WO2010097842A1 - アンテナ昇降機及び電磁波計測システム - Google Patents

アンテナ昇降機及び電磁波計測システム Download PDF

Info

Publication number
WO2010097842A1
WO2010097842A1 PCT/JP2009/000917 JP2009000917W WO2010097842A1 WO 2010097842 A1 WO2010097842 A1 WO 2010097842A1 JP 2009000917 W JP2009000917 W JP 2009000917W WO 2010097842 A1 WO2010097842 A1 WO 2010097842A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
elevation angle
elevator
polarization
elevator according
Prior art date
Application number
PCT/JP2009/000917
Other languages
English (en)
French (fr)
Inventor
鈴木賢弥
佐藤敏勝
Original Assignee
Necトーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necトーキン株式会社 filed Critical Necトーキン株式会社
Priority to CN200980156722.3A priority Critical patent/CN102317799B/zh
Priority to KR1020117017539A priority patent/KR101524180B1/ko
Priority to PCT/JP2009/000917 priority patent/WO2010097842A1/ja
Publication of WO2010097842A1 publication Critical patent/WO2010097842A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the present invention relates to an antenna elevator and an electromagnetic wave measurement system including the antenna elevator.
  • the apparatus disclosed in Patent Document 4 includes a mechanism that automatically adjusts the elevation angle of the antenna according to the vertical position of the antenna.
  • JP 2007-033254 A Japanese Patent Laid-Open No. 08-146063 Japanese Utility Model Publication No. 03-006013 US Pat. No. 5,379,048
  • an object of the present invention is to provide an antenna elevator having a mechanism capable of adjusting an elevation angle more flexibly.
  • One aspect of the present invention is an antenna elevator including an antenna unit and a lifting mechanism that lifts and lowers the antenna unit in a vertical direction.
  • the antenna unit is an antenna and lifting and lowering of the antenna unit by the lifting mechanism.
  • An antenna elevator comprising an elevation angle adjustment mechanism configured to adjust an elevation angle of the antenna in an independent state.
  • the antenna lifting / lowering operation is linked to the elevation angle adjustment, accurate measurement cannot be performed unless the antenna directivity is extremely high unless the relationship between them is set accurately.
  • the raising / lowering operation of the antenna and the elevation angle adjustment can be independently controlled, the elevation angle can be adjusted to the most appropriate state at an arbitrary height. As described above, according to the present invention, it is possible to perform flexible elevation angle adjustment, and therefore it is possible to perform highly accurate measurement.
  • the elevation angle can be adjusted as a value independent of the height position, it is possible to cope with a device under measurement having a different height with a single antenna elevator.
  • FIG. 3 is an enlarged perspective view schematically showing a part of a lifting mechanism and an antenna unit included in the antenna lift shown in FIG. 2.
  • FIG. 4 is an enlarged view schematically showing a polarization angle adjusting mechanism and an antenna unit included in the antenna elevator shown in FIG. 3. However, the antenna is omitted.
  • an electromagnetic wave measurement system includes an antenna elevator 100 and a turntable 200 that is disposed apart from the antenna elevator 100.
  • a device under measurement (EUT) 300 is mounted on the turntable 200.
  • the antenna lift 100 includes an antenna unit 130 and a lifting mechanism 110 that lifts and lowers the antenna unit 130 in the vertical direction.
  • the elevating mechanism 110 includes a mast 112 extending in the vertical direction, and an upper member 114 and a lower member 116 connected by the mast 112.
  • the upper member 114 is provided with an upper pulley 118
  • the lower member 116 is provided with a lower pulley 120.
  • a belt 122 is wound around the upper pulley 118 and the lower pulley 120.
  • a motor 126 is connected to the lower pulley 120 via a gear box 124. In this manner, the belt 122 is driven by the motor 126.
  • a servo motor can be used as this type of motor 126.
  • a base 128 is attached to the mast 112 so as to be movable in the vertical direction.
  • a belt 122 is connected to the base 128.
  • an antenna unit 130 is attached to the base 128. As the belt 122 is driven, the base 128 is moved up and down, whereby the antenna unit 130 is also moved up and down.
  • the antenna unit 130 includes an antenna 140, an antenna support mechanism 150 that supports the antenna 140, an elevation angle adjustment mechanism 160 that adjusts the elevation angle of the antenna 140, and the polarization angle of the antenna 140. And a polarization adjustment mechanism 180 for adjustment.
  • the antenna 140 according to the present embodiment is a horn antenna.
  • the present invention is not limited to this, and various types of antennas can be used.
  • the antenna support mechanism 150 includes an arm 152 having an antenna 140 attached to the tip, a holding member 154 that holds the arm 152, a shaft 156 that is connected to the holding member 154, and an arm 152. And a level 158 provided in the
  • the arm 152 in the present embodiment extends linearly and has a quadrangular cross section in a plane orthogonal to the axis of the arm 152.
  • the present invention is not limited to this, and the arm may have other shapes.
  • the arm 152 In order to enable adjustment of the polarization angle of the antenna 140 by the polarization adjustment mechanism 180, the arm 152 according to the present embodiment holds the antenna 140 so as to be aligned with the center axis of the reception of the antenna 140. . In other words, the arm 152 in the present embodiment extends so as to be aligned with the central axis of the reception of the antenna 140.
  • the holding member 154 In order to enable adjustment of the polarization angle of the antenna 140 by the polarization adjustment mechanism 180, the holding member 154 according to the present embodiment has a bearing structure, and supports the arm 152. Therefore, the arm 152 can be rotated around its own central axis, and the polarization angle of the antenna 140 can be changed.
  • the shaft 156 has a columnar shape or a cylindrical shape.
  • the shaft 156 is inserted into a hole 128 a formed in the base 128 and is thereby pivotally supported by the base 128. Since one end of the shaft 156 is connected and fixed to the holding member 154, when the shaft 156 rotates, the arm 152 held by the holding member 154 rotates around the holding member 154, whereby the elevation angle of the antenna 140 is increased. Change.
  • the mast 112 and the shaft 156 are not linked so that the movement of the base 128 on the mast 112 and the rotation of the shaft 156 can be performed independently of each other.
  • the arm 152 since the arm 152 is provided with the level 158, it is possible to objectively detect whether the antenna 140 is horizontally arranged.
