WO2010097459A1 - Peau protectrice pour robots - Google Patents

Peau protectrice pour robots Download PDF

Info

Publication number
WO2010097459A1
WO2010097459A1 PCT/EP2010/052470 EP2010052470W WO2010097459A1 WO 2010097459 A1 WO2010097459 A1 WO 2010097459A1 EP 2010052470 W EP2010052470 W EP 2010052470W WO 2010097459 A1 WO2010097459 A1 WO 2010097459A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
layer
robot
deformable material
series
Prior art date
Application number
PCT/EP2010/052470
Other languages
English (en)
Inventor
Frédéric Colledani
Xavier Lamy
Original Assignee
Commissariat A L`Energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L`Energie Atomique filed Critical Commissariat A L`Energie Atomique
Priority to EP10706216A priority Critical patent/EP2401584A1/fr
Priority to US13/203,628 priority patent/US9134140B2/en
Publication of WO2010097459A1 publication Critical patent/WO2010097459A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • B25J19/063Safety devices working only upon contact with an outside object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements

Definitions

  • the invention relates to a detection device arranged to cover at least a part of a mobile device such as a robot or any other type of mobile machinery and more particularly mobile machines in the vicinity of which personnel are likely to intervene.
  • this device is for the early detection of a shock to take action to reduce or eliminate the negative effects of this shock.
  • Industrial robots are usually built with heavy and rigid architecture.
  • the problem therefore arises of limiting the consequences of collisions that can occur when a large inertia robot moves rapidly in a moving environment.
  • One proposed solution is to cover the robot's workspace with a multitude of fixed cameras. These cameras gather data about the environment of the robot, and the movements of this robot in the environment. Then, this data is processed by a computer connected to these cameras to determine and predict the imminence of a collision with the environment.
  • Another proposed solution is to use various devices capable of mechanically detecting a contact between the robot and the environment.
  • a six-axis force sensor is used at the base of the robot.
  • the difficulty of such a solution is to discern the slight environmental contact-robot contact precursors of the collision among the significant efforts due to the mass and the dynamics of the robot, as well as the noise intrinsic to the sensor.
  • the sensor will have to be oversized relative to the contact forces in order to be able to support the weight of the robot. Consequently, in order to obtain a sufficient sensitivity, it is necessary to filter the signals coming from this sensor, which is long and greatly degrades the detection time of the collision.
  • sensors sensitive to contact forces are used, these sensors being distributed over the entire body of the robot.
  • Such a solution has the disadvantage that when the robot is in motion, a contact between the robot and the environment is detected too late to be able to avoid an impact.
  • Yet another solution is to distribute proximity sensors on the body of the robot. The distribution of proximity sensors on the body of the robot results from a compromise between the detection distance and the number of sensors. A very short detection distance requires the use of a large number of detectors which is difficult to set up. However, in the case where the number of sensors is restricted the detection distance is relatively large so that the sensors may accidentally detect other parts of the robot than the one where they are fixed.
  • Another solution known from WO 2008-066575, consists in covering a portion of a gripping element of a robot by a touch sensor, the touch sensor comprising electrodes and a deformable layer of gel or ionic liquid associated with electrodes so that a current flowing between two electrodes is proportional to the thickness of the deformable layer of gel or liquid vertically above said electrodes.
  • a touch sensor comprising electrodes and a deformable layer of gel or ionic liquid associated with electrodes so that a current flowing between two electrodes is proportional to the thickness of the deformable layer of gel or liquid vertically above said electrodes.
  • such a sensor proves complex to implement, in particular during a covering of a large surface of the robot, in particular by the need to insert through the wall of the robot each electrode, by the need to connect each electrode by a wire at the input of the multiplexer placed inside the robot and by the need to seal the deformable layer.
  • the subject of the invention is a protection device for a robot whose function is to detect reliably the imminence of a collision between the body of a robot and the environment, and to locate it to control the robot so that it avoids this impact and whatever the size of the protective device.
  • a detection device arranged to cover at least a portion of a mobile device, the device comprising an electromechanical transducer comprising a support, a first series of electrodes, a second series of electrodes, and a layer deformable material associated with the electrodes of the two series; the support, the electrodes and the layer of deformable material forming a unitary unit attached to the portion of the mobile apparatus and being arranged so that a current flowing between one of the electrodes of the first series and an adjacent electrode of the second series is proportional to a thickness of the layer of deformable material plumb with said electrodes.
  • the support comprises a base layer on which are fixed the electrodes of the first series and the electrodes of the second series which comprise opposite portions, and a variable conduction layer covering the base layer and the electrodes. .
  • the detection device is thus easy to implement, even on a large surface of a mobile device, simply by placing the unitary assembly on the mobile device.
  • the variable conduction layer may be of piezoresistive material and may be associated with a selected stiffness material (eg foam).
  • the portions facing the electrodes may be nested one inside the other and the electrodes may have a comb shape.
  • the invention also relates to a robot comprising a motorized structure having an outer surface at least a part of which is covered with a device as described, and a control unit which is connected to minus one engine of the motorized structure and to the device and which is programmed to control the motor to cause movement to the motorized structure and to interrupt the movement as soon as a current is detected between two electrodes of the device, the deformable layer having a thickness and flexibility such that, for a predetermined speed of the motorized structure, the control unit can interrupt the movement of the motorized structure before a maximum crushing of the deformable layer.
  • the device described here makes it possible both to measure the intensity of the contact (s) with the environment and to locate the contact area (s) on the device or the robot body to roughly deduce a direction of the effort.
  • This layer is a thickness monitoring space chosen around the device or the robot
  • An advantage of the device according to the invention is its ability to transmit a limited effort representative of the imminence of a shock rather than the shock itself. This leaves the time and distance required for the mechanics of the device or robot to stop.
  • An advantage of the device is that the choice of the constitution material of the detection layer is independent of the choice of the sensor for the sensitive zone.
  • An advantage of the device according to the invention is that the deformable layer can also reduce the consequences of an impact with the operator or the environment.
  • One advantage is that the deformable layer protects the detection element.
  • Another advantage of the device according to the invention is the low cost of the materials constituting it, a low manufacturing cost, and the possibility of industrial manufacture.
  • FIG. 1a is a perspective view of a robot
  • FIG. 1b is a schematic perspective view of a robot arm associated with a device according to the invention.
  • FIG. 1c is a view of a scanning and conditioning circuit connected to the skin according to the invention.
  • FIG. 1d is a view of a conditioning circuit
  • FIG. 2 is a schematic sectional view in the thickness of a detection device according to the invention.
  • FIG. 3 is a view illustrating a structure of complementary combs in detail
  • FIG. 4 shows a diagram illustrating the braking of the robot.
  • Figure la shows a perspective view of a conventional robot 1, on which the detection device of the invention can be shown.
  • the robot comprises a motorized structure having motors 2, 3 and 4 connected to a control unit 5 executing a computer program for driving the motorized structure.
  • the motorized structure here comprises a robot arm 100 having an outer surface on at least a portion of which extends a detection device 400 according to the invention, which forms a skin on the arm of the robot.
  • the device 400 comprises an electromechanical transducer 500 covering the outer surface of the robot arm 100 and comprising a support 550 provided with electrodes 510, 520 and covered with a deformable layer 300.
  • the transducer is detailed in FIG.
  • electromechanical transducer 500 comprises a base layer 551, flexible, on which the electrodes 510, 520 extend, a variable conduction layer 552 covering the base layer 551 and the electrodes 510, 520, a conductive layer 553 covering the variable conduction layer 552 and a protective layer 554 covering the conductive layer 553.
  • the deformable layer 300 extends over the protective layer 554 and is covered with a flexible outer coating 350.
  • the electrodes 510, 520 have a structure in the form of complementary combs arranged in a matrix pattern, i.e. first combs connected to each other along lines 510 'and second combs connected to each other along columns 520'. Each comb 510, 520 is connected to the scanning circuit which will be described later, itself connected to the control unit 5. Two nested combs, one in the other, form a cell.
  • the structure of complementary combs has the function of forming large areas or sensitive cells. As the number of signals coming from the skin is a function of the size of the sensitive zone or cell, and a limited number of signals allows faster and simpler processing, the number of signals, ie the structure, can be adapted. comb, depending on the safety guidelines for the robot in question.
  • the variable conduction layer 552 is of a thin, flexible material functioning as an electrically resistive element having a pressure-dependent resistance applied to this structure.
  • the variable conduction layer 552 is made of a piezoresistive material.
  • a material that can be used to form the variable conduction layer 552, the conductive layer 553 and the protective layer 554, is the material sold under the name "QTC" by the company Peratech.
  • the combs of the same line or column are electrically connected by a flexible circuit extending over base layer 551 forming a grid structure 940.
  • This grid structure can be deformed to create most forms needed to cover a member of a robot.
  • a measurement of the resulting current then indicates the pressure exerted on this zone.
  • the control unit 5 uses this measurement to modify or stop the movement of the robot. This method is described more specifically below with reference to Figures Ic and Id (note that the arrangement of the electrodes is strongly schematized in these figures to simplify the reading).
  • Fig. Ic shows a scanning and conditioning circuit 900 connected to the skin according to the invention.
  • the first electrodes of each cell belonging to the same rank are interconnected by a single track of the flexible printed circuit (FPCB) constituting the sensor.
  • the second electrodes of each cell belonging to the same column are interconnected by a single track, which can be performed on a lower layer of the FPCB to avoid crossings.
  • the ranks and columns are then connected to the scanning and conditioning circuit 900.
  • the scanning and conditioning circuit 900 can be embedded in each segment of the motorized structure of the robot and allows preamplification and multiplexing of the signals.
  • This circuit 900 comprises a column selection circuit 930 connected to the grid columns 940, a row activation circuit 950, connected to the rows of the grid 940.
  • a 74HC238 type circuit has been used as the activation circuit.
  • a DG408 circuit has been used as a column selector 930.
  • the scanning and conditioning circuit 900 includes a binary counter 960.
  • the scanning and conditioning circuit 900 also includes a conditioning circuit 920, which will be described in FIG. detail later, and that and connected to the 930 column selector.
  • a controller 990 usually located outside the robot, includes a converter Analog to Digital (CAN) 980 connected to a 910 software system, whose function is to enslave the movements of the robot.
  • CAN Analog to Digital
  • the controller 990 and the scanning and conditioning circuit 900 are connected by the management unit
  • the resistance of a cell in this construction is more than 100 ohm, when no pressure is applied, and goes down to less than 1 kilohm at a high compression.
  • a resistance in the resistance range between 10kOhm and 1 MOhm must be measured with the shortest response time possible.
  • the scanning and conditioning circuit 900 has the function of independently measuring the conductivity of each of the cells connected to this grid.
  • the 950 row activation circuit sets the row potential to 0V, or 5V when the column is activated.
  • this column is connected to the conditioning circuit 920, which sets its potential to OV. All cells in this column are therefore subject to zero potential difference (DDP), with the exception of the activated rank-related cell, which is subject to a 5V DDP.
  • DDP zero potential difference
  • the current passes only through the selected cell: this characteristic therefore makes it possible to measure several simultaneous support points (multitouch).
  • the binary counter 960 is used to select columns and ranks.
  • the least significant bits address the row activation circuit 950, and the most significant bits address the column selection circuit 930. Thus, at each clock pulse, the next grid cell is selected.
  • a reset signal is sent to the binary counter at each cycle to ensure that the scan always starts from the start.
  • Fig. Id shows a conditioning circuit, here a transimpedance amplifier circuit connected to a cell of the skin.
  • the transimpedance amplifier circuit makes it possible both to set a constant potential across the cell and to measure the current flowing through it. Thus, it is possible to measure the evolution of its conductivity without being disturbed by the capacitive effect. The response time is then greatly reduced. The sensitivity of the measurement can be adjusted by the value of Rtrans.
  • the deformable layer 300 creates an active area around the robot, with low stiffness, which does not risk creating instability of the command when the skin comes into contact with the environment. This makes it possible to switch between two regulators: a first regulator when one is in contact, and a second regulator when one is out of contact, and thus to present optimal performances in these two cases. Indeed, when the robot is out of contact, it will be desired that the servocontrols that control the achievement of the main task of the robot are preponderant: the motors generate fast movements to achieve the task quickly and faithfully.
  • the motor instructions will generate movements of the robot in order to avoid the collision rather than to achieve the objectives of the main task .
  • the transition is not abrupt, hence the interest of the zone transition caused by the thick deformable layer 300.
  • Figure 4 shows a diagram illustrating the operation of the device during the braking of the robot.
  • the ordinate axis indicates the distance between an obstacle, the surface of the deformable layer and the surface of the robot.
  • the x-axis shows the time between the detection of an obstacle and the stopping of the robot.
  • FIG. 4 it can be seen that for a thickness of the deformable layer of about 1 cm and a speed of displacement of 1 m.
  • the obstacle enters the deformable layer for about one millisecond before contact is detected.
  • the time to send the stop instructions to the robot is also about one millisecond.
  • the robot is immobilized after about eight milliseconds, and this before the obstacle touches and damages the surface of the robot.
  • the control unit 5 is programmed to move the motorized structure and interrupt the movement as soon as a current is detected between two electrodes of the device, the deformable layer having a thickness and a flexibility such that, for a predetermined speed of the motorized structure , the control unit 5 can interrupt the movement of the motorized structure before a maximum crushing of the deformable layer 300.
  • Tests have shown that the invention allows a reaction time of the order of one thousandth of a second.
  • Tests have shown that depending on the thickness of the deformable layer 300, it is possible to detect a contact a few centimeters before an impact on the hard part of the robot. This makes it possible to envisage the robot's important movement speeds for its main task (rapid positioning of the object, followed by the operator's actions, etc.) while guaranteeing the safety of the user (the stopping distance robot can be respected).
  • the deformable layer 300 may be a foam elastomer having a predefined flexibility and thickness according to the desired penetration force, and the distance required to stop the movement of the robot (the choice of the foam is completely free).
  • the deformable layer 300 may be synthetic rubber, for example polycloroprene, polystyrene, latex foam rubber, polysiloxane, block polymer comprising styrene butadiene, styrene isoprene, natural rubber or any known material having elasticity and appropriate deformability.
  • the foam has the function of distributing and delaying a shock in order to advance the transmission of the contact information before a hard collision.
  • the invention is not limited to being used as a protective element of a robot.
  • the device according to the invention can be used as a protective skin by any apparatus in displacement, manual or automatic, to protect the equipment against the environment, and / or protect the environment against the apparatus.
  • the sensing element can also be replaced by other piezoresistive technologies such as those described in US-A-7258026 and US-A-5756904.
  • the detection can implement different phenomena allowing a variation of the conductivity of the material as a function of the pressure, for example:
  • the contact resistance resistance to current flow between two parts is inversely proportional to their surface in contact and this contact surface is increased by the pressure exerted to apply the two parts against each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Dispositif de détection agencé pour recouvrir au moins une partie (100) d'un appareil mobile, le dispositif comprend un transducteur électromécanique comportant un support, une première série d'électrodes (510), une deuxième série d'électrodes (520), et une couche déformable (300) associée aux électrodes des deux séries, le support, les électrodes et la couche déformable formant un ensemble unitaire rapporté sur la partie (100) de l'appareil mobile et étant agencés pour qu'un courant circulant entre une des électrodes de la première série et une électrode adjacente de la deuxième série soit proportionnel à une épaisseur de la couche déformable à l'aplomb des dites électrodes, le support comportant une couche de base sur laquelle sont fixées les électrodes de la première série (510) et les électrodes de la deuxième série (520) qui comportent des portions en regard, et une couche à conduction variable recouvrant la couche de base et les électrodes.

Description

Peau protectrice pour robots.
L' invention concerne un dispositif de détection agencé pour recouvrir au moins une partie d'un appareil mobile tel qu'un robot ou tout autre type de machines mobiles et plus particulièrement des machines mobiles à proximité desquelles du personnel est susceptible d'intervenir. Plus précisément, ce dispositif a pour application la détection en avance d'un choc en vue de prendre des mesures pour réduire ou éliminer les effets négatifs de ce choc.
Arrière-plan de l'invention
Les robots industriels sont habituellement construits avec une architecture lourde et rigide. Les conséquences d'une collision entre le robot et son environnement même à petite vitesse peuvent donc être désastreuses : on risque d'une part d'endommager l'environnement qui peut comprendre des objets fragiles et des êtres humains et, d'autre part, le robot risque d'être endommagé lui-même dans le cas d'un choc avec un élément de l'environnement plus résistant que lui, par exemple un mur en béton. Le problème se pose donc de limiter les conséquences des collisions qui peuvent survenir lorsqu'un robot d'inertie importante se déplace rapidement dans un environnement mouvant. Une solution proposée consiste à couvrir l'espace de travail du robot par une multitude de caméras fixes. Ces caméras réunissent des données concernant l'environnement du robot, et les mouvements de ce robot dans l'environnement. Ensuite, ces données sont traitées par un ordinateur connecté à ces caméras afin de déterminer et prévoir l'imminence d'une collision avec l'environnement. Cette solution entraine plusieurs inconvénients. D'abord, le temps de traitement des images est important et limite la vitesse de déplacement du robot. Ensuite, les algorithmes sont complexes et, de ce fait, ne sont que peu fiables. Aussi, ces algorithmes requièrent de grosses ressources de calcul. En outre, le champ de vision d'une caméra peut être obstrué accidentellement, par exemple lors d'une baisse ou d'une extinction totale de l'éclairage ou au contraire lors d'une surexposition lumineuse. Les caméras sont de plus des équipements complexes dont le risque de défaillance n'est pas négligeable.
Une autre solution proposée consiste à utiliser divers dispositifs capable de détecter mécaniquement un contact entre le robot et l'environnement. Selon une variante, on utilise un capteur d'effort à six axes disposé à la base du robot. La difficulté d'une telle solution est de discerner les légers efforts de contact environnement-robot précurseurs de la collision parmi les efforts importants dus à la masse et à la dynamique propre du robot, ainsi que du bruit intrinsèque au capteur. Le capteur devra être surdimensionné relativement aux efforts de contacts afin de pouvoir supporter le poids du robot. En conséquence pour obtenir une sensibilité suffisante il est nécessaire de filtrer les signaux issus de ce capteur, ce qui est long et dégrade beaucoup le temps de détection de la collision. Il en est de même pour les systèmes de détection des efforts sur le corps du robot par la mesure des courants moteur, l'effet des frottements internes au robot devant alors être de surcroît pris en compte. Une autre solution consiste à équiper le robot avec des pare-chocs associés à des capteurs de pression. Cependant, lorsque le robot est en mouvement, l'inertie d'un pare-choc couplé à la raideur des capteurs de pression rend les mesures fines incertaines, ce qui peut limiter la sensibilité du système lorsqu'on en a le plus besoin : aux prémisses de la collision.
Selon une autre variante, on utilise des capteurs sensibles aux efforts de contact, ces capteurs étant répartis sur l'ensemble du corps du robot. Une telle solution présente l'inconvénient, lorsque le robot est en mouvement, qu'un contact entre le robot et l'environnement est détecté trop tard pour pouvoir éviter un impact . Encore une autre solution consiste à répartir des capteurs de proximité sur le corps du robot. La répartition des capteurs de proximité sur le corps du robot résulte d'un compromis entre la distance de détection et le nombre de capteurs. Une très courte distance de détection requiert l'usage d'un grand nombre de détecteurs ce qui est délicat à mettre en place. En revanche dans le cas où le nombre de capteurs est restreint la distance de détection est relativement importante de sorte que les capteurs risquent de détecter accidentellement d'autres parties du robot que celle où ils sont fixés.
Une autre solution, connue du document WO 2008- 066575, consiste à recouvrir une portion d'un élément de préhension d'un robot par un capteur tactile, le capteur tactile comprenant des électrodes et une couche déformable de gel ou de liquide ionique associée aux électrodes de sorte qu'un courant circulant entre deux électrodes soit proportionnel à l'épaisseur de la couche déformable de gel ou de liquide à l'aplomb desdites électrodes. Cependant, un tel capteur s'avère complexe à implanter, en particulier lors d'un recouvrement d'une grande surface du robot, notamment par la nécessité d' insérer au travers de la paroi du robot chaque électrode, par la nécessité de relier chaque électrode par un fil à l'entrée du multiplexeur placé à l'intérieur du robot et par la nécessité d' étanchéifier la couche déformable. Il ne serait pas envisageable de recouvrir une grande surface du fait de la difficulté d'obtenir une couche déformable homogène sur tout le capteur. En outre, sur des surfaces non planes ou en mouvement dans l'espace, la gravité engendrerait des déformations de la couche de liquide du capteur et agirait sur celle-ci de manière différenciée provoquant des variations de résistance entre les électrodes en l'absence de contact. Objet de l'invention
L'invention a pour objet un dispositif de protection pour robot ayant pour fonction de détecter de manière fiable l'imminence d'une collision entre le corps d'un robot et l'environnement, et de la localiser afin de commander le robot pour qu' il évite cet impact et ce quelle que soit la taille du dispositif de protection. Brève description de l'invention
Dans cette optique, on propose un dispositif de détection agencé pour recouvrir au moins une partie d'un appareil mobile, le dispositif comprenant un transducteur électromécanique comportant un support, une première série d'électrodes, une deuxième série d'électrodes, et une couche de matériau déformable associée aux électrodes des deux séries ; le support, les électrodes et la couche de matériau déformable formant un ensemble unitaire rapporté sur la partie de l'appareil mobile et étant agencés pour qu'un courant circulant entre une des électrodes de la première série et une électrode adjacente de la deuxième série soit proportionnel à une épaisseur de la couche de matériau déformable à l'aplomb desdites électrodes. Selon l'invention, le support comporte une couche de base sur laquelle sont fixées les électrodes de la première série et les électrodes de la deuxième série qui comportent des portions en regard, et une couche à conduction variable recouvrant la couche de base et les électrodes. Le dispositif de détection s'avère ainsi simple à implanter, même sur une grande surface d'un appareil mobile, par simple pose de l'ensemble unitaire sur l'appareil mobile.
La couche à conduction variable peut être en matériau piézorésistif et peut être associée à un matériau de raideur choisie (de la mousse par ex.) . Les portions en regard des électrodes peuvent être imbriquées l'une dans l'autre et les électrodes peuvent avoir une forme de peigne. L' invention concerne aussi un robot comprenant une structure motorisée ayant une surface externe dont au moins une partie est recouverte d'un dispositif tel que décrit, et une unité de commande qui est reliée à au moins un moteur de la structure motorisée et au dispositif et qui est programmée pour commander le moteur pour faire réaliser un mouvement à la structure motorisée et pour interrompre le mouvement dès qu'un courant est détecté entre deux électrodes du dispositif, la couche déformable ayant une épaisseur et une souplesse telles que, pour une vitesse prédéterminée de la structure motorisée, l'unité de commande puisse interrompre le mouvement de la structure motorisée avant un écrasement maximal de la couche déformable.
Le dispositif ici décrit permet à la fois de mesurer l'intensité du ou des contacts avec l'environnement et de localiser la ou les zones de contact sur l'appareil ou le corps du robot pour en déduire grossièrement une direction de l'effort. Cette couche constitue un espace de surveillance d'épaisseur choisie autour de l'appareil ou du robot
Un avantage du dispositif selon l'invention est sa capacité à transmettre un effort limité représentatif de l'imminence d'un choc plutôt que le choc lui-même. Ce qui laisse le temps et la distance nécessaire à la mécanique de l'appareil ou du robot pour s'arrêter.
Un avantage du dispositif est que le choix du matériau de constitution de la couche de détection est indépendant du choix du capteur pour la zone sensible.
Un avantage du dispositif selon l'invention est que la couche déformable peut aussi réduire les conséquences d'un choc avec l'opérateur ou 1' environnement Un avantage est que la couche déformable protège l'élément de détection.
Un autre avantage du dispositif selon l'invention est le faible coût des matériaux le constituant, un faible coût de fabrication, et la possibilité d'une fabrication industrielle.
Brève description des figures
L' invention sera mieux comprise à la lumière des figures des dessins annexés, parmi lesquelles : - la figure la est une vue en perspective d'un robot,
- la figure Ib est une vue schématique en perspective d'un bras de robot associé à un dispositif selon l'invention,
- la figure Ic est une vue d'un circuit de balayage et de conditionnement relié à la peau selon 1' invention,
- la figure Id est une vue d'un circuit de conditionnement,
- la figure 2 est vue schématique en coupe dans l'épaisseur d'un dispositif de détection selon 1' invention,
- la figure 3 est une vue illustrant une structure de peignes complémentaires en détail,
- la figure 4 montre un diagramme illustrant le freinage du robot.
Description détaillée de l'invention
La figure la montre une vue en perspective d'un robot classique 1, sur lequel le dispositif de détection de l'invention peut être montré.
Le robot comprend une structure motorisée ayant des moteurs 2, 3 et 4 reliés à une unité de commande 5 exécutant un programme informatique de pilotage de la structure motorisée. La structure motorisée comprend ici un bras de robot 100 ayant une surface extérieure sur au moins une partie de laquelle s'étend un dispositif de détection 400 selon l'invention, qui forme une peau sur le bras du robot. Le dispositif 400 comprend un transducteur électromécanique 500 couvrant la surface extérieure du bras de robot 100 et comportant un support 550 pourvu d'électrodes 510, 520 et recouvert d'une couche déformable 300. Le transducteur est détaillé sur la figure 2. Le support 550 du transducteur électromécanique 500 comprend une couche de base 551, flexible, sur laquelle s'étendent les électrodes 510, 520, une couche à conduction variable 552 recouvrant la couche de base 551 et les électrodes 510, 520, une couche conductrice 553 recouvrant la couche à conduction variable 552 et une couche de protection 554 recouvrant la couche conductrice 553. La couche déformable 300 s'étend sur la couche de protection 554 et est recouverte d'un revêtement extérieur 350 souple.
Les électrodes 510, 520 ont une structure en forme de peignes complémentaires agencés selon un motif matriciel, i.e. des premiers peignes reliés les uns aux autres selon des lignes 510' et des seconds peignes reliés les uns aux autres selon des colonnes 520'. Chaque peigne 510, 520 est relié au circuit de balayage qui sera décrit plus loin, lui-même relié à l'unité de commande 5. Deux peignes imbriqués, l'un dans l'autre, forment une cellule. La structure de peignes complémentaires a pour fonction de former des zones ou cellules sensibles de grande surface. Comme le nombre de signaux issus de la peau est une fonction de la taille de la zone ou cellule sensible, et qu'un nombre limité de signaux permet un traitement plus rapide et plus simple, on peut adapter le nombre de signaux, i.e. la structure de peigne, en fonction des directives de sécurité concernant le robot en question.
La couche à conduction variable 552 est en un matériau mince et flexible fonctionnant comme un élément électriquement résistif ayant une résistance fonction de la pression appliquée sur cette structure. La couche à conduction variable 552 est en un matériau piezorésistif . Un matériau qui peut être utilisé pour former la couche à conduction variable 552, la couche conductrice 553 et la couche de protection 554, est le matériau vendu sous le nom "QTC" par la société Peratech.
Les peignes d'une même ligne ou d'une même colonne sont électriquement reliées par un circuit souple s 'étendant sur la couche de base 551 en formant une structure en quadrillage 940. Cette structure en quadrillage peut être déformée afin de créer la plupart des formes nécessaires pour couvrir un membre d'un robot. En appliquant une tension entre un rang 510' et une colonne 520', on peut sélectionner la zone sensible de la peau correspondante à leur croisement. Une mesure du courant résultant indique alors la pression exercée sur cette zone. L'unité de commande 5 utilise cette mesure pour modifier ou arrêter le mouvement du robot. Ce procédé est décrit plus précisément ci-dessous en référence aux figures Ic et Id (à noter que l'agencement des électrodes est fortement schématisé sur ces figures afin d'en simplifier la lecture) .
La fig. Ic montre un circuit de balayage et de conditionnement 900 relié à la peau selon l'invention. Comme indiqué ci-dessus les premières électrodes de chaque cellule appartenant à un même rang sont interconnectées par une unique piste du circuit imprimé souple (FPCB) constituant le capteur. De même, les secondes électrodes de chaque cellule appartenant à une même colonne sont interconnectées par une unique piste, qui peut être réalisée sur une couche inférieure du FPCB pour éviter les croisements. Les rangs et les colonnes sont ensuite reliés au circuit de balayage et de conditionnement 900. Le circuit de balayage et de conditionnement 900 peut être embarqué dans chaque segment de la structure motorisé du robot et permet une préamplification et un multiplexage des signaux. Ce circuit 900 comprend un circuit de sélection de colonnes 930, relié aux colonnes du quadrillage 940, un circuit d'activation de rangs 950, relié aux rangs du quadrillage 940. Ici, un circuit de type 74HC238 a été utilisé comme circuit d'activation de rangs 950. Un circuit DG408 a été utilisé comme sélecteur de colonnes 930. Le circuit de balayage et de conditionnement 900 comprend un compteur binaire 960. Le circuit de balayage et de conditionnement 900 comprend aussi un circuit de conditionnement 920, qui sera décrit en détail plus tard, et qui et relié au sélecteur de colonnes 930.
Un contrôleur 990, généralement localisé à l'extérieur du robot, comprend un convertisseur Analogique vers Numérique (CAN) 980 relié à un système de logicielle 910, qui a pour fonction d'asservir les mouvements du robot.
Le contrôleur 990 et le circuit de balayage et de conditionnement 900 sont reliées par l'unité de gestion
980, qui a une entrée reliée à une sortie du circuit de conditionnement 920 et deux sorties reliées à deux entrées du compteur binaire 960.
La résistance d'une cellule dans cette construction est de plus de lOMOhm, lorsqu ' aucune pression n'est appliquée, et descend jusqu'à moins de lkOhm lors d'une forte compression. Afin de détecter une pénétration dans la mousse le plus tôt que possible, en fonction de la raideur de la mousse, il faut mesurer une résistance dans la gamme de résistance comprise entre lOkOhm et 1 MOhm avec un délai de réponse le plus court possible .
Le circuit de balayage et de conditionnement 900 a pour fonction de mesurer indépendamment la conductivité de chacune des cellules reliées à ce quadrillage. Le circuit d'activation des rangs 950 met le potentiel des rangs à 0V, ou à 5 V quand la colonne est activée. Quand une colonne est sélectionnée, cette colonne est reliée au circuit de conditionnement 920, qui fixe son potentiel à OV. Toutes les cellules de cette colonne sont donc soumises à une différence de potentiel (DDP) nulle, à l'exception de la cellule reliée au rang activé, qui est soumise à une DDP de 5V. De ce fait, le courant passe uniquement à travers la cellule choisie : cette caractéristique permet donc la mesure de plusieurs points d'appuis simultanés (multitouch) .
Le compteur binaire 960 sert à choisir des colonnes et des rangs. Les bits de poids faibles adressent le circuit d'activation de rangs 950, et les bits de poids fort adressent le circuit de sélection des colonnes 930. Ainsi, à chaque pulsation d'horloge, la cellule suivante du quadrillage est choisie. Un signal de réinitialisation est envoyé au compteur binaire à chaque cycle pour s'assurer que le balayage recommence toujours du départ .
La fig. Id montre un circuit de conditionnement, ici un circuit amplificateur transimpédance, relié à une cellule de la peau. Le fait que la couche de matériau piezzoresistif soit très fine engendre un effet capacitif, ce qui est illustré par une capacité Csensor d'environ InF, pour une cellule de 1 cm, connectée en parallèle avec une résistance Rsensor. Le circuit amplificateur transimpédance permet à la fois de fixer un potentiel constant aux bornes de la cellule et de mesurer le courant qui la traverse. Ainsi, il est possible de mesurer l'évolution de sa conductivité sans être perturbé par l'effet capacitif. Le temps de réponse est alors fortement réduit. La sensibilité de la mesure peut être réglée par la valeur de Rtrans .
La couche déformable 300 crée une zone active autour du robot, avec une faible raideur, ce qui ne risque pas de créer d' instabilité de la commande lorsque la peau entre en contact avec l'environnement. Cela permet de commuter entre deux régulateurs : un premier régulateur lorsqu'on est en contact, et un second régulateur lorsqu'on est hors de contact, et donc de présenter des performances optimales dans ces deux cas. En effet, lorsque le robot est hors de contact, on souhaitera que les asservissements qui contrôlent la réalisation de la tâche principale du robot soient prépondérants : les moteurs génèrent des mouvements rapides pour réaliser la tâche rapidement et fidèlement. Inversement, lorsque le robot entre au contact de l'environnement involontairement, on désire que les asservissements qui garantissent la sécurité soient prépondérants : les consignes moteurs généreront des mouvements du robot afin d'éviter la collision plutôt que de réaliser les objectifs de la tâche principale. Pour garantir la stabilité lors du basculement d'un asservissement à l'autre, il est préférable que la transition ne soit pas brutale, d'où l'intérêt de la zone de transition engendrée par l'épaisse couche déformable 300.
La figure 4 montre un diagramme illustrant le fonctionnement du dispositif lors du freinage du robot. L'axe des ordonnées indique la distance entre un obstacle, la surface de la couche déformable et la surface du robot. L'axe des abscisses illustre le temps entre la détection d'un obstacle et l'arrêt du robot. Sur la figure 4, on voit que pour une épaisseur de la couche déformable d'environ 1 cm et une vitesse de déplacement de 1 m. s'1, l'obstacle pénètre dans la couche déformable pendant environ une milliseconde avant qu'un contact ne soit détecté. Quand le contact est détecté, le temps d'envoi des instructions d'arrêt au robot est aussi d'environ une milliseconde. Le robot est immobilisé après environ huit millisecondes, et ceci avant que l'obstacle ne touche et n'endommage la surface du robot.
L'unité de commande 5 est programmée pour déplacer la structure motorisée et interrompre le mouvement dès qu'un courant est détecté entre deux électrodes du dispositif, la couche déformable ayant une épaisseur et une souplesse telles que, pour une vitesse prédéterminée de la structure motorisée, l'unité de commande 5 puisse interrompre le mouvement de la structure motorisée avant un écrasement maximal de la couche déformable 300.
Des essais ont montré que l'invention permet un temps de réaction de l'ordre du millième de seconde.
Des essais ont montré que selon l'épaisseur de la couche déformable 300, on peut détecter un contact à quelques centimètres avant un impact sur la partie dure du robot. Ceci permet d'envisager des vitesses de déplacement importantes du robot pour sa tâche principale (positionnement rapide d'objet, suivit des gestes de l'opérateur, ...) tout en garantissant la sécurité de l'utilisateur (la distance d'arrêt du robot peut être respectée) .
La couche déformable 300 peut être une mousse élastomère ayant une souplesse et épaisseur prédéfinie selon l'effort de pénétration voulu, et la distance nécessaire à l'arrêt du mouvement du robot (le choix de la mousse est donc totalement libre) . La couche déformable 300 peut être du caoutchouc synthétique, par exemple du polycloroprène du polystyrène, un caoutchouc à mousse latex, du polysiloxane, un polymère à bloc comprenant du styrène butadiène, du styrène isoprène, du caoutchouc naturel ou tout matériau connu ayant une élasticité et une déformabilité approprié.
La mousse a pour fonction de répartir et de retarder un choc afin d'avancer la transmission de l'information de contact avant une collision dure.
Bien entendu, l'invention n'est pas limité au mode de réalisation décrit mais englobe toute variante entrant dans le cadre de l'invention telle que définie par les revendications.
En particulier, l'invention n'est pas limitée à être utilisée comme élément protecteur d'un robot. En particulier, le dispositif selon l'invention peut être utilisé comme peau protectrice par tout appareillage en déplacement, manuel ou automatique, afin de protéger l'appareillage contre l'environnement, et/ou protéger l'environnement contre l'appareillage. L'élément de détection peut aussi être remplacé par d'autres technologies piezorésistives telles que celles décrites dans les documents US-A- 7258026 et US-A- 5756904.
La détection peut mettre en œuvre différent phénomènes permettant une variation de la conductivité du matériau en fonction de la pression, par exemple :
- la piezorésistivité,
- l'utilisation d'un matériau souple incorporant des particules conductrices (variation de conductivité produite par percolation ou effet tunnel) ,
- la résistance de contact (la résistance au passage de courant entre deux pièces est inversement proportionnelle à leur surface en contact et cette surface de contact est augmentée par la pression exercée pour appliquer les deux pièces l'une contre ) l' autres) ,
- une combinaison des phénomènes ci-dessus.

Claims

Revendications
1. Dispositif de détection agencé pour recouvrir au moins une partie (100) d'un appareil mobile, le dispositif comprenant un transducteur électromécanique comportant un support, une première série d'électrodes (510), une deuxième série d'électrodes (520), et une couche de matériau déformable (300) associée aux électrodes des deux séries ; le dispositif étant caractérisé en ce que le support, les électrodes et la couche de matériau déformable forment un ensemble unitaire rapporté sur la partie (100) de l'appareil mobile et sont agencés de sorte qu'un courant circulant entre une des électrodes de la première série et une électrode adjacente de la deuxième série soit proportionnel à une épaisseur de la couche de matériau déformable à l'aplomb des dites électrodes, le support comportant une couche de base sur laquelle sont fixées les électrodes de la première série (510) et les électrodes de la deuxième série (520) qui comportent des portions en regard, et une couche à conduction variable recouvrant la couche de base et les électrodes
2. Dispositif selon la revendication 1, dans lequel la couche à conduction variable est en matériau conducteur résistif.
3. Dispositif selon la revendication 1, dans lequel la couche à conduction variable est en matériau piézorésistif .
4. Dispositif selon la revendication 1, dans lequel les portions en regard des électrodes (510, 520) sont imbriqués l'une dans l'autre.
5. Dispositif selon la revendication 3, dans lequel les électrodes (510, 520) ont une forme de peigne.
6. Dispositif selon une des revendications précédentes, dans lequel la couche de matériau déformable
(300) est une mousse.
7. Dispositif selon la revendication précédente, dans lequel la couche de matériau déformable (300) comprend un élastomère.
8. Robot ou structure motorisée ayant une surface externe dont au moins une partie (100) est recouverte d'un dispositif conforme à l'une quelconque des revendications précédentes, et une unité de commande (5) qui est reliée à au moins un moteur de la structure motorisée et au dispositif et qui est programmée pour commander le moteur pour faire réaliser un mouvement à la structure motorisée et pour interrompre le mouvement dés qu'un courant est détecté entre deux électrodes du dispositif, la couche de matériau déformable ayant une épaisseur et une souplesse telles que, pour une vitesse prédéterminée de la structure motorisée, l'unité de commande puisse interrompre le mouvement de la structure motorisée avant un écrasement maximal de la couche de matériau déformable.
PCT/EP2010/052470 2009-02-27 2010-02-26 Peau protectrice pour robots WO2010097459A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10706216A EP2401584A1 (fr) 2009-02-27 2010-02-26 Peau protectrice pour robots
US13/203,628 US9134140B2 (en) 2009-02-27 2010-02-26 Protective skin for robots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0900896 2009-02-27
FR0900896A FR2942658B1 (fr) 2009-02-27 2009-02-27 Peau protectrice pour robots

Publications (1)

Publication Number Publication Date
WO2010097459A1 true WO2010097459A1 (fr) 2010-09-02

Family

ID=41349253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/052470 WO2010097459A1 (fr) 2009-02-27 2010-02-26 Peau protectrice pour robots

Country Status (4)

Country Link
US (1) US9134140B2 (fr)
EP (1) EP2401584A1 (fr)
FR (1) FR2942658B1 (fr)
WO (1) WO2010097459A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484203A (en) * 2010-09-27 2012-04-04 Peratech Ltd Dual action resistance-based sensor
WO2018164141A1 (fr) 2017-03-06 2018-09-13 学校法人東京女子医科大学 Inhibiteur de lypd1 et procédé de production de tissu biologique l'utilisant
FR3072176A1 (fr) * 2017-10-10 2019-04-12 Fogale Nanotech Dispositif de mesure d'impedance
WO2022129566A1 (fr) 2020-12-18 2022-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Robot de co-manipulation à loi de commande en effort mixte offrant une forte sensibilité de l'effecteur et permettant l'interaction avec le corps du robot

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624803A (zh) * 2012-08-23 2014-03-12 上海未来伙伴机器人有限公司 机器人的人造皮肤
JP5655871B2 (ja) * 2013-01-21 2015-01-21 株式会社安川電機 ロボット装置
DE102016112452A1 (de) * 2015-07-10 2017-01-12 Wälischmiller Engineering GmbH Roboter-Einrichtung mit einer angetriebenen Einheit und Aufbringverfahren
WO2017075201A1 (fr) * 2015-10-30 2017-05-04 Northwestern University Capteurs diélectrostrictifs pour la mesure d'une contrainte de cisaillement, surveillance du processus, et examen de la qualité de matériaux viscoélastiques
ITUA20163520A1 (it) * 2016-05-17 2017-11-17 Comau Spa "Dispositivo automatizzato con una struttura mobile, particolarmente un robot"
ITUA20163522A1 (it) * 2016-05-17 2017-11-17 Comau Spa "Copertura sensorizzata per un dispositivo industriale"
ES2760947T3 (es) * 2017-06-23 2020-05-18 Comau Spa Conjunto funcional para una máquina industrial, en concreto para un robot, que incluye una unidad funcional equipada con una cubierta de seguridad
DE102017218229A1 (de) * 2017-10-12 2019-04-18 Dr. Doll Engineering Gmbh Schutzvorrichtung für einen Industrieroboter sowie Schutzelement für eine solche Schutzvorrichtung
IT201700121883A1 (it) 2017-10-26 2019-04-26 Comau Spa "Dispositivo automatizzato con una struttura mobile, in particolare un robot"
CN107866824A (zh) * 2017-11-21 2018-04-03 深圳市优必选科技有限公司 机器人电子皮肤
JP7045170B2 (ja) * 2017-11-24 2022-03-31 川崎重工業株式会社 ロボット
CN109029801B (zh) * 2018-05-25 2020-04-28 苏州大学 一种金属纳米线复合膜压力传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510812A (en) * 1994-04-22 1996-04-23 Hasbro, Inc. Piezoresistive input device
US5756904A (en) 1996-08-30 1998-05-26 Tekscan, Inc. Pressure responsive sensor having controlled scanning speed
US7258026B2 (en) 2003-12-30 2007-08-21 Tekscan Incorporated Sensor with a plurality of sensor elements arranged with respect to a substrate
WO2008066575A2 (fr) 2006-06-08 2008-06-05 University Of Dayton Capteurs tactiles et auditifs basés sur des rangées de nanotubes
EP1933461A1 (fr) * 2001-07-09 2008-06-18 Nartron Corporation Capteur de capacité compressible pour déterminer la présence d'un objet
WO2008135787A1 (fr) * 2007-05-04 2008-11-13 Peratech Limited Composition polymère
WO2009023334A2 (fr) * 2007-05-18 2009-02-19 University Of Southern California Capteur tactile biomimétique pour un contrôle de prise

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060527A (en) * 1990-02-14 1991-10-29 Burgess Lester E Tactile sensing transducer
US5287748A (en) * 1992-05-01 1994-02-22 Pitney Bowes Inc. Method and apparatus for changing the sensitivity of a transducer
DE19533756A1 (de) * 1995-09-12 1997-03-13 Fraunhofer Ges Forschung Elektronisches Bauelement zur statischen und dynamischen Druckerfassung
DE59812696D1 (de) * 1997-12-06 2005-05-04 Elan Schaltelemente Gmbh & Co Verfahren zur Überwachung einer Bremseinrichtung, insbesondere eines Handhabungsgerätes, sowie Überwachungs- und Steuergerät
EP1055121A1 (fr) * 1998-12-11 2000-11-29 Symyx Technologies, Inc. Systeme utilisant un reseau de detecteurs et procede associe de caracterisation rapide de materiaux
US6497430B1 (en) * 1999-03-03 2002-12-24 Sensitron Inc. Mass profiling system
US6407553B1 (en) * 1999-12-08 2002-06-18 Lockhead Martin Corporation Strain gages for determining charge of a battery having a thin walled pressure vessel
US6480759B1 (en) * 2000-06-23 2002-11-12 Storage Technology Corporation Diagnostic port between independent robots
US7141812B2 (en) * 2002-06-05 2006-11-28 Mikro Systems, Inc. Devices, methods, and systems involving castings
US6688185B2 (en) * 2001-08-20 2004-02-10 Autoliv Asp, Inc. System and method for microstrain measurement
WO2007135878A1 (fr) * 2006-05-18 2007-11-29 Semiconductor Energy Laboratory Co., Ltd. Microstructure, micromachine, et méthode de fabrication de microstructure et de micromachine
US20090076476A1 (en) * 2007-08-15 2009-03-19 Hansen Medical, Inc. Systems and methods employing force sensing for mapping intra-body tissue

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510812A (en) * 1994-04-22 1996-04-23 Hasbro, Inc. Piezoresistive input device
US5756904A (en) 1996-08-30 1998-05-26 Tekscan, Inc. Pressure responsive sensor having controlled scanning speed
EP1933461A1 (fr) * 2001-07-09 2008-06-18 Nartron Corporation Capteur de capacité compressible pour déterminer la présence d'un objet
US7258026B2 (en) 2003-12-30 2007-08-21 Tekscan Incorporated Sensor with a plurality of sensor elements arranged with respect to a substrate
WO2008066575A2 (fr) 2006-06-08 2008-06-05 University Of Dayton Capteurs tactiles et auditifs basés sur des rangées de nanotubes
WO2008135787A1 (fr) * 2007-05-04 2008-11-13 Peratech Limited Composition polymère
WO2009023334A2 (fr) * 2007-05-18 2009-02-19 University Of Southern California Capteur tactile biomimétique pour un contrôle de prise

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2401584A1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484203A (en) * 2010-09-27 2012-04-04 Peratech Ltd Dual action resistance-based sensor
GB2484203B (en) * 2010-09-27 2012-09-19 Peratech Ltd Resistance changing sensor
WO2018164141A1 (fr) 2017-03-06 2018-09-13 学校法人東京女子医科大学 Inhibiteur de lypd1 et procédé de production de tissu biologique l'utilisant
FR3072176A1 (fr) * 2017-10-10 2019-04-12 Fogale Nanotech Dispositif de mesure d'impedance
WO2019072665A1 (fr) * 2017-10-10 2019-04-18 Fogale Nanotech Dispositif de mesure d'impédance
WO2022129566A1 (fr) 2020-12-18 2022-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Robot de co-manipulation à loi de commande en effort mixte offrant une forte sensibilité de l'effecteur et permettant l'interaction avec le corps du robot
FR3117912A1 (fr) 2020-12-18 2022-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Robot de co-manipulation à loi de commande en effort mixte offrant une forte sensibilité de l’effecteur et permettant l’interaction avec le corps du robot.

Also Published As

Publication number Publication date
EP2401584A1 (fr) 2012-01-04
FR2942658B1 (fr) 2011-12-09
FR2942658A1 (fr) 2010-09-03
US20110307097A1 (en) 2011-12-15
US9134140B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
EP2401584A1 (fr) Peau protectrice pour robots
EP2150882B1 (fr) Procede pour localiser un toucher sur une surface et dispositif pour la mise en oeuvre de ce procede.
FR2903207A1 (fr) Capteur tactile multipoint a matrice active
FR3026868B1 (fr) Dispositif et procede de commande pour vehicule automobile
FR3026866B1 (fr) Dispositif et procede de commande pour vehicule automobile
FR2851347A1 (fr) Dispositif d'interface homme machine a retour d'information tactile pour dalle tactile
EP3086910A1 (fr) Système de détection d'impact pour dispositif robotique
FR3003964A1 (fr) Dispositif pour interagir, sans contact, avec un appareil electronique et/ou informatique, et appareil equipe d'un tel dispositif
WO2022090091A1 (fr) Interface tactile tridimensionnelle à retour haptique
WO2021064041A1 (fr) Systeme de releve d'une trace effectuee par un ustensile sur une surface d'ecriture
WO2012114008A1 (fr) Interface capacitive gestuelle a commutation de mode de mesure
WO2014140459A1 (fr) Dispositif de détection de contrainte mécanique à capteur capacitif, ensemble de dispositifs de détection et dispositif de localisation de toucher à capteurs capacitifs
WO2013057412A1 (fr) Procède d'acquisition de données d'un capteur tactile matriciel, notamment pour un écran tactile
EP3479212A1 (fr) Procédé de commande et interface de commande pour véhicule automobile
FR3074899A1 (fr) Utilisation d’un moteur d’assistance d’un systeme de direction assistee afin de generer des cycles de test selon un cycle d’exploitation en position
FR3015381A1 (fr) Dispositif de controle pour vehicule automobile et procede de commande
FR3058938B1 (fr) Interface pour vehicule automobile et procede d'interfacage
EP3631608A1 (fr) Procédé de commande d'un dispositif nomade
FR2972536A1 (fr) Procede et dispositif de mesure non destructive de fermete a entrainement positif commande par accelerometre
EP3008547B1 (fr) Dispositif d'analyse de mouvement d'un element mobile et procede associe
WO2017211835A1 (fr) Module et procédé de commande pour véhicule automobile
EP3673351B1 (fr) Dispositif et methode de test de l'utilisation d'une surface capacitive avec un gant
FR3098618A1 (fr) Interface de controle a retour haptique a robustesse augmentee
FR2960076A1 (fr) Procede et systeme d'acquisition sans contact des mouvements d'un objet.
FR3053489A1 (fr) Procede de commande et interface de commande pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10706216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010706216

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13203628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE