WO2010098199A1 - 表示装置、タッチパネル、および電子機器 - Google Patents

表示装置、タッチパネル、および電子機器 Download PDF

Info

Publication number
WO2010098199A1
WO2010098199A1 PCT/JP2010/051816 JP2010051816W WO2010098199A1 WO 2010098199 A1 WO2010098199 A1 WO 2010098199A1 JP 2010051816 W JP2010051816 W JP 2010051816W WO 2010098199 A1 WO2010098199 A1 WO 2010098199A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
touch
unit
sensor
display device
Prior art date
Application number
PCT/JP2010/051816
Other languages
English (en)
French (fr)
Inventor
水橋 比呂志
高橋 泰生
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2011501547A priority Critical patent/JP5439467B2/ja
Priority to US12/988,586 priority patent/US8860687B2/en
Priority to CN201080001452.1A priority patent/CN102239466B/zh
Publication of WO2010098199A1 publication Critical patent/WO2010098199A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13456Cell terminals located on one side of the display only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch panel for detecting an external proximity object, a display device incorporating such a touch panel, and an electronic device.
  • a touch detection device called a touch panel is mounted on a display device such as a liquid crystal display device, and various button images are displayed on the display device, so that information can be input instead of a normal mechanical button.
  • the display device which attracted attention attracts attention.
  • a display device having such a touch panel does not require an input device such as a keyboard, a mouse, or a keypad. Therefore, the display device tends to be used not only for a computer but also for a portable information terminal such as a mobile phone.
  • Patent Document 1 discloses a display device in which an optical touch panel having two operation modes (a normal operation mode and a low power consumption mode) is integrated with a liquid crystal display panel.
  • the touch panel operates in the normal operation mode while the user inputs information by touch, and shifts to the low power consumption mode when the touch is not detected for a predetermined time.
  • this low power consumption mode power consumption is reduced by reducing the frequency of touch detection operations on the touch panel. Thereafter, when a touch is detected in the low power consumption mode, the low power consumption mode is restored to the normal operation mode, and the user can input information again by the touch.
  • Patent Document 2 in a display device in which an optical touch panel having a normal operation mode and a low power consumption mode is integrated with a liquid crystal display panel, the frequency of the touch detection operation is reduced in the low power consumption mode.
  • a display device that reduces power consumption by setting only a circuit that calculates a touch position to a sleep state is disclosed.
  • the display device of the present invention includes a plurality of display elements, a plurality of sensor elements, a detection unit, a transfer output unit, and a control unit.
  • the plurality of display elements perform display based on the video signals respectively supplied to the plurality of video signal lines.
  • the plurality of sensor elements respectively output touch signals indicating the presence of external proximity objects to the plurality of sensor signal lines.
  • the detection unit detects each touch signal.
  • the transfer output unit transfers and outputs the detection result of the detection unit to the outside.
  • the control unit controls the operation of the detection unit and the transfer output unit, operates the transfer output unit when a touch signal is detected in the detection unit, and stops the operation of the transfer output unit when no touch signal is detected.
  • the transfer detection unit preferably converts the detection result of the detection unit from parallel to serial and transfers and outputs the result.
  • the touch panel of the present invention includes a plurality of sensor elements and a sensor detection circuit.
  • the plurality of sensor elements output touch signals indicating external proximity objects to the plurality of sensor signal lines, respectively.
  • the sensor detection circuit detects an external proximity object based on the touch signal, and includes a detection unit, a transfer output unit, and a control unit.
  • the detection unit detects each touch signal.
  • the transfer output unit transfers and outputs the detection result of the detection unit to the outside.
  • the control unit controls the operation of the detection unit and the transfer output unit, operates the transfer output unit when a touch signal is detected in the detection unit, and stops the operation of the transfer output unit when no touch signal is detected.
  • the transfer detection unit preferably converts the detection result of the detection unit from parallel to serial and transfers and outputs the result.
  • the electronic apparatus includes the display device according to the present invention, and includes, for example, a television set, a digital camera, a personal computer, a video camera, or a mobile terminal device such as a mobile phone.
  • the detection unit detects a touch signal supplied from the touch sensor via the sensor signal line.
  • the control unit always monitors the presence or absence of the touch signal in the detection unit, and only when the detection unit detects the touch signal, the transfer output unit transfers the detection result to the outside and the touch signal is not detected. Is controlled so that the transfer output unit does not perform this operation.
  • the detection unit divides the entire touch detection region in which the plurality of sensor elements are arranged into a plurality of regions, and sequentially detects the touch signal for each region, and the control unit detects among the plurality of regions. It is desirable to operate so as to stop the operation of the transfer output unit in the period corresponding to the region where the touch signal is not detected.
  • the control unit for example, when the touch signal is not detected in the detection unit for a predetermined period, the control unit also stops a part of the detection operation of the detection unit. Is possible.
  • the control unit detects the touch signal when the detection unit does not detect the touch signal over a predetermined period.
  • the operation frequency may be reduced.
  • the control unit counts the number of frames for video display, and when the touch signal is not detected in the detection unit over a period of one or a plurality of frames, the operation frequency in the detection unit and the transfer output unit is lowered, and then the touch signal When the value is detected, the count value of the count operation may be reset to restore the lowered operation frequency.
  • the first operation mode in which the control unit operates the detection unit and the transfer output unit every predetermined number of frames when the detection unit does not detect a touch signal over a period of one or a plurality of frames.
  • the touch signal can be configured to shift to the second operation mode in which the detection unit and the transfer output unit are operated in all frames.
  • an initialization unit that shares a sensor signal line with a video signal line and applies an initialization signal to all of the plurality of sensor signal lines simultaneously in the initialization period.
  • the detection unit may detect the touch signal in a period other than the video signal application period in which the video signal is applied to the sensor signal line in the period following the initialization period.
  • the control unit generates a start signal when a touch signal is detected by the detection unit, and then generates a stop signal when an initialization signal is applied by the initialization unit; Based on the start signal and the stop signal, it can be configured to include a transfer clock signal applied to the transfer output unit and an operation signal control unit for generating and controlling a detection start signal applied to the detection unit.
  • a liquid crystal display element and a contact sensor element configured to share the pixel electrode and the drive electrode can be used. That is, the display element corresponds to a potential difference between a pixel electrode to which a video signal is supplied, a drive electrode to which a common signal commonly applied to a plurality of display elements is supplied, and a voltage between the pixel electrode and the drive electrode.
  • the liquid crystal display element has a liquid crystal layer that is driven.
  • the sensor element is a contact type sensor element configured by a pixel electrode and a drive electrode. In this case, the detection unit can detect, as a touch signal, a voltage change of the sensor signal line that occurs as a result of the pixel electrode and the drive electrode approaching or contacting each other due to pressing by an external proximity object.
  • the liquid crystal can be driven by polarity inversion driving in which the polarity of the potential difference is inverted every certain period.
  • the initialization signal a signal based on a common signal whose potential changes every certain period is used, and the detection result of the detection unit based on the initialization signal is detected between the detection unit and the control signal generation unit. It is preferable to insert a logic gate circuit that generates valid logic and outputs it to the control signal generator.
  • the sensor element has, for example, an electrode that forms a capacitance, and the sensor signal line is based on the capacitance that changes according to an external proximity object. It is also possible to use a capacitive sensor element that outputs a signal.
  • the sensor element has a light receiving element that detects light and outputs a signal corresponding to the amount of light, and outputs a signal to the sensor signal line based on the output signal of the light receiving element that changes according to an external proximity object. It may be an optical sensor element.
  • the display element may be, for example, an EL display element.
  • the detection unit is always operated, and the operation of the transfer output unit is controlled according to the touch detection state. Response performance can be realized.
  • FIG. 2 is a block diagram illustrating a configuration example of a sensor readout circuit illustrated in FIG. 1.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a D-type flip-flop (DFF) illustrated in FIG. 2.
  • DFF D-type flip-flop
  • FIG. 3 is a circuit diagram illustrating a configuration example of a transfer clock control circuit 37 illustrated in FIG. 2.
  • FIG. 3 is a timing waveform diagram illustrating an operation example of the display device illustrated in FIG. 2. It is a block diagram showing the example of 1 structure of the sensor read-out circuit concerning a comparative example.
  • FIG. 1 is a comparative example.
  • FIG. 10 is a timing waveform diagram illustrating an operation example of a display device according to a comparative example. It is a schematic diagram showing the example of 1 structure of the display apparatus which concerns on a modification. It is a block diagram showing the example of 1 structure of the sensor read-out circuit concerning the 2nd Embodiment of this invention.
  • FIG. 10 is a timing waveform diagram illustrating an operation example of the display device illustrated in FIG. 9. It is a block diagram showing the example of 1 structure of the sensor read-out circuit concerning the 3rd Embodiment of this invention.
  • FIG. 12 is a timing waveform diagram illustrating an operation example of the sensor readout circuit illustrated in FIG. 11.
  • FIG. 12 is a schematic diagram illustrating an operation example of the display device using the sensor readout circuit illustrated in FIG. 11.
  • FIG. 15 is a block diagram illustrating a configuration example of a sensor readout circuit illustrated in FIG. 14. It is a perspective view showing the appearance composition of application example 1 among display devices with a touch sensor to which an embodiment is applied.
  • 12 is a perspective view illustrating an appearance configuration of an application example 2.
  • FIG. 12 is a perspective view illustrating an appearance configuration of an application example 3.
  • FIG. 14 is a perspective view illustrating an appearance configuration of an application example 4.
  • FIG. FIG. 10 is a front view, a side view, a top view, and a bottom view illustrating an appearance configuration of an application example 5.
  • FIG. 22 is a circuit diagram illustrating a configuration example of a display cell illustrated in FIG. 21. It is a schematic diagram showing the display apparatus which concerns on the other modification of the 1st to 3rd embodiment of this invention. It is a schematic diagram showing the touchscreen which concerns on the other modification of the 1st to 3rd embodiment of this invention.
  • FIG. 1 shows a configuration example of a display device according to the first embodiment of the present invention.
  • the display device 1 is a so-called in-cell type display device in which a display panel and a touch panel are integrated, and includes a liquid crystal element as a display element and a contact type touch sensor as a touch sensor element.
  • the display device 1 includes a display panel 1P and a panel interface unit 1IO.
  • the display panel 1P is a liquid crystal display panel, and displays a video based on a video signal supplied via the panel interface unit 1IO.
  • the region illustrated as the display panel 1P corresponds to the size of the drive substrate.
  • the display panel 1P includes a display unit 2, source drivers 6A and 6B, sensor readout circuits 3A and 3B, and a vertical drive circuit 4.
  • the source driver 6 is appropriately used as a generic term for the source drivers 6A and 6B
  • the sensor readout circuit 3 is appropriately used as a generic term for the sensor readout circuits 3A and 3B.
  • the display unit 2 indicates a display area where the display is actually performed, and the region illustrated as the display unit 2 in FIG. 1 corresponds to the size of the counter substrate facing the drive substrate.
  • the pixels PIX are arranged in a matrix.
  • the pixel PIX includes a select transistor ST, a liquid crystal element LC, and a touch sensor TS.
  • the select transistor ST is disposed on the driving substrate, and is formed from, for example, a TFT (Thin FilmorTransistor).
  • the select transistor ST has one of a source and a drain connected to a signal line SGL (described later) and the other connected to a pixel electrode (not shown) to drive the liquid crystal element LC and to the touch sensor TS.
  • the gate of the select transistor ST is connected to a gate control line GCL (described later).
  • the liquid crystal element LC is a display element that performs display based on a signal (pixel signal) supplied via a select transistor ST by a source driver 6 (described later). Specifically, the liquid crystal element LC performs display based on a potential difference between a pixel signal supplied to the pixel electrode and a common drive signal COM supplied to a common electrode provided in common to all the pixels.
  • the common drive signal COM is a DC signal, and in this example, the DC voltage is set to 0V.
  • liquid crystal is injected between a counter substrate (corresponding to the display unit 2) and a driving substrate (corresponding to the display panel 1P) to form a liquid crystal layer.
  • the layer thickness of the liquid crystal layer is kept constant by the spacer.
  • the outer peripheral side of the side surface between the substrates is closed by a sealant so that the liquid crystal does not leak from the liquid crystal layer.
  • a color filter or the like is previously formed on the counter substrate, and a protective layer is formed on the surface.
  • the touch sensor TS outputs a touch signal indicating the presence of an external proximity object and supplies it to a sensor reading circuit 3 (described later) via a select transistor ST.
  • touch sensors are roughly classified into a resistance type, a capacitance type, and an optical type.
  • the touch sensor system is not limited.
  • a method in which a potential change occurs in the signal line SGL according to contact (or proximity) to the panel surface for example, a resistance switch method is assumed.
  • the touch sensor TS shown in FIG. 1 is turned on by a touch operation on the panel surface.
  • the touch sensor TS include, for example, TN (twisted nematic), VA (vertical orientation), and ECB (electric field control birefringence) in which a pixel electrode is formed on a driving substrate and a common electrode is formed on a counter substrate.
  • a contact type touch sensor using a resistance between the pixel electrode (switch electrode) and the common electrode by forming a contact type switch with the pixel electrode and the common electrode facing each other can be used.
  • this contact-type touch sensor when this contact-type touch sensor is used, as a result of pressing by an external proximity object, the pixel electrode (switch electrode) and the common electrode are in contact with each other in the pixel corresponding to the contacted position, and the touch sensor TS is in contact with that contact. A corresponding signal is output.
  • the touch sensor TS does not necessarily include all the pixels PIX. That is, the pixel PIX may have, for example, two or more pixels PIX with the touch sensor TS in the horizontal direction in FIG. 1. For example, two or more pixels in the vertical direction in FIG. One touch sensor TS may be provided for each pixel PIX.
  • the pixels PIX arranged in a matrix on the display unit 2 are connected to the gate control line GCL and the signal line SGL. That is, the gate control line GCL is connected to the gate of the select transistor ST of the pixel PIX, wired in the horizontal direction in FIG. 1, and connected to the vertical drive circuit 4 outside the display unit 2.
  • the signal line SGL is connected to one of the source and the drain of the select transistor ST of the pixel PIX, wired in the vertical direction in FIG. 1, and connected to the source driver 6 and the sensor readout circuit 3 outside the display unit 2.
  • two sensor readout circuits 3 and two source drivers 6 are arranged in consideration of the symmetry of the frame region of the display device 1 and the like.
  • the gate control line GCL is shared by the display operation and the touch detection operation
  • the signal line SGL is also shared by the display operation and the touch detection operation.
  • the display device 1 can perform the touch detection operation by sharing the (video) signal line SGL and the gate control line GCL that are generally used for the display operation.
  • the above-described select transistor ST, electrodes (not shown) such as pixel electrodes and storage capacitor electrodes, and wiring lines such as signal lines SGL and gate control lines GCL are regularly formed on the drive substrate.
  • the common electrode is formed on a counter substrate in a liquid crystal system such as TN, VA, or ECB, and is formed on a driving substrate in a liquid crystal system in a horizontal electric field mode such as FFS (fringe field switching) or IPS (in-plane switching). .
  • FFS far field switching
  • IPS in-plane switching
  • the source driver 6 is a circuit that supplies a display signal (pixel signal) to the liquid crystal element LC. Specifically, the source driver 6 has a function of generating a pixel signal based on a signal supplied from the IC 5 (described later) via the video signal input line 7 and supplying the pixel signal to the liquid crystal element LC via the signal line SGL. Have.
  • the source driver 6 has a function of applying a predetermined voltage (precharge voltage PRE) to the signal line SGL prior to the touch detection operation and the display operation. Specifically, as will be described later, the source driver 6 applies the precharge voltage PRE to the signal line SGL based on the precharge signal Pre supplied from the timing generator 35 of the sensor readout circuit 3.
  • the precharge voltage PRE is applied to the signal line SGL in advance, it becomes easier to apply the pixel signal to the signal line SGL, and the display operation is facilitated.
  • the source driver 6 and the signal line SGL are connected via a write switch WSW.
  • the write switch WSW is ON / OFF controlled by a select signal SEL (not shown).
  • the write switch WSW is controlled to be in an on state during a period in which the signal line SGL is used for display operation (video signal application period) and a period in which a precharge operation is performed (precharge period). In a period used for the touch detection operation (touch detection period), control is performed so as to be in an off state.
  • many video signal input lines 7 are arranged between the source driver 6 and the IC 5 (described later). If a horizontal drive circuit is formed in the display panel 1P, the number of these signal input lines can be reduced.
  • the sensor readout circuit 3 is a circuit that detects a touch based on a touch signal supplied from the touch sensor TS. Specifically, as will be described later, the sensor readout circuit 3 detects a touch signal supplied from the touch sensor TS (one horizontal line) selected by the vertical drive circuit 4 via the signal line SGL, and The touch sensor TS has a function of determining the presence or absence of a touch.
  • the sensor readout circuit 3 and the signal line SGL are connected via a readout switch RSW.
  • the read switch RSW is controlled so as to be in an ON state in a period (touch detection period) in which the signal line SGL is used for the touch detection operation.
  • the sensor readout circuit 3 when it is determined that there is a touch in the touch determination result for one horizontal line, the sensor readout circuit 3 performs parallel-serial conversion on the touch determination result and transfers it to the IC 5 (described later). It is like that. Since the parallel-serial conversion operation and the transfer operation are performed only when the touch determination is made, the power consumption can be reduced. At this time, since the touch determination operation itself is always performed, the response to the touch is not delayed. That is, by using the sensor readout circuit 3, the display device 1 can realize high response performance while suppressing power consumption.
  • the introduction of the parallel-serial conversion function is effective in reducing the size of the display panel 1P for the following reasons.
  • the signal lines SGL are provided in the display row direction (horizontal direction in FIG. 1) as many as the number of pixels, that is, hundreds to thousands. Therefore, as described above, even when the touch sensor TS is provided in the horizontal direction of FIG. 1 at a ratio of, for example, two pixels PIX, the wiring supplied to the sensor readout circuit 3 among the signal lines SGL. The number of remains high. Since the sensor readout circuit 3 has a parallel-serial conversion function, the number of output lines can be reduced to one (or several), and the number of wires between the display panel 1P and the IC 5 can be greatly increased. Can be reduced. Thereby, the area of the frame of the display panel 1P can be reduced, and an increase in the size of the IC 5 can be suppressed by reducing the number of wirings.
  • the vertical drive circuit 4 has a function of selecting a pixel PIX that is a target of the touch detection operation and the display operation. Specifically, the vertical drive circuit 4 applies a write enable pulse ENB to the gate control line GCL, and one row (one horizontal line) of the pixels PIX formed in a matrix on the display unit 2. Is selected as a target for display operation and touch detection operation. In the touch detection period, a touch signal is output from the touch sensor TS of the selected pixel PIX, and is detected by the sensor readout circuit 3, whereby touch detection is performed on the one horizontal line.
  • a touch signal is output from the touch sensor TS of the selected pixel PIX, and is detected by the sensor readout circuit 3, whereby touch detection is performed on the one horizontal line.
  • a pixel signal is output from the source driver 6 and supplied to the liquid crystal display element LC of the selected pixel PIX, thereby displaying the one horizontal line.
  • the vertical drive circuit 4 sequentially scans one horizontal line at a time division, and controls the display device 1 to perform the touch detection operation and the display operation.
  • the wiring group from the display panel 1P is connected to the IC 5 of the panel interface unit 1IO through a flexible substrate or the like.
  • the IC 5 is a circuit that drives the display panel 1P and performs signal processing. Although not particularly shown, the IC 5 is connected to an input / output pin, and exchanges signals with the outside of the display device 1 via the input / output pin. A signal including the presence / absence of a touch supplied from the sensor readout circuit 3 is transferred to the outside of the display device 1 and used in an electronic device having the display device for an execution trigger signal of a predetermined process, a specific command, or the like. It is done.
  • FIG. 2 shows a circuit configuration example of the sensor readout circuit 3.
  • the sensor readout circuit 3 includes an operation unit 31 that performs sensor output readout and parallel-serial conversion, and a control IO unit 32 that controls the operation unit 31 and functions as an interface with the outside.
  • the operation unit 31 includes a plurality of read transfer units 33 connected in series.
  • the read transfer unit 33 includes a read switch RSW, a comparator (cmp) 331, a D-type flip-flop (DFF) 332, and a transistor switch CSW.
  • the read switch RSW has one of a source and a drain connected to the signal line SGL and the other connected to a first input terminal (described later) of the comparator 331.
  • a read signal Read output from a timing generator 35 (described later) of the control IO unit 32 is supplied to the gate of the read switch RSW. With this configuration, the read switch RSW is turned on when the read signal Read is at “H” level, and the signal of the signal line SGL is supplied to a first input terminal (described later) of the comparator 331. .
  • the comparator 331 is a circuit that compares the voltage levels of the signals supplied to the two input terminals.
  • the other of the source and drain of the read switch RSW is connected to the first input terminal, and the reference voltage Vref is supplied to the second input terminal.
  • the comparator 331 is activated by a precharge signal Pre from a timing generator 35 (described later). That is, the comparator 331 sets the reference voltage Vref supplied from the second input terminal as a threshold when the precharge signal Pre is at “H” level, and when the precharge signal Pre is at “L” level. It is activated to compare the voltage of the first input terminal with this set threshold value.
  • the comparator 331 when the comparator 331 is activated, the voltage of the first input terminal (voltage of the signal line SGL) is lower than the voltage of the second input terminal (reference voltage Vref). A logic “H” is output, and a logic “L” is output when the voltage of the first input terminal (voltage of the signal line SGL) is higher than the voltage of the second input terminal (reference voltage Vref). That is, the comparator 331 outputs a logic “H” when there is a touch in the touch sensor TS, and outputs a logic “L” when there is no touch. That is, the output logic of the comparator 331 is high active.
  • the D-type flip-flop 332 has a first input terminal in1 and a second input terminal in2, and is a circuit that holds signals supplied to these two terminals and outputs them from the output terminal out.
  • the first input terminal in1 is connected to the output terminal of the D-type flip-flop of the preceding stage read transfer unit 33 connected in series, and the second input terminal in2 is connected to the output terminal of the comparator 331.
  • FIG. 3 shows a circuit configuration example of the D-type flip-flop 332.
  • the D type flip-flop 332 has four inverters INV1 to INV4 and four transfer gate type switches SW1 to SW4.
  • the switch SW1 is inserted between the first input terminal in1 and the input terminal of the inverter INV1, and is controlled to be turned on / off by the first transfer clock SCK1 and the first inverted transfer clock SCKb1.
  • the inverter INV1 is a circuit that has an input terminal connected to one terminal of the switch SW1 and inverts and outputs an input signal.
  • the inverter INV2 is a circuit that has an input terminal connected to the output terminal of the inverter INV1, and inverts and outputs an input signal.
  • the switch SW2 is inserted between the output terminal of the inverter INV2 and the input terminal of the inverter INV1, and is on / off controlled by the first inverted transfer clock SCKb1 and the first transfer clock SCK1.
  • the switch SW3 is inserted between the output terminal of the inverter INV1 and the input terminal of the inverter INV3, and is controlled to be turned on / off by the first inverted transfer clock SCKb1 and the first transfer clock SCK1.
  • the inverter INV3 is a circuit that has an input terminal connected to one terminal of the switch SW3 and the second input terminal in2, inverts an input signal, and outputs the inverted signal as an output signal of the D-type flip-flop 332.
  • the inverter INV4 is a circuit that has an input terminal connected to the output terminal of the inverter INV3, and inverts and outputs an input signal.
  • the switch SW4 is inserted between the output terminal of the inverter INV4 and the input terminal of the inverter INV3, and is controlled to be turned on / off by the second transfer clock SCK2 and the second inverted transfer clock SCKb2.
  • the first inversion transfer clock SCKb1 is generated by being inverted by a first transfer clock inverter (not shown) based on the first transfer clock SCK1.
  • the second inverted transfer clock SCKb2 is generated by being inverted by a second transfer clock inverter (not shown) based on the second transfer clock SCK2.
  • the switch SW1 and the switch SW2 operate exclusively with each other. That is, the switch SW2 is turned off when the switch SW1 is on, and the switch SW2 is turned on when the switch SW1 is off.
  • the switch SW1 and the switch SW3 operate exclusively with each other. That is, the switch SW3 is turned off when the switch SW1 is turned on, and the switch SW3 is turned on when the switch SW1 is turned off.
  • the inverters INV1 and INV2 and the switches SW1 and SW2 constitute a master latch ML
  • the inverters INV3 and INV4 and the switches SW3 and SW4 constitute a slave latch SL. .
  • the read transfer unit 33 is connected in series in the operation unit 31 as described above. That is, as shown in FIG. 2, the output terminal of the D-type flip-flop 332 of a certain read transfer unit 33 is connected to the first input terminal of the D-type flip-flop 332 of the next-stage read transfer unit 33. .
  • a plurality of D-type flip-flops 332 connected in series constitute a shift register and perform parallel-serial conversion. Specifically, first, an inactive logic “H” is applied to the input terminal in1 of the first-stage D-type flip-flop 332 from an external controller. Each of the D type flip-flops 332 rewrites the data held in the slave latch SL according to the voltage supplied from the output terminal of the comparator 331 to the second input terminal.
  • the output of the comparator 331 corresponding to the touch sensor TS becomes logic “H”, the logic is held in the slave latch SL of the D type flip-flop 332, and the D type flip-flop 332.
  • the output of the comparator 331 corresponding to the touch sensor becomes logic “L”, and the logic is held in the slave latch SL of the D type flip-flop 332, and the D type flip-flop 332
  • the logic “H” corresponding to the inversion of the output logic of the comparator 331 is output.
  • the output logic of the D-type flip-flop 332 is low active.
  • the bit string indicating the presence / absence of touch output from the plurality of signal lines SGL is held in the shift register.
  • the shift register performs parallel-serial conversion on the bit string in synchronization with the first transfer clock SCK1 and the second transfer clock SCK2, and outputs it from the output terminal out of the D-type flip-flop 332 as the sensor output transfer signal Dout. It is designed to output.
  • the transistor switch CSW has a gate connected to the output terminal out of the D-type flip-flop 332, one of the drain and the source is connected to the power supply VDD (corresponding to logic “H”), and the other is the transfer clock of the control IO unit 32.
  • the control circuit 37 is connected to the input terminal of the clock control permission signal clk_en.
  • the transistor switch CSW since the signal handled by the D-type flip-flop 332 is a low active signal, the transistor switch CSW has a PMOS configuration. That is, by applying the activation logic “L” to the gate of the transistor switch CSW, the transistor switch CSW is turned on, and the activation logic “H” corresponding to the power supply VDD is used as a clock control permission signal clk_en (described later).
  • the transfer clock control circuit 37 is supplied.
  • One transistor switch CSW is provided in each read transfer unit 33, and all the transistor switches CSW are connected to the input terminal of the clock control permission signal clk_en of the transfer clock control circuit 37.
  • the control IO unit 32 includes an interface unit 34, a timing generator 35, an output buffer circuit 36, and a transfer clock control circuit 37.
  • the interface unit 34 is an input interface circuit for inputting a signal for controlling the sensor readout circuit 3 supplied from the outside.
  • the clock signal CKin is generated based on the clock signal CK for sensor reading supplied from the outside
  • the horizontal synchronization signal HDin is generated based on the horizontal synchronization signal HD supplied from the outside.
  • a vertical synchronization signal VDin is generated based on the supplied vertical synchronization signal VD, and these signals are supplied to the timing generator 35.
  • the timing generator 35 is a circuit that cooperates with a transfer clock control circuit 37 (described later) to generate a signal for controlling a touch signal detection operation and a parallel-serial conversion operation in the operation unit 31. Specifically, the timing generator 35 generates the first transfer clock SCK1, the second transfer clock SCK2, and the read signal Read based on the clock signal CKin, the horizontal synchronization signal HDin, and the vertical synchronization signal VDin supplied from the interface unit 34. And a precharge signal Pre, and supplies them to the read transfer unit 33 of the operation unit 31 and also supplies a read signal Read and a precharge signal Pre to a transfer control circuit 37 (described later). Further, although not shown, the timing generator 35 supplies the precharge signal Pre to the source driver 6 as well.
  • the transfer clock control circuit 37 is a circuit that controls the parallel-serial conversion operation in the operation unit 31 based on the clock control permission signal clk_en supplied from the transistor switch CSW of the operation unit 31. Specifically, the transfer clock control circuit 37 detects the touch in the touch detection operation for one horizontal line, and when the activation logic “H” is supplied as the clock control permission signal clk_en from the transistor switch CSW, clk_end is generated and supplied to the timing generator 35. As will be described later, the timing generator 35 controls the first transfer clock SCK1 and the second transfer clock SCK2 based on the clock stop signal clk_end supplied from the transfer clock control circuit 37, and operates the shift register of the operation unit 31. Is to control. The transfer clock control circuit 37 also has a function of setting the clock control permission signal clk_en to the inactive logic “L” and resetting it when the activation logic “H” is input as the precharge signal Pre from the timing generator 35. is doing.
  • FIG. 4 shows a circuit configuration example of the transfer clock control circuit 37.
  • the transfer clock control circuit 37 includes a transistor Tr1, transfer gate type switches SW5 and SW6, inverters INV5 and INV6, and a NOR circuit NOR1.
  • the clock control permission signal clk_en is supplied to one of the drain and the source, the other is grounded, and the precharge signal Pre is supplied to the gate.
  • the switch SW5 one terminal is supplied with the clock control permission signal clk_en, the other terminal is connected to the input terminal of the inverter INV5, and is controlled to be turned on / off by the read signal Read and the inverted read signal xRead.
  • the inverter INV5 is a circuit that has an input terminal connected to the other terminal of the switch SW5 and inverts and outputs an input signal.
  • the first input terminal is connected to the output terminal of the inverter INV5
  • the precharge signal Pre is supplied to the second input terminal
  • the output terminal is connected to one terminal of the switch SW6, and the first and second An inverted logical sum of the signals supplied to the input terminals is generated and output.
  • the switch SW6 is inserted between the output terminal of the NOR circuit NOR1 and the input terminal of the inverter INV5, and is controlled to be turned on / off by the inverted read signal xRead and the read signal Read.
  • the inverter INV6 is a circuit whose input terminal is connected to the output terminal of INV5, inverts the input signal, and outputs it as an output signal (clock stop signal clk_end) of the transfer clock control circuit 37.
  • the inverted read signal xRead is generated by being inverted by a read signal inverter (not shown) based on the read signal Read.
  • the switch SW5 and the switch SW6 operate exclusively with each other. That is, the switch SW6 is turned off when the switch SW5 is turned on, and the switch SW6 is turned on when the switch SW5 is turned off.
  • the transfer clock control circuit 37 In the transfer clock control circuit 37, the inverter INV5, the NOR circuit NOR1, and the switches SW5 and SW6 form a latch circuit.
  • the transfer clock control circuit 37 functions to permit latch input in synchronization with the precharge signal Pre by supplying the precharge signal Pre to the NOR circuit NOR1.
  • the transfer clock control circuit 37 resets the clock control permission signal clk_en to the inactive logic “L” by supplying the activation logic “H” as the precharge signal Pre to the gate of the transistor Tr1.
  • the output buffer circuit 36 is a buffer circuit that supplies the sensor output transfer signal Dout output from the shift register of the operation unit 31 to the IC 5 of the panel interface unit 1IO.
  • the display panel 1P corresponds to a specific example of “display device” in the present invention.
  • the touch sensor TS corresponds to a specific example of “sensor element” in the present invention.
  • the liquid crystal element LC corresponds to a specific example of “display element” in the invention.
  • the pixel electrode and the common electrode correspond to specific examples of “pixel electrode” and “drive electrode” in the present invention, respectively.
  • the signal line SGL corresponds to a specific example of “video signal line” in the present invention, and the pixel signal corresponds to a specific example of “video signal” in the present invention.
  • the comparator 331 corresponds to a specific example of “detection unit” in the present invention.
  • the D-type flip-flop 332 and the output buffer circuit 36 correspond to a specific example of “transfer output unit” in the present invention.
  • the transistor switch CSW, the transfer clock control circuit 37, and the timing generator 35 correspond to a specific example of “a control unit” in the invention.
  • the transistor switch CSW corresponds to a specific example of “control signal generation unit” in the present invention
  • the timing generator 35 corresponds to a specific example of “operation signal control unit” in the present invention.
  • the precharge voltage PRE corresponds to a specific example of the “initialization signal” in the present invention, and the circuit that supplies the precharge voltage PRE to the signal line SGL in the source driver 6 is the “initialization unit” in the present invention. This corresponds to a specific example.
  • the source driver 6 generates a pixel signal based on the video signal supplied from the IC 5 and supplies the pixel signal to the display unit 2 via the signal line SGL in the video signal application period.
  • the vertical drive circuit 4 drives the gate control line GCL to select the pixels PIX constituting one horizontal line in the display unit 2.
  • the display unit 2 performs display on the one horizontal line based on the pixel signal of the signal line SGL and the voltage of the gate control line GCL.
  • the display unit 2 performs display over the entire display unit 2 by sequentially scanning one horizontal line at a time division.
  • the source driver 6 applies a precharge voltage to the signal line SGL based on the precharge signal Pre supplied from the timing generator 35.
  • the touch sensors TS constituting one horizontal line selected by the vertical drive circuit 4 each output a touch signal indicating the presence of an external proximity object to the signal line SGL.
  • the operation unit 31 of the sensor readout circuit 3 determines touch based on the voltage change of the voltage Sig of the signal line SGL. When the touch is determined in the touch determination result for the one horizontal line, the operation unit 31 performs parallel-serial conversion on the touch determination result.
  • the transfer clock control circuit 37 controls the timing generator 35 so that the operation unit 31 performs parallel-serial conversion when the touch is determined in the touch determination result for one horizontal line, and the touch is not determined.
  • the operation unit 31 is controlled not to perform parallel-serial conversion.
  • the interface unit 34 inputs a control signal for the sensor readout circuit 3 supplied from the outside.
  • the output buffer circuit 36 supplies the sensor output transfer signal Dout signal that is parallel-serial converted and output in the operation unit 31 to the IC 5.
  • touch detection is performed over the entire display unit 2 by sequentially scanning one horizontal line at a time division.
  • FIG. 5A and 5B show an example of a timing waveform diagram of the display device 1.
  • FIG. 5A shows the waveform of the horizontal synchronization signal HD
  • FIG. 5B shows the waveform of the write enable pulse ENB
  • FIG. The waveform of the signal SEL is shown
  • (D) shows the waveform of the voltage Sig of the signal line SGL
  • (E) shows the waveform of the precharge signal Pre
  • (F) shows the waveform of the read signal Read
  • (G) Indicates the waveform of the clock stop signal clk_end
  • (H) indicates the waveform of the transfer clock SCK1
  • (I) indicates the waveform of the transfer clock SCK2.
  • the left half of FIG. 5 represents the operation when there is a touch
  • the pixel PIX has the touch sensor TS in the ratio of one for two pixels PIX in the horizontal direction of FIG. 1 and the touch sensor TS in the ratio of one for two pixels PIX in the vertical direction of FIG.
  • the horizontal synchronization signal HD defines one horizontal line period (1H).
  • the display device 1 first performs a precharge operation at timings T0 to T1. Next, the display device 1 performs a touch detection operation for one horizontal line at timings T2 to T3, and thereafter performs parallel-serial conversion on the detection result based on the transfer clock SCK and outputs the result. Then, the display device 1 performs a display operation after the timing T3.
  • the period from timing T0 to T1 corresponds to a specific example of “initialization period” in the present invention
  • the period after timing T3 corresponds to a specific example of “video signal application period” in the present invention.
  • the timing generator 35 In synchronization with the timing T0, the timing generator 35 generates the precharge signal Pre as a positive pulse having a predetermined duration (FIG. 5E).
  • the precharge signal Pre is supplied to the comparator 331 and the transfer clock control circuit 37.
  • the comparator 331 sets the reference voltage Vref applied to the second input terminal as a threshold value for the comparison operation.
  • the transfer clock control circuit 37 as shown in FIG.
  • the precharge signal Pre is also supplied to the source driver 6.
  • the select signal SEL becomes the “H” level for a short predetermined time from the timing T0 to the timing T1 (FIG. 5C).
  • the write switch WSW is turned on, and the voltage Sig of the signal line SGL is set to the precharge voltage PRE (“H” level DC voltage) (FIG. 5D).
  • the precharge signal Pre falls (FIG. 5E), and when the application of the precharge voltage PRE to the signal line SGL is completed, the precharge voltage PRE decreases.
  • Start (FIG. 5D). This is because the electric charge charged between the pixel electrode (switch electrode) and the common electrode by the precharge operation is discharged through the touch sensor TS that is turned on by pressing by an external proximity object. . That is, the touch sensor TS is a charge discharge path.
  • no decrease in the precharge voltage PRE is observed in the right half of FIG. This is because there is no touch, the touch sensor TS is not turned on, and a charge discharge path is not generated.
  • the comparator 331 starts a comparison operation between the voltage of the first input terminal and the threshold value (reference voltage Vref).
  • the read signal Read rises at timing T2 (FIG. 5 (F)).
  • the read switch RSW is turned on, and the read transfer unit 33 is ready to detect a touch signal. That is, detection of the voltage Sig appearing on the signal line SGL thereafter is executed.
  • the read signal Read is also supplied to the transfer clock control circuit 37.
  • the transfer clock control circuit 37 as shown in FIG. 4, when the read signal Read becomes “H” level, the switch SW5 is turned on and the switch SW6 is turned off. As a result, a change (change from logic “L” to logic “H”) of the clock control permission signal clk_en that is an input signal of the transfer clock control circuit 37 can be captured.
  • the output of the comparator 331 changes from the “L” level to the “H” level in response to the change in the voltage Sig of the signal line SGL (from the “H” level to the “L” level).
  • the output of the type flip-flop 332 changes from “H” level to “L” level.
  • the transistor switch CSW changes from the off state to the on state
  • the clock control permission signal clk_en changes from the L ”level to the“ H ”level.
  • the transfer clock control circuit 37 takes in the clock control permission signal clk_en.
  • the clock stop signal clk_end which is the output signal of the transfer clock control circuit 37, changes from the “L” level to the “H” level (FIG. 5G).
  • the clock control permission signal clk_en is at the “L” level. Accordingly, the clock stop signal clk_end also changes from the “L” level to the “H” level.
  • the transfer clock control circuit 37 stops taking in the clock control permission signal clk_en and holds the clock stop signal clk_end, which is an output signal, at the “H” level.
  • the holding state of the clock stop signal clk_end is maintained until the “H” level is next supplied as the precharge signal Pre and reset by the NOR circuit NOR1 (FIG. 5G).
  • the timing generator 35 generates the transfer clock SCK only when the clock stop signal clk_end is at the “H” level (FIG. 5H), and supplies it to the shift register of the operation unit 31. That is, the timing generator 35 supplies the transfer clock SCK to the shift register only when a touch is detected in one horizontal line performing the touch detection operation.
  • the voltage Sig of the signal line SGL remains the precharge voltage PRE even after the precharge operation (FIG. 5D). Therefore, the output of the D-type flip-flop 332 does not change at the “H” level. Therefore, the transistor switch CSW remains off, and the clock control permission signal clk_en remains at the “L” level. As a result, the clock stop signal clk_end also remains at “L” level (FIG. 5G), and the transfer clock SCK is not generated (FIG. 5H).
  • the shift register constituted by a plurality of D-type flip-flops 332 of the operation unit 31 performs parallel-serial conversion when the transfer clock SCK is supplied. That is, the shift register performs parallel-serial conversion on the touch detection result information for one horizontal line only when there is a touch, and outputs the result as a sensor output transfer signal Dout.
  • the sensor output transfer signal Dout is transferred to the outside through the output buffer circuit 36.
  • the pixel PIX has the touch sensor TS in the ratio of one to two pixels PIX in the vertical direction of FIG. For this reason, the time when the sensor output transfer signal Dout is output (corresponding to the time when the transfer clock SCK exists in FIG. 5H) is 2H. That is, in this example, the transfer operation of the touch detection result to the outside is performed in about 1 to 2H period (1-2 horizontal line period) after the touch operation.
  • a touch on one horizontal line is detected from timing T1 to timing T3, and then the detection result is transferred to the outside as serial data.
  • the display operation is performed after timing T3.
  • the select signal SEL sequentially becomes the activation level (“H”) for each of the RGB colors (FIG. 5C). Accordingly, the write switch WSW is sequentially turned on, and the source driver 6 applies the pixel signal to the signal line SGL (FIG. 5D), and the pixel PIX performs display based on the pixel signal.
  • the sensor reading circuit 3 performs parallel-serial conversion on the touch detection result for one horizontal line and supplies the result to the IC 5 as serial data.
  • the number of wirings between the sensor readout circuit and the IC 5 can be reduced.
  • the wiring area can be narrowed, so that the frame area of the display device 1 can be narrowed. it can. In other words, the display device 1 can be reduced in size.
  • the display device 1 always performs a touch detection operation for each horizontal line by sequential scanning, and performs a parallel-serial conversion operation only when it is determined that there is a touch in the touch detection result for each horizontal line.
  • the display apparatus 1 can implement
  • the display device 1x is configured using a sensor readout circuit in which the transistor switch CSW is omitted.
  • FIG. 6 shows a circuit configuration example of the sensor readout circuit 3x according to this comparative example.
  • the sensor readout circuit 3x includes an operation unit 31x and a control IO unit 32x.
  • the operation unit 31x includes a plurality of read transfer units 33x connected in series.
  • the transistor switch CSW is omitted as compared with the read transfer unit 33 (FIG. 2) according to the present embodiment.
  • the control IO unit 32x includes a timing generator 35x.
  • the transfer clock control circuit 37 connected to the transistor switch CSW in the sensor readout circuit 3 (FIG. 2) according to the present embodiment is omitted. Accordingly, the timing generator 35x does not have a function to stop supplying the transfer clock SCK by external control, as will be described later.
  • FIG. 7 shows an example of a timing waveform diagram of the display device 1x.
  • A shows the waveform of the horizontal synchronization signal HD
  • B shows the waveform of the write enable pulse ENB
  • C shows the select signal.
  • the waveform of the signal SEL is shown
  • D shows the waveform of the voltage Sig of the signal line SGL
  • E shows the waveform of the precharge signal Pre
  • F shows the waveform of the read signal Read
  • (G) Indicates the waveform of the transfer clock SCK1
  • (H) indicates the waveform of the transfer clock SCK2.
  • the left half of FIG. 7 represents the operation when there is a touch
  • the right half of FIG. 7 represents the operation when there is no touch.
  • the transfer clock SCK is generated by the timing generator 35x and supplied to the shift register regardless of the presence or absence of touch. Therefore, in the display device 1x, power consumption increases.
  • the display operation is generally performed constantly, whereas the touch detection operation is not always performed. That is, it is considered that the frequency with which a user inputs information using a touch panel is usually quite low. Therefore, as in this comparative example, it is disadvantageous to supply the transfer clock SCK to the shift register regardless of whether or not it is touched, particularly from the viewpoint of power consumption, particularly for a display device of a mobile device. large.
  • the transfer clock SCK is supplied to the shift register only when it is determined that there is a touch in the touch detection result of one horizontal line. That is, in the sensor readout circuit 3 of the present embodiment, the shift register operates only when necessary, and transfers the touch detection result to the outside. Therefore, the display device 1 can reduce power consumption. Further, since the transfer operation is performed in about 1 to 2H period after the touch operation, the responsiveness is good.
  • the touch detection operation for each horizontal line is always performed by sequential scanning, and the parallel-serial conversion operation is performed only when it is determined that there is a touch in the touch detection result for each horizontal line. Since serial data is transferred to the outside, high response performance can be realized while suppressing power consumption.
  • the frame area of the display device can be narrowed, and the display device can be downsized.
  • the wiring in the display unit 2 can be reduced.
  • the display 1S is configured using a display unit that does not share wiring in the display operation and the touch detection operation.
  • the substantially same part as the display apparatus 1 which concerns on this Embodiment attaches
  • FIG. 8 shows a configuration example of the display device 1S according to this comparative example.
  • the display device 1S includes a display unit 2S and a sensor vertical drive circuit 4S.
  • the display unit 2S includes a sensor line TSL, a sensor gate control line GCL2, and a sensor select transistor ST2.
  • the touch sensor TS is configured separately from the liquid crystal element LC.
  • One of the source and drain of the sensor select transistor ST2 is connected to the sensor line TSL, and the other is connected to the touch sensor TS.
  • the gate of the sensor select transistor ST2 is connected to the sensor gate control line GCL2.
  • the sensor gate control line GCL2 is connected to the sensor vertical drive circuit 4S, and the sensor line TSL is connected to the sensor readout circuit 3.
  • the sensor vertical drive circuit 4S has a function of selecting a pixel PIX that is a target of the touch detection operation. Specifically, the sensor vertical drive circuit 4S applies a signal for selecting the touch sensor TS to the sensor gate control line GCL2.
  • the signal line SGL and the gate control line GCL are used in the display operation, while the sensor line TSL and the sensor gate control line GCL2 are used in the touch detection operation.
  • the display device 1S performs the parallel-serial conversion operation only when it is determined that there is a touch in the touch detection result in each horizontal line, similarly to the display device 1 according to the above embodiment. Thereby, the display device 1S can realize high response performance while suppressing power consumption.
  • the display device 1S is configured by separating the touch sensor TS and the liquid crystal element LC, the display operation and the touch detection operation can be performed independently, and a touch detection operation with a high degree of freedom can be realized.
  • the display device 1A according to the present embodiment is applied to a display device that performs line inversion driving, and can perform a touch detection operation even when performing a precharge operation in an AC manner based on a common drive signal COM. Is.
  • symbol is attached
  • FIG. 9 illustrates a circuit configuration example of the sensor readout circuit 40 in the display device of the present embodiment.
  • the sensor readout circuit 40 includes an operation unit 41.
  • the operation unit 41 includes a plurality of read transfer units 43 connected in series.
  • the read transfer unit 43 has an exclusive OR circuit (eor) XOR.
  • the exclusive OR circuit XOR the first input terminal is connected to the output terminal of the D-type flip-flop 332, the common input signal COM is supplied to the second input terminal, and the output terminal is connected to the gate terminal of the transistor switch CSW.
  • the exclusive OR of the signals respectively supplied to the first input terminal and the second input terminal is generated and output.
  • the display device 1A can detect touch even when performing a precharge operation in an AC manner in line inversion driving in which the pixel signal and the common driving signal COM are inverted for each horizontal line (1H). The operation can be performed.
  • Other configurations are the same as those in FIG.
  • the exclusive OR circuit corresponds to a specific example of “logic gate circuit” in the present invention.
  • FIG. 10 shows an example of a timing waveform diagram of the display device 1A.
  • A shows the waveform of the horizontal synchronization signal HD
  • B shows the waveform of the write enable pulse ENB
  • C shows the select signal.
  • the waveform of the signal SEL is shown
  • D shows the waveform of the voltage Sig of the signal line SGL
  • E shows the waveform of the precharge signal Pre
  • F shows the waveform of the read signal Read
  • G Indicates the waveform of the clock stop signal clk_end
  • (H) indicates the waveform of the transfer clock SCK1
  • I indicates the waveform of the transfer clock SCK2.
  • the left half of FIG. 10 represents the operation when there is a touch
  • the right half of FIG. 10 represents the operation when there is no touch.
  • the timing generator 35 generates the precharge signal Pre as a positive pulse having a predetermined duration in synchronization with the horizontal synchronization signal HD (FIG. 10 (E)). Based on the precharge signal Pre, the source driver 6 performs a precharge operation on the signal line SGL, and the comparator 331 can perform a touch signal detection operation.
  • the source driver 6 sets the voltage Sig of the signal line SGL so as to invert the polarity for each horizontal line in the precharge operation (FIG. 10D).
  • the reason is as follows. That is, in the line inversion drive, the common drive signal COM that reverses the polarity for each horizontal line is supplied to the common electrode of the pixel PIX. A pixel signal whose polarity is inverted every horizontal line is supplied from the source driver 6 to the pixel electrode of the pixel PIX. Thereby, the liquid crystal element LC performs display based on the potential difference between the voltage of the pixel electrode and the voltage of the common electrode. At this time, the precharge voltage PRE needs to be set to be synchronized with the common drive signal COM.
  • the source driver 6 operates to set the voltage Sig of the signal line SGL to a voltage level of “xCOM” obtained by inverting the voltage level of the common drive signal COM in the precharge operation. That is, when the common drive signal COM is “H” level, the precharge voltage PRE is “L” level, and when the common drive signal COM is “L” level, the precharge voltage PRE is “H” level. .
  • the precharge voltage PRE is inverted for each horizontal line, like the common drive signal COM. With this AC precharge operation, the display device 1 can perform a desired display operation.
  • the timing generator 35 After the precharge operation is completed at timing T1, the timing generator 35 generates a pulse of the read signal Read at timing T2 (FIG. 10F). Accordingly, the comparator 331 reads the voltage Sig of the signal line SGL and determines whether or not there is a touch, as in the first embodiment.
  • the voltage Sig of the signal line SGL changes so as to reverse from the “xCOM” level set by the precharge operation to the “COM” level (FIG. 10D). This is because the pixel electrode set to the “xCOM” level by the precharge operation comes into contact with the common electrode when the touch sensor TS is turned on, and the “COM” level applied to the common electrode is supplied to the pixel electrode. It is because it comes to be done.
  • the comparator 31 detects the change in the voltage Sig of the signal line SGL and changes the output voltage from the “COM” level to the “xCOM” level.
  • the D-type flip-flop 332 changes the output voltage from the “xCOM” level to the “COM” level based on the change in the output voltage of the comparator 31. That is, when a touch is detected and the common drive signal COM is at “H” level, the output voltage of the D-type flip-flop 332 changes from “L” level to “H” level, and the common drive signal COM is changed to “H” level. In the case of the L level, the output voltage of the comparator 31 changes from the “H” level to the “L” level. As described above, when line inversion driving is performed, the behavior of the output signal of the D-type flip-flop 332 differs depending on whether the common driving signal COM is at “H” level or “L” level.
  • the exclusive OR circuit XOR is used for converting logic so as not to depend on the common drive signal COM when the transistor switch CSW is controlled based on the output signal of the D-type flip-flop 332. Specifically, the exclusive OR circuit XOR calculates the exclusive OR of the output of the D type flip-flop 332 and the common drive signal COM, and supplies the result to the gate of the transistor switch CSW. That is, the output of the exclusive OR circuit XOR is output from the “H” level to the “L” level when a touch is detected regardless of whether the common drive signal COM is at the “H” level or the “L” level. To change.
  • the transfer clock control circuit 37 changes the clock stop signal clk_end, which is an output signal, from the “L” level to the “H” level based on the clock control permission signal clk_en (FIG. 10G).
  • the timing generator 35 supplies the transfer clock SCK to the operating unit 41 while the clock stop signal clk_end is at the “H” level (FIG. 10H).
  • the shift register performs a parallel-serial conversion operation based on the transfer clock SCK, and outputs touch detection information regarding one horizontal line as a sensor output transfer signal Dout.
  • the serial data is transferred to the outside via the output buffer circuit 36.
  • the display device 1B according to the present embodiment is applied to a display device that performs line inversion driving, and further can dynamically change the frequency of detection operation by the sensor readout circuit depending on the presence or absence of touch.
  • symbol is attached
  • FIG. 11 illustrates a circuit configuration example of the sensor readout circuit 50 in the display device of the present embodiment.
  • the sensor readout circuit 50 includes an operation unit 51 and a control IO unit 52.
  • the connection of the gate terminals of some readout switches RSW is changed as compared with the operation unit 41 (FIG. 9) according to the second embodiment. That is, in this example, the second read signal Read2 is supplied to the gate of the four read switches RSW instead of the read signal Read.
  • the second read signal Read2 is generated by a timing generator 35A (described later).
  • the control IO unit 52 includes a control circuit block 38 and a timing generator 35A.
  • the control circuit block 38 is a circuit that sets an operation mode for limiting the operation of the touch panel so as to reduce power consumption when no touch is detected in a predetermined number of frames. Specifically, the control circuit block 38 generates the operation mode signal TG_en [1: 0] based on the serial data supplied from the shift register of the operation unit 51 and the signal Vdst output from the timing generator 35A. The timing generator 35A is supplied. The signal Vdst is a signal generated from the vertical synchronization signal VD, and is generated in synchronization with the vertical synchronization signal VD. That is, the control circuit block 38 obtains the time when there is no touch in units of frames by counting the signal Vdst over the time when data is not transferred from the shift register of the operation unit 51. Then, the control circuit block 38 recognizes that the frequency of use as a touch panel has dropped when there is no touch in a certain period (for example, several frame periods), and sets the operation mode so as to reduce power consumption. It has a function.
  • the display device 1B has three modes (normal mode, non-contact mode A, and non-contact mode B) as operation modes of the touch panel.
  • the normal mode is an operation mode when a touch is detected on the touch panel. For example, as described in the first embodiment, touch detection is performed every 2H periods (two horizontal line periods). is there.
  • the non-contact mode A is an example of a mode for reducing power consumption, operates only the read transfer unit 43 controlled by the second read signal Read2, and performs touch detection every 8H period (8 horizontal line periods). Is to do. That is, in the non-contact mode A, the position accuracy and the operation frequency of touch detection are each set to 1/4 as compared with the normal mode.
  • the non-contact mode B is an example of a mode for further reducing power consumption.
  • the non-contact mode B operates only the read transfer unit 43 controlled by the second read signal Read2, and further performs touch detection every 8H period for the 3F period ( This is performed every 3 frame periods). That is, in the non-contact mode B, compared with the non-contact mode A, the operation frequency of touch detection is 1/3.
  • the control circuit block 38 generates an operation mode signal TG_en [1: 0] corresponding to these operation modes according to the touch state on the touch panel, and instructs the timing generator 35A of the operation mode. Specifically, when setting the operation mode of the touch panel to the normal mode, the control circuit block 38 outputs “00b” as the operation mode signal TG_en [1: 0] and sets the non-contact mode A. When “01b” is output and the non-contact mode A is set, “11b” is output.
  • the timing generator 35A controls the operation unit 51 based on the operation mode signal TG_en [1: 0] supplied from the control circuit block 38. Other functions are the same as those of the timing generator 35 of the first and second embodiments.
  • the read signal is supplied to the transfer clock control circuit 37 as shown in FIGS. 2 and 9, but in this embodiment, instead of this, The second read signal Read2 is supplied to the transfer clock control circuit 37.
  • the timing generator 35A controls the transfer clock in the same manner as in the first and second embodiments even in the non-contact modes A and B in which the read transfer unit 43 of the operation unit 51 is not operated as will be described later.
  • the circuit 37 can be controlled.
  • the transistor switch CSW, the transfer clock control circuit 37, the timing generator 35A, and the control circuit block 38 correspond to a specific example of “a control unit” in the present invention.
  • FIG. 12 shows an example of a timing waveform diagram of the display device 1B.
  • FIG. 12A to 12E are timing waveform diagrams when there is a touch in the normal mode
  • FIG. 12A shows the waveform of the horizontal synchronization signal HD
  • FIG. 12B shows the read signal.
  • the waveform of Read is shown
  • C shows the waveform of the second read signal Read2
  • D shows the waveform of the transfer clock SCK
  • E shows the waveform of the sensor output transfer signal Dout.
  • (F) to (J) show timing waveform diagrams when there is a touch in the non-contact mode A, (F) shows the waveform of the horizontal synchronizing signal HD, and (G) shows The waveform of the read signal Read is shown, (H) shows the waveform of the second read signal Read2, (I) shows the waveform of the transfer clock SCK, and (J) shows the waveform of the sensor output transfer signal Dout.
  • (K) to (P) represent timing waveform diagrams in the non-contact mode B
  • (K) represents the waveform of the vertical synchronization signal VD
  • (L) represents the waveform of the horizontal synchronization signal HD.
  • (M) shows the waveform of the read signal Read
  • (N) shows the waveform of the second read signal Read2
  • (O) shows the waveform of the transfer clock SCK
  • (P) shows the sensor output transfer signal Dout. The waveform is shown.
  • FIG. 13 is a conceptual diagram of each operation mode of the touch panel in the display device 1B.
  • (A) shows the operation in the normal mode
  • (B) shows the operation in the non-contact mode A
  • (C) shows The operation in the non-contact mode B is shown.
  • FIG. 13 schematically shows an operation state of the sensor readout circuit 50 and the matrix arrangement of the pixels PIX of the display unit 2.
  • a transistor switch CSW is obtained by blocking the plurality of transistor switches CSW shown in FIG.
  • the D-type flip-flop / shift register (DFF / SR) 332 is obtained by blocking the plurality of D-type flip-flops 332 shown in FIG.
  • a portion surrounded by a thick line represents a block that operates (or can operate) in response to a clock supply or operation enable signal, and a portion not surrounded by a thick line stops the clock supply or operates. Since there is no enable signal input, the block is stopped.
  • black circles represent pixels PIX that are targets of the touch detection operation
  • white circles represent pixels PIX that are not targets of the touch detection operation because the touch detection circuit is not activated.
  • the black circle is represented as “operation” and the white circle is represented as “stop”.
  • the triangle mark represents the pixel PIX in which the touch detection operation is performed every 3F period (3 frame periods). Note that a portion where none of the black circles, white circles, and triangles are shown at the intersections of the grids represents display-only pixels PIX in which the touch sensor TS itself is not provided.
  • the timing generator 35A In the normal mode, as shown in FIGS. 12A to 12E, the timing generator 35A generates pulses as the read signal Read and the second read signal Read2 (FIGS. 12B and 12C), This is supplied to the operation unit 51. As a result, the touch detection operation is performed in all of the plurality of read transfer units 43 of the operation unit 51. As a result, the operation unit 51 performs the touch detection operation every 2H period (two horizontal line periods) as in the second embodiment, and the detection result is parallel when it is determined that there is a touch. Serial conversion is performed, and the sensor output transfer signal Dout is transferred to the output buffer circuit 36 (FIG. 12E).
  • the control circuit block 38 recognizes that the frequency of use as the touch panel has dropped when there is no sensor output transfer signal Dout over a certain period (for example, one frame period), and as the operation mode signal TG_en [1: 0]. “01b” is output. Thereby, the timing generator 35A controls the operation unit 51 so that the touch panel of the display device 1B operates in the non-contact mode A.
  • the timing generator 35A fixes the read signal Read to the “L” level (FIG. 12G). Then, the timing generator 35A generates a pulse every 8H period (8 horizontal line periods) as the second read signal Read2 (FIG. 12 (H)) and supplies the pulse to the operation unit 51.
  • the touch detection operation is performed only in the read transfer unit 43 to which the second read signal Read2 is connected among the plurality of read transfer units 43 of the operation unit 51.
  • the operation unit 51 performs a touch detection operation on one of the four touch sensors TS arranged in the horizontal direction of the display unit 2, and when it is determined that there is a touch, the detection result is a parameter.
  • the data is subjected to serial conversion and output as a sensor output transfer signal Dout (FIG. 12 (J)) and transferred to the outside via the output buffer circuit 36. This operation is performed every 8H period (8 horizontal line periods).
  • the control circuit block 38 recognizes that the touch panel is not used when there is no sensor output transfer signal Dout for a certain period (for example, 3 frame periods), and sets the operation mode signal TG_en [1: 0] as “ 11b ′′ is output. Thereby, the timing generator 35A controls the operation unit 51 so that the touch panel of the display device 1B operates in the non-contact mode B.
  • the “certain period” serving as a criterion for determining the transition to the non-contact mode B is set to be longer than the “certain period” serving as a criterion for determining the transition from the normal mode to the non-contact mode A.
  • the display device 1B operates in the same manner as the non-contact mode A every 3F period (3 frame periods). I do.
  • the touch panel is set so as to have a pseudo optimum touch sensor density according to the operation state of the touch panel by the user, and the operation frequency of the comparator 331 and the operation of transferring the touch detection result to the outside Can reduce the frequency. As a result, current consumption can be reduced. In addition, since the operating frequency of the shift register including the D-type flip-flop 332 is reduced, power consumption can be reduced. Similarly, the timing generator 35A, the transfer clock control circuit 37, the control circuit block 38, and the like shown in FIG. 11 can also reduce power consumption.
  • the control circuit block 38 recognizes that there is a touch operation on the touch panel, and resets the counter based on the signal Vdst. Then, “00b” is output as the operation mode signal TG_en [1: 0]. Thereby, the timing generator 35A controls the operation unit 51 so that the touch panel of the display device 1B operates in the normal mode.
  • both the non-contact mode A and the non-contact mode B do not necessarily have to be provided as operation modes for realizing low power consumption.
  • only two operation modes of the normal mode and the non-contact mode B may be provided.
  • the operation of the touch panel may directly shift from the normal mode to the non-contact mode B.
  • Display device 1C according to the present embodiment is configured by using a sensor readout circuit in which the sensor readout circuit does not have a parallel-serial conversion function.
  • symbol is attached
  • FIG. 14 shows a configuration example of the display device 1C
  • FIG. 15 shows a circuit configuration example of the sensor readout circuit 60 according to the display device 1C
  • the display device 1C includes sensor readout circuits 60A and 60B and an IC 5C.
  • the sensor readout circuits 60A and 60B supply the touch detection result to the IC 5C via the touch signal output line 8 without performing parallel-serial conversion on the touch detection result as will be described later.
  • the sensor readout circuit 60 is appropriately used as a general term for the sensor readout circuits 60A and 60B.
  • the sensor readout circuit 60 includes an operation unit 61 and a control IO unit 62.
  • the operation unit 61 includes a plurality of reading units 63.
  • Read unit 63 includes an inverter 632 and an output buffer 633.
  • the inverter 632 is a circuit that inverts the output signal of the comparator 331.
  • the output buffer 633 is activated by an output control signal Octl supplied from a timing generator 64 (described later) of the control IO unit 62 and, when activated, a touch signal based on the output signal of the inverter 632. This is a circuit for driving the output line 8.
  • the output buffer 633 is activated, for example, when the output control signal Octl is at “H” level, latches the output signal of the inverter 632 and drives the touch signal output line 8 based on the signal.
  • the output control signal Octl is at “L” level
  • the control IO unit 62 includes a timing generator 64.
  • the timing generator 64 generates an output control signal Octl based on the clock stop signal clk_end supplied from the transfer clock control circuit 37 and supplies it to the output buffer 633 of the operation unit 61.
  • the output buffer 633 corresponds to a specific example of a “transfer output unit” in the present invention.
  • the transistor switch CSW, the transfer clock control circuit 37, and the timing generator 64 correspond to a specific example of “a control unit” in the invention.
  • the sensor readout circuit 60 operates as follows. That is, the transfer clock control circuit 37 generates the clock stop signal clk_end and supplies it to the timing generator 35 when a touch is detected in the touch detection operation for one horizontal line.
  • the timing generator 64 controls the output control signal Octl based on the clock stop signal clk_end supplied from the transfer clock control circuit 37, and controls the operation of the output buffer 633 of the operation unit 31. That is, the output buffer 633 drives the touch signal output line 8 only when a touch is detected at one place in the touch detection operation for one horizontal line, and enters the power-down state when no touch is detected.
  • the touch detection operation for each horizontal line is always performed by sequential scanning, and the detection result is output only when it is determined that there is a touch in the touch detection result for each horizontal line. Since the output buffer is powered down when there is no touch, high response performance can be realized while suppressing power consumption.
  • the wiring in the display unit 2 can be reduced.
  • the display device in the above embodiment can be applied to electronic devices in various fields such as a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera.
  • the display device of the above embodiment can be applied to electronic devices in all fields that display an externally input video signal or an internally generated video signal as an image or video.
  • FIG. 16 illustrates an appearance of a television device to which the display device of the above embodiment is applied.
  • This television apparatus has, for example, a video display screen unit 510 including a front panel 511 and a filter glass 512, and the video display screen unit 510 is configured by the display device according to the above embodiment.
  • FIG. 17 shows the appearance of a digital camera to which the display device of the above embodiment is applied.
  • the digital camera includes, for example, a flash light emitting unit 521, a display unit 522, a menu switch 523, and a shutter button 524, and the display unit 522 is configured by the display device according to the above embodiment. .
  • FIG. 18 shows the appearance of a notebook personal computer to which the display device of the above embodiment is applied.
  • This notebook personal computer has, for example, a main body 531, a keyboard 532 for inputting characters and the like, and a display unit 533 for displaying an image.
  • the display unit 533 is a display device according to the above embodiment. It is comprised by.
  • FIG. 19 shows the appearance of a video camera to which the display device of the above embodiment is applied.
  • This video camera has, for example, a main body 541, a subject shooting lens 542 provided on the front side surface of the main body 541, a start / stop switch 543 at the time of shooting, and a display 544.
  • the display part 544 is comprised by the display apparatus which concerns on the said embodiment.
  • FIG. 20 shows an appearance of a mobile phone to which the display device of the above embodiment is applied.
  • this mobile phone is obtained by connecting an upper housing 710 and a lower housing 720 with a connecting portion (hinge portion) 730, and includes a display 740, a sub-display 750, a picture light 760, and a camera 770.
  • the display 740 or the sub-display 750 is configured by the display device according to the above embodiment.
  • a contact-type touch sensor is used as a touch sensor, but the present invention is not limited to this.
  • a capacitive touch sensor may be used instead of the contact touch sensor.
  • FIG. 21 shows a configuration example of a display device incorporating a capacitive touch sensor.
  • the display device 1D includes a display pixel 10 and a capacitive touch sensor TSD in a pixel PIX.
  • the touch sensor TSD has a capacitance Ck.
  • the electrostatic capacitance Ck is formed between the drive electrode 100 and the touch detection electrode 110.
  • the drive electrode 100 is connected to the drive electrode drive circuit 8, and the touch detection electrode 110 is connected to the sensor readout circuit 9.
  • the touch sensor TSD transmits the amount of the drive signal according to the contact of an external object.
  • the touch detection operation is performed by utilizing the change of.
  • the display unit 2 includes dedicated signal wirings for the display operation and the touch detection operation. That is, the display cell 10 that performs the display operation is connected to the signal line SGL and the gate control line GCL, and the touch sensor TSD that performs the touch detection operation is connected to the touch detection electrode 110 and the drive electrode 100. .
  • the touch sensor TSD corresponds to a specific example of “capacitance type sensor element” in the present invention.
  • the same one as used in the first to third embodiments can be used. That is, for example, in the sensor readout circuit 3 (FIG. 2) according to the first embodiment, the connection destination of the readout switch RSW is changed from the signal line SGL to the touch detection electrode 110, and the comparator 331 is related to this modification.
  • the comparator 331 is related to this modification.
  • the display device 1D is not limited to the method of the display cell 10, and may be any type.
  • the display cell 10 may be, for example, a liquid crystal element or an EL element such as an organic EL element.
  • FIG. 22 shows a configuration example of the display cell 10, where (A) shows a case where a liquid crystal element LC is used, and (B) shows a case where an organic EL element is used.
  • the liquid crystal element LC When the liquid crystal element LC is used as the display cell 10, the liquid crystal element LC includes the pixel signal supplied to the pixel electrode via the signal line SGL and the select transistor ST, and the drive supplied to the common electrode (drive electrode 100). A display operation can be performed based on the signal VCOM.
  • a pixel signal is supplied to one end of the capacitor Cs via the signal line SGL and the select transistor ST.
  • the power supply voltage is supplied to the power supply line PSL after the select transistor ST is turned off, the bias of the transistor PT is set by the bootstrap operation, and the transistor PT passes a current corresponding to the pixel signal. Functions as a current source.
  • the organic EL element EL emits light, and a display operation can be performed.
  • FIG. 23 shows a configuration example of a display device incorporating an optical touch sensor.
  • the display device 1E includes an optical touch sensor TSE.
  • the touch sensor TSE includes a photodiode 121, a capacitor element 122, and transistors 123 to 125.
  • the photodiode 121 has a cathode connected to the power supply VDD and an anode connected to one end of the capacitor 122.
  • the capacitive element 122 is disposed between the anode of the photodiode 121 and the ground (GND).
  • the transistors 123 to 125 are constituted by TFTs, for example.
  • the transistor 123 has a drain connected to the anode of the photodiode 121, a gate connected to the reset line RSTL, and a source connected to the ground (GND).
  • the transistor 124 has a source connected to the power supply VDD, a gate connected to the anode of the photodiode 121, and a drain connected to the source of the transistor 125.
  • the transistor 125 has a source connected to the drain of the transistor 124, a gate connected to the lead line RDL, and a drain connected to the sensor line TSL.
  • the sensor line TSL is connected to the sensor readout circuits 12A and 12B.
  • the reset line RSTL and the lead line RDL are connected to the sensor drive circuit 11.
  • the transistor 123 is turned on by the signal of the reset line RSTL, and the capacitor 122 is discharged and reset.
  • the photodiode 121 receives a light amount corresponding to the presence of an external proximity object, generates a current from the cathode to the anode in accordance with the light amount, and charges the capacitive element 122 by this current for an arbitrary period.
  • the transistor 125 is turned on by a signal on the lead wire RDL, a voltage corresponding to the voltage across the charged capacitive element 122 is output to the sensor line TSL. Touch detection is possible by detecting the voltage output to the sensor line TSL by the sensor readout circuits 12A and 12B.
  • the touch sensor TSE corresponds to a specific example of “optical sensor element” in the present invention.
  • the display device 1E is not limited to the type of the display cell 10, and may be any type, for example, a liquid crystal element (FIG. 22A) or an EL element such as an organic EL element. An element using an element (FIG. 22B) may be used.
  • the output signal of the touch sensor was taken out from the display part using the signal wire
  • a dedicated line (sensor line) for sensor reading may be provided so that the output signal of the touch sensor is taken out from the display unit.
  • the frequency of the clock signal is lowered (shift from the normal mode to the non-contact mode A), and further, the supply of the clock signal is stopped (from the non-contact mode A to the non-contact mode B).
  • the operation frequency is reduced by the transition) and the power consumption is reduced, it is not limited to this.
  • FIGS. 11 to 13 when the touch detection operation is performed on one of four touch sensors TS arranged in the horizontal direction of the display unit 2 in the non-contact mode A.
  • a method of providing four shift registers is conceivable. That is, for example, the connection is made so that the output from every fourth touch sensor TS is supplied to the shift register of the same system.
  • unit may be sufficient.

Abstract

 消費電力を抑えつつ、高い応答性能を実現可能なタッチパネル内蔵表示装置を得る。複数の映像信号線にそれぞれ供給された映像信号に基づいて表示を行う複数の表示素子と、外部近接物体の存在を示すタッチ信号を複数のセンサ信号線(SGL)にそれぞれ出力する複数のセンサ素子と、タッチ信号をそれぞれ検出する検出部(コンパレータ331)と、検出部の検出結果を外部に転送出力する転送出力部(Dタイプフリップフロップ332および出力バッファ回路36)と、検出部と転送出力部の動作を制御し、検出部においてタッチ信号が検出された場合に転送出力部を動作させ、タッチ信号が検出されない場合に転送出力部の動作を停止させる制御部(トランジスタスイッチCSW、転送クロック制御回路37、およびタイミングジェネレータ35)とを備える。

Description

表示装置、タッチパネル、および電子機器
 本発明は、外部近接物体を検出するタッチパネル、およびそのようなタッチパネルを内蔵した表示装置、ならびに電子機器に関する。
 近年、いわゆるタッチパネルと呼ばれる接触検出装置を液晶表示装置等の表示装置上に装着し、その表示装置に各種のボタン画像等を表示させることにより、通常の機械式ボタンの代わりとして情報入力を可能とした表示装置が注目されている。このようなタッチパネルを有する表示装置は、キーボードやマウス、キーパッドのような入力装置を必要としないため、コンピュータのほか、携帯電話のような携帯情報端末などでも、使用が拡大する傾向にある。
 一方、近年のエコロジーに対する関心を背景にして、様々な電子機器の消費電力の低減が関心を集めている。タッチパネルを有する表示装置においても、表示パネルだけでなく、タッチパネルの消費電力についても低減が望まれている。特に、タッチパネルは、いつタッチ操作がなされてもそのタッチを検出できるようにするために、通常、常に起動状態におかれる。その結果、タッチパネルの消費電力はしばしば無視できないレベルになる。そこで、タッチパネルの消費電力を低減するための方法として、様々な提案がなされている。
 例えば、特許文献1には、2つの動作モード(通常動作モードと低消費電力モード)を持つ光学式タッチパネルを液晶表示パネルと一体化した表示装置が開示されている。このタッチパネルは、例えば、ユーザがタッチにより情報を入力している間は通常動作モードで動作し、所定の時間タッチが検出されないときには低消費電力モードに移行する。この低消費電力モードでは、タッチパネルにおけるタッチ検出動作の頻度を低下させることにより、消費電力の低減を図っている。その後、低消費電力モードにおいてタッチが検出されると、低消費電力モードから通常動作モードに復旧し、再びユーザがタッチにより情報を入力できるようになる。
 また、例えば、特許文献2には、通常動作モードと低消費電力モードを持つ光学式タッチパネルを液晶表示パネルと一体化した表示装置において、低消費電力モードでは、タッチ検出動作の頻度を低下させるとともに、タッチの位置の演算を行う回路のみをスリープ状態に設定することにより、消費電力の低減を図る表示装置が開示されている。
特開2007-163891号公報 特開2008-262548号公報
 しかしながら、上記特許文献1,2に開示された表示装置では、タッチパネルの低消費電力モードにおいて、タッチ検出動作自体の頻度を低下させているため、低消費電力モードにおけるタッチ検出の応答速度が遅くなり、タッチパネル全体としての応答性能が低くなるおそれがある。その結果、例えば、表示装置に表示されたボタンをタッチする場合に、ユーザが違和感を覚えることになる。特に、例えばスタイラスを使用してタッチパネルから精細な図を入力する場合には、その低い応答特性により、精細な図が入力しにくいなど、ユーザが不自由を感じるおそれがある。
 したがって、消費電力を抑えつつ、高い応答性能を実現できる表示装置、タッチパネル、および電子機器を提供することが望まれる。
 本発明の表示装置は、複数の表示素子と、複数のセンサ素子と、検出部と、転送出力部と、制御部とを備えている。複数の表示素子は、複数の映像信号線にそれぞれ供給された映像信号に基づいて表示を行う。複数のセンサ素子は、外部近接物体の存在を示すタッチ信号を複数のセンサ信号線にそれぞれ出力する。検出部は、タッチ信号をそれぞれ検出する。転送出力部は、検出部の検出結果を外部に転送出力する。制御部は、検出部と転送出力部の動作を制御し、検出部においてタッチ信号が検出された場合に転送出力部を動作させ、タッチ信号が検出されない場合に転送出力部の動作を停止させる。上記転送検出部は、検出部の検出結果を並列から直列に変換して転送出力するのが望ましい。
 本発明のタッチパネルは、複数のセンサ素子と、センサ検出回路とを備えている。複数のセンサ素子は、外部近接物体を示すタッチ信号を複数のセンサ信号線にそれぞれ出力する。センサ検出回路は、タッチ信号に基づいて外部近接物体を検出するものであり、検出部と、転送出力部と、制御部とを有している。検出部は、タッチ信号をそれぞれ検出する。転送出力部は、検出部の検出結果を外部に転送出力する。制御部は、検出部と転送出力部の動作を制御し、検出部においてタッチ信号が検出された場合に転送出力部を動作させ、タッチ信号が検出されない場合に転送出力部の動作を停止させる。上記転送検出部は、検出部の検出結果を並列から直列に変換して転送出力するのが望ましい。
 本発明の電子機器は、上記本発明の表示装置を備えたものであり、例えば、テレビジョン装置、デジタルカメラ、パーソナルコンピュータ、ビデオカメラあるいは携帯電話等の携帯端末装置などが該当する。
 本発明の表示装置、タッチパネル、および電子機器では、検出部は、タッチセンサからセンサ信号線を介して供給されたタッチ信号を検出する。その際、制御部は、検出部におけるタッチ信号の有無を常にモニタし、検出部においてタッチ信号が検出された場合のみ、転送出力部が検出結果を外部に転送出力し、タッチ信号が検出されない場合には転送出力部がこの動作を行わないように制御する。このとき、検出部は、複数のセンサ素子が配置されたタッチ検出領域全体を複数の領域に分けて、各領域について順次分割的にタッチ信号を検出し、制御部は、この複数の領域のうち、タッチ信号が検出されない領域に対応する期間において、転送出力部の動作を停止するように動作することが望ましい。
 本発明の表示装置、タッチパネル、および電子機器では、例えば、制御部は、所定の期間にわたって検出部においてタッチ信号が検出されないときに、検出部の検出動作の一部をも停止させるようにすることが可能である。
 また、例えば、タッチ信号を所定の頻度でのサンプリングによりそれぞれ検出する検出部を用いた場合において、制御部は、所定の期間にわたって検出部においてタッチ信号が検出されないときに、検出部および転送出力部における動作頻度を低下させるようにしてもよい。この場合、制御部は、映像表示のフレーム数をカウントし、1または複数のフレームの期間にわたって検出部においてタッチ信号が検出されない場合は検出部および転送出力部における動作頻度を低下させ、その後タッチ信号が検出された際にはカウント動作の計数値をリセットし、低下させた動作頻度をもとに戻すようにしてもよい。具体的には、例えば、制御部は、1または複数のフレームの期間にわたって検出部においてタッチ信号が検出されない場合は、所定数のフレームごとに検出部および転送出力部を動作させる第1の動作モードに移行し、その後タッチ信号が検出された場合は、全てのフレームにおいて検出部および転送出力部を動作させる第2の動作モードに移行するように構成可能である。
 本発明の表示装置、タッチパネル、および電子機器では、例えば、センサ信号線を映像信号線と共用するとともに、初期化期間において複数のセンサ信号線の全てに同時に初期化信号を印加する初期化部を備え、検出部は、初期化期間のあとに続く期間のうち、映像信号がセンサ信号線に印加される映像信号印加期間以外の期間において前記タッチ信号の検出を行うようにしてもよい。
 その場合、例えば、制御部は、検出部においてタッチ信号が検出されると起動信号を発生し、つぎに初期化部による初期化信号が印加されると停止信号を発生する制御信号発生部と、起動信号と停止信号に基づいて、転送出力部に与える転送クロック信号と、検出部に与える検出起動信号とを発生制御する動作信号制御部とを含むように構成可能である。
 上記した、センサ信号線と映像信号線とを共用する場合では、例えば、画素電極と駆動電極とを共有するように構成した、液晶表示素子および接触式センサ素子が使用可能である。すなわち、表示素子は、映像信号が供給される画素電極と、複数の表示素子に共通に印加される共通信号が供給される駆動電極と、画素電極の電圧と駆動電極の電圧との電位差に応じて駆動される液晶層とを有する液晶表示素子である。センサ素子は、画素電極および駆動電極により構成される接触式センサ素子である。この場合、検出部は、外部近接物体による押圧により画素電極と駆動電極とが近接しあるいは接触した結果生じるセンサ信号線の電圧変化をタッチ信号として検出することができる。
 この液晶表示素子を用いる場合には、例えば、電位差の極性が一定の期間ごとに反転する極性反転駆動により液晶を駆動するように構成可能である。この場合、初期化信号として、一定の期間ごとに電位が変化する共通信号に基づいた信号を用い、検出部と制御信号発生部との間に、初期化信号に基づいて検出部の検出結果の有効論理を生成し、制御信号発生部に出力する論理ゲート回路を挿入するのが好ましい。
 本発明の表示装置、タッチパネル、および電子機器では、センサ素子としては、例えば、静電容量を形成する電極を有し、外部近接物体に応じて変化する静電容量に基づいて、センサ信号線に信号を出力する静電容量式センサ素子を使用することも可能である。あるいは、センサ素子は、光を検出してその光量に応じた信号を出力する受光素子を有し、外部近接物体に応じて変化する受光素子の出力信号に基づいて、センサ信号線に信号を出力する光学式センサ素子であってもよい。表示素子は、例えば、EL表示素子であってもよい。
 本発明の表示装置、タッチパネル、および電子機器によれば、検出部を常に動作させるとともに、タッチの検出状況に応じて転送出力部の動作を制御するようにしたので、消費電力を抑えつつ、高い応答性能を実現できる。
本発明の第1の実施の形態に係るディスプレイ装置の一構成例を表す模式図である。 図1に示したセンサ読出回路の一構成例を表すブロック図である。 図2に示したDタイプフリップフロップ(DFF)の一構成例を表す回路図である。 図2に示した転送クロック制御回路37の一構成例を表す回路図である。 図2に示したディスプレイ装置の一動作例を表すタイミング波形図である。 比較例に係るセンサ読出回路の一構成例を表すブロック図である。 比較例に係るディスプレイ装置の一動作例を表すタイミング波形図である。 変形例に係るディスプレイ装置の一構成例を表す模式図である。 本発明の第2の実施の形態に係るセンサ読出回路の一構成例を表すブロック図である。 図9に示したディスプレイ装置の一動作例を表すタイミング波形図である。 本発明の第3の実施の形態に係るセンサ読出回路の一構成例を表すブロック図である。 図11に示したセンサ読出回路の一動作例を表すタイミング波形図である。 図11に示したセンサ読出回路を用いたディスプレイ装置の一動作例を表す模式図である。 本発明の第4の実施の形態に係るディスプレイ装置の一構成例を表す模式図である。 図14に示したセンサ読出回路の一構成例を表すブロック図である。 実施の形態を適用したタッチセンサ付き表示装置のうち、適用例1の外観構成を表す斜視図である。 適用例2の外観構成を表す斜視図である。 適用例3の外観構成を表す斜視図である。 適用例4の外観構成を表す斜視図である。 適用例5の外観構成を表す正面図、側面図、上面図および下面図である。 本発明の第1から第3の実施の形態の変形例に係るディスプレイ装置を表す模式図である。 図21に示した表示セルの一構成例を表す回路図である。 本発明の第1から第3の実施の形態の他の変形例に係るディスプレイ装置表す模式図である。 本発明の第1から第3の実施の形態のさらに他の変形例に係るタッチパネルを表す模式図である。
 本発明の実施形態を、液晶表示装置を例として図面を参照して説明する。以下、次の順で説明を行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.適用例
6.変形例
<1.第1の実施の形態>
[構成例]
(全体構成例)
 図1は、本発明の第1の実施の形態に係る表示装置の一構成例を表すものである。ディスプレイ装置1は、表示パネルとタッチパネルが一体化した、いわゆるインセル型のディスプレイ装置であり、表示素子として液晶素子を用い、タッチセンサ素子として接触式タッチセンサを用いて構成されたものである。
 ディスプレイ装置1は、表示パネル1Pおよびパネルインターフェース部1IOを備えている。表示パネル1Pは、液晶表示パネルであり、パネルインターフェース部1IOを介して供給された映像信号に基づいて、映像を表示するものである。図1において、表示パネル1Pとして図示した領域は、駆動基板の大きさに対応する。表示パネル1Pは、表示部2と、ソースドライバ6A,6Bと、センサ読出回路3A,3Bと、垂直駆動回路4とを備えている。なお、以下では、ソースドライバ6A,6Bの総称としてソースドライバ6を適宜用い、センサ読出回路3A,3Bの総称としてセンサ読出回路3を適宜用いるものとする。
 表示部2は、実際に表示が行われる表示領域を示すものであり、図1において表示部2として図示した領域は駆動基板に対向する対向基板の大きさに対応する。表示部2では、画素PIXがマトリックス状に配列されている。画素PIXは、セレクトトランジスタSTと、液晶素子LCと、タッチセンサTSとを有している。
 セレクトトランジスタSTは、駆動基板上に配置され、例えばTFT(Thin Film Transistor)から形成される。セレクトトランジスタSTは、ソースおよびドレインの一方が信号線SGL(後述)に接続され、他方が不図示の画素電極に接続され液晶素子LCを駆動するとともに、タッチセンサTSにも接続されている。セレクトトランジスタSTのゲートは、ゲート制御線GCL(後述)に接続されている。
 液晶素子LCは、ソースドライバ6(後述)によりセレクトトランジスタSTを介して供給された信号(画素信号)に基づいて表示を行う表示素子である。具体的には、液晶素子LCは、画素電極に供給された画素信号と、全ての画素に共通に設けられた共通電極に供給された共通駆動信号COMとの電位差に基づいて表示を行う。ここで、共通駆動信号COMは直流信号であり、この例ではその直流電圧を0Vとしている。
 図1において、液晶は対向基板(表示部2に対応)と駆動基板(表示パネル1Pに対応)との間に注入され、液晶層が形成されている。液晶層の層厚は、スペーサにより一定に維持されている。また、基板間の側面の外周側がシール剤により閉じられ、液晶層から液晶が漏れないようになっている。対向基板にはカラーフィルタ等が予め形成され、その際表面には保護層が形成されている。この構成により、液晶素子LCは、図示しない画素電極と共通電極との電位差に基づいて形成される電界の状態に応じて、液晶層を変調し、通過する光の光量を変調するようになっている。
 タッチセンサTSは、外部近接物体の存在を示すタッチ信号を出力し、セレクトトランジスタSTを介してセンサ読出回路3(後述)に供給するものである。一般に、タッチセンサは、抵抗式、容量式、光学式に大別される。本発明の適用においてタッチセンサの方式に限定はない。ただし、本実施の形態では、説明の便宜上、パネル表面への接触(または近接)に応じて信号線SGLに電位変化が生じるような方式、例えば抵抗スイッチ式などを想定している。抵抗スイッチ式では、パネル表面のタッチ操作によって、図1に示したタッチセンサTSのスイッチがオンする。これにより、信号線SGLに対し電荷の充放電経路が形成され(充放電経路の抵抗値が変化し)、信号線SGLに電圧変化が生じる。この電圧変化をセンサ読出回路3(後述)が読み出すことでタッチが検出される。この方式は液晶パネルとセンサ構成部との融合性が高く、センサ機能の付加によるプロセスの追加を極力抑制できるという利点を有する。
 タッチセンサTSの具体例としては、例えば、画素電極が駆動基板上に形成され、共通電極が対向基板に形成される、TN(ツイステッドネマティック)、VA(垂直配向)、ECB(電界制御複屈折)等の液晶方式において、画素電極および対向する共通電極により接触式スイッチを構成し、画素電極(スイッチ電極)と共通電極との間の抵抗を使用する接触式タッチセンサが使用可能である。すなわち、この接触式タッチセンサを使用した場合、外部近接物体による押圧の結果、その接触した箇所に対応する画素において画素電極(スイッチ電極)と共通電極とが接触し、タッチセンサTSはその接触に応じた信号を出力するようになる。
 なお、タッチセンサTSは、必ずしも全ての画素PIXが備えなくてもよい。すなわち、画素PIXは、例えば、図1の横方向について、2つ以上の画素PIXに1つの割合でタッチセンサTSを有していてもよく、例えば、図1の縦方向について、2つ以上の画素PIXに1つの割合でタッチセンサTSを有していてもよい。
 表示部2にマトリックス状に配列された画素PIXは、ゲート制御線GCLおよび信号線SGLと接続されている。すなわち、ゲート制御線GCLは、画素PIXのセレクトトランジスタSTのゲートと接続され、図1の横方向に配線され、表示部2の外で垂直駆動回路4に接続されている。信号線SGLは、画素PIXのセレクトトランジスタSTのソースおよびドレインの一方と接続され、図1の縦方向に配線され、表示部2の外でソースドライバ6およびセンサ読出回路3に接続されている。図1において、センサ読出回路3とソースドライバ6とがそれぞれ2つずつ配置されているのは、ディスプレイ装置1の額縁領域の対称性等を考慮したためである。この構成により、ゲート制御線GCLは表示動作とタッチ検出動作とで共用され、信号線SGLもまた表示動作とタッチ検出動作とで共用されるようになっている。言い換えれば、ディスプレイ装置1は、表示動作のために一般に使用される(映像)信号線SGL及びゲート制御線GCLを共用して、タッチ検出動作を行うことができる。
 上述したセレクトトランジスタSTと、図示しない画素電極や保持容量電極などの電極と、信号線SGLやゲート制御線GCL等の配線は、駆動基板上に規則的に形成されている。共通電極は、TN、VA、ECB等の液晶方式では対向基板上に形成され、FFS(フリンジフィールドスイッチング)やIPS(インプレーンスイッチング)等の横電界モードの液晶方式では駆動基板上に形成される。これらは、TFTプロセスと多層配線プロセスにより形成される。この多層配線プロセスでは、コストの関係から、1層または2層程度の配線が形成されることが多い。
 ソースドライバ6は、表示のための信号(画素信号)を液晶素子LCに供給する回路である。具体的には、ソースドライバ6は、IC5(後述)から映像信号入力線7を介して供給された信号に基づいて画素信号を生成し、信号線SGLを介して液晶素子LCに供給する機能を有している。
 さらに、ソースドライバ6は、タッチ検出動作および表示動作に先立ち、信号線SGLに所定の電圧(プリチャージ電圧PRE)を印加する機能を有する。具体的には、ソースドライバ6は、後述するように、センサ読出回路3のタイミングジェネレータ35から供給されるプリチャージ信号Preに基づいて、プリチャージ電圧PREを信号線SGLに印加する。プリチャージ動作に続いて行われるタッチ検出動作では、信号線SGLの電圧Sigを検出し、事前に設定されたプリチャージ電圧PREからの電圧変化に基づいて、センサ読出回路3がタッチを検出するようになっている。タッチ検出動作に続いて行われる表示動作では、あらかじめ信号線SGLにプリチャージ電圧PREが印加されているため、信号線SGLへの画素信号の印加がしやすくなり、表示動作を行いやすくなる。
 ソースドライバ6と信号線SGLとは、書き込みスイッチWSWを介して接続されている。書き込みスイッチWSWは、図示しないセレクト信号SELによりオンオフ制御される。書き込みスイッチWSWは、信号線SGLが表示動作のために使用される期間(映像信号印加期間)およびプリチャージ動作を行う期間(プリチャージ期間)ではオン状態になるように制御され、信号線SGLがタッチ検出動作のために使用される期間(タッチ検出期間)ではオフ状態になるように制御される。
 なお、図1において、ソースドライバ6とIC5(後述)との間に、多くの映像信号入力線7が配置されている。仮に、表示パネル1P内に水平駆動回路を形成すれば、これらの信号入力線の数を削減することができる。
 センサ読出回路3は、タッチセンサTSから供給されたタッチ信号に基づいてタッチを検出する回路である。具体的には、センサ読出回路3は、後述するように、垂直駆動回路4が選択したタッチセンサTS(1水平ライン)から信号線SGLを介してそれぞれ供給されたタッチ信号を検出して、各タッチセンサTSにおけるタッチの有無を判定する機能を有している。センサ読出回路3と信号線SGLとは、読み出しスイッチRSWを介して接続されている。読み出しスイッチRSWは、信号線SGLがタッチ検出動作のために使用される期間(タッチ検出期間)においてオン状態になるように制御される。
 さらに、センサ読出回路3は、後述するように、その1水平ラインに対するタッチ判定結果において、タッチ有りと判定された場合に、そのタッチ判定結果をパラレル-シリアル変換してIC5(後述)に転送するようになっている。このパラレル-シリアル変換動作および転送動作は、タッチ判定がなされたときのみ行われるようになっているため、この消費電力を低減できる。このとき、タッチ判定動作自体は常に行われるため、タッチに対する応答が遅れることはない。つまり、このセンサ読出回路3を用いることによって、ディスプレイ装置1は、消費電力を抑えつつ、高い応答性能を実現できるようになる。
 パラレル-シリアル変換の機能の導入は、以下の理由により、表示パネル1Pの小型化に効果的である。信号線SGLは、表示行方向(図1の横方向)に画素数分、すなわち数百~数千もの本数が設けられている。よって、上述したように、タッチセンサTSを、図1の横方向について、例えば2つの画素PIXに1つの割合で設けるようにした場合でも、信号線SGLのうちセンサ読出回路3へ供給される配線の数は依然として多いままである。センサ読出回路3は、パラレル-シリアル変換の機能を有することにより、その出力線の本数を1本(または数本)にすることができ、表示パネル1PとIC5との間の配線数を大幅に削減することができる。これにより、表示パネル1Pの額縁の面積を削減することが可能となり、また、配線数が少なくなることによりIC5のサイズの増加を抑えることができる。
 垂直駆動回路4は、タッチ検出動作および表示動作の対象となる画素PIXを選択する機能を有している。具体的には、垂直駆動回路4は、ゲート制御線GCLに対して書き込みイネーブルパルスENBを印加して、表示部2にマトリックス状に形成されている画素PIXのうちの1行(1水平ライン)を表示動作およびタッチ検出動作の対象として選択する。タッチ検出期間では、選択された画素PIXのタッチセンサTSからタッチ信号が出力され、センサ読出回路3において検出されることにより、その1水平ラインに対してタッチ検出がなされる。また、映像信号印加期間では、画素信号がソースドライバ6から出力され、選択された画素PIXの液晶表示素子LCに供給されることにより、その1水平ラインに対して表示がなされる。このようにして、垂直駆動回路4は、時分割的に1水平ラインずつ順次走査を行い、ディスプレイ装置1においてタッチ検出動作および表示動作が行われるように制御する。
 表示パネル1Pからの配線群は、フレキシブル基板等を介して、パネルインターフェース部1IOのIC5に接続されている。IC5は、表示パネル1Pの駆動や信号処理を行う回路である。特に図示しないが、IC5は入出力ピンに接続されており、その入出力ピンを介してディスプレイ装置1の外部と信号のやりとりを行うようになっている。センサ読出回路3から供給されたタッチの有無を含む信号は、ディスプレイ装置1の外部に転送され、当該ディスプレイ装置を有する電子機器において、所定の処理の実行契機信号や具体的な指令等に供せられる。
(センサ読出回路3)
 次に、センサ読出回路3について詳細に説明する。
 図2は、センサ読出回路3の回路構成例を表すものである。センサ読出回路3は、センサ出力の読み出しとパラレル-シリアル変換を行う動作部31と、動作部31を制御し外部とのインターフェースとして機能する制御IO部32とを備えている。
 動作部31は、直列接続された複数の読出転送ユニット33を備えている。読出転送ユニット33は、読み出しスイッチRSWと、コンパレータ(cmp)331と、Dタイプフリップフロップ(DFF)332と、トランジスタスイッチCSWとを有している。
 読み出しスイッチRSWは、ソースとドレインのうちの一方が信号線SGLに接続され、他方がコンパレータ331の第1入力端子(後述)に接続されている。読み出しスイッチRSWのゲートには、制御IO部32のタイミングジェネレータ35(後述)から出力されるリード信号Readが供給されるようになっている。この構成により、読み出しスイッチRSWは、リード信号Readが“H”レベルのときにオン状態になり、信号線SGLの信号がコンパレータ331の第1入力端子(後述)に供給されるようになっている。
 コンパレータ331は、2つの入力端子に供給された信号の電圧レベルを比較する回路である。第1入力端子は、読み出しスイッチRSWのソースとドレインのうちの他方が接続され、第2入力端子には、参照電圧Vrefが供給されている。コンパレータ331は、タイミングジェネレータ35(後述)からのプリチャージ信号Preにより活性化される。すなわち、コンパレータ331は、プリチャージ信号Preが“H”レベルの時に、第2入力端子から供給される参照電圧Vrefをしきい値として設定し、プリチャージ信号Preが“L”レベルのときに、第1入力端子の電圧とこの設定されたしきい値とを比較するように活性化される。この構成により、コンパレータ331は、後述するように、活性化されているときには、第1入力端子の電圧(信号線SGLの電圧)が第2入力端子の電圧(参照電圧Vref)よりも低いときに論理“H”を出力し、第1入力端子の電圧(信号線SGLの電圧)が第2入力端子の電圧(参照電圧Vref)よりも高いときに論理“L”を出力する。すなわち、コンパレータ331は、タッチセンサTSにおいてタッチがあるときには論理“H”を出力し、タッチが無いときには論理“L”を出力するようになっている。つまり、コンパレータ331の出力論理はハイアクティブである。
 Dタイプフリップフロップ332は、第1入力端子in1と、第2入力端子in2とを有し、この2つの端子に供給された信号を保持し出力端子outから出力する回路である。第1入力端子in1は、直列接続された前段の読出転送ユニット33のDタイプフリップフロップの出力端子と接続され、第2入力端子in2は、コンパレータ331の出力端子と接続されている。
 図3は、Dタイプフリップフロップ332の回路構成例を表すものである。Dタイプフリップフロップ332は、4つのインバータINV1~INV4と、4つのトランスファーゲート型のスイッチSW1~SW4とを有している。スイッチSW1は、第1入力端子in1とインバータINV1の入力端子との間に挿入され、第1転送クロックSCK1および第1反転転送クロックSCKb1によりオンオフ制御されるようになっている。インバータINV1は、入力端子がスイッチSW1の一方の端子に接続され、入力信号を反転して出力する回路である。インバータINV2は、入力端子がインバータINV1の出力端子と接続され、入力信号を反転して出力する回路である。スイッチSW2は、インバータINV2の出力端子と、インバータINV1の入力端子との間に挿入され、第1反転転送クロックSCKb1および第1転送クロックSCK1によりオンオフ制御されるようになっている。スイッチSW3は、インバータINV1の出力端子とインバータINV3の入力端子との間に挿入され、第1反転転送クロックSCKb1および第1転送クロックSCK1によりオンオフ制御されるようになっている。インバータINV3は、入力端子がスイッチSW3の一方の端子および第2入力端子in2に接続され、入力信号を反転し、Dタイプフリップフロップ332の出力信号として出力する回路である。インバータINV4は、入力端子がインバータINV3の出力端子と接続され、入力信号を反転して出力する回路である。スイッチSW4は、インバータINV4の出力端子と、インバータINV3の入力端子との間に挿入され、第2転送クロックSCK2および第2反転転送クロックSCKb2によりオンオフ制御されるようになっている。ここで、第1反転転送クロックSCKb1は、第1転送クロックSCK1に基づいて、図示しない第1転送クロック用インバータにより反転され生成されたものである。また、第2反転転送クロックSCKb2は、第2転送クロックSCK2に基づいて、図示しない第2転送クロック用インバータにより反転され生成されたものである。
 Dタイプフリップフロップ332では、スイッチSW1とスイッチSW2とは、お互いに排他的に動作する。すなわち、スイッチSW1がオン状態のときはスイッチSW2がオフ状態となり、スイッチSW1がオフ状態のときはスイッチSW2がオン状態になるようになっている。同様に、スイッチSW1とスイッチSW3とは、お互いに排他的に動作する。すなわち、スイッチSW1がオン状態のときはスイッチSW3がオフ状態となり、スイッチSW1がオフ状態のときはスイッチSW3がオン状態になるようになっている。
 以上の構成により、Dタイプフリップフロップ332では、インバータINV1,INV2およびスイッチSW1,SW2がマスターラッチMLを構成し、インバータINV3,INV4およびスイッチSW3,SW4がスレーブラッチSLを構成するようになっている。
 読出転送ユニット33は、上述したように、動作部31において直列に接続されている。すなわち、図2に示したように、ある読出転送ユニット33のDタイプフリップフロップ332の出力端子は、その次段の読出転送ユニット33のDタイプフリップフロップ332の第1入力端子と接続されている。直列接続された複数のDタイプフリップフロップ332はシフトレジスタを構成し、パラレル-シリアル変換を実行する。具体的には、まず、初段のDタイプフリップフロップ332の入力端子in1には、外部のコントローラから非活性論理“H”が与えられる。Dタイプフリップフロップ332のそれぞれは、コンパレータ331の出力端子から第2入力端子に供給される電圧に応じて、スレーブラッチSLの保持データを書き変える。つまり、タッチセンサTSにおいてタッチがあるときには、そのタッチセンサTSに対応するコンパレータ331の出力が論理“H”となり、その論理がDタイプフリップフロップ332のスレーブラッチSLに保持され、Dタイプフリップフロップ332は、コンパレータ331の出力論理の反転に対応する論理“L”を出力する。また、タッチセンサにおいてタッチが無いときには、そのタッチセンサに対応するコンパレータ331の出力が論理“L”となり、その論理がDタイプフリップフロップ332のスレーブラッチSLに保持され、Dタイプフリップフロップ332は、コンパレータ331の出力論理の反転に対応する論理“H”を出力する。すなわち、Dタイプフリップフロップ332の出力論理はローアクティブになっている。このように、複数の信号線SGLから出力されたタッチの有無を示すビット列は、シフトレジスタに保持される。その後、シフトレジスタは、そのビット列を、第1転送クロックSCK1および第2転送クロックSCK2に同期してパラレル-シリアル変換し、最終段のDタイプフリップフロップ332の出力端子outからセンサ出力転送信号Doutとして出力するようになっている。
 トランジスタスイッチCSWは、ゲートがDタイプフリップフロップ332の出力端子outと接続され、ドレインおよびソースのうち一方が電源VDD(論理“H”に対応)に接続され、他方が制御IO部32の転送クロック制御回路37のクロック制御許可信号clk_enの入力端子と接続されている。この例では、Dタイプフリップフロップ332で扱う信号は、ローアクティブの信号であるため、トランジスタスイッチCSWはPMOS構成となっている。つまり、トランジスタスイッチCSWのゲートに活性化論理“L”を印加することにより、トランジスタスイッチCSWはオン状態になり、電源VDDに対応する活性化論理“H”がクロック制御許可信号clk_en(後述)として転送クロック制御回路37に供給されるようになっている。トランジスタスイッチCSWは、各読出転送ユニット33に1つずつ設けられており、全てのトランジスタスイッチCSWは、転送クロック制御回路37のクロック制御許可信号clk_enの入力端子と接続されている。この構成により、複数のDタイプフリップフロップ332のうち1つでも活性化論理“L”を出力すると、対応するトランジスタスイッチCSWがオン状態になり、クロック制御許可信号clk_en(後述)として活性化論理“H”が転送クロック制御回路37に供給される。
 制御IO部32は、インターフェース部34と、タイミングジェネレータ35と、出力バッファ回路36と、転送クロック制御回路37とを備えている。
 インターフェース部34は、外部から供給されるセンサ読出回路3を制御するための信号を入力する入力インターフェース回路である。具体的には、外部から供給されたセンサ読出しのためのクロック信号CKに基づいてクロック信号CKinを生成し、外部から供給された水平同期信号HDに基づいて水平同期信号HDinを生成し、外部から供給された垂直同期信号VDに基づいて垂直同期信号VDinを生成し、これらの信号をタイミングジェネレータ35に供給するようになっている。
 タイミングジェネレータ35は、転送クロック制御回路37(後述)と協働し、動作部31におけるタッチ信号の検出動作およびパラレル-シリアル変換動作を制御するための信号を生成する回路である。具体的には、タイミングジェネレータ35は、インターフェース部34から供給されたクロック信号CKin、水平同期信号HDin、および垂直同期信号VDinに基づいて、第1転送クロックSCK1および第2転送クロックSCK2、リード信号Read、およびプリチャージ信号Preを生成し、これらを動作部31の読出転送ユニット33に供給するとともに、リード信号Readとプリチャージ信号Preを転送制御回路37(後述)に供給する機能を有する。さらに、タイミングジェネレータ35は、図示していないが、プリチャージ信号Preをソースドライバ6にも供給するようになっている。
 転送クロック制御回路37は、動作部31のトランジスタスイッチCSWから供給されるクロック制御許可信号clk_enに基づいて、動作部31におけるパラレル-シリアル変換動作を制御する回路である。具体的には、転送クロック制御回路37は、1水平ラインに対するタッチ検出動作においてタッチが検出され、トランジスタスイッチCSWからクロック制御許可信号clk_enとして活性化論理“H”が供給されると、クロック停止信号clk_endを生成し、タイミングジェネレータ35に供給する。タイミングジェネレータ35は、後述するように、転送クロック制御回路37より供給されたクロック停止信号clk_endに基づいて、第1転送クロックSCK1および第2転送クロックSCK2を制御し、動作部31のシフトレジスタの動作を制御するようになっている。また、転送クロック制御回路37は、タイミングジェネレータ35からプリチャージ信号Preとして活性化論理“H”が入力されると、クロック制御許可信号clk_enを非活性論理“L”に設定しリセットする機能も有している。
 図4は、転送クロック制御回路37の回路構成例を表すものである。転送クロック制御回路37は、トランジスタTr1と、トランスファーゲート型のスイッチSW5,SW6と、インバータINV5,INV6と、ノア回路NOR1とを有している。トランジスタTr1は、ドレインおよびソースの一方にクロック制御許可信号clk_enが供給され、他方が接地され、ゲートにプリチャージ信号Preが供給される。スイッチSW5は、一方の端子にクロック制御許可信号clk_enが供給され、他方の端子がインバータINV5の入力端子と接続され、リード信号Readおよび反転リード信号xReadによりオンオフ制御されるようになっている。インバータINV5は、入力端子がスイッチSW5の他方の端子に接続され、入力信号を反転して出力する回路である。ノア回路NOR1は、第1入力端子がインバータINV5の出力端子に接続され、第2入力端子にプリチャージ信号Preが供給され、出力端子がスイッチSW6の一方の端子に接続され、第1および第2の入力端子に供給された信号の反転論理和を生成し出力するようになっている。スイッチSW6は、ノア回路NOR1の出力端子とインバータINV5の入力端子との間に挿入され、反転リード信号xReadおよびリード信号Readによりオンオフ制御されるようになっている。インバータINV6は、入力端子がINV5の出力端子に接続され、入力信号を反転し、転送クロック制御回路37の出力信号(クロック停止信号clk_end)として出力する回路である。ここで、反転リード信号xReadは、リード信号Readに基づいて、図示しないリード信号用インバータにより反転され生成されたものである。
 転送クロック制御回路37では、スイッチSW5とスイッチSW6とは、お互いに排他的に動作する。すなわち、スイッチSW5がオン状態のときはスイッチSW6がオフ状態となり、スイッチSW5がオフ状態のときはスイッチSW6がオン状態になるようになっている。
 以上の構成により、転送クロック制御回路37では、インバータINV5、ノア回路NOR1、スイッチSW5,SW6がラッチ回路を構成している。そのラッチ動作においては、ノア回路NOR1にプリチャージ信号Preが供給されることにより、転送クロック制御回路37は、プリチャージ信号Preと同期してラッチ入力を許可するよう機能する。転送クロック制御回路37では、トランジスタTr1のゲートにプリチャージ信号Preとして活性化論理“H”を供給することにより、クロック制御許可信号clk_enを非活性論理“L”にリセットするようになっている。
 出力バッファ回路36は、動作部31のシフトレジスタから出力されるセンサ出力転送信号Doutを、パネルインターフェース部1IOのIC5に供給するバッファ回路である。
 ここで、表示パネル1Pは、本発明における「表示装置」の一具体例に対応する。タッチセンサTSは、本発明における「センサ素子」の一具体例に対応する。液晶素子LCは、本発明における「表示素子」の一具体例に対応する。画素電極および共通電極は、本発明における「画素電極」および「駆動電極」の一具体例にそれぞれ対応する。信号線SGLは、本発明における「映像信号線」の一具体例に対応し、画素信号は、本発明における「映像信号」の一具体例に対応する。
 コンパレータ331は、本発明における「検出部」の一具体例に対応する。Dタイプフリップフロップ332および出力バッファ回路36は、本発明における「転送出力部」の一具体例に対応する。トランジスタスイッチCSW、転送クロック制御回路37、およびタイミングジェネレータ35は、本発明における「制御部」の一具体例に対応する。このうち、トランジスタスイッチCSWは、本発明における「制御信号発生部」の一具体例に対応し、タイミングジェネレータ35は、本発明における「動作信号制御部」の一具体例に対応する。
 プリチャージ電圧PREは、本発明における「初期化信号」の一具体例に対応し、ソースドライバ6のうち、プリチャージ電圧PREを信号線SGLに供給する回路は、本発明における「初期化部」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態のディスプレイ装置1の動作および作用について説明する。
(全体動作概要)
 表示動作については、まず、ソースドライバ6が、IC5から供給される映像信号に基づいて画素信号を生成し、映像信号印加期間において信号線SGLを介して表示部2に供給する。垂直駆動回路4は、ゲート制御線GCLを駆動することにより、表示部2おいて、1水平ラインを構成する画素PIXを選択する。表示部2は、信号線SGLの画素信号およびゲート制御線GCLの電圧に基づいて、この1水平ラインに対する表示を行う。表示部2では、時分割的に1水平ラインずつ順次走査されることにより、表示部2の全体にわたり表示が行われる。
 タッチ検出動作については、まず、ソースドライバ6が、タイミングジェネレータ35から供給されるプリチャージ信号Preに基づいて、信号線SGLにプリチャージ電圧を印加する。垂直駆動回路4により選択された1水平ラインを構成するタッチセンサTSは、外部近接物体の存在を示すタッチ信号をそれぞれ信号線SGLに出力する。センサ読出回路3の動作部31は、信号線SGLの電圧Sigの電圧変化に基づいて、タッチを判定する。動作部31は、その1水平ラインに対するタッチ判定結果において、タッチが判定された場合に、そのタッチ判定結果をパラレル-シリアル変換する。転送クロック制御回路37は、タイミングジェネレータ35に対して、その1水平ラインに対するタッチ判定結果においてタッチが判定された場合に、動作部31がパラレル-シリアル変換するように制御し、タッチが判定されなかった場合に、動作部31がパラレル-シリアル変換しないように制御する。インターフェース部34は、外部から供給されるセンサ読出回路3に対する制御信号を入力する。出力バッファ回路36は、動作部31においてパラレル-シリアル変換され出力されるセンサ出力転送信号Dout信号をIC5に供給する。表示部2では、時分割的に1水平ラインずつ順次走査されることにより、表示部2の全体にわたりタッチ検出が行われる。
(センサ読出回路3におけるタッチ検出動作)
 次に、センサ読出回路3におけるタッチ検出動作の詳細を説明する。
 図5は、ディスプレイ装置1のタイミング波形図の一例を表すものであり、(A)は水平同期信号HDの波形を示し、(B)は書き込みイネーブルパルスENBの波形を示し、(C)はセレクト信号SELの波形を示し、(D)は信号線SGLの電圧Sigの波形を示し、(E)はプリチャージ信号Preの波形を示し、(F)はリード信号Readの波形を示し、(G)はクロック停止信号clk_endの波形を示し、(H)は転送クロックSCK1の波形を示し、(I)は転送クロックSCK2の波形を示す。図5の左半分はタッチがあるときの動作を表すものであり、図5の右半分はタッチが無いときの動作を表すものである。画素PIXは、説明の便宜上、図1の横方向について、2つの画素PIXに1つの割合でタッチセンサTSを有し、図1の縦方向について、2つの画素PIXに1つの割合でタッチセンサTSを有しているとする。つまり2次元平面では4画素に1個の割合でタッチセンサTSが配置されている場合を想定している。なお、水平同期信号HDは、1水平ライン期間(1H)を規定している。
 以下では、図5の左半分、すなわち、タッチがあるときの動作について詳細に説明し、図5の右半分(タッチがないときの動作)については、比較のために適宜参照することとする。
 ディスプレイ装置1は、図5に示したように、まず、タイミングT0~T1において、プリチャージ動作を行う。次に、ディスプレイ装置1は、タイミングT2~T3において、1水平ラインに対するタッチ検出動作を行い、その後、その検出結果を転送クロックSCKに基づいてパラレル-シリアル変換し出力する。そして、ディスプレイ装置1は、タイミングT3以降において、表示動作を行う。
 ここで、タイミングT0~T1の期間は、本発明における「初期化期間」の一具体例に対応し、タイミングT3以降の期間は、本発明における「映像信号印加期間」の一具体例に対応する。
 まず、センサ読出回路3では、タイミングT0において、水平同期信号HDが立ち上がり(図5(A))、1水平ライン期間を開始する。タイミングT0に同期して、タイミングジェネレータ35は、所定の持続時間を有する正のパルスとしてプリチャージ信号Preを生成する(図5(E))。プリチャージ信号Preは、コンパレータ331と転送クロック制御回路37に供給される。コンパレータ331は、プリチャージ信号Preが“H”レベルになると、第2入力端子に印加された参照電圧Vrefを比較動作のしきい値として設定する。転送クロック制御回路37では、図4に示したように、プリチャージ信号Preが“H”レベルになると、トランジスタTr1がオン状態となり、転送クロック制御回路37の入力信号であるクロック制御許可信号clk_enがリセット(論理“L”に設定)される。さらに、転送クロック制御回路37は、プリチャージ信号Preがノア回路NOR1に入力されることによりラッチされ、転送クロック制御回路37の出力信号であるクロック停止信号clk_endが論理“L”に設定されリセットされる。
 プリチャージ信号Preは、図示していないが、ソースドライバ6にも供給される。ソースドライバ6では、プリチャージ信号Preに基づいて、タイミングT0からタイミングT1までの短い所定の時間にわたり、セレクト信号SELが“H”レベルになる(図5(C))。これにより、書き込みスイッチWSWがオン状態になり、信号線SGLの電圧Sigがプリチャージ電圧PRE(“H”レベルの直流電圧)に設定される(図5(D))。
 次に、センサ読出回路3では、タイミングT1において、プリチャージ信号Preが立ち下がり(図5(E))、信号線SGLへのプリチャージ電圧PREの印加が終了すると、プリチャージ電圧PREが低下し始める(図5(D))。これは、プリチャージ動作によって画素電極(スイッチ電極)と共通電極との間に充電された電荷が、外部近接物体による押圧によりオン状態となったタッチセンサTSを経由して放電されるためである。つまり、タッチセンサTSが電荷の放電経路となっている。一方、図5の右半分ではプリチャージ電圧PREの低下は見られない。これは、タッチが無いため、タッチセンサTSがオンせず、電荷の放電経路が生じていないためである。また、コンパレータ331は、プリチャージ信号Preが“L”レベルになると、第1入力端子の電圧としきい値(参照電圧Vref)との比較動作を開始する。
 次に、センサ読出回路3では、タイミングT2において、リード信号Readが立ち上がる(図5(F))。これにより、読み出しスイッチRSWがオン状態になり、読出転送ユニット33ではタッチ信号の検出が可能な状態になる。つまり、以後に信号線SGLに現れる電圧Sigの検出が実行される。リード信号Readは、転送クロック制御回路37にも供給される。転送クロック制御回路37では、図4に示したように、リード信号Readが“H”レベルになることにより、スイッチSW5がオン状態になり、スイッチSW6がオフ状態になる。これにより、転送クロック制御回路37の入力信号であるクロック制御許可信号clk_enの変化(論理“L”から論理“H”への変化)を取り込むことができるようになる。
 センサ読出回路3では、信号線SGLの電圧Sigの変化(“H”レベルから“L”レベルへ)に対応して、コンパレータ331の出力が“L”レベルから“H”レベルへ変化し、Dタイプフリップフロップ332の出力が“H”レベルから”L”レベルに変化する。この変化に伴い、トランジスタスイッチCSWはオフ状態からオン状態に変化し、クロック制御許可信号clk_enがL”レベルから“H”レベルへ変化する。転送クロック制御回路37では、クロック制御許可信号clk_enが取り込まれ、転送クロック制御回路37の出力信号であるクロック停止信号clk_endが“L”レベルから“H”レベルへ変化する(図5(G))。
 つまり、タッチ検出動作を行っている1水平ラインのタッチセンサTSのうち、1つでもタッチが検出されれば、対応するトランジスタスイッチCSWがオン状態になり、クロック制御許可信号clk_enが“L”レベルから“H”レベルへ変化し、それに伴い、クロック停止信号clk_endもまた“L”レベルから“H”レベルへ変化する。
 その後、タイミングT3において、リード信号Readが“L”レベルに変化すると、転送クロック制御回路37では、スイッチSW5がオフ状態になるとともに、スイッチSW6がオン状態になる。これにより、転送クロック制御回路37は、クロック制御許可信号clk_enの取り込みを停止するとともに、出力信号であるクロック停止信号clk_endを“H”レベルに保持する。このクロック停止信号clk_endの保持状態は、次にプリチャージ信号Preとして“H”レベルが供給され、ノア回路NOR1によって再設定されるまで維持される(図5(G))。
 タイミングジェネレータ35は、クロック停止信号clk_endが“H”レベルの期間のみ転送クロックSCKを生成し(図5(H))、動作部31のシフトレジスタに供給する。つまり、タイミングジェネレータ35は、タッチ検出動作を行っている1水平ラインにおいてタッチが検出されたときだけ、転送クロックSCKをシフトレジスタに供給する。
 すなわち、タッチが無いときは、図5の右半分に示したように、信号線SGLの電圧Sigは、プリチャージ動作後でも、プリチャージ電圧PREのまま変化しない(図5(D))。そのため、Dタイプフリップフロップ332の出力も”H”レベルのまま変化することはない。よってトランジスタスイッチCSWはオフ状態のままとなり、クロック制御許可信号clk_enは“L”レベルのまま変化しない。その結果、クロック停止信号clk_endもまた“L”レベルのまま変化せず(図5(G))、転送クロックSCKは発生しない(図5(H))。
 動作部31の複数のDタイプフリップフロップ332によって構成されるシフトレジスタは、転送クロックSCKが供給されることにより、パラレル-シリアル変換を行う。すなわち、シフトレジスタは、タッチがある場合のみ、1水平ラインに関するタッチ検出結果の情報をパラレル-シリアル変換し、センサ出力転送信号Doutとして出力する。センサ出力転送信号Doutは、出力バッファ回路36を介して外部へ転送される。
 なお、上述したように、この例では、画素PIXは、図1の縦方向について、2つの画素PIXに1つの割合でタッチセンサTSを有している。このため、センサ出力転送信号Doutが出力される時間(図5(H)において転送クロックSCKが存在する時間に対応)は、2Hになっている。つまり、この例では、タッチ検出結果の外部への転送動作はタッチ操作があってから1~2H期間(1~2水平ライン期間)程度で行われる。
 以上のように、ディスプレイ装置1では、タイミングT1からタイミングT3において、1水平ラインに対するタッチが検出され、その後、検出結果がシリアルデータとして外部に転送される。
 一方、表示動作は、タイミングT3以降で行われる。ソースドライバ6では、タイミングT3以降において、セレクト信号SELがRGBの色ごとに順次活性レベル(“H”)となる(図5(C))。これにより、書き込みスイッチWSWが順次オン状態となり、ソースドライバ6は、画素信号を信号線SGLに印加し(図5(D))、画素PIXはこの画素信号に基づいて表示を行う。
 以上のように、ディスプレイ装置1では、センサ読出回路3は、1水平ラインに対するタッチ検出結果をパラレル-シリアル変換して、シリアルデータとしてIC5に供給する。これにより、図1に示したように、センサ読出回路とIC5との間の配線数を減らすことができる結果、配線領域を狭くすることができるため、ディスプレイ装置1の額縁領域を狭くすることができる。言い換えれば、ディスプレイ装置1を小型化することができる。
 また、ディスプレイ装置1は、常に順次走査により1水平ラインごとのタッチ検出動作を行い、各1水平ラインでのタッチ検出結果において、タッチ有りと判定されたときのみパラレル-シリアル変換動作を行う。これにより、ディスプレイ装置1は、消費電力を抑えつつ、高い応答性能を実現できる。
(比較例)
 次に、本実施の形態の比較例に係る表示装置について説明する。本比較例は、トランジスタスイッチCSWが省かれたセンサ読出回路を用いてディスプレイ装置1xを構成したものである。なお、本実施の形態に係るディスプレイ装置1と実質的に同一の部分は同一の符号を付し、適宜説明を省略する。
 図6は、本比較例に係るセンサ読出回路3xの回路構成例を表すものである。センサ読出回路3xは、動作部31xと、制御IO部32xとを備えている。
 動作部31xは、直列接続された複数の読出転送ユニット33xを備えている。比較例に係る読出転送ユニット33xは、本実施の形態に係る読出転送ユニット33(図2)と比較すると、トランジスタスイッチCSWが省略されている。
 制御IO部32xは、タイミングジェネレータ35xを備えている。また、制御IO部32xでは、本実施の形態に係るセンサ読出回路3(図2)においてトランジスタスイッチCSWと接続されていた転送クロック制御回路37が省略されている。これに伴い、タイミングジェネレータ35xは、後述するように、外部制御による転送クロックSCKの供給停止機能を持たない。
 図7は、ディスプレイ装置1xのタイミング波形図の一例を表すものであり、(A)は水平同期信号HDの波形を示し、(B)は書き込みイネーブルパルスENBの波形を示し、(C)はセレクト信号SELの波形を示し、(D)は信号線SGLの電圧Sigの波形を示し、(E)はプリチャージ信号Preの波形を示し、(F)はリード信号Readの波形を示し、(G)は転送クロックSCK1の波形を示し、(H)は転送クロックSCK2の波形を示す。図7の左半分はタッチがあるときの動作を表すものであり、図7の右半分はタッチが無いときの動作を表すものである。
 図7に示したように、ディスプレイ装置1xでは、転送クロックSCKは、タッチの有無に関係なくタイミングジェネレータ35xにより生成されシフトレジスタに供給される。よって、ディスプレイ装置1xでは、消費電力が大きくなってしまう。
 表示動作が一般に常時行われるものであるのに対して、タッチ検出動作は、必ずしも常時行われるものではない。すなわち、ユーザがタッチパネルを用いて情報を入力する頻度は、通常かなり低いと考えられる。よって、本比較例のように、タッチの有無に関係なく転送クロックSCKをシフトレジスタに供給して動作させておくことは、消費電力の観点から、特にモバイル機器のディスプレイ装置に対して不利益が大きい。
 一方、本実施の形態に係るディスプレイ装置1では、1水平ラインのタッチ検出結果において、タッチ有りと判定されたときのみ転送クロックSCKがシフトレジスタに供給される。つまり、本実施の形態のセンサ読出回路3は、必要なときだけシフトレジスタが動作し、タッチ検出結果を外部に転送する。よって、ディスプレイ装置1では、消費電力の低減が可能となる。また、その転送動作はタッチ操作があってから1~2H期間程度で行われるため応答性もよい。
[効果]
 以上のように、本実施の形態では、常に順次走査により1水平ラインごとのタッチ検出動作を行い、各1水平ラインでのタッチ検出結果において、タッチ有りと判定されたときのみパラレル-シリアル変換動作を行い、シリアルデータを外部に転送するようにしたので、消費電力を抑えつつ、高い応答性能を実現できる。
 また、本実施の形態では、センサ読出回路がタッチ検出結果をシリアルデータとしてICに転送するようにしたので、ディスプレイ装置の額縁領域を狭くすることができ、ディスプレイ装置の小型化を実現できる。
 さらに、本実施の形態では、表示動作とタッチ検出動作とで、ゲート制御線GCLおよび信号線SGLを共用するようにしたので、表示部2内の配線を少なくすることができる。
(変形例1-1)
 次に、本実施の形態の変形例に係る表示装置について説明する。本比較例は、表示動作とタッチ検出動作とで、配線を共用しない表示部を用いてディスプレイ1Sを構成したものである。なお、本実施の形態に係るディスプレイ装置1と実質的に同一の部分は同一の符号を付し、適宜説明を省略する。
 図8は、本比較例に係るディスプレイ装置1Sの一構成例を表すものである。ディスプレイ装置1Sは、表示部2Sと、センサ用垂直駆動回路4Sとを備えている。
 表示部2Sは、センサ線TSLと、センサ用ゲート制御線GCL2と、センサ用セレクトトランジスタST2とを備えている。表示部2Sでは、表示部2(図1)と異なり、タッチセンサTSが液晶素子LCから分離して構成されている。センサ用セレクトトランジスタST2は、ソースおよびドレインの一方がセンサ線TSLに接続され、他方がタッチセンサTSに接続されている。センサ用セレクトトランジスタST2のゲートは、センサ用ゲート制御線GCL2に接続されている。センサ用ゲート制御線GCL2は、センサ用垂直駆動回路4Sに接続されており、センサ線TSLはセンサ読出回路3に接続されている。
 センサ用垂直駆動回路4Sは、タッチ検出動作の対象となる画素PIXを選択する機能を有している。具体的には、センサ用垂直駆動回路4Sは、センサ用ゲート制御線GCL2に対してタッチセンサTSを選択するための信号を印加する。
 この構成により、表示動作では、信号線SGLおよびゲート制御線GCLが使用され、一方、タッチ検出動作では、センサ線TSLおよびセンサ用ゲート制御線GCL2が使用されるようになる。
 ディスプレイ装置1Sは、上記実施の形態に係るディスプレイ装置1と同様に、各1水平ラインでのタッチ検出結果において、タッチ有りと判定されたときのみパラレル-シリアル変換動作を行う。これにより、ディスプレイ装置1Sは、消費電力を抑えつつ、高い応答性能を実現できる。
 また、ディスプレイ装置1Sは、タッチセンサTSと液晶素子LCとを分離して構成したので、表示動作とタッチ検出動作とを独立して行うことができ、自由度のあるタッチ検出動作を実現できる
<2.第2の実施の形態>
 次に、本発明の第2の実施の形態に係る表示装置について説明する。本実施の形態に係るディスプレイ装置1Aは、ライン反転駆動する表示装置に適用され、共通駆動信号COMに基づいてAC的にプリチャージ動作を行う場合でも、タッチ検出動作を行うことができるようにしたものである。なお、上記第1の実施の形態に係るディスプレイ装置1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
[構成例]
 図9は、本実施の形態の表示装置におけるセンサ読出回路40の回路構成例を表すものである。センサ読出回路40は、動作部41を備えている。
 動作部41は、直列接続された複数の読出転送ユニット43を備えている。読出転送ユニット43は、排他的論理和回路(eor)XORを有している。排他的論理和回路XORは、第1入力端子がDタイプフリップフロップ332の出力端子と接続され、第2入力端子に共通駆動信号COMが供給され、出力端子がトランジスタスイッチCSWのゲート端子に接続され、第1入力端子と第2入力端子にそれぞれ供給された信号の排他的論理和を生成し出力するものである。これにより、ディスプレイ装置1Aは、後述するように、画素信号および共通駆動信号COMがそれぞれ1水平ライン(1H)ごとに反転するライン反転駆動において、AC的にプリチャージ動作を行う場合でも、タッチ検出動作を行うことができるようになっている。その他の構成は図1と同様である。
 ここで、排他的論理和回路は、本発明における「論理ゲート回路」の一具体例に対応する。
[動作および作用]
 図10は、ディスプレイ装置1Aのタイミング波形図の一例を表すものであり、(A)は水平同期信号HDの波形を示し、(B)は書き込みイネーブルパルスENBの波形を示し、(C)はセレクト信号SELの波形を示し、(D)は信号線SGLの電圧Sigの波形を示し、(E)はプリチャージ信号Preの波形を示し、(F)はリード信号Readの波形を示し、(G)はクロック停止信号clk_endの波形を示し、(H)は転送クロックSCK1の波形を示し、(I)は転送クロックSCK2の波形を示す。図10の左半分はタッチがあるときの動作を表すものであり、図10の右半分はタッチが無いときの動作を表すものである。
 以下では、図10の左半分、すなわち、タッチがあるときの動作について詳細に説明し、図10の右半分(タッチがないときの動作)については、比較のために適宜参照することとする。
 まず、タイミングT0において、タイミングジェネレータ35は、水平同期信号HDに同期して、所定の持続時間を有する正のパルスとしてプリチャージ信号Preを生成する(図10(E))。このプリチャージ信号Preに基づいて、ソースドライバ6は信号線SGLに対してプリチャージ動作を行い、コンパレータ331ではタッチ信号検出動作が可能となる。
 ソースドライバ6は、プリチャージ動作において、信号線SGLの電圧Sigを1水平ラインごとに極性反転するように設定する(図10(D))。それは、以下の理由による。すなわち、ライン反転駆動では、画素PIXの共通電極には、1水平ラインごとに極性反転する共通駆動信号COMが供給される。また、画素PIXの画素電極には、1水平ラインごとに極性反転する画素信号がソースドライバ6から供給される。これにより、液晶素子LCは、画素電極の電圧と共通電極の電圧との電位差に基づいて表示を行うようになっている。このとき、プリチャージ電圧PREもまた、共通駆動信号COMに同期するように設定される必要がある。具体的には、ソースドライバ6は、プリチャージ動作において、信号線SGLの電圧Sigを、共通駆動信号COMの電圧レベルを反転した“xCOM”の電圧レベルに設定するように動作する。つまり、共通駆動信号COMが“H”レベルの場合は、プリチャージ電圧PREは“L”レベルとなり、共通駆動信号COMが“L”レベルの場合は、プリチャージ電圧PREは“H”レベルとなる。そして、このプリチャージ電圧PREは、共通駆動信号COMと同様に、1水平ラインごとに反転する。このAC的なプリチャージ動作により、ディスプレイ装置1は所望の表示動作が可能になる。
 タイミングT1においてプリチャージ動作が終了した後、タイミングT2において、タイミングジェネレータ35はリード信号Readのパルスを発生する(図10(F))。これにより、コンパレータ331は、第1の実施の形態と同様に、信号線SGLの電圧Sigを読み取り、タッチの有無の判定が行われる。タッチセンサTSがオン状態の場合は、信号線SGLの電圧Sigは、プリチャージ動作によって設定された“xCOM”レベルから“COM”レベルへ反転するように変化する(図10(D))。これは、プリチャージ動作によって“xCOM”レベルに設定された画素電極が、タッチセンサTSがオン状態になることにより共通電極と接触し、共通電極に印加された“COM”レベルが画素電極に供給されるようになるためである。コンパレータ31は、この信号線SGLの電圧Sigの変化を検出し、その出力電圧を“COM”レベルから“xCOM”レベルに変化させる。そして、Dタイプフリップフロップ332は、コンパレータ31の出力電圧の変化に基づいて、その出力電圧を“xCOM”レベルから“COM”レベルに変化させる。つまり、タッチが検出されると、共通駆動信号COMが“H”レベルの場合は、Dタイプフリップフロップ332の出力電圧は“L”レベルから“H”レベルに変化し、共通駆動信号COMが“L”レベルの場合は、コンパレータ31の出力電圧は“H”レベルから“L”レベルに変化する。このように、ライン反転駆動を行う場合には、Dタイプフリップフロップ332の出力信号の振る舞いは、共通駆動信号COMが“H”レベルの時と“L”レベルの時とで異なるものとなる。
 排他的論理和回路XORは、Dタイプフリップフロップ332の出力信号に基づいてトランジスタスイッチCSWを制御する際、共通駆動信号COMに依存しないように論理を変換するために用いられる。具体的には、排他的論理和回路XORは、Dタイプフリップフロップ332の出力と、共通駆動信号COMとの排他的論理和を求め、その結果をトランジスタスイッチCSWのゲートに供給する。つまり、排他的論理和回路XORの出力は、共通駆動信号COMが“H”レベルと“L”レベルのうちのどちらであっても、タッチが検出されると“H”レベルから“L”レベルに変化する。この変化に伴い、トランジスタスイッチCSWはオフ状態からオン状態へ変化し、クロック制御許可信号clk_enは“L”レベルから“H”レベルへ変化する。以後の動作は第1の実施の形態と同様である。すなわち、転送クロック制御回路37は、このクロック制御許可信号clk_enに基づいて、出力信号であるクロック停止信号clk_endを”L”レベルから”H”レベルへ変化させる(図10(G))。タイミングジェネレータ35は、クロック停止信号clk_endが“H”レベルの間にわたり、転送クロックSCKを動作部41に供給する(図10(H))。シフトレジスタは、この転送クロックSCKに基づいて、パラレル-シリアル変換動作を行い、1水平ラインに関するタッチ検出の情報を、センサ出力転送信号Doutとして出力する。そのシリアルデータは、出力バッファ回路36を介して、外部へ転送される。
 一方、タッチがない場合には、図10の右半分に示したように、信号線SGLの電圧Sigは、プリチャージ動作後でも、プリチャージ動作によって設定された“xCOM”レベルのまま変化しない(図10(D))。そのため、Dタイプフリップフロップ332の出力も“xCOM”レベルのまま変化することはない。よってトランジスタスイッチCSWはオフ状態のままとなり、クロック制御許可信号clk_enは“L”レベルのまま変化しない。その結果、クロック停止信号clk_endもまた“L”レベルのまま変化せず(図10(G))、転送クロックSCKは発生しない(図10(H))。つまり、タッチがない場合には、シフトレジスタはパラレル-シリアル変換動作を行わず、外部へのシリアルデータの転送も行わない。
[効果]
 以上のように、本実施の形態では、Dタイプフリップフロップ332の出力とトランジスタスイッチCSWとの間に排他的論理和回路XORを設けるようにしたので、ライン反転駆動を行う表示装置であってもタッチ検出を行うことができる。その他の効果は、上記第1の実施の形態の場合と同様である。
<3.第3の実施の形態>
 次に、本発明の第3の実施の形態に係る表示装置について説明する。本実施の形態に係るディスプレイ装置1Bは、ライン反転駆動する表示装置に適用され、さらに、タッチの有無の状態によりセンサ読出回路による検出動作の頻度などを動的に変更できるようにしたものである。なお、上記第1および第2の実施の形態に係るディスプレイ装置と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
[構成例]
 図11は、本実施の形態の表示装置におけるセンサ読出回路50の回路構成例を表すものである。センサ読出回路50は、動作部51と、制御IO部52とを備えている。
 動作部51では、第2の実施の形態に係る動作部41(図9)と比べ、いくつかの読み出しスイッチRSWのゲート端子の接続が変更されている。すなわち、この例では、4つの読み出しスイッチRSWに1つの割合で、そのゲートにリード信号Readの代わりに、第2リード信号Read2が供給されるようになっている。第2リード信号Read2は、タイミングジェネレータ35A(後述)により生成される。
 制御IO部52は、制御回路ブロック38と、タイミングジェネレータ35Aとを備えている。
 制御回路ブロック38は、所定の数のフレームにおいてタッチが検出されない場合において、消費電力を低減するようにタッチパネルの動作を制限するための動作モードを設定する回路である。具体的には、制御回路ブロック38は、動作部51のシフトレジスタから供給されるシリアルデータ、およびタイミングジェネレータ35Aから出力される信号Vdstに基づいて、動作モード信号TG_en[1:0]を生成し、タイミングジェネレータ35Aに供給するようになっている。信号Vdstは、垂直同期信号VDから生成される信号であり、垂直同期信号VDに同期して生成される。つまり、制御回路ブロック38は、動作部51のシフトレジスタからデータが転送されない時間にわたり信号Vdstをカウントすることにより、タッチが無い時間を、フレームを単位として求めるものである。そして、制御回路ブロック38は、一定の期間(例えば、数フレーム期間)においてタッチが無い場合にはタッチパネルとしての使用頻度が落ちていると認識し、消費電力を低減させるように動作モードを設定する機能を有している。
 ディスプレイ装置1Bは、この例では、タッチパネルの動作モードとして3つのモード(通常モード、非接触モードA、非接触モードB)を有している。通常モードは、タッチパネルにおいてタッチが検出されているときの動作モードであり、例えば、上記第1の実施の形態で説明したように、2H期間(2水平ライン期間)ごとにタッチ検出を行うものである。非接触モードAは、消費電力を低減させるためのモードの一例であり、第2リード信号Read2により制御される読出転送ユニット43のみを動作させるとともに、8H期間(8水平ライン期間)ごとにタッチ検出を行うものである。すなわち、非接触モードAでは、通常モードと比べ、タッチ検出の位置精度および動作頻度をそれぞれ1/4としている。非接触モードBは、消費電力をさらに低減させるためのモードの一例であり、第2リード信号Read2により制御される読出転送ユニット43のみを動作させるとともに、8H期間ごとのタッチ検出をさらに3F期間(3フレーム期間)ごとに行うものである。すなわち、非接触モードBでは、非接触モードAと比べ、タッチ検出の動作頻度を1/3としている。制御回路ブロック38は、タッチパネルにおけるタッチの状況に応じて、これらの動作モードに対応する動作モード信号TG_en[1:0]を生成し、動作モードをタイミングジェネレータ35Aに指示するようになっている。具体的には、制御回路ブロック38は、タッチパネルの動作モードを通常モードに設定する際は、動作モード信号TG_en[1:0]として“00b”を出力し、非接触モードAに設定する際は“01b”を出力し、非接触モードAに設定する際は“11b”を出力するようになっている。
 タイミングジェネレータ35Aは、制御回路ブロック38から供給される動作モード信号TG_en[1:0]に基づいて、動作部51を制御する。その他の機能は、第1および第2の実施の形態のタイミングジェネレータ35と同様である。第1および第2の実施の形態では、図2および図9に示したように、リード信号を転送クロック制御回路37に供給するようにしていたが、本実施の形態では、これに代えて、第2リード信号Read2を転送クロック制御回路37に供給するようにしている。これにより、タイミングジェネレータ35Aは、後述するように、動作部51の読出転送ユニット43を全部動作させないような非接触モードA,Bでも、第1および第2の実施の形態と同様に転送クロック制御回路37を制御できるようになっている。
 ここで、トランジスタスイッチCSW、転送クロック制御回路37、タイミングジェネレータ35A、および制御回路ブロック38は、本発明における「制御部」の一具体例に対応する。
[動作および作用]
 次に、図12および図13を参照して、ディスプレイ装置1Bの動作および作用を説明する。
 図12は、ディスプレイ装置1Bのタイミング波形図の一例を表すものである。
 図12において、(A)~(E)は、通常モードにおける、タッチがあるときのタイミング波形図を表すものであり、(A)は水平同期信号HDの波形を示し、(B)はリード信号Readの波形を示し、(C)は第2リード信号Read2の波形を示し、(D)は転送クロックSCKの波形を示し、(E)はセンサ出力転送信号Doutの波形を示す。
 図12において、(F)~(J)は、非接触モードAにおける、タッチがあるときのタイミング波形図を表すものであり、(F)は水平同期信号HDの波形を示し、(G)はリード信号Readの波形を示し、(H)は第2リード信号Read2の波形を示し、(I)は転送クロックSCKの波形を示し、(J)はセンサ出力転送信号Doutの波形を示す。
 図12において、(K)~(P)は、非接触モードBにおけるタイミング波形図を表すものであり、(K)は垂直同期信号VDの波形を示し、(L)は水平同期信号HDの波形を示し、(M)はリード信号Readの波形を示し、(N)は第2リード信号Read2の波形を示し、(O)は転送クロックSCKの波形を示し、(P)はセンサ出力転送信号Doutの波形を示す。
 図13は、ディスプレイ装置1Bにおけるタッチパネルの各動作モードの概念図を表すものであり、(A)は通常モードにおける動作を示し、(B)は非接触モードAにおける動作を示し、(C)は非接触モードBにおける動作を示す。図13は、センサ読出回路50、および表示部2の画素PIXのマトリクス配置の動作状態を模式的に示している。図13において、トランジスタスイッチCSWは、図11に示した複数のトランジスタスイッチCSWをブロック化したものである。Dタイプフリップフロップ・シフトレジスタ(DFF・SR)332は、図11に示した複数のDタイプフリップフロップ332をブロック化したものである。センサ読出回路50については、太線で囲む部分が、クロック供給や動作イネーブルの信号を受けて動作する(または動作可能な)ブロックを表し、太線で囲まない部分が、クロック供給が停止され、または動作イネーブルの信号入力がないため停止中のブロックを表している。表示部2については、黒丸は、タッチ検出動作の対象となる画素PIXを表し、白丸は、タッチ検出回路が起動されていないためタッチ検出動作の対象となっていない画素PIXを表している。図13では、黒丸を“動作”、白丸を“停止”と表記している。また、三角印は、タッチ検出動作が3F期間(3フレーム期間)ごとに行われる画素PIXを表している。なお、格子の交点に黒丸、白丸、三角印のうちのいずれも示されていない部分は、タッチセンサTSそのものが設けられていない、表示専用の画素PIXを表している。
 通常モードでは、図12(A)~(E)に示したように、タイミングジェネレータ35Aは、リード信号Readおよび第2リード信号Read2としてパルスを生成し(図12(B),(C))、動作部51に供給する。これにより、動作部51の複数の読出転送ユニット43の全てにおいてタッチ検出動作が行われるようになる。その結果、動作部51では、上記第2の実施の形態と同様に、2H期間(2水平ライン期間)ごとにタッチ検出動作が行われ、タッチ有りと判定されたときにその検出結果がパラレルーシリアル変換され、センサ出力転送信号Doutとして出力バッファ回路36に転送される(図12(E))。
 通常モードでは、図13(A)に示したように、表示部2の全てのタッチセンサTSと、センサ読出回路50の全てのコンパレータ331が動作している。つまり、ディスプレイ装置1Bでは、全てのタッチセンサTSが、タッチ検出可能な状態になっている。
 制御回路ブロック38は、一定の期間(例えば、1フレーム期間)にわたってセンサ出力転送信号Doutがない場合にはタッチパネルとしての使用頻度が落ちていると認識し、動作モード信号TG_en[1:0]として“01b”を出力する。これにより、タイミングジェネレータ35Aは、ディスプレイ装置1Bのタッチパネルが非接触モードAで動作するように、動作部51を制御する。
 非接触モードAでは、図12(F)~(J)に示したように、タイミングジェネレータ35Aは、リード信号Readを“L”レベルに固定する(図12(G))。そして、タイミングジェネレータ35Aは、第2リード信号Read2として、8H期間(8水平ライン期間)ごとにパルスを生成し(図12(H))、動作部51に供給する。これにより、動作部51の複数の読出転送ユニット43のうち、第2リード信号Read2が接続されている読出転送ユニット43のみにおいて、タッチ検出動作が行われるようになる。その結果、動作部51では、表示部2の横方向に並ぶタッチセンサTSのうちの4つに1つに対してタッチ検出動作が行われ、タッチ有りと判定されたときにその検出結果がパラレルーシリアル変換され、センサ出力転送信号Doutとして出力され(図12(J))、出力バッファ回路36を介して外部に転送される。そして、この動作は、8H期間(8水平ライン期間)ごとに行われる。
 非接触モードAでは、図13(B)に示したように、表示部2の横方向に並ぶタッチセンサTSのうちの4つに1つ、および表示部2の縦方向に並ぶタッチセンサTSのうちの4つに1つが動作している。また、センサ読出回路50のうち、動作するタッチセンサTSに対応するコンパレータ331のみが動作している。つまり、ディスプレイ装置1Bでは、全てのタッチセンサTSのうちの16個に1個がタッチ検出可能な状態になっている。
 制御回路ブロック38は、さらに一定の期間(例えば、3フレーム期間)にわたってセンサ出力転送信号Doutがない場合には、タッチパネルが使用されていないと認識し、動作モード信号TG_en[1:0]として“11b”を出力する。これにより、タイミングジェネレータ35Aは、ディスプレイ装置1Bのタッチパネルが非接触モードBで動作するように、動作部51を制御する。この非接触モードBへの移行判断の基準となる上記“一定の期間”は、通常モードから非接触モードAへの移行判断の基準となる“一定の期間”より長くなるように設定される。
 非接触モードBでは、図12(K)~(P)、および図13(C)に示したように、ディスプレイ装置1Bは、3F期間(3フレーム期間)ごとに非接触モードAと同様な動作を行う。
 非接触モードA,Bでは、ユーザによるタッチパネルの操作状況に応じ、タッチパネルが擬似的に最適なタッチセンサ密度となるように設定され、コンパレータ331の動作頻度や、タッチ検出結果の外部への転送動作の頻度を下げることができる。これにより、消費電流の削減が可能となる。また、Dタイプフリップフロップ332から構成されるシフトレジスタの動作周波数が低下するため、消費電力を少なくすることができる。また、図11に示すタイミングジェネレータ35A、転送クロック制御回路37、制御回路ブロック38等でも同様に消費電力を少なくすることができる。
 非接触モードA,Bにおいて、制御回路ブロック38にセンサ出力転送信号Doutが供給された場合、制御回路ブロック38は、タッチパネルへのタッチ動作があったと認識し、信号Vdstに基づくカウンタをリセットするとともに、動作モード信号TG_en[1:0]として“00b”を出力する。これにより、タイミングジェネレータ35Aは、ディスプレイ装置1Bのタッチパネルが通常モードで動作するように、動作部51を制御する。
 なお、モード移行判断の基準となる期間は任意に設定可能である。また、低消費電力を実現する動作モードとして、必ずしも非接触モードAと非接触モードBの両方を設けなくてもよい。例えば、通常モードと非接触モードBの2つの動作モードのみを設けるようにしてもよい。具体的には、例えば、3F期間(3フレーム期間)にわたってセンサ出力転送信号Doutがない場合において、タッチパネルの動作が通常モードから非接触モードBへダイレクトに移行するようにしてもよい。
 本実施の形態では、以下の利益が得られる。第1に、例えば特許文献1,2に記載されている従来の構成に加え、タッチセンサTSのうちの1つでもタッチ状態にあるか、もしくは全てが非タッチ状態であるかを常時検出する手段を設けるようにしている。そのため、タッチに対してすぐに応答できるとともに、タッチがある場合のみ転送動作を行うことにより消費電力を大幅に削減できる。第2に、一定期間センサ出力がないことを検出する手段を設け、一定期間センサ出力がなければコンパレータ動作数や動作頻度を落とすようにしている。これにより、見かけ上の稼動センサ数を落とし、非接触時の低消費電力化が可能となる。第3に、所望の動作を実現するための付加回路は少ない。以上により、高速応答、低消費電力、および狭額縁のタッチパネル搭載ディスプレイが実現できる。
[効果]
 以上のように、本実施の形態では、制御回路ブロック38を設けるようにしたので、タッチパネルの使用状況に応じてタッチパネルの動作モードを変更することにより、タッチパネルを使用する際の利便性を維持しつつ、効率よく低消費電力化を実現することができる。その他の効果は、上記第1および第2の実施の形態の場合と同様である。
<4.第4の実施の形態>
 次に、本発明の第4の実施の形態に係る表示装置について説明する。本実施の形態に係るディスプレイ装置1Cは、センサ読出回路がパラレル-シリアル変換機能を有していないセンサ読出回路を用いてディスプレイ装置を構成したものである。なお、上記第1および第2の実施の形態に係るディスプレイ装置と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
 図14は、ディスプレイ装置1Cの一構成例を表すものであり、図15はディスプレイ装置1Cに係るセンサ読出回路60の回路構成例を表すものである。ディスプレイ装置1Cは、図14に示したように、センサ読出回路60A,60Bと、IC5Cとを備えている。センサ読出回路60A,60Bは、後述するようにタッチ検出結果に対してパラレル-シリアル変換を行わずに、タッチ信号出力線8を介して、IC5Cにそのタッチ検出結果を供給する。なお、以下では、センサ読出回路60A,60Bの総称としてセンサ読出回路60を適宜用いるものとする。
 センサ読出回路60は、動作部61と、制御IO部62とを備えている。動作部61は、複数の読出ユニット63を有している。読出ユニット63は、インバータ632と、出力バッファ633とを含んでいる。インバータ632は、コンパレータ331の出力信号を反転する回路である。出力バッファ633は、制御IO部62のタイミングジェネレータ64(後述)から供給される出力制御信号Octlにより活性化制御が行われ、活性化されているときに、インバータ632の出力信号に基づいてタッチ信号出力線8を駆動する回路である。具体的には、出力バッファ633は、例えば、出力制御信号Octlが“H”レベルのときに活性化され、インバータ632の出力信号をラッチしてその信号に基づいてタッチ信号出力線8を駆動し、出力制御信号Octlが“L”レベルのときにはパワーダウン状態になるものである。制御IO部62は、タイミングジェネレータ64を備えている。タイミングジェネレータ64は、転送クロック制御回路37から供給されるクロック停止信号clk_endに基づいて、出力制御信号Octlを生成し、動作部61の出力バッファ633に供給する。
 ここで、出力バッファ633は、本発明における「転送出力部」の一具体例に対応する。トランジスタスイッチCSW、転送クロック制御回路37、およびタイミングジェネレータ64は、本発明における「制御部」の一具体例に対応する。
 この構成により、センサ読出回路60は以下のように動作する。すなわち、転送クロック制御回路37は、1水平ラインに対するタッチ検出動作においてタッチが検出されると、クロック停止信号clk_endを生成し、タイミングジェネレータ35に供給する。タイミングジェネレータ64は、転送クロック制御回路37より供給されたクロック停止信号clk_endに基づいて、出力制御信号Octlを制御し、動作部31の出力バッファ633の動作を制御する。つまり、出力バッファ633は、1水平ラインに対するタッチ検出動作において1箇所でもタッチが検出された場合のみタッチ信号出力線8を駆動し、タッチが検出されなかった場合にはパワーダウン状態になる。
 以上のように、本実施の形態では、常に順次走査により1水平ラインごとのタッチ検出動作を行い、各1水平ラインでのタッチ検出結果において、タッチ有りと判定されたときのみ検出結果を出力し、タッチが無い場合には出力バッファをパワーダウンにするようにしたので、消費電力を抑えつつ、高い応答性能を実現できる。
 さらに、本実施の形態では、表示動作とタッチ検出動作とで、ゲート制御線GCLおよび信号線SGLを共用するようにしたので、表示部2内の配線を少なくすることができる。
<5.適用例>
 次に、図16~図20を参照して、上記実施の形態で説明したディスプレイ装置の適用例について説明する。上記実施の形態のディスプレイ装置は、テレビジョン装置、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラなどのあらゆる分野の電子機器に適用することが可能である。言い換えると、上記実施の形態のディスプレイ装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。
(適用例1)
 図16は、上記実施の形態のディスプレイ装置が適用されるテレビジョン装置の外観を表すものである。このテレビジョン装置は、例えば、フロントパネル511およびフィルターガラス512を含む映像表示画面部510を有しており、この映像表示画面部510は、上記実施の形態に係るディスプレイ装置により構成されている。
(適用例2)
 図17は、上記実施の形態のディスプレイ装置が適用されるデジタルカメラの外観を表すものである。このデジタルカメラは、例えば、フラッシュ用の発光部521、表示部522、メニュースイッチ523およびシャッターボタン524を有しており、その表示部522は、上記実施の形態に係るディスプレイ装置により構成されている。
(適用例3)
 図18は、上記実施の形態のディスプレイ装置が適用されるノート型パーソナルコンピュータの外観を表すものである。このノート型パーソナルコンピュータは、例えば、本体531、文字等の入力操作のためのキーボード532および画像を表示する表示部533を有しており、その表示部533は、上記実施の形態に係るディスプレイ装置により構成されている。
(適用例4)
 図19は、上記実施の形態のディスプレイ装置が適用されるビデオカメラの外観を表すものである。このビデオカメラは、例えば、本体部541、この本体部541の前方側面に設けられた被写体撮影用のレンズ542、撮影時のスタート/ストップスイッチ543および表示部544を有している。そして、その表示部544は、上記実施の形態に係るディスプレイ装置により構成されている。
(適用例5)
 図20は、上記実施の形態のディスプレイ装置が適用される携帯電話機の外観を表すものである。この携帯電話機は、例えば、上側筐体710と下側筐体720とを連結部(ヒンジ部)730で連結したものであり、ディスプレイ740、サブディスプレイ750、ピクチャーライト760およびカメラ770を有している。そのディスプレイ740またはサブディスプレイ750は、上記実施の形態に係るディスプレイ装置により構成されている。
<6.変形例>
 以上、いくつかの実施の形態および電子機器への適用例を挙げて本発明を説明したが、本発明はこれらの実施の形態等には限定されず、種々の変形が可能である。
(変形例1)
 上記の各実施の形態等では、タッチセンサとして接触式タッチセンサを用いたが、これに限定されるものではない。例えば、接触式タッチセンサに代えて静電容量式タッチセンサを用いてもよい。
 図21は、静電容量式タッチセンサを内蔵した表示装置の一構成例を表すものである。ディスプレイ装置1Dは、画素PIXに表示画素10と静電容量式のタッチセンサTSDとを備えている。タッチセンサTSDは、静電容量Ckを有している。静電容量Ckは、駆動電極100とタッチ検出電極110との間に形成される。また、駆動電極100は駆動電極駆動回路8と接続され、タッチ検出電極110はセンサ読出回路9と接続されている。
 タッチセンサTSDは、駆動電極駆動回路8から駆動電極100に供給される駆動信号が、静電容量Ckを介してタッチ検出電極110に伝達される際、外部物体の接触に応じて、その伝達量が変化することを利用してタッチ検出動作を行うものである。
 表示部2は、上記の各実施の形態等とは異なり、表示動作とタッチ検出動作とで、それぞれ専用の信号配線を備えている。つまり、表示動作を行う表示セル10は、信号線SGLとゲート制御線GCLとに接続されており、タッチ検出動作を行うタッチセンサTSDは、タッチ検出電極110と駆動電極100とに接続されている。
 ここで、タッチセンサTSDは、本発明における「静電容量式センサ素子」の一具体例に対応する。
 センサ読出回路9としては、上記第1~第3の実施の形態で用いたものと同様なものを用いることができる。すなわち、例えば、第1の実施の形態に係るセンサ読出回路3(図2)において、読み出しスイッチRSWの接続先を信号線SGLからタッチ検出電極110に変更し、コンパレータ331を、本変形例に係る静電容量式のタッチセンサTSDからの信号を検出するための検出回路に置き換えることにより、上記実施の形態と同等の効果を得ることができる。
 なお、ディスプレイ装置1Dは、表示セル10の方式には限定されず、どのようなものでもよい。表示セル10は、例えば、液晶素子を用いたものや、有機EL素子のようなEL素子を用いたものであってもよい。
 図22は、表示セル10の構成例を表すものであり、(A)は液晶素子LCを用いた場合を示し、(B)は有機EL素子を用いた場合を示す。
 表示セル10として液晶素子LCを用いた場合は、液晶素子LCは、信号線SGLおよびセレクトトランジスタSTを介して画素電極に供給された画素信号と、共通電極(駆動電極100)に供給された駆動信号VCOMに基づいて、表示動作を行うことができる。
 表示セル10として有機EL素子を用いた場合は、まず、画素信号が信号線SGLおよびセレクトトランジスタSTを介して容量Csの一端に供給される。そして、セレクトトランジスタSTがオフ状態になった後に、電源供給線PSLに電源電圧が供給されると、ブートストラップ動作によりトランジスタPTのバイアスが設定され、トランジスタPTが、画素信号に対応した電流を流す電流源として機能するようになる。その結果、有機EL素子ELが発光し、表示動作を行うことができる。
(変形例2)
 また、上記の各実施の形態等において、接触式タッチセンサに代えて光学式タッチセンサを用いてもよい。
 図23は、光学式タッチセンサを内蔵した表示装置の一構成例を表すものである。ディスプレイ装置1Eは、光学式のタッチセンサTSEを備えている。タッチセンサTSEは、フォトダイオード121と、容量素子122と、トランジスタ123~125とを有している。フォトダイオード121は、カソードが電源VDDに接続され、アノードが容量素子122の一端に接続されている。容量素子122は、フォトダイオード121のアノードと接地(GND)との間に配置されている。トランジスタ123~125は、例えばTFTなどにより構成されるものである。トランジスタ123は、ドレインがフォトダイオード121のアノードに接続され、ゲートがリセット線RSTLに接続され、ソースが接地(GND)に接続されている。トランジスタ124は、ソースが電源VDDに接続され、ゲートがフォトダイオード121のアノードに接続され、ドレインがトランジスタ125のソースに接続されている。そして、トランジスタ125は、ソースがトランジスタ124のドレインに接続され、ゲートがリード線RDLに接続され、ドレインがセンサ線TSLに接続されている。センサ線TSLはセンサ読出回路12A,12Bに接続されている。リセット線RSTLおよびリード線RDLは、センサ駆動回路11に接続されている。
 この構成により、まず、トランジスタ123がリセット線RSTLの信号によりオン状態になり、容量素子122が放電されリセットされる。次に、フォトダイオード121は、外部近接物体の存在に対応した光量の光を受光し、その光量に応じてカソードからアノードへ電流を発生し、任意の期間、この電流により容量素子122を充電する。そして、リード線RDLの信号によりトランジスタ125がオン状態になったときに、充電された容量素子122の両端の電圧に対応する電圧が、センサ線TSLに出力される。センサ線TSLに出力された電圧をセンサ読出回路12A,12Bで検出することにより、タッチ検出が可能となる。
 ここで、タッチセンサTSEは、本発明における「光学式センサ素子」の一具体例に対応する。
 センサ読出回路12A,12Bとしては、上記第1~第3の実施の形態で用いたものと同様なものを用いることができる。これにより、上記実施の形態と同等の効果を得ることができる。
 なお、ディスプレイ装置1Eもまた、表示セル10の方式には限定されず、どのようなものでもよく、例えば、液晶素子を用いたもの(図22(A))や、有機EL素子のようなEL素子を用いたもの(図22(B))であってもよい。
(その他の変形例)
 また、上記実施の形態等では、信号線SGLを利用してタッチセンサの出力信号を表示部から取り出すようにしたが、これに限定されるものではない。例えば、図8に示したように、センサ読み出し用の専用線(センサ線)を設けて、タッチセンサの出力信号を表示部から取り出すようにしてもよい。この場合でも、上記実施の形態等と同様に、消費電力を抑えつつ、高い応答性能を実現でき、また、ディスプレイ装置の小型化を実現できる。
 また、上記第3の実施の形態では、クロック信号の周波数を落とすこと(通常モードから非接触モードAへの移行)、さらにはクロック信号の供給停止(非接触モードAから非接触モードBへの移行)により、動作頻度を低下させ、低消費電力化を実現したが、これに限定されるものではない。例えば、図11~図13に示したように、非接触モードAのときに、表示部2の横方向に並ぶタッチセンサTSのうちの4つに1つに対してタッチ検出動作を行う場合において、4系統のシフトレジスタを設ける方法が考えられる。すなわち、例えば、4つおきに配置されたタッチセンサTSからの出力が同じ系統のシフトレジスタに供給されるように接続する。この構成により、通常モードでは、その4系統のシフトレジスタを全て動作させ、非接触モードAでは、そのうちの1系統のみを動作させることができる。これにより、上記第3の実施の形態と同様な効果を得ることができる。この場合、非接触モードAから非接触モードBへの移行では、第3の実施の形態と同様、クロック信号の間欠的な供給停止でもよいし、クロック周波数を低下させてもよい。
 また、上記実施の形態等では、タッチパネルの機能をディスプレイ装置に内蔵させるようにしたが、これに限定されるものではなく、図24に示したように、タッチパネル単体であってもよい。
 
 

Claims (20)

  1.  複数の映像信号線にそれぞれ供給された映像信号に基づいて表示を行う複数の表示素子と、
     外部近接物体の存在を示すタッチ信号を複数のセンサ信号線にそれぞれ出力する複数のセンサ素子と、
     前記タッチ信号をそれぞれ検出する検出部と、
     前記検出部の検出結果を外部に転送出力する転送出力部と、
     前記検出部と前記転送出力部の動作を制御し、前記検出部において前記タッチ信号が検出された場合に前記転送出力部を動作させ、前記タッチ信号が検出されない場合に前記転送出力部の動作を停止させる制御部と
     を備えた表示装置。
  2.  前記転送出力部は、前記検出部の検出結果を並列から直列に変換して転送出力する
     請求項1に記載の表示装置。
  3.  前記検出部は、前記複数のセンサ素子が配置されたタッチ検出領域全体を複数の領域に分けて、各領域について順次時分割的に前記タッチ信号を検出し、
     前記制御部は、前記複数の領域のうち前記タッチ信号が検出されない領域に対応する期間において、前記転送出力部の動作を停止させる
     請求項2に記載の表示装置。
  4.  前記複数のセンサ素子は、前記タッチ検出領域において水平方向および垂直方向にマトリックス状に配置され、前記領域は水平方向に配置された複数のセンサ素子を含む
     請求項3に記載の表示装置。
  5.  前記制御部は、所定の期間にわたって前記検出部において前記タッチ信号が検出されないときに、前記検出部の検出動作の一部をも停止させる
     請求項1に記載の表示装置。
  6.  前記検出部は、前記タッチ信号を所定の頻度でのサンプリングによりそれぞれ検出し、
     前記制御部は、所定の期間にわたって前記検出部において前記タッチ信号が検出されないときに、前記検出部および前記転送出力部における動作頻度を低下させる
     請求項1に記載の表示装置。
  7.  前記制御部は、映像表示のフレーム数をカウントし、1または複数のフレームの期間にわたって前記検出部において前記タッチ信号が検出されない場合は前記検出部および前記転送出力部における動作頻度を低下させ、その後前記タッチ信号が検出された際にはカウント動作の計数値をリセットし、低下させた前記動作頻度をもとに戻す
     請求項6に記載の表示装置。
  8.  前記制御部は、前記1または複数のフレームの期間にわたって前記検出部において前記タッチ信号が検出されない場合は、所定数のフレームごとに前記検出部および前記転送出力部を動作させる第1の動作モードに移行し、その後前記タッチ信号が検出された場合は、全てのフレームにおいて前記検出部および前記転送出力部を動作させる第2の動作モードに移行する
     請求項7に記載の表示装置。
  9.  前記センサ信号線が前記映像信号線と共用され、
     初期化期間において前記複数のセンサ信号線の全てに同時に初期化信号を印加する初期化部を備え、
     前記検出部は、前記初期化期間のあとに続く期間のうち、前記映像信号が前記センサ信号線に印加される映像信号印加期間以外の期間において前記タッチ信号の検出を行う
     請求項2に記載の表示装置。
  10.  前記制御部は、
     前記検出部において前記タッチ信号が検出されると起動信号を発生し、つぎに前記初期化部による初期化信号が印加されると停止信号を発生する制御信号発生部と、
     前記起動信号と前記停止信号に基づいて、前記転送出力部に与える転送クロック信号と、前記検出部に与える検出起動信号とを発生制御する動作信号制御部と
     を有する
     請求項9に記載の表示装置。
  11.  前記初期化信号として、常時一定の電圧レベルをもつ直流信号が用いられる
     請求項9に記載の表示装置。
  12.  前記表示素子は、
     前記映像信号が供給される画素電極と、
     前記複数の表示素子に共通に印加される共通信号が供給される駆動電極と、
     前記画素電極の電圧と前記駆動電極の電圧との電位差に応じて駆動される液晶層と
     を有する液晶表示素子であり、
     前記センサ素子は、前記画素電極および前記駆動電極により構成される接触式センサ素子であり、
     前記検出部は、外部近接物体による押圧により前記画素電極と前記駆動電極とが近接しあるいは接触した結果生じる前記センサ信号線の電圧変化を前記タッチ信号として検出する
     請求項9に記載の表示装置。
  13.  前記液晶表示素子は、前記電位差の極性が一定の期間ごとに反転する極性反転駆動により駆動され、
     前記初期化信号として、前記一定の期間ごとに電位が変化する前記共通信号に基づいた信号が用いられ、
     前記検出部と前記制御信号発生部との間に、前記初期化信号に基づいて前記検出部の検出結果の有効論理を生成し、前記制御信号発生部に出力する論理ゲート回路が挿入されている
     請求項12に記載の表示装置。
  14.  前記センサ素子は、静電容量を形成する電極を有し、外部近接物体に応じて変化する静電容量に基づいて、前記センサ信号線に信号を出力する静電容量式センサ素子である
     請求項1に記載の表示装置。
  15.  前記センサ素子は、光を検出してその光量に応じた信号を出力する受光素子を有し、外部近接物体に応じて変化する受光素子の出力信号に基づいて、前記センサ信号線に信号を出力する光学式センサ素子である
     請求項1に記載の表示装置。
  16.  前記表示素子は、EL表示素子である
     請求項1に記載の表示装置。
  17.  外部近接物体の存在を示すタッチ信号を複数のセンサ信号線にそれぞれ出力する複数のセンサ素子と、
     前記タッチ信号をそれぞれ検出する検出部と、
     前記検出部の検出結果を外部に転送出力する転送出力部と、
     前記検出部と前記転送出力部の動作を制御し、前記検出部において前記タッチ信号が検出された場合に前記転送出力部を動作させ、前記タッチ信号が検出されない場合に前記転送出力部の動作を停止させる制御部と
     を備えたタッチパネル。
  18.  前記転送出力部は、前記検出部の検出結果を並列から直列に変換して転送出力する
     請求項17に記載の表示装置。
  19.  外部近接物体を検出するタッチセンサ機能を有する表示装置と、
     前記タッチセンサ機能により入力された情報に基づいて所定の処理を行う処理部と
     を備え、
     前記表示装置が、
     複数の映像信号線にそれぞれ供給された映像信号に基づいて表示を行う複数の表示素子と、
     外部近接物体の存在を示すタッチ信号を複数のセンサ信号線にそれぞれ出力する複数のセンサ素子と、
     前記タッチ信号をそれぞれ検出する検出部と、
     前記検出部の検出結果を外部に転送出力する転送出力部と、
     前記検出部と前記転送出力部の動作を制御し、前記検出部において前記タッチ信号が検出された場合に前記転送出力部を動作させ、前記タッチ信号が検出されない場合に前記転送出力部の動作を停止させる制御部と
     を有する電子機器。
  20.  外部近接物体を検出するタッチパネルと、
     前記タッチパネルにより入力された情報に基づいて所定の処理を行う処理部と
     を備え、
     前記タッチパネルが、
     外部近接物体の存在を示すタッチ信号を複数のセンサ信号線にそれぞれ出力する複数のセンサ素子と、
     前記タッチ信号をそれぞれ検出する検出部と、
     前記検出部の検出結果を外部に転送出力する転送出力部と、
     前記検出部と前記転送出力部の動作を制御し、前記検出部において前記タッチ信号が検出された場合に前記転送出力部を動作させ、前記タッチ信号が検出されない場合に前記転送出力部の動作を停止させる制御部と
     を有する電子機器。
     
     
PCT/JP2010/051816 2009-02-27 2010-02-08 表示装置、タッチパネル、および電子機器 WO2010098199A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011501547A JP5439467B2 (ja) 2009-02-27 2010-02-08 表示装置、タッチパネル、および電子機器
US12/988,586 US8860687B2 (en) 2009-02-27 2010-02-08 Display, touch panel and electronic device
CN201080001452.1A CN102239466B (zh) 2009-02-27 2010-02-08 显示器、触控面板和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009044999 2009-02-27
JP2009-044999 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098199A1 true WO2010098199A1 (ja) 2010-09-02

Family

ID=42665409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051816 WO2010098199A1 (ja) 2009-02-27 2010-02-08 表示装置、タッチパネル、および電子機器

Country Status (6)

Country Link
US (1) US8860687B2 (ja)
JP (1) JP5439467B2 (ja)
KR (1) KR101613327B1 (ja)
CN (1) CN102239466B (ja)
TW (1) TWI420437B (ja)
WO (1) WO2010098199A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069762A1 (fr) * 2010-11-26 2012-05-31 Stantum Capteur tactile a reseau matriciel de pistes conductrices et ecran de controle tactile
WO2013021846A1 (ja) * 2011-08-05 2013-02-14 シャープ株式会社 表示装置およびその制御方法
JP2013084168A (ja) * 2011-10-12 2013-05-09 Japan Display West Co Ltd 表示装置、駆動回路、駆動方法、および電子機器
JP2013097469A (ja) * 2011-10-28 2013-05-20 Sharp Corp タッチパネル駆動装置、表示装置、タッチパネルの駆動方法、プログラムおよび記録媒体
JP2013186166A (ja) * 2012-03-06 2013-09-19 Japan Display West Co Ltd 表示装置、表示駆動方法、電子機器
WO2013179598A1 (ja) * 2012-05-28 2013-12-05 パナソニック液晶ディスプレイ株式会社 エンベディッド型タッチスクリーン
JP2013250361A (ja) * 2012-05-31 2013-12-12 Japan Display Inc 液晶表示装置
JP2013254142A (ja) * 2012-06-08 2013-12-19 Japan Display Inc 液晶表示装置
JP2014519147A (ja) * 2011-05-05 2014-08-07 ゼネラル・エレクトリック・カンパニイ 自己調光性oled照明システム及び制御方法
JP2014222497A (ja) * 2013-05-13 2014-11-27 奇景光電股▲ふん▼有限公司 ピクセルマトリクス、タッチディスプレイ装置及びその駆動方法
JP2017223949A (ja) * 2016-06-16 2017-12-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
JP2018073407A (ja) * 2016-10-21 2018-05-10 株式会社半導体エネルギー研究所 表示装置、電子機器、及びそれらの動作方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539106B2 (ja) * 2010-08-23 2014-07-02 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置、駆動回路、タッチ検出機能付き表示装置の駆動方法、および電子機器
KR101761580B1 (ko) 2010-09-08 2017-07-27 엘지디스플레이 주식회사 터치 센서를 갖는 표시 장치
TWI464691B (zh) 2010-11-16 2014-12-11 Pixart Imaging Inc 影像感測模組與光學訊號處理裝置
US9152255B2 (en) 2011-05-03 2015-10-06 Htc Corporation Management and application methods and systems for touch-sensitive devices, and computer program products thereof
TWI457799B (zh) * 2011-09-15 2014-10-21 Au Optronics Corp 觸控顯示面板
CN103105962B (zh) * 2011-11-09 2016-04-06 宸鸿科技(厦门)有限公司 触控面板、触控电极结构及其制作方法
US9183779B2 (en) * 2012-02-23 2015-11-10 Broadcom Corporation AMOLED light sensing
CN102646325A (zh) * 2012-03-28 2012-08-22 中兴通讯股份有限公司 一种实现遥控的方法、系统和智能终端
KR101507503B1 (ko) * 2012-05-29 2015-03-31 엘지디스플레이 주식회사 디스플레이 장치
JP6032794B2 (ja) * 2012-06-08 2016-11-30 株式会社ジャパンディスプレイ 液晶表示装置
TWI476654B (zh) * 2012-08-14 2015-03-11 Innocom Tech Shenzhen Co Ltd 觸控感測單元及具有該觸控感測單元之面板
CN103853409B (zh) * 2012-12-05 2017-05-24 株式会社日本显示器 具有触摸检测功能的显示装置以及电子设备
KR101560535B1 (ko) 2012-12-11 2015-10-15 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
US9268434B2 (en) * 2013-02-14 2016-02-23 Dell Products L.P. Systems and methods for reducing power consumption in a touch sensor display
CN104063096B (zh) * 2013-03-18 2017-05-24 原相科技股份有限公司 电容式触控装置
KR102122449B1 (ko) * 2013-12-26 2020-06-12 엘지디스플레이 주식회사 표시장치 및 그 구동방법
TWI494767B (zh) * 2013-12-27 2015-08-01 Quanta Comp Inc 通訊之方法、通訊系統、電子裝置以及周邊裝置
KR101637174B1 (ko) * 2014-06-30 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치
KR102305398B1 (ko) * 2014-09-03 2021-09-28 삼성디스플레이 주식회사 표시장치
CN104882105B (zh) * 2015-05-28 2017-05-17 武汉华星光电技术有限公司 一种液晶驱动电路及液晶显示装置
TWI576801B (zh) * 2015-06-25 2017-04-01 群創光電股份有限公司 影像顯示系統與閘極驅動電路
US20180101218A1 (en) * 2016-10-07 2018-04-12 Mediatek Inc. Apparatuses and methods for adjusting processing capabilities
TWI614654B (zh) * 2017-04-28 2018-02-11 友達光電股份有限公司 用於顯示面板的驅動方法
JP6798470B2 (ja) * 2017-11-08 2020-12-09 カシオ計算機株式会社 電子時計、表示制御方法、及びプログラム
US10747360B2 (en) * 2018-05-03 2020-08-18 Silicon Works Co., Ltd. Display device and driver thereof
CN111813250B (zh) * 2019-04-12 2023-11-17 敦泰电子有限公司 触控显示面板的驱动方法以及触控显示面板的驱动电路
CN110244880B (zh) * 2019-06-27 2022-11-04 京东方科技集团股份有限公司 触控电路和显示装置
CN113851067B (zh) * 2020-06-28 2023-07-04 京东方科技集团股份有限公司 充电电路、显示装置、可穿戴设备及显示驱动方法、装置
TWI815172B (zh) * 2020-09-09 2023-09-11 元太科技工業股份有限公司 觸控顯示裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163392A (ja) * 1994-12-08 1996-06-21 Sony Corp リモートコマンダ
JP2008262548A (ja) * 2007-03-16 2008-10-30 Sony Corp 表示装置およびその制御方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260913B2 (ja) * 1992-06-01 2002-02-25 セイコーエプソン株式会社 画像再生装置
US5621437A (en) * 1994-10-07 1997-04-15 Lg Electronics Inc. Data input/output control unit for touch panel interface device
JP3410919B2 (ja) 1997-01-31 2003-05-26 株式会社東芝 画像抽出装置
US6509851B1 (en) * 2000-03-30 2003-01-21 Cypress Semiconductor Corp. Method for using a recovered data-encoded clock to convert high-frequency serial data to lower frequency parallel data
JP3900854B2 (ja) * 2001-05-17 2007-04-04 セイコーエプソン株式会社 電子機器及びその電力制御方法
JP2005521131A (ja) * 2002-03-15 2005-07-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ タッチ高感度表示装置
US7532202B2 (en) * 2002-05-08 2009-05-12 3M Innovative Properties Company Baselining techniques in force-based touch panel systems
TWI245212B (en) * 2002-10-25 2005-12-11 Htc Corp Key input circuit and key detection method
US7250940B2 (en) * 2003-12-31 2007-07-31 Symbol Technologies, Inc. Touch screen apparatus and method therefore
KR20060131542A (ko) * 2005-06-16 2006-12-20 엘지전자 주식회사 터치스크린 절전 장치 및 방법
KR101171185B1 (ko) * 2005-09-21 2012-08-06 삼성전자주식회사 접촉 감지 기능이 있는 표시 장치, 그 구동 장치 및 방법
JP2007163891A (ja) 2005-12-14 2007-06-28 Sony Corp 表示装置
US8125456B2 (en) * 2007-01-03 2012-02-28 Apple Inc. Multi-touch auto scanning
TWM331145U (en) * 2007-02-16 2008-04-21 J Touch Corp Touch panel structure and display device with touch panel structure
US8638317B2 (en) * 2007-03-16 2014-01-28 Japan Display West Inc. Display apparatus and method for controlling the same
US7797115B2 (en) * 2007-08-13 2010-09-14 Nuvoton Technology Corporation Time interval measurement for capacitive detection
TWI351633B (en) * 2007-09-05 2011-11-01 Au Optronics Corp Pixel unit, method for sensing touch of an object,
US7928965B2 (en) * 2007-12-27 2011-04-19 Apple Inc. Touch screen RFID tag reader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163392A (ja) * 1994-12-08 1996-06-21 Sony Corp リモートコマンダ
JP2008262548A (ja) * 2007-03-16 2008-10-30 Sony Corp 表示装置およびその制御方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968102A1 (fr) * 2010-11-26 2012-06-01 Stantum Capteur tactile a réseau matriciel de pistes conductrices et écran de contrôle tactile
US20130241878A1 (en) * 2010-11-26 2013-09-19 Stantum Touch sensor with a matrix network of conductive tracks and touch-control screen
WO2012069762A1 (fr) * 2010-11-26 2012-05-31 Stantum Capteur tactile a reseau matriciel de pistes conductrices et ecran de controle tactile
JP2014519147A (ja) * 2011-05-05 2014-08-07 ゼネラル・エレクトリック・カンパニイ 自己調光性oled照明システム及び制御方法
WO2013021846A1 (ja) * 2011-08-05 2013-02-14 シャープ株式会社 表示装置およびその制御方法
JP2013084168A (ja) * 2011-10-12 2013-05-09 Japan Display West Co Ltd 表示装置、駆動回路、駆動方法、および電子機器
JP2013097469A (ja) * 2011-10-28 2013-05-20 Sharp Corp タッチパネル駆動装置、表示装置、タッチパネルの駆動方法、プログラムおよび記録媒体
JP2013186166A (ja) * 2012-03-06 2013-09-19 Japan Display West Co Ltd 表示装置、表示駆動方法、電子機器
WO2013179598A1 (ja) * 2012-05-28 2013-12-05 パナソニック液晶ディスプレイ株式会社 エンベディッド型タッチスクリーン
US10276124B2 (en) 2012-05-31 2019-04-30 Japan Display Inc. Liquid crystal display device
US10096295B2 (en) 2012-05-31 2018-10-09 Japan Display Inc. Liquid crystal display device
US10867574B2 (en) 2012-05-31 2020-12-15 Japan Display Inc. Liquid crystal display device
US10475412B2 (en) 2012-05-31 2019-11-12 Japan Display Inc. Liquid crystal display device
JP2013250361A (ja) * 2012-05-31 2013-12-12 Japan Display Inc 液晶表示装置
US9847071B2 (en) 2012-05-31 2017-12-19 Japan Display Inc. Liquid crystal display device
US10394367B2 (en) 2012-06-08 2019-08-27 Japan Display Inc. Liquid crystal display device
US9378699B2 (en) 2012-06-08 2016-06-28 Japan Display Inc. Liquid crystal display device
JP2013254142A (ja) * 2012-06-08 2013-12-19 Japan Display Inc 液晶表示装置
US9235285B2 (en) 2013-05-13 2016-01-12 Himax Technologies Limited Pixel matrix, touch display device and drving method thereof
JP2014222497A (ja) * 2013-05-13 2014-11-27 奇景光電股▲ふん▼有限公司 ピクセルマトリクス、タッチディスプレイ装置及びその駆動方法
JP2017223949A (ja) * 2016-06-16 2017-12-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
JP2018073407A (ja) * 2016-10-21 2018-05-10 株式会社半導体エネルギー研究所 表示装置、電子機器、及びそれらの動作方法
US11216057B2 (en) 2016-10-21 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and operation method thereof
JP7083613B2 (ja) 2016-10-21 2022-06-13 株式会社半導体エネルギー研究所 電子機器の動作方法

Also Published As

Publication number Publication date
TW201037648A (en) 2010-10-16
US20110043483A1 (en) 2011-02-24
JPWO2010098199A1 (ja) 2012-08-30
JP5439467B2 (ja) 2014-03-12
TWI420437B (zh) 2013-12-21
US8860687B2 (en) 2014-10-14
CN102239466B (zh) 2015-09-16
CN102239466A (zh) 2011-11-09
KR101613327B1 (ko) 2016-04-18
KR20110127057A (ko) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5439467B2 (ja) 表示装置、タッチパネル、および電子機器
US10795497B2 (en) Detection device driven with two different modes
US10409417B2 (en) Display device with touch detection function and electronic apparatus
TWI610202B (zh) 具有積體觸控螢幕之顯示裝置及其驅動方法
US9874971B2 (en) Display device
US9727163B2 (en) Touch detection device, display device with touch detection function, and electronic apparatus
US10175791B2 (en) Display device with integrated touch screen
US9640121B2 (en) Driver IC for a display panel with touch device with display state timing in accordance with differing driving periods
KR101979958B1 (ko) 표시 장치, 표시 방법 및 전자 시스템
CN102375637B (zh) 显示装置及其方法、驱动电路及电子设备
JP5424347B2 (ja) タッチ検出機能付き表示装置およびその駆動方法、駆動回路、ならびに電子機器
US20150062062A1 (en) Touch Integrated Circuit And Display Device Integrated With Touch Screen Using The Same
JP6045924B2 (ja) タッチパネル表示装置及びタッチパネルコントローラ
CN103513813A (zh) 具有集成式触摸屏的显示装置
JP2014170449A (ja) ドライバic及び表示入力装置
KR20150079241A (ko) 터치 스크린 일체형 표시장치 및 그 구동 방법
JP2009069730A (ja) 電気光学装置、電子機器及び指示物体の検出方法
KR102404391B1 (ko) 터치센서 내장형 표시장치
JP2013168097A (ja) 表示装置、および表示方法
TW201421336A (zh) 液晶顯示裝置
US20120235967A1 (en) Display device
US10620820B2 (en) Electronic devices having touch-sensing module and method for generating displayed image
WO2017045247A1 (zh) 全嵌入式触摸屏及移动装置
KR102391616B1 (ko) 게이트 구동회로와 이를 포함하는 터치 스크린 일체형 표시장치
KR102381628B1 (ko) 디스플레이 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001452.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011501547

Country of ref document: JP

Ref document number: 12988586

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107023946

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746080

Country of ref document: EP

Kind code of ref document: A1