  • the level 158 functions as a horizontal detection member for detecting whether the elevation angle of the antenna 140 is zero.
  • the present invention is not limited to this.
  • various angle sensors or the like may be used as the horizontal detection member.
  • the elevation angle adjustment by the elevation angle adjustment mechanism 160 described below may be automatically performed according to the state detected by the horizontal detection member.
  • the elevation angle adjustment mechanism 160 can adjust the polarization angle of the antenna 140 in a state independent of the elevation of the antenna unit 130 by the elevation mechanism 110. It can be done. That is, the operation of the elevating mechanism 110 and the operation of the elevation angle adjusting mechanism 160 are independent from each other and are not linked.
  • the elevation angle adjustment mechanism 160 is configured to adjust while changing the elevation angle of the antenna 140 continuously. Specifically, the elevation angle adjustment mechanism 160 adjusts the elevation angle of the antenna 140 by rotating the antenna support mechanism 150 about the shaft 156 described above.
  • the elevation angle adjustment mechanism 160 includes an elevation angle adjustment lever 162, a slider 164 slidably held by the elevation angle adjustment lever 162, and a feed nut 166 connected and fixed to the slider 164. And a feed screw 168 screwed to the feed nut 166.
  • One end of the elevation angle adjustment lever 162 is connected to the other end of the shaft 156 of the antenna support mechanism 150, and the shaft 156 can be rotated by an arc motion of the other end of the elevation angle adjustment lever 162.
  • a holding hole 162a having a track shape for competition is formed at the other end of the elevation angle adjusting lever 162, and the slider 164 is held by the elevation angle adjusting lever 162 so as to be slidable within the holding hole 162a.
  • the slider 164 moves in the vertical direction, the slider 164 can move the other end of the elevation angle adjusting lever 162 in an arc while sliding in the holding hole 162a.
  • the feed nut 166 and the feed screw 168 constitute a transmission mechanism that converts rotational motion into linear motion. Specifically, the feed nut 166 is linearly fed on the feed screw 168 by the rotation of the feed screw 168. That is, the rotational motion of the feed screw 168 is converted into the linear motion of the feed nut 166.
  • another transmission mechanism such as a ball screw may be employed.
  • the elevation angle adjusting mechanism 160 in the present embodiment further includes a guide pole 170 and a motor 174 connected to the guide pole 170 via a gear box 172.
  • a motor 174 for example, a servo motor can be used.
  • the motor 174 and the gear box 172 function as a rotation mechanism that rotates the guide pole 170.
  • the present invention is not limited to this, and other rotation mechanisms may be used.
  • the guide pole 170 is rotatably held by the upper member 114 and the lower member 116 of the elevating mechanism 110 so as to extend in the vertical direction. In other words, the guide pole 170 extends in parallel with the mast 112 of the lifting mechanism 110.
  • the guide pole 170 in the present embodiment has a rectangular cross section in a plane (horizontal plane) orthogonal to the vertical direction.
  • a slider hole 168a having a square cross section is formed in the feed screw 168 in the present embodiment.
  • the size of the slider hole 168 a of the feed screw 168 is slightly larger than the size of the guide pole 170.
  • the guide pole 170 is inserted into the slider hole 168a of the feed screw 168. Due to the size relationship described above, the feed screw 168 can slide on the guide pole 170 as the antenna unit 130 moves vertically, and can rotate as the guide pole 170 rotates.
  • the guide pole 170 has a quadrangular cross section, the present invention is not limited to this.
  • the guide pole 170 may have other shapes as long as it can transmit its own rotation to the feed screw 168.
  • the guide pole 170 may have a cross section such as a triangle, a hexagon, and a star.
  • the slider hole 168a has a shape other than a square as long as the feed screw 168 can slide on the guide pole 170 while the feed screw 168 can rotate according to the rotation of the guide pole 170. Also good.
  • the polarization adjustment mechanism 180 is configured to adjust while continuously changing the polarization angle of the antenna 140.
  • the polarization adjustment mechanism 180 includes a polarization adjustment lever 182 and a linear actuator 184.
  • One end of the polarization adjustment lever 182 is connected and fixed to the arm 152.
  • the other end of the polarization adjusting lever 182 is connected to the linear actuator 184 via a slider in the same manner as the connection between the elevation adjusting lever 162 and the feed nut 166. Therefore, the linear motion of the linear actuator 184 is converted into an arc motion of the other end of the polarization adjusting lever 182 at the connection portion between the linear actuator 184 and the polarization adjusting lever 182. Further, the arc motion of the other end of the polarization adjusting lever 182 is transmitted to the arm 184 as a rotational motion.
  • the arm 184 is rotated.
  • the polarization adjusting mechanism 180 transmits the rotational motion to the antenna support mechanism 150 while converting the linear motion into the rotational motion, thereby rotating the antenna support mechanism 150 to The polarization angle is adjusted.
  • the polarization adjustment mechanism 180 described above may be replaced with another configuration. However, according to the polarization adjustment mechanism 180 of the present embodiment, the weight of the antenna elevator 100 can be reduced.
  • the above-described antenna elevator 100 according to the present embodiment can control the antenna 140 in two-axis rotation independently of the movement of the antenna unit 130 in the vertical direction. Can be measured.
  • the distance L between the antenna elevator 100 and the device under test 300 may differ from a predetermined measurement distance.
  • the electromagnetic wave measurement system may be provided with a distance correction mechanism for correcting the measurement distance.
  • a distance correction mechanism for correcting the measurement distance.
  • Various distance correction mechanisms are conceivable. For example, if a roller or a wheel is attached to the lower member 116 of the antenna elevator 100 and the antenna elevator 100 itself is self-propelled, the system is much larger.
  • the distance correction mechanism can be configured without changing the posture balance of the antenna elevator 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

 アンテナ昇降機は、アンテナユニットと、アンテナユニットを垂直方向に昇降させる昇降機構とを備える。アンテナユニットは、アンテナと、そのアンテナを支持するアンテナ支持機構と、アンテナの仰角を調整するように構成された仰角調整機構とを備える。仰角調整機構は、アンテナ支持機構を回動させることによりアンテナの仰角を調整するものであり、仰角の調整は昇降機構によるアンテナユニットの昇降とは独立して行うことができる。そのため、アンテナの仰角を任意に調整することが可能となるため、より正確な電磁波計測を行うことができる。

Description

アンテナ昇降機及び電磁波計測システム
 本発明は、アンテナ昇降機及びそれを備えた電磁波計測システムに関する。
 電子機器の電磁妨害波の評価のため、その電子機器から発せられる電磁波の計測が行われる。この計測は、電波暗室内又はオープンサイトで行われる。電磁波計測に使用される装置又はシステムとしては、例えば、特許文献1~3に開示されたものがある。しかしながら、特許文献1~3に開示された装置又はシステムは、アンテナの仰角を調整することができないといった問題を有している。
 これに対して、特許文献4に開示された装置は、アンテナの垂直位置に応じてアンテナの仰角を自動調整する機構を備えている。
特開2007-033254号公報 特開平08-146063号公報 実公平03-006013号公報 米国特許5,379,048号公報
 しかしながら、特許文献4に計測システムでは、決められた仰角調整しかできないため調整が不十分な場合がある。また、特許文献4による計測システムでは、大きく高さの異なる被計測機器を計測することはできないため、その被計測機器毎に計測システムを用意しなければならない。
 そこで、本発明は、より柔軟に仰角を調整することのできる機構を備えたアンテナ昇降機を提供することを目的とする。
 本発明の一側面は、アンテナユニットと、該アンテナユニットを垂直方向に昇降させる昇降機構とを備えるアンテナ昇降機であって、前記アンテナユニットは、アンテナと、前記昇降機構による前記アンテナユニットの昇降とは独立させた状態で前記アンテナの仰角を調整するように構成された仰角調整機構とを備える、アンテナ昇降機を提供する。
 従来技術では、アンテナの昇降動作と仰角調整とがリンクしていることから、それらの関係を正確に設定しておかなければ、アンテナの指向性が極めて高い場合などに正確な測定を行えない。これに対して、本発明によれば、アンテナの昇降動作と仰角調整とを独立制御可能なことから、任意の高さにおいて仰角を最も適切な状態に調整することができる。このように、本発明によれば、柔軟な仰角調整を行うことができ、従って、精度の高い測定を行うことができる。加えて、本発明によれば、高さ位置とは独立した値として仰角を調整できることから、高さの異なる被計測機器に対しても一つのアンテナ昇降機で対応することができる。
本発明の実施の形態によるアンテナ昇降機を備える電磁波計測システムを模式的に示す図である。 図1のアンテナ昇降機を模式的に示す側面図である。 図2のアンテナ昇降機を模式的に示す正面図である。但し、アンテナは省略されている。 図2のアンテナ昇降機に含まれる昇降機構の一部とアンテナユニットとを模式的に示す拡大斜視図である。 図3のアンテナ昇降機に含まれる偏波角調整機構とアンテナユニットとを模式的に示す拡大図である。但し、アンテナは省略されている。
符号の説明
 100    アンテナ昇降機
 110    昇降機構
 112    マスト
 114    上側部材
 116    下側部材
 118    上側プーリー
 120    下側プーリー
 122    ベルト
 124    ギアボックス
 126    モータ
 128    ベース
 128a   孔
 130    アンテナユニット
 140    アンテナ
 150    アンテナ支持機構
 152    アーム
 154    保持部材
 156    シャフト
 158    水準器
 160    仰角調整機構
 162    仰角調整レバー
 162a   保持孔
 164    スライダ
 166    フィードナット
 168    フィードねじ
 168a   スライダ孔
 170    ガイドポール
 172    ギアボックス
 174    モータ
 180    偏波調整機構
 182    偏波調整レバー
 184    リニアアクチュエータ
 200    ターンテーブル
 300    被計測機器(EUT)
 図1を参照すると、本発明の実施の形態による電磁波計測システムは、アンテナ昇降機100と、アンテナ昇降機100と離間して配置されたターンテーブル200とを備えている。ターンテーブル200上には、被計測機器(EUT)300が搭載される。
 図2及び図3に示されるように、アンテナ昇降機100は、アンテナユニット130と、アンテナユニット130を垂直方向に昇降させる昇降機構110とを備えている。
 図2及び図3に示されるように、昇降機構110は、垂直方向に延びるマスト112と、マスト112によって連結されている上側部材114及び下側部材116とを備えている。上側部材114には上側プーリー118が設けられ、下側部材116には下側プーリー120が設けられている。上側プーリー118と下側プーリー120とには、ベルト122がかけわたされている。図4に示されるように、下側プーリー120には、ギアボックス124を介してモータ126が接続されている。このようにして、モータ126によりベルト122の駆動が行われる。この種のモータ126としては、例えば、サーボモータを用いることができる。
 図2乃至図4に示されるように、マスト112には、垂直方向に移動可能となるようにベース128が取り付けられている。図2及び図3から理解されるように、ベース128にはベルト122が接続されている。更に、ベース128には、アンテナユニット130が取り付けられている。ベルト122の駆動によってベース128の昇降動作が行われ、それにより、アンテナユニット130の昇降動作も行われる。
 図4に最も良く示されるように、アンテナユニット130は、アンテナ140と、アンテナ140を支持するアンテナ支持機構150と、アンテナ140の仰角を調整する仰角調整機構160と、アンテナ140の偏波角を調整する偏波調整機構180とを備えている。
 本実施の形態によるアンテナ140は、ホーンアンテナである。しかしながら、本発明はこれに限定されるものではなく、様々な種類のアンテナを用いることができる。
 図4に示されるように、アンテナ支持機構150は、先端にアンテナ140が取り付けられたアーム152と、アーム152を保持する保持部材154と、保持部材154に連結されたシャフト156と、アーム152上に設けられた水準器158とを備えている。
 本実施の形態におけるアーム152は、直線状に延びるものであり、アーム152の軸に直交する面において四角形状の断面を有している。しかしながら、本発明はこれに限定されるものではなく、アームが他の形状を有していてもよい。
 偏波調整機構180によるアンテナ140の偏波角の調整を可能とするため、本実施の形態によるアーム152は、アンテナ140の受波の中心軸に合わせるようにして、アンテナ140を保持している。換言すると、本実施の形態におけるアーム152は、アンテナ140の受波の中心軸とアラインするように延びている。
 偏波調整機構180によるアンテナ140の偏波角の調整を可能とするため、本実施の形態による保持部材154は、軸受け構造を備えており、アーム152を軸支している。そのため、アーム152は、自己の中心軸の周りに回動可能であり、アンテナ140の偏波角を変えることができる。
 シャフト156は、円柱状又は円筒状を有している。シャフト156は、ベース128に形成された孔128aに挿入され、それによってベース128に軸支されている。シャフト156の一端が保持部材154に連結固定されているため、シャフト156が回動すると、保持部材154に保持されたアーム152が保持部材154を中心として回転し、それによって、アンテナ140の仰角が変化する。
 本実施の形態においては、ベース128のマスト112上の移動とシャフト156の回動とが互いに独立して行えるように、マスト112とシャフト156とはリンクされていない。
 本実施の形態においては、アーム152に水準器158が設けられていることから、アンテナ140が水平配置されているか否かを客観的に検知することができる。このように、水準器158は、アンテナ140の仰角が0となっているか否かを検知するための水平検知部材として機能している。しかしながら、本発明はこれに限定されない。例えば、水準器158に代えて、各種角度センサなどを水平検知部材として用いることとしてもよい。また、水平検知部材により検出した状態に応じて、以下に説明する仰角調整機構160による仰角調整を自動的に行うこととしてもよい。
 図2及び図4に示されるように、本実施の形態による仰角調整機構160は、昇降機構110によるアンテナユニット130の昇降とは独立した状態で、アンテナ140の偏波角の調整を行うことのできるものである。即ち、昇降機構110の動作と仰角調整機構160の動作とは互いに別個独立したものであり、リンクしていない。
 本実施の形態による仰角調整機構160は、アンテナ140の仰角を連続的に変化させつつ調整するように構成されたものである。具体的には、仰角調整機構160は、前述したシャフト156を軸としてアンテナ支持機構150を回動させることにより、アンテナ140の仰角を調整する。
 図4に最も良く示されているように、仰角調整機構160は、仰角調整レバー162と、仰角調整レバー162に摺動可能に保持されたスライダ164と、スライダ164に接続固定されたフィードナット166と、フィードナット166に螺合されたフィードねじ168とを備えている。
 仰角調整レバー162の一端は、アンテナ支持機構150のシャフト156の他端に接続されており、仰角調整レバー162の他端の円弧運動によってシャフト156を回動させることができる。
 仰角調整レバー162の他端には、競技用トラック状の形状を有する保持孔162aが形成されており、スライダ164は、その保持孔162a内においてスライド可能となるように、仰角調整レバー162に保持されている。その結果、スライダ164が垂直方向に移動すると、当該スライダ164は、保持孔162a内をスライドしつつ、仰角調整レバー162の他端を円弧運動させることができる。
 フィードナット166とフィードねじ168とは、回転運動を直線運動に変換する伝達機構を構成している。詳しくは、フィードねじ168の回転によって、フィードナット166がフィードねじ168上をリニアにフィードされる。即ち、フィードねじ168の回転運動がフィードナット166の直線運動に変換される。フィードナット166とフィードねじ168の組み合わせに代えて、例えばボールねじ等の他の伝達機構を採用することとしてもよい。
 本実施の形態においては、上述したようにフィードナット166はスライダ164に固定されているので、フィードねじ168の回転によりスライダ164が直線的に動かされる。更に、スライダ164の直線運動が仰角調整レバー162に伝達されることにより、仰角調整レバー162が回転する。この仰角調整レバーの回転がアンテナ支持機構150のシャフト156に伝達されることにより、アンテナ支持機構150が回転させられアンテナ140の仰角が調整される。このように、本実施の形態による仰角調整機構は、回転-リニア-回転伝達機構を備えている。しかしながら、本発明はこれに限定されるものではなく、仰角調整レバー162に回転運動を与えられるものであれば、他の機構であってもよい。
 本実施の形態における仰角調整機構160は、ガイドポール170と、ギアボックス172を介してガイドポール170に接続されたモータ174とを更に備えている。モータ174としては、例えば、サーボモータを用いることができる。モータ174及びギアボックス172は、ガイドポール170を回転させる回転機構として機能する。しかしながら、本発明はこれに制限されるものではなく、他の回転機構を用いてもよい。
 図2を参照すると、ガイドポール170は、垂直方向に延びるように、昇降機構110の上側部材114と下側部材116とによって回動可能に保持されている。換言すると、ガイドポール170は、昇降機構110のマスト112と平行に延びている。
 図4を参照すると、本実施の形態におけるガイドポール170は、垂直方向と直交する面内(水平面内)において四角形状の断面を有している。同様に、本実施の形態におけるフィードねじ168には、四角形状の断面を有するスライダ孔168aが形成されている。但し、水平面内において、フィードねじ168のスライダ孔168aのサイズは、ガイドポール170のサイズよりも若干大きい。
 ガイドポール170は、フィードねじ168のスライダ孔168aに挿入されている。上述したサイズ関係により、フィードねじ168は、アンテナユニット130の垂直移動に伴ってガイドポール170上をスライドすることができる一方で、ガイドポール170の回動に伴って回動することができる。
 本実施の形態によるガイドポール170は四角形状の断面を有していたが、本発明はこれに制限されるものではない。ガイドポール170は、自己の回転をフィードねじ168に伝達し得る形状であれば他の形状を有していてもよい。例えば、ガイドポール170は、三角形、六角形、星形などの断面を有していてもよい。また、スライダ孔168aは、フィードねじ168がガイドポール170上をスライドし得る一方でガイドポール170の回転に応じてフィードねじ168が回転し得る形状である限り、四角形以外の形状を有していてもよい。なお、ガイドポール170やスライダ孔168aの形状が複雑な形状や角数の多い多角形形状である場合、ガイドポール170とスライダ孔168aの間の回転力の伝達をスムーズなものとするため、それらの間隙を小さくすることが好ましい。
 図3乃至図5を参照すると、本実施の形態による偏波調整機構180は、アンテナ140の偏波角を連続的に変化させつつ調整するように構成されている。
 具体的には、偏波調整機構180は、偏波調整レバー182及びリニアアクチュエータ184を備えている。偏波調整レバー182の一端は、アーム152に接続固定されている。一方、偏波調整レバー182の他端は、仰角調整レバー162とフィードナット166との接続と同様にスライダを介して、リニアアクチュエータ184と接続されている。従って、リニアアクチュエータ184の直線運動は、リニアアクチュエータ184と偏波調整レバー182との接続部において、偏波調整レバー182の他端の円弧運動に変換される。更に、この偏波調整レバー182の他端の円弧運動がアーム184に回動運動として伝達される。これにより、アーム184の回動が行われる。このように、本実施の形態による偏波調整機構180は、直線運動を回転運動に変換しつつ当該回転運動をアンテナ支持機構150に伝達することにより、アンテナ支持機構150を回転させてアンテナ140の偏波角を調整するものである。
 上述した偏波調整機構180は、他の構成に代えてもよい。しかしながら、本実施の形態の偏波調整機構180によれば、アンテナ昇降機100の軽量化を図ることができる。
 上述した本実施の形態によるアンテナ昇降機100は、アンテナユニット130の垂直方向への移動とは独立してアンテナ140を2軸回転制御可能なものであり、従って、様々な被測定機器に対して様々な計測を行うことができる。
 以上、具体的な例を掲げて本発明について説明してきたが、本発明はこれらに制限されるものではない。
 例えば、図1において、アンテナユニット130の高さH及びアンテナ140の仰角θに応じて、アンテナ昇降機100と被測定機器300との距離Lが所定の計測距離とは異なる場合がある。これに対応するため、電磁波計測システムに、計測距離を補正する距離修正機構を設けることとしてもよい。距離修正機構としては、様々なものが考えられるが、例えば、アンテナ昇降機100の下側部材116にローラーや車輪などの取り付け、アンテナ昇降機100自体を自走式とすることとすると、システムをさほど大型化することなく、且つ、アンテナ昇降機100の姿勢バランスを崩すことなく、距離修正機構を構成することができる。

Claims (14)

  1.  アンテナユニットと、該アンテナユニットを垂直方向に昇降させる昇降機構とを備えるアンテナ昇降機であって、
     前記アンテナユニットは、アンテナと、前記昇降機構による前記アンテナユニットの昇降とは独立させた状態で前記アンテナの仰角を調整するように構成された仰角調整機構とを備える、アンテナ昇降機。
  2.  請求項1記載のアンテナ昇降機において、
     前記アンテナユニットは、前記アンテナを支持するアンテナ支持機構を更に備えており、
     前記仰角調整機構は、該アンテナ支持機構を回動させることにより、前記アンテナの仰角を調整する
    アンテナ昇降機。
  3.  請求項2記載のアンテナ昇降機において、
     前記昇降機構は、垂直方向に延びるマストと、前記垂直方向に移動可能となるように前記マストに取り付けられたベースとを備えており、
     前記アンテナ支持機構は、前記ベースに回動可能となるように、支持されている
    アンテナ昇降機。
  4.  請求項2又は請求項3記載のアンテナ昇降機において、
     前記仰角調整機構は、第1回転運動を直線運動に変換し、更に該直線運動を第2回転運動に変換し、当該第2回転運動を前記アンテナ支持機構に伝達することにより、前記アンテナ支持機構を回動させて前記アンテナの仰角を調整する
    アンテナ昇降機。
  5.  請求項4記載のアンテナ昇降機において、
     前記仰角調整機構は、仰角調整レバー、スライダ、伝達機構を備えており、
     前記仰角調整レバーは2つの端部を備えており、
     前記仰角調整レバーの一端は、前記アンテナ支持機構に接続されており、
     前記仰角調整レバーの他端には、保持孔が形成されており、
     前記スライダは、前記保持孔内においてスライド可能となるように、前記仰角調整レバーに保持されており、
     前記伝達機構は、第1回転運動を受けて前記スライダを直線的に移動させるように構成されており、
     前記スライダの前記直線運動が前記仰角調整レバーに伝達されることにより、前記仰角調整レバーが前記第2回転運動を行う
    アンテナ昇降機。
  6.  請求項5記載のアンテナ昇降機において、
     前記仰角調整機構は、垂直方向に延びるガイドポールと、ガイドポールを回転させる回転機構とを更に備えており、
     前記伝達機構は、前記スライダに固定されたフィードナットと、回転することにより当該フィードナットとを垂直方向にフィードするフィードねじとを備えており、
     前記フィードねじには、スライダ孔が形成されており、
     前記ガイドポールと前記スライダ孔とは、前記ガイドポールが前記スライダ孔に挿入された状態において、前記アンテナユニットの昇降に伴って前記フィードねじが前記ガイドポール上をスライド可能となる一方で前記ガイドポールの回動に伴って前記フィードねじもまた回動可能となるような断面形状を有しており、
     前記回転機構により、前記ガイドポールを介して、前記フィードねじに前記第1回転運動が供給される
    アンテナ昇降機。
  7.  請求項2乃至請求項6のいずれかに記載のアンテナ昇降機であって、前記アンテナの偏波角を調整する偏波調整機構を更に備えている、アンテナ昇降機。
  8.  請求項7記載のアンテナ昇降機において、
     前記偏波調整機構は、前記アンテナの偏波角を連続的に変化させつつ調整するように構成されている、
    アンテナ昇降機。
  9.  請求項8記載のアンテナ昇降機において、
     前記偏波調整機構は、直線運動を回転運動に変換しつつ当該回転運動を前記アンテナ支持機構に伝達することにより、前記アンテナ支持機構を回転させて前記アンテナの偏波角を調整する
    アンテナ昇降機。
  10.  請求項9記載のアンテナ昇降機において、
     前記アンテナ支持機構は、前記アンテナを支持するアームであって、前記アンテナの受波の中心軸とアラインするように延びるアームを備えており、
     前記偏波調整機構は、偏波調整レバー及びリニアアクチュエータを備えており、
     前記偏波調整レバーは、2つの端部を備えており、
     前記偏波調整レバーの一端は、前記アームに接続されており、
     前記偏波調整レバーの他端には、前記リニアアクチュエータが取り付けられており、
     前記リニアアクチュエータの直線運動が前記偏波調整レバーを介して前記アームに回転運動として伝達される
    アンテナ昇降機。
  11.  請求項2乃至請求項10のいずれかに記載のアンテナ昇降機において、
     前記アンテナ支持機構は、前記アンテナの仰角が0であるか否かを検知するための水平検知部材を備えている、
    アンテナ昇降機。
  12.  請求項11記載のアンテナ昇降機において、
     前記水平検知部材は、水準器である
    アンテナ昇降機。
  13.  請求項1乃至請求項12のいずれかに記載のアンテナ昇降機において、
     前記仰角調整機構は、前記アンテナの仰角を連続的に変化させつつ調整するように構成されている
    アンテナ昇降機。
  14.  請求項1乃至請求項13のいずれかに記載のアンテナ昇降機と、該アンテナ昇降機と離間して設置されたターンテーブルとを備える電磁波計測システム。
     
PCT/JP2009/000917 2009-02-27 2009-02-27 アンテナ昇降機及び電磁波計測システム WO2010097842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980156722.3A CN102317799B (zh) 2009-02-27 2009-02-27 天线升降机及电磁波测量系统
KR1020117017539A KR101524180B1 (ko) 2009-02-27 2009-02-27 안테나 승강기 및 전자파 계측 시스템
PCT/JP2009/000917 WO2010097842A1 (ja) 2009-02-27 2009-02-27 アンテナ昇降機及び電磁波計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000917 WO2010097842A1 (ja) 2009-02-27 2009-02-27 アンテナ昇降機及び電磁波計測システム

Publications (1)

Publication Number Publication Date
WO2010097842A1 true WO2010097842A1 (ja) 2010-09-02

Family

ID=42665070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000917 WO2010097842A1 (ja) 2009-02-27 2009-02-27 アンテナ昇降機及び電磁波計測システム

Country Status (3)

Country Link
KR (1) KR101524180B1 (ja)
CN (1) CN102317799B (ja)
WO (1) WO2010097842A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645667A (zh) * 2013-11-25 2014-03-19 衡阳泰豪通信车辆有限公司 锁紧螺母检测装置及天线升降机构锁紧控制方法
CN107611613A (zh) * 2017-09-29 2018-01-19 桂林长海发展有限责任公司 一种快速实现天线俯仰角度调整的装置
CN113647929A (zh) * 2021-08-17 2021-11-16 电子科技大学 一种微波轴向断层脑成像的穿戴设备
CN114336008A (zh) * 2021-12-07 2022-04-12 中国电子科技集团公司第五十四研究所 通信设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116044B (zh) * 2013-01-25 2015-02-11 北京无线电计量测试研究所 场强探头曲轨角度调整测试架
KR101514033B1 (ko) * 2013-11-15 2015-04-22 한국표준과학연구원 3축 프로브 포지셔닝 장치
CN109786925B (zh) * 2017-11-10 2022-08-30 千藏工业株式会社 天线定位器、测定不必要的电磁辐射的系统及方法
CN110165411B (zh) * 2018-03-28 2020-09-15 浙江龙游新西帝电子有限公司 一种多角度室外天线
CN110058090B (zh) * 2019-06-05 2019-12-03 诸暨市圣元塑胶材料有限公司 一种可降低电磁辐射并对电磁辐射进行检测的检测设备
CN111293402B (zh) * 2020-02-10 2021-04-02 浙江001集团有限公司 一种电子产品检测设备用天线支架
KR102391223B1 (ko) 2020-08-25 2022-04-27 주식회사 티에이엔지니어링 안테나 마스트 및 이를 이용한 전자기기의 불요전자파 측정 시스템

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188385U (ja) * 1984-05-22 1985-12-13 日本電気株式会社 ハイトパタ−ン測定装置
JPS63285474A (ja) * 1987-05-18 1988-11-22 Keiyo Seiki Kk 放射妨害電波測定装置
JPH0582117U (ja) * 1992-04-08 1993-11-05 株式会社トーキン アンテナ昇降・旋回装置
JPH0688845A (ja) * 1992-09-07 1994-03-29 Nippon Telegr & Teleph Corp <Ntt> 屋外電磁環境計測装置
JPH06334423A (ja) * 1993-05-26 1994-12-02 Toyota Central Res & Dev Lab Inc 追尾アンテナ装置
JP2001343409A (ja) * 2000-06-01 2001-12-14 Sony Corp 電磁放射測定装置および電磁放射測定方法
JP2003344469A (ja) * 2002-05-30 2003-12-03 Advantest Corp 電磁波測定器及び電磁波測定方法
JP2004325230A (ja) * 2003-04-24 2004-11-18 Murata Mfg Co Ltd アンテナポジショナ
JP2006203374A (ja) * 2005-01-18 2006-08-03 Murata Mfg Co Ltd アンテナ設置角度調整装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853766B1 (fr) * 2003-04-11 2006-01-27 Manuf D App Electr De Cahors M Monture d'antenne permettant un reglage fin de l'orientation de l'antenne
CN101075697A (zh) * 2007-07-04 2007-11-21 李爱民 一种便携式天线杆及其便携式架设装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188385U (ja) * 1984-05-22 1985-12-13 日本電気株式会社 ハイトパタ−ン測定装置
JPS63285474A (ja) * 1987-05-18 1988-11-22 Keiyo Seiki Kk 放射妨害電波測定装置
JPH0582117U (ja) * 1992-04-08 1993-11-05 株式会社トーキン アンテナ昇降・旋回装置
JPH0688845A (ja) * 1992-09-07 1994-03-29 Nippon Telegr & Teleph Corp <Ntt> 屋外電磁環境計測装置
JPH06334423A (ja) * 1993-05-26 1994-12-02 Toyota Central Res & Dev Lab Inc 追尾アンテナ装置
JP2001343409A (ja) * 2000-06-01 2001-12-14 Sony Corp 電磁放射測定装置および電磁放射測定方法
JP2003344469A (ja) * 2002-05-30 2003-12-03 Advantest Corp 電磁波測定器及び電磁波測定方法
JP2004325230A (ja) * 2003-04-24 2004-11-18 Murata Mfg Co Ltd アンテナポジショナ
JP2006203374A (ja) * 2005-01-18 2006-08-03 Murata Mfg Co Ltd アンテナ設置角度調整装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645667A (zh) * 2013-11-25 2014-03-19 衡阳泰豪通信车辆有限公司 锁紧螺母检测装置及天线升降机构锁紧控制方法
CN103645667B (zh) * 2013-11-25 2018-05-29 衡阳泰豪通信车辆有限公司 锁紧螺母检测装置及天线升降机构锁紧控制方法
CN107611613A (zh) * 2017-09-29 2018-01-19 桂林长海发展有限责任公司 一种快速实现天线俯仰角度调整的装置
CN107611613B (zh) * 2017-09-29 2024-03-22 桂林长海发展有限责任公司 一种快速实现天线俯仰角度调整的装置
CN113647929A (zh) * 2021-08-17 2021-11-16 电子科技大学 一种微波轴向断层脑成像的穿戴设备
CN113647929B (zh) * 2021-08-17 2023-10-31 电子科技大学 一种微波轴向断层脑成像的穿戴设备
CN114336008A (zh) * 2021-12-07 2022-04-12 中国电子科技集团公司第五十四研究所 通信设备
CN114336008B (zh) * 2021-12-07 2023-12-29 中国电子科技集团公司第五十四研究所 通信设备

Also Published As

Publication number Publication date
KR20110123729A (ko) 2011-11-15
CN102317799A (zh) 2012-01-11
KR101524180B1 (ko) 2015-05-29
CN102317799B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2010097842A1 (ja) アンテナ昇降機及び電磁波計測システム
JP2009058460A (ja) アンテナ昇降機およびそれを用いた不要輻射電磁波計測システム
US8878733B2 (en) Antenna holding device for electromagnetic measurements
US8869712B2 (en) Precision tilting platform device used for static calibration of seismometers
KR101367289B1 (ko) 전자파 적합성 시험을 위한 안테나 자동 이동장치
US8276435B2 (en) Surface texture measuring instrument and measuring method
US7373724B2 (en) Laser level with improved leveling adjustability
JP5929503B2 (ja) アンテナ昇降装置
CN102931469A (zh) 一种标准增益喇叭天线定位装置
CN107611613B (zh) 一种快速实现天线俯仰角度调整的装置
JP3184602U (ja) アンテナ用ブラケット
KR102332960B1 (ko) 드론 비행부하 전자기적합성 시험기
KR101404974B1 (ko) 센서박스 거치용 카트
KR101978468B1 (ko) 승강 운동 시험 장치
JP5531423B2 (ja) 摩擦トルク測定装置
KR102142989B1 (ko) 승강운동 시험장치
CN102937423B (zh) 一种测圆装置
JP2019090776A (ja) アンテナポジショナ、不要輻射電磁波測定システムおよび不要輻射電磁波の測定方法
RU2451371C1 (ru) Стенд для измерения радиотехнических параметров антенных обтекателей
US11709045B1 (en) Surface texture probe and measurement apparatus with a vibrational membrane
CN210800571U (zh) 一种两自由度调整装置
CN102721946B (zh) 用于定点全平面扫描探测的水平定角度偏转承载平台
CN115479649A (zh) 一种本安型3d雷达物位仪及物位扫描成像系统
JP6261185B2 (ja) 昇降モジュールおよび昇降モジュールを使用する昇降装置
JP6103230B2 (ja) 測定機の昇降装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156722.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117017539

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09840696

Country of ref document: EP

Kind code of ref document: A1