09841104A priority patent/EP2405323A4/en
Priority to CN200980156628.8A priority patent/CN102317886B/zh
Publication of WO2010100740A1 publication Critical patent/WO2010100740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3246Power saving characterised by the action undertaken by software initiated power-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a power management technique for managing power consumption of each server blade incorporated in a computer, for example, a PC server or a blade server.
  • a blade server is a system board in which processors, memory, I / O, etc. are mounted on a single motherboard at high density.
  • a blade server stores multiple server blades in a single chassis and shares the chassis, power supply, fan, cable, etc., saving space while maintaining the basic functions of a PC server. This is a server system that realizes total cost reduction of installation and management. Such a definition is also applied to the present invention.
  • each server blade has basic performance as a PC server, a different OS and application can be operated for each server blade.
  • a power management system of a blade server there are conventional techniques as described in Patent Documents 1 and 2, for example.
  • Patent Document 1 a special management controller for power consumption management manages the total power consumption of the server blades in the chassis.
  • Patent Document 2 the management controller mounted on the server blades controls the CPU operating speed. By switching, the power consumption of the server blade is managed. JP 2005-202506 A JP 2008-83841 A
  • the present invention provides a power management method for managing power consumption of a computer below a set power consumption upper limit value without delay time due to system control.
  • the computer includes a processor having a normal mode operating at a first frequency, a power saving mode operating at a second frequency lower than the first frequency, a power saving control unit, and power for measuring power consumption.
  • the power sensor unit compares the measured power consumption upper limit value set by the power saving control unit with the measured power consumption, and outputs an interrupt signal to the processor when the measured power consumption exceeds the power consumption upper limit value.
  • the processor switches from the normal mode to the power saving mode.
  • a computer power management method includes a processor having a normal mode operating at a first frequency and a power saving mode operating at a second frequency lower than the first frequency, a power saving control unit, Targeting a computer having a power sensor unit for measuring power, setting the power consumption upper limit value of the computer, comparing the power consumption measured by the power sensor unit with the power consumption upper limit value, and measuring the power consumption When the power consumption exceeds the power consumption upper limit value, the power sensor unit outputs an interrupt signal to the processor, and the processor receives the interrupt signal and switches from the normal mode to the power saving mode.
  • the frequency of the processor can be controlled without going through system control.
  • FIG. 1 is a system configuration diagram showing a first embodiment of a power management system according to the present invention. It is a flowchart explaining the outline of operation
  • FIG. 1 is a schematic diagram showing the overall configuration of the blade server.
  • a plurality of server blades 101 are loaded in one chassis 100, and one service processor 102 is connected via a backplane board connected to the back of the server blade 101.
  • a plurality of power supply boxes 103 and cooling fans 104 are arranged behind the chassis.
  • the service processor 102 detects the temperature in the chassis via the backplane board and controls the number of rotations of the cooling fan 104.
  • the power supply box 103 supplies power to the server blade 101, the service processor 102, the cooling fan 104, and the like.
  • the service processor 102 can access each server blade 101 via the intra-chassis management bus 105.
  • FIG. 2 is a system configuration diagram showing a first embodiment of the power management system according to the present invention.
  • the server blade 101 includes a power sensor unit 200, a power saving control unit 201, and a processor 205.
  • the power supply wiring 206 is connected to each device in the server blade 101.
  • the devices referred to here are the processor 205, the power measurement controller 203, the management controller 204, and the like.
  • the processor 205 has a normal mode that operates at a high frequency and a power saving mode that operates at a frequency lower than the normal mode.
  • the power sensor unit 200 includes a power measurement resistor 202 and a power measurement controller 203
  • the power saving control unit 201 includes a management controller 204.
  • the service processor 102 can access the management controller 204 via the intra-chassis management bus 105.
  • the management controller 204 sets the current upper limit value to the power measurement controller 203 and cancels the output of the current upper limit transcendence instruction signal 207 from the power measurement controller 203 via the intra-blade management bus 210.
  • the management controller 204 also has a function of outputting the processor frequency reduction maintaining signal 209 and a function of monitoring the current upper limit transcendence instruction signal 207. From the viewpoint of the processor 205, the processor frequency reduction maintaining signal 209 is a signal equivalent to the current upper limit transcendence instruction signal 207 from the power measurement controller 203.
  • the power measurement controller 203 simultaneously measures the input side voltage value and the flowing current value of the power measurement resistor 202, and when it detects that the current value exceeds the set current upper limit value, the current upper limit value is exceeded.
  • An instruction signal 207 is output.
  • the current upper limit transcendence instruction signal 207 is canceled when a cancellation signal is input from the management controller 204 to the power measurement controller 203.
  • the current upper limit transcendence instruction signal 207 is a level signal determined only by High and Low, and the power control controller 203 outputs Low when detecting that the set current upper limit is exceeded.
  • the current upper limit transcendence instruction signal 207 is input to the processor 205 as a processor frequency reduction instruction signal (interrupt signal) 208 and is also input to the management controller 204 at the same time.
  • the processor frequency reduction instruction signal 208 can be, for example, a processor hot signal.
  • the processor 205 has a function of shifting from a normal mode operating at a high frequency to a power saving mode in which the operating frequency of the P state is reduced.
  • the frequency reduction instruction signal 208 is a low active signal
  • the processor 205 shifts to the P state when the frequency reduction instruction signal 208 is input at Low, which is lower than that during normal operation. Operates at a specific frequency.
  • FIG. 3 is a flowchart for explaining the outline of the operation of the power management system of the present invention.
  • the service processor 102 sets the power consumption upper limit value in the server blade via the intra-chassis management bus 105.
  • the management controller 204 is instructed.
  • the management controller 204 sets the current upper limit value calculated from the power consumption upper limit value in the power measurement controller 203.
  • the power measurement controller 203 compares the current upper limit value with the current value flowing through the power measurement resistor 202 (S12), and if the measured current value exceeds the upper limit value, the operating frequency of the processor 205 is set. By lowering, it shifts from the normal mode to the power saving mode and lowers the power consumption (S13).
  • FIG. 4 is a flowchart showing details of the operation of the management controller.
  • the management controller 204 calculates the current upper limit value from the set power consumption upper limit value (S22). Specifically, the power consumption upper limit value is divided by the input voltage value, and a value having a reading error is used as the current upper limit value.
  • the management controller 204 sets an upper limit current value in the power measurement controller 203 via the intra-server management bus 210 (S23). Initially, the processor 205 is operating in a normal mode with a high operating frequency.
  • the power measurement controller 203 compares the current value flowing through the power measurement resistor 202 with the set current upper limit value, and when detecting that the measured current value exceeds the set upper limit value, A current upper limit transcendence instruction signal 207 is output to the controller 204 (S24).
  • the power measurement controller 203 measures the input side voltage value of the power measurement resistor 202 and the flowing current value while the current upper limit value transcendence instruction signal 207 is output.
  • the current upper limit value transcendence instruction signal 207 directed to the processor 205 becomes a processor frequency reduction instruction signal 208 which is an interrupt signal to the processor.
  • the processor frequency reduction instruction signal 208 is input as an interrupt signal
  • the processor 205 shifts to the P state, which is a power saving mode, and operates at a reduced frequency.
  • the management controller 204 immediately outputs the processor frequency reduction maintaining signal 209 (S25).
  • the processor frequency reduction maintaining signal 209 is a signal equivalent to the current upper limit transcendence instruction signal 207 for the processor, and even if the current upper limit transcendence instruction signal 207 is canceled by outputting the processor frequency reduction maintaining signal 209,
  • the processor frequency reduction instruction signal 208 maintains the low state, and the processor 205 operates in the power saving mode while reducing the frequency in the P state.
  • the management controller 204 cancels the current upper limit transcendence instruction signal 207 output by the power measurement controller 203 via the intra-server management bus 210 after a predetermined time has elapsed (S26). ).
  • the power measurement controller 203 compares whether the current value being measured does not exceed the upper limit value.
  • a value transcendence instruction signal 207 is output.
  • the management controller 204 confirms whether the current value can be reduced to the current upper limit value or less by checking whether the current upper limit value transcendence instruction signal 207 is input again after canceling the current upper limit value transcendence instruction signal 207. (S27).
  • the management controller 204 cancels the output of the processor frequency reduction maintaining signal 209 (S28).
  • the processor 205 returns to the normal mode having a high operating frequency before control.
  • the management controller raises a warning (S29), cancels the output of the current upper limit transcendence instruction signal 207 (S30), and then processor frequency By canceling the reduction maintaining signal 209 (S28), the processor 205 returns to the normal mode of the high operating frequency before the control.
  • the management controller 204 confirms whether or not the power consumption upper limit value set by the service processor 102 has been changed (S31). If the power consumption upper limit value has not been changed, the process returns to step 24, and the management controller 204 proceeds to monitor the current upper limit value excess instruction signal 207. On the other hand, if the power consumption upper limit value has been changed, the process returns to step 21 and the service processor 102 sets the power consumption upper limit value in the management controller 204 again. Power management is performed by repeating this series of processes.
  • FIG. 5 is a diagram showing a time sequence of each signal for reducing the processor frequency by the power management system.
  • the processor frequency reduction instruction signal 208 is output low almost simultaneously. Thereafter, when the management controller 204 detects the output of the current upper limit transcendence instruction signal 207, the management controller 204 outputs the processor frequency reduction maintaining signal 209 at the processor frequency reduction maintaining signal output timing 301. After the processor frequency reduction maintaining signal 209 is output, the management controller 204 releases the current upper limit transcendence instruction signal 207 at the current upper limit transcendence instruction signal release timing 302.
  • the management controller 204 monitors the output of the current upper limit transcendence instruction signal 207 after a lapse of a certain time from the signal output timing 301 for maintaining the processor frequency reduction. By releasing the processor frequency reduction maintenance signal 209 at the maintenance signal release timing 303, the processor frequency reduction instruction signal 208 returns to High.
  • the management controller 204 confirms that the current upper limit transcendence instruction signal 207 is output low at the current upper limit transcendence instruction signal re-output timing 304 after a predetermined time has elapsed from the processor frequency reduction maintenance signal output timing 301. In such a case, the current upper limit transcendence instruction signal 207 is canceled at the current upper limit transcendence instruction signal recancel timing 305. Thereafter, the processor frequency reduction maintenance signal 209 is released at the processor frequency reduction maintenance signal release timing 303, whereby the processor frequency reduction instruction signal 208 returns to High.
  • FIG. 6 is a system configuration diagram showing a second embodiment of the power management system according to the present invention.
  • the difference between the second embodiment and the first embodiment is the configuration of the power saving control unit.
  • the power saving control unit 201 of this embodiment includes a management controller 204 and a south bridge 400.
  • the south bridge 400 uses the processor state control bus 402 to operate the processor 205 in an operation state in which the operating frequency of the T state is reduced (T state). (Power saving mode).
  • the management controller 204 reduces the operating frequency of the processor 205 to 12.5% of the operating frequency of the P state via the PECI (Platform Environmental Control interface) between the processor 205 and the south bridge 400.
  • the operation frequency of the processor 205 is reduced to 12.5% of the normal mode.
  • the power control of the processor 205 is performed using the processor frequency reduction instruction signal 208 as in the first embodiment, and the management controller 204 controls the processor state when the control cannot reduce the power to the current upper limit value or less.
  • a power control request is output to the south bridge 400 via the management bus 401. Then, the south bridge 400 shifts the processor 205 to the T state via the processor state control bus 402 and reduces power.
  • step 21 to step 31 shown in FIG. 7 Since the control flow from step 21 to step 31 shown in FIG. 7 is the same as that of the first embodiment, a detailed description thereof will be omitted, and the control after step 29 will be described.
  • the management controller 204 issues a warning (S29), and then outputs a power control request to the south bridge 400 via the processor state control management bus 401.
  • the south bridge 400 shifts the processor 205 to the T state via the processor state control bus 402 and reduces the operating frequency of the processor 205 (S32).
  • the service processor 102 for the purpose of detecting the temperature in the chassis via the backplane board and controlling the rotation speed of the fan, etc.
  • the current upper limit value transcendence instruction signal 207 output from the power measurement controller 203 is used.
  • the operating frequency can be controlled.
  • the control signal is directly input from the power control controller 203 to the processor 205 without going through the management controller 204, so there is no delay time due to system control.
  • the power of the server blade 101 can be reduced to the power consumption upper limit value or less without delay time due to system control. Can be suppressed. Since there is no delay time due to system control, the time from the time when the current upper limit value is exceeded to the time when it is suppressed to the current upper limit value or less can be shortened, which is superior in terms of power upper limit control compared to the conventional method.
  • the power control of the server blade mounted on the blade server has been described.
  • the power consumption upper limit value is input to the power saving control unit 201 via the management controller 204 instead of the service processor.
  • the input current consumption upper limit value is set in the power measurement controller 203, and the power control of the PC server is executed by the same processing as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

 OSやアプリケーションに依存せず、システム制御による遅延時間無く計算機の消費電力を動的に管理する。 プロセッサ203、省電力制御部201、電力センサ部200を有するサーバブレード101と、サーバブレードに電力を供給する電源ボックス103と、単一のサービスプロセッサ102とを1つのシャーシ内に備えたブレードサーバにおいて、サービスプロセッサ102が各サーバブレードの省電力制御部201を介して電力センサ部200に消費電流上限値を設定し、サーバブレードの消費電流が消費電流上限値を越えたとき、電力センサ部200が出力する信号207をプロセッサ205に伝え、プロセッサの動作周波数を制御し、消費電力上限値以下に最大平均電力を制御する。

Description

計算機及び計算機の電力管理システム
 本発明は、計算機、例えばPCサーバあるいはブレードサーバに組み込まれた各サーバブレードの消費電力を管理する電力管理技術に関する。
 ブレードサーバとは、プロセッサ、メモリ、I/O等を一つのマザーボード上に高密度実装したシステムボードである。また、ブレードサーバとは、複数のサーバブレードを1つのシャーシ内に格納し、シャーシ、電源、ファン、ケーブルなどを共有することで、PCサーバとしての基本機能はそのままにして省スペース化を実現し、導入及び管理のトータルコスト削減を実現するサーバシステムである。なお、このような定義は本発明にも適用されるものである。
 ブレードサーバは、それぞれのサーバブレードがPCサーバとしての基本性能を備えているため、サーバブレードごとに、異なるOSやアプリケーションを動作させることが可能である。ブレードサーバの電力管理システムとしては、例えば特許文献1、2に記載されているような従来技術がある。特許文献1においては、消費電力管理用の特別なマネージメントコントローラがシャーシ内のサーバブレードの総消費電力の管理を行い、特許文献2においては、サーバブレード上に搭載されたマネージメントコントローラがCPU動作速度を切り替えることでサーバブレードの消費電力の管理を行っている。
特開2005-202506号公報 特開2008-83841号公報
 ブレードサーバにおいてもプロセッサ性能への要望が高くなってきており、最新プロセッサの採用を検討する動きがでてきている。しかし、高周波数で動作するプロセッサを用いたサーバブレードを高密度実装しようとすると、消費電力の問題が発生する。高周波数のプロセッサは、当然、消費電力が大きく、実装数が増えてくれば、設置できる場所が制限されてしまうことになる。このため、サーバブレードの消費電力に上限値を設定し、その上限値以下に最大平均電力を制御するシステムが必要となる。また、その電力制御システムには、設定した上限値を超えた際に、可能な限り速く上限値以下に最大平均電力を制御することが要請される。この消費電力制御に対する要請は、高性能のプロセッサを搭載するPCサーバなど他の計算機にあっても同じである。
 本発明は、計算機の消費電力を、システム制御による遅延時間無く、設定された消費電力上限値以下に管理する電力管理方法を提供する。
 本発明の計算機は、第1の周波数で動作する通常モードと、第1の周波数より低い第2の周波数で動作する省電力モードを有するプロセッサと、省電力制御部と、消費電力を測定する電力センサ部とを備え、電力センサ部は、省電力制御部によって設定された消費電力上限値と測定した消費電力とを比較し、測定した消費電力が消費電力上限値を上回ったときプロセッサに割り込み信号を出力し、プロセッサは、割り込み信号が入力されたとき、通常モードから省電力モードに切り替わることを特徴とする。
 また、本発明による計算機の電力管理方法は、第1の周波数で動作する通常モードと第1の周波数より低い第2の周波数で動作する省電力モードを有するプロセッサと、省電力制御部と、消費電力を測定する電力センサ部とを備える計算機を対象とし、計算機の消費電力上限値を設定する工程と、電力センサ部によって測定した消費電力と前記消費電力上限値とを比較し、測定した消費電力が消費電力上限値を上回ったとき電力センサ部からプロセッサに割り込み信号を出力する工程と、プロセッサが、割り込み信号を受けて通常モードから省電力モードに切り替わる工程とを有する。
 本発明によると、システム制御を介さずプロセッサの周波数を制御することができる。
 本発明によれば、システム制御による遅延時間の無い、電力上限値制御性能に優れた、計算機の動的な電力管理が可能となる。
ブレードサーバの全体構成を示す概略図である。 本発明による電力管理システムの第1の実施例を示すシステム構成図である。 本発明の電力管理システムの動作の概略を説明するフローチャートである。 第1の実施例におけるマネージメントコントローラの動作を示すフローチャートである。 プロセッサ周波数を低減させる信号のタイムシーケンスを示す図である。 本発明による電力管理システムの第2の実施例を示すシステム構成図である。 第2の実施例におけるマネージメントコントローラの動作を示すフローチャートである。
符号の説明
100 シャーシ
101 サーバブレード
102 サービスプロセッサ
103 電源ボックス
104 冷却ファン
105 シャーシ内マネージメントバス
200 電力センサ部
201 省電力制御部
202 電力測定用抵抗
203 電力測定用コントローラ
204 マネージメントコントローラ
205 プロセッサ
206 電源供給用配線
207 電流上限値超越指示信号
208 プロセッサ周波数低減指示信号
209 プロセッサ周波数低減維持用信号
210 サーバ内マネージメントバス
400 サウスブリッジ
401 プロセッサ状態制御用マネージメントバス
402 プロセッサ状態制御用バス
 以下、図面を参照して本発明の実施の形態を説明する。以下では、主にブレードサーバに搭載されている各サーバブレードの電力管理について説明する。しかし、本発明はブレードサーバに限らず、単独で動作するPCサーバなど他の計算機の電力管理にも適用できる。
 図1は、ブレードサーバの全体構成を示す概略図である。ブレードサーバは、1つのシャーシ100内に複数のサーバブレード101が装填され、サーバブレード101の背面に接続されたバックプレーンボードを介して1つのサービスプロセッサ102が接続されている。シャーシ後方には、複数の電源ボックス103及び冷却用ファン104が配置されている。サービスプロセッサ102は、バックプレーンボードを介してシャーシ内の温度を検知し、冷却用ファン104の回転数を制御する。電源ボックス103は、サーバブレード101やサービスプロセッサ102や冷却用ファン104などに電源供給する。また、サービスプロセッサ102は、シャーシ内マネージメントバス105を介して、各サーバブレード101にアクセスすることが可能である。
 図2は、本発明による電力管理システムの第1の実施例を示すシステム構成図である。サーバブレード101には、電力センサ部200、省電力制御部201、及びプロセッサ205が内蔵されている。なお、図示しないが、電源供給用配線206はサーバブレード101内の各デバイスに繋がっている。ここでいうデバイスとは、プロセッサ205、電力測定用コントローラ203、マネージメントコントローラ204などである。プロセッサ205は動作モードとして、高周波数で動作する通常モードと、それより低い周波数で動作する省電力モードを有する。
 電力センサ部200は、電力測定用抵抗202と電力測定用コントローラ203から構成され、省電力制御部201はマネージメントコントローラ204で構成される。サービスプロセッサ102は、シャーシ内マネージメントバス105を介して、マネージメントコントローラ204にアクセスできる。マネージメントコントローラ204は、ブレード内マネージメントバス210を介して、電力測定用コントローラ203への電流上限値の設定と、電力測定用コントローラ203からの電流上限値超越指示信号207の出力の解除を行う。また、マネージメントコントローラ204は、プロセッサ周波数低減維持用信号209を出力する機能、及び電流上限値超越指示信号207を監視する機能も有する。プロセッサ周波数低減維持用信号209は、プロセッサ205からみれば、電力測定用コントローラ203からの電流上限値超越指示信号207と同等の信号である。
 電力測定用コントローラ203は、電力測定用抵抗202の入力側電圧値と流れる電流値を同時に測定し、その電流値が設定された電流上限値を超えたことを検知した場合に、電流上限値超越指示信号207を出力する。電流上限値超越指示信号207は、マネージメントコントローラ204から電力測定用コントローラ203に解除信号が入力されると解除される。
 本実施例において、電流上限値超越指示信号207は、High、Lowのみで決まるレベル信号であり、電力制御用コントローラ203は、設定された電流上限値を超えたことを検知するとLowを出力する。電流上限値超越指示信号207は、プロセッサ周波数低減指示信号(割り込み信号)208としてプロセッサ205に入力され、また同時にマネージメントコントローラ204にも入力される。プロセッサ周波数低減指示信号208は、例えば、プロセッサホット信号とすることができる。プロセッサ205は、周波数低減指示信号208が入力すると、高周波数で動作していた通常モードからPステートという動作周波数を低減した省電力モードに移行する機能を有する。例えば、本実施例の電力管理システムでは、周波数低減指示信号208はローアクティブの信号であり、プロセッサ205は周波数低減指示信号208がLowで入力するとPステートに移行し、通常動作時よりも低い、特定の周波数で動作する。
 図3は、本発明の電力管理システムの動作の概略を説明するフローチャートである。ユーザが使用環境にあわせて、サービスプロセッサ102の管理プログラム上からサーバの消費電力上限値を指示(S11)すると、サービスプロセッサ102はシャーシ内マネージメントバス105を介して、消費電力上限値をサーバブレード内のマネージメントコントローラ204に指示する。マネージメントコントローラ204は消費電力上限値から算出した電流上限値を、電力測定用コントローラ203に設定する。電力測定用コントローラ203は、電流上限値と電力測定用抵抗202に流れる電流値とを比較し(S12)、測定された電流値が上限値を上回っている場合には、プロセッサ205の動作周波数を下げることで、通常モードから省電力モードに移行し、消費電力を下げる(S13)。
 図4は、マネージメントコントローラの動作の詳細を示すフローチャートである。
 ユーザがサービスプロセッサ102からマネージメントコントローラ204にサーバブレードの消費電力上限値を指定する(S21)と、マネージメントコントローラ204は、設定された消費電力上限値から電流上限値を算出する(S22)。具体的には、消費電力上限値を入力電圧値で除し、読み取り誤差を持たせた値を電流上限値として用いる。マネージメントコントローラ204は、サーバ内マネージメントバス210を介して電力測定用コントローラ203に電流上限値を設定する(S23)。最初、プロセッサ205は動作周波数の高い通常モードで動作している。電力測定用コントローラ203は、電力測定用抵抗202に流れる電流値と、設定された電流上限値を比較し、測定した電流値が設定された上限値を上回ったことを検知すると、プロセッサ205とマネージメントコントローラ204に向けて電流上限値超越指示信号207を出力する(S24)。なお、電力測定用コントローラ203は、電流上限値超越指示信号207を出力している間も、電力測定用抵抗202の入力側電圧値と流れる電流値を測定している。
 プロセッサ205に向かった電流上限値超越指示信号207は、プロセッサへの割り込み信号であるプロセッサ周波数低減指示信号208となる。プロセッサ205は、割り込み信号としてプロセッサ周波数低減指示信号208が入力すると省電力モードであるPステートに移行し、周波数を落として動作する。一方、電流上限値超越指示信号207がマネージメントコントローラ204に入力すると、マネージメントコントローラ204は即座にプロセッサ周波数低減維持用信号209を出力する(S25)。プロセッサ周波数低減維持用信号209はプロセッサにとって電流上限値超越指示信号207と等価な信号であり、プロセッサ周波数低減維持用信号209が出力されることによって、電流上限値超越指示信号207が解除されても、プロセッサ周波数低減指示信号208はLow状態を維持し、プロセッサ205はPステートのまま周波数を落として省電力モードで動作する。
 マネージメントコントローラ204は、プロセッサ周波数低減維持用信号209を出力した後、一定時間経過後にサーバ内マネージメントバス210を介して、電力測定用コントローラ203が出力する電流上限値超越指示信号207を解除する(S26)。電力測定用コントローラ203は、電流上限値超越指示信号207の出力が解除されると、測定している電流値が上限値を越えていないかを比較し、上限値を超えていたら、再度電流上限値超越指示信号207を出力する。マネージメントコントローラ204は、電流上限値超越指示信号207を解除した後に、電流上限値超越指示信号207が再度入力されていないかを確認することで、電流上限値以下に電流値を低減できたかを確認する(S27)。
 まず、マネージメントコントローラ204に電流上限値超越指示信号207が入力されていなかった場合を説明すると、マネージメントコントローラ204はプロセッサ周波数低減維持用信号209の出力を解除する(S28)。プロセッサ205は、プロセッサ周波数低減指示信号208の出力が解除されると、制御前の高い動作周波数を有する通常モードに戻る。一方、ステップ27の判定において電流上限値超越指示信号207が入力されていた場合、マネージメントコントローラは警告を上げ(S29)、電流上限値超越指示信号207の出力を解除し(S30)、その後プロセッサ周波数低減維持用信号209を解除することで(S28)、プロセッサ205は制御前の高い動作周波数の通常モードに戻る。
 その後、マネージメントコントローラ204は、サービスプロセッサ102から設定される消費電力上限値が変更されていないかを確認する(S31)。消費電力上限値が変更されていない場合には、ステップ24に戻り、マネージメントコントローラ204は電流上限値超越指示信号207の監視に移行する。一方、消費電力上限値が変更されていた場合には、ステップ21に戻り、サービスプロセッサ102がマネージメントコントローラ204に再度消費電力上限値を設定する。この一連の処理を繰り返すことで、電力管理を行う。
 図5は、電力管理システムによってプロセッサ周波数を低減させるための各信号のタイムシーケンスを示す図である。
 電流上限値超越指示信号出力タイミング300において電流上限値超越指示信号207がLow出力されると、ほぼ同時にプロセッサ周波数低減指示信号208がLow出力される。その後、マネージメントコントローラ204は電流上限値超越指示信号207の出力を検出すると、プロセッサ周波数低減維持用信号出力タイミング301で、プロセッサ周波数低減維持用信号209を出力する。プロセッサ周波数低減維持用信号209が出力された後、電流上限値超越指示信号解除タイミング302でマネージメントコントローラ204は電流上限値超越指示信号207を解除する。
 その後、マネージメントコントローラ204はプロセッサ周波数低減維持用信号出力タイミング301から一定時間経過後、電流上限値超越指示信号207の出力を監視し、Low出力されていないことを確認した場合には、プロセッサ周波数低減維持用信号解除タイミング303で、プロセッサ周波数低減維持用信号209を解除することで、プロセッサ周波数低減指示信号208はHighに戻る。
 一方、マネージメントコントローラ204が、プロセッサ周波数低減維持用信号出力タイミング301から一定時間経過後に、電流上限値超越指示信号再出力タイミング304で、電流上限値超越指示信号207がLow出力されていることを確認した場合には、電流上限値超越指示信号再解除タイミング305で電流上限値超越指示信号207を解除する。その後、プロセッサ周波数低減維持用信号解除タイミング303でプロセッサ周波数低減維持用信号209を解除することで、プロセッサ周波数低減指示信号208はHighに戻る。
 図6は、本発明による電力管理システムの第2の実施例を示すシステム構成図である。第2の実施例が第1の実施例と異なる点は、省電力制御部の構成である。本実施例の省電力制御部201は、マネージメントコントローラ204とサウスブリッジ400からなる。サウスブリッジ400は、マネージメントコントローラ204からプロセッサ状態制御用マネージメントバス401を介して電力制御要求があると、プロセッサ状態制御用バス402を用いて、プロセッサ205をTステートという動作周波数を低減した動作状態(省電力モード)に移行させる。具体例で言えば、マネージメントコントローラ204は、プロセッサ205とサウスブリッジ400の間のPECI(プラットフォーム エンバイロメンタル コントロール インターフェース)を介して、プロセッサ205の動作周波数をPステートの動作周波数の12.5%に低減させることが出来る、Tステートに移行させ、プロセッサ205の動作周波数を通常モードの12.5%に低減させる。
 第2の実施例では、第1の実施例と同じくプロセッサ周波数低減指示信号208を用いてプロセッサ205の電力制御を行い、その制御では電流上限値以下に低減できない時に、マネージメントコントローラ204がプロセッサ状態制御用マネージメントバス401を介してサウスブリッジ400に電力制御要求を出力する。すると、サウスブリッジ400は、プロセッサ状態制御用バス402を介してプロセッサ205をTステートに移行させ、電力を低減させる。
 図7を参照して、第2の実施例における、マネージメントコントローラ204の動作について説明する。図7に示したステップ21からステップ31までの制御フローは、第1の実施例と同じであるため詳細な説明を省略し、ステップ29の後の制御について説明する。
 マネージメントコントローラ204は警告を上げた後(S29)、プロセッサ状態制御用マネージメントバス401を介してサウスブリッジ400に電力制御要求を出力する。サウスブリッジ400はプロセッサ状態制御用バス402を介してプロセッサ205をTステートに移行させ、プロセッサ205の動作周波数を低減させる(S32)。
 以上のように、ブレードサーバの場合、バックプレーンボードを介してシャーシ内の温度を検知し、ファンの回転数を制御することなどを目的とするサービスプロセッサ102が、マネージメントコントローラ204を介して電流上限値を電力測定用コントローラ203に設定することで、サーバブレード101の電力が消費電力上限値を超えた際に、電力測定用コントローラ203から出力される電流上限値超越指示信号207により、プロセッサ205の動作周波数を制御することができる。この制御の場合、制御信号は、電力制御用コントローラ203からマネージメントコントローラ204を介することなく、直接プロセッサ205に入力されるため、システム制御による遅延時間がない。
 本発明によると、サービスプロセッサ102からシャーシ内に搭載した複数のサーバブレード101の消費電力上限値の設定を行うことで、システム制御による遅延時間無く、サーバブレード101の電力を消費電力上限値以下に抑えることができる。システム制御による遅延時間がないことにより、電流上限値を超えてから電流上限値以下に抑え込むまでの時間が短縮でき、従来の方式と比較して電力の上限値制御という観点において、優れている。
 これまで、ブレードサーバに搭載されるサーバブレードの電力制御について説明してきた。電力制御の対象となるサーバがブレードサーバではなく独立した1個のPCサーバの場合、サービスプロセッサの代わりにマネージメントコントローラ204を介して、省電力制御部201に消費電力上限値を入力する。入力された消費電流上限値は、電力測定用コントローラ203に設定され、上記と同様の処理によってPCサーバの電力制御が実行される。

Claims (15)

  1.  第1の周波数で動作する通常モードと、前記第1の周波数より低い第2の周波数で動作する省電力モードを有するプロセッサと、
     省電力制御部と、
     消費電力を測定する電力センサ部とを備え、
     前記電力センサ部は、前記省電力制御部によって設定された消費電力上限値と測定した消費電力とを比較し、測定した消費電力が前記消費電力上限値を上回ったとき前記プロセッサに割り込み信号を出力し、
     前記プロセッサは、前記割り込み信号が入力されたとき、前記通常モードから前記省電力モードに切り替わることを特徴とする計算機。
  2.  請求項1記載の計算機において、前記電力センサ部から前記省電力制御部に前記割り込み信号を供給するパスを有し、前記省電力制御部は、前記割り込み信号が入力されたとき、前記プロセッサに前記割り込み信号と等価な信号を出力し、前記電力センサ部に前記割り込み信号を解除する指示を行うことを特徴とする計算機。
  3.  請求項1又は2記載の計算機において、前記割り込み信号はプロセッサホット信号であることを特徴とする計算機。
  4.  請求項1~3のいずれか1項記載の計算機において、当該計算機はブレードサーバに搭載されたサーバブレードであることを特徴とする計算機。
  5.  請求項1~4のいずれか1項記載の計算機において、前記電力センサ部は、電力測定用抵抗を有することを特徴とする計算機。
  6.  請求項1~5のいずれか1項記載の計算機において、前記プロセッサへの割り込み信号によって前記プロセッサが前記省電力モードに切り替わっても前記計算機の消費電力を前記消費電力上限値以下に抑えることができなかったとき、前記省電力制御部は、前記プロセッサのプラットフォーム エンバイロメンタル コントロール インターフェースを介して前記プロセッサの周波数を低減することを特徴とする計算機。
  7.  電源と、複数の計算機と、冷却用ファンを1つのシャーシ内に備える計算機システムにおいて、
     前記計算機は、第1の周波数で動作する通常モードと前記第1の周波数より低い第2の周波数で動作する省電力モードを有するプロセッサと、省電力制御部と、消費電力を測定する電力センサ部とを備え、前記電力センサ部は、前記省電力制御部によって設定された消費電力上限値と測定した消費電力とを比較し、測定した消費電力が前記消費電力上限値を上回ったとき前記プロセッサに割り込み信号を出力し、前記プロセッサは、前記割り込み信号が入力されたとき、前記通常モードから前記省電力モードに切り替わることを特徴とする計算機システム。
  8.  請求項7記載の計算機システムにおいて、前記冷却ファンを制御するサービスプロセッサを有し、各計算機に対する前記消費電力上限値の設定は、前記サービスプロセッサから各計算機の前記省電力制御部を介して前記電力センサ部に対して行われることを特徴とする計算機システム。
  9.  請求項7又は8記載の計算機システムにおいて、前記電力センサ部から前記省電力制御部に前記割り込み信号を供給するパスを有し、前記省電力制御部は、前記割り込み信号が入力されたとき、前記プロセッサに前記割り込み信号と等価な信号を出力し、前記電力センサ部に前記割り込み信号を解除する指示を行うことを特徴とする計算機システム。
  10.  請求項7~9のいずれか1項記載の計算機システムにおいて、前記割り込み信号はプロセッサホット信号であることを特徴とする計算機システム。
  11.  請求項7~10のいずれか1項記載の計算機システムにおいて、前記プロセッサへの割り込み信号によって前記プロセッサを前記省電力モードにしても前記計算機の消費電力を前記消費電力上限値以下に抑えることができなかったとき、前記省電力制御部は、前記プロセッサのプラットフォーム エンバイロメンタル コントロール インターフェースを介して前記プロセッサの周波数を低減することを特徴とする計算機システム。
  12.  第1の周波数で動作する通常モードと前記第1の周波数より低い第2の周波数で動作する省電力モードを有するプロセッサと、省電力制御部と、消費電力を測定する電力センサ部とを備える計算機の電力管理方法において、
     計算機の消費電力上限値を設定する工程と、
     前記電力センサ部によって測定した消費電力と前記消費電力上限値とを比較し、測定した消費電力が前記消費電力上限値を上回ったとき前記電力センサ部から前記プロセッサに割り込み信号を出力する工程と、
     前記プロセッサが、前記割り込み信号を受けて前記通常モードから前記省電力モードに切り替わる工程と
     を有することを特徴とする計算機の電力管理方法。
  13.  請求項12記載の計算機の電力管理方法において、前記割り込み信号によって前記プロセッサが前記省電力モードに切り替わっても消費電力を前記消費電力上限値以下に抑えることができなかったとき、前記省電力制御部は、前記プロセッサのプラットフォーム エンバイロメンタル コントロール インターフェースを介して前記プロセッサの周波数を低減することを特徴とする計算機の電力管理方法。
  14.  請求項12又は13記載の計算機の電力管理方法において、
     前記割り込み信号が出力された後、前記省電力制御部から前記割り込み信号と同等の信号を前記プロセッサに出力する工程と、
     その後、前記省電力制御部が前記電力センサ部に前記割り込み信号を解除する信号を出力する工程と
     を有することを特徴とする計算機の電力管理方法。
  15.  請求項12~14のいずれか1項記載の計算機の電力管理方法において、前記計算機はブレードサーバに搭載された複数のサーバブレードのうちの一つであり、前記消費電力上限値の設定はサービスプロセッサから行われることを特徴とする計算機の電力管理方法。
PCT/JP2009/054164 2009-03-05 2009-03-05 計算機及び計算機の電力管理システム WO2010100740A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/147,518 US8880922B2 (en) 2009-03-05 2009-03-05 Computer and power management system for computer
PCT/JP2009/054164 WO2010100740A1 (ja) 2009-03-05 2009-03-05 計算機及び計算機の電力管理システム
JP2011502543A JP5256340B2 (ja) 2009-03-05 2009-03-05 計算機及び計算機の電力管理システム
EP09841104A EP2405323A4 (en) 2009-03-05 2009-03-05 COMPUTER AND POWER MANAGEMENT SYSTEM FOR A COMPUTER
CN200980156628.8A CN102317886B (zh) 2009-03-05 2009-03-05 计算机及计算机的功率管理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054164 WO2010100740A1 (ja) 2009-03-05 2009-03-05 計算機及び計算機の電力管理システム

Publications (1)

Publication Number Publication Date
WO2010100740A1 true WO2010100740A1 (ja) 2010-09-10

Family

ID=42709318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054164 WO2010100740A1 (ja) 2009-03-05 2009-03-05 計算機及び計算機の電力管理システム

Country Status (5)

Country Link
US (1) US8880922B2 (ja)
EP (1) EP2405323A4 (ja)
JP (1) JP5256340B2 (ja)
CN (1) CN102317886B (ja)
WO (1) WO2010100740A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8356194B2 (en) 2010-01-28 2013-01-15 Cavium, Inc. Method and apparatus for estimating overshoot power after estimating power of executing events
JP5244862B2 (ja) * 2010-06-16 2013-07-24 株式会社日立製作所 電源モジュールの出力状態に応じた電力抑止機能を設けた情報処理装置システム
EP2729864A1 (en) * 2011-07-05 2014-05-14 3M Innovative Properties Company Power control device and power control method
US9166438B2 (en) 2012-06-29 2015-10-20 Dell Products, Lp System and method for providing wireless power in a removable wireless charging module
CN103543982B (zh) * 2012-07-16 2016-12-21 安凯(广州)微电子技术有限公司 一种时钟频率管理方法及移动设备
JP5962304B2 (ja) 2012-07-31 2016-08-03 富士通株式会社 電源装置、処理装置、情報処理システム、及び電源制御方法
JP2014172353A (ja) * 2013-03-12 2014-09-22 Canon Inc 電子機器及びその制御方法、並びにプログラム
CN105247441A (zh) * 2013-04-03 2016-01-13 惠普发展公司,有限责任合伙企业 可分区功率调节
US9146599B2 (en) 2013-05-20 2015-09-29 Dell Products, Lp Dynamic system management communication path selection
US9304573B2 (en) 2013-06-21 2016-04-05 Apple Inc. Dynamic voltage and frequency management based on active processors
GB201314939D0 (en) * 2013-08-21 2013-10-02 Advanced Risc Mach Ltd Power signal interface
US9335751B1 (en) * 2013-08-28 2016-05-10 Google Inc. Dynamic performance based cooling control for cluster processing devices
US9671844B2 (en) 2013-09-26 2017-06-06 Cavium, Inc. Method and apparatus for managing global chip power on a multicore system on chip
US9606605B2 (en) 2014-03-07 2017-03-28 Apple Inc. Dynamic voltage margin recovery
US10466758B2 (en) 2014-04-25 2019-11-05 International Business Machines Corporation Managing power consumption in a computing system
US20160091960A1 (en) * 2014-09-29 2016-03-31 Apple Control systems for reducing current transients
CN104635910A (zh) * 2014-12-30 2015-05-20 宁波江东波莫纳电子科技有限公司 一种计算机功率管理控制系统
CN104951045B (zh) * 2015-06-05 2017-08-25 广东欧珀移动通信有限公司 一种根据信号的频率衰减其功率的方法及装置
JP6631374B2 (ja) * 2016-04-13 2020-01-15 富士通株式会社 情報処理装置、動作状況収集プログラム及び動作状況収集方法
KR20200084987A (ko) 2019-01-03 2020-07-14 삼성전자주식회사 전력을 제어하기 위한 전자 회로

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268986A (ja) * 1997-03-24 1998-10-09 Ricoh Co Ltd 情報機器
JP2000330673A (ja) * 1999-05-24 2000-11-30 Nec Gumma Ltd 消費電力低減装置
JP2002222031A (ja) * 2001-01-25 2002-08-09 Toshiba Corp 情報処理装置および同装置の消費電力制御方法
JP2004213503A (ja) * 2003-01-08 2004-07-29 Sony Corp 情報処理装置および方法、並びにプログラム
JP2005202506A (ja) 2004-01-13 2005-07-28 Hitachi Ltd ブレードサーバにおける電力管理システム
JP2008083841A (ja) 2006-09-26 2008-04-10 Nec Computertechno Ltd ブレードサーバ、ブレード装置、及びブレードサーバの電力管理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707443B2 (en) * 2003-07-18 2010-04-27 Hewlett-Packard Development Company, L.P. Rack-level power management of computer systems
US7418608B2 (en) * 2004-06-17 2008-08-26 Intel Corporation Method and an apparatus for managing power consumption of a server
US7650517B2 (en) * 2005-12-19 2010-01-19 International Business Machines Corporation Throttle management for blade system
US7669071B2 (en) * 2006-05-05 2010-02-23 Dell Products L.P. Power allocation management in an information handling system
US7831843B2 (en) * 2006-09-26 2010-11-09 Dell Products L.P. Apparatus and methods for managing power in an information handling system
US7705721B1 (en) * 2007-03-13 2010-04-27 Network Appliance, Inc. Apparatus and method for sensing and responding to environmental conditions of a computer system at non-uniform polling intervals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268986A (ja) * 1997-03-24 1998-10-09 Ricoh Co Ltd 情報機器
JP2000330673A (ja) * 1999-05-24 2000-11-30 Nec Gumma Ltd 消費電力低減装置
JP2002222031A (ja) * 2001-01-25 2002-08-09 Toshiba Corp 情報処理装置および同装置の消費電力制御方法
JP2004213503A (ja) * 2003-01-08 2004-07-29 Sony Corp 情報処理装置および方法、並びにプログラム
JP2005202506A (ja) 2004-01-13 2005-07-28 Hitachi Ltd ブレードサーバにおける電力管理システム
JP2008083841A (ja) 2006-09-26 2008-04-10 Nec Computertechno Ltd ブレードサーバ、ブレード装置、及びブレードサーバの電力管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2405323A4 *

Also Published As

Publication number Publication date
JP5256340B2 (ja) 2013-08-07
US8880922B2 (en) 2014-11-04
CN102317886A (zh) 2012-01-11
JPWO2010100740A1 (ja) 2012-09-06
CN102317886B (zh) 2014-06-18
US20120017104A1 (en) 2012-01-19
EP2405323A1 (en) 2012-01-11
EP2405323A4 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5256340B2 (ja) 計算機及び計算機の電力管理システム
EP2766788B1 (en) System and method for determining thermal management policy from leakage current measurement
JP5189921B2 (ja) コンピュータの放熱システム
US7099784B2 (en) Method and apparatus for preventing overloads of power distribution networks
JP5254734B2 (ja) 電子システムの電力を管理する方法、コンピュータ・プログラム、及び電子システム
JP4743242B2 (ja) 給電システム及び給電方法
US8140195B2 (en) Reducing maximum power consumption using environmental control settings
US20090187775A1 (en) Server system, reducing method of power consumption of server system, and a computer readable medium thereof
WO2013052266A2 (en) System and method for proximity based thermal management of a mobile device
JP2008165803A (ja) ブレードサーバ管理システム
JP2008235696A (ja) ファン回転制御方法、ファン回転制御システム、およびファン回転制御プログラム
KR20110004328A (ko) 컴퓨터 시스템 하드웨어 디바이스들의 고전력 상태들의 선택적 승인에 의한 전력 관리
US10429909B2 (en) Managing power in a high performance computing system for resiliency and cooling
WO2009156447A2 (en) Managing power consumption of a computer
US20100318826A1 (en) Changing Power States Of Data-Handling Devices To Meet Redundancy Criterion
US11733762B2 (en) Method to allow for higher usable power capacity in a redundant power configuration
EP3295275B1 (en) Managing power in a high performance computing system for resiliency and cooling
JP2007122657A (ja) 消費電流制御システム
WO2015037158A1 (ja) 情報処理システム、情報処理装置、制御装置、プログラム、及び消費電力制御方法
JP5483465B2 (ja) コンピュータシステム、及び省電力制御方法
JP2012243274A (ja) 情報処理装置および消費電力制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156628.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502543

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009841104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009841104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13147518

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE