WO2010096971A1 - 一种铝酸钠溶液的催化分解方法 - Google Patents

一种铝酸钠溶液的催化分解方法 Download PDF

Info

Publication number
WO2010096971A1
WO2010096971A1 PCT/CN2009/070632 CN2009070632W WO2010096971A1 WO 2010096971 A1 WO2010096971 A1 WO 2010096971A1 CN 2009070632 W CN2009070632 W CN 2009070632W WO 2010096971 A1 WO2010096971 A1 WO 2010096971A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium aluminate
aluminate solution
composite catalyst
decomposition
concentration
Prior art date
Application number
PCT/CN2009/070632
Other languages
English (en)
French (fr)
Inventor
李民菁
史智慧
王志勇
Original Assignee
河南未来铝业(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南未来铝业(集团)有限公司 filed Critical 河南未来铝业(集团)有限公司
Publication of WO2010096971A1 publication Critical patent/WO2010096971A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates

Definitions

  • the invention belongs to the technical field of decomposition of sodium aluminate solution in the production process of aluminum hydroxide or aluminum oxide, and particularly relates to a catalytic decomposition method of sodium aluminate solution. Background technique
  • the decomposition process of sodium aluminate solution (commonly known as semen) generally uses a seed decomposition process and a carbonation decomposition process.
  • Carbonation of sodium aluminate solution is achieved by introducing carbon dioxide into sodium aluminate solution (semen). Although the decomposition rate can reach about 90%, it needs to prepare carbon dioxide, sodium aluminate solution (semen The requirement is high, the silicon content index should reach 600 or more, and the crude liquid desiliconization which requires a large amount of energy and a large loss of alumina is required, and the mother liquid after the aluminum hydroxide treatment is basically a sodium carbonate solution, and the evaporation stage High requirements, evaporation mother liquor can not participate in the Bayer process ingredients, is to participate in the sintering process ingredients, but also consume a lot of energy in the firing stage to decompose the carbonate, releasing the useless carbon dioxide waste gas.
  • the flow chart of carbonation decomposition of sodium aluminate solution is shown in Figure 1.
  • additives such as phosphorus pentoxide are added only when the particle size is emphasized, and the additives are not reusable.
  • the seed crystal decomposition process has low requirements for sodium aluminate solution (semen), and the silicon content index is greater than 200,350.
  • the formed decomposition mother liquid is a high quality mother liquor, wherein the alkali is sodium hydroxide.
  • the crystal decomposition scheme of sodium aluminate solution is shown in Figure 2.
  • the object of the present invention is to provide a catalytic decomposition method of a sodium aluminate solution, which has the high decomposition rate of carbonation of sodium aluminate solution (semen).
  • the seed crystal decomposition has low requirements on sodium aluminate solution (semen), low cost and good quality of mother liquor.
  • a catalytic decomposition method of a sodium aluminate solution which is characterized in that: a composite catalyst YHA and a composite catalyst YHB are mixed and formulated to form a composite catalyst YHC, and a composite catalyst YHC is used.
  • Catalytic decomposition is carried out by adding sodium aluminate solution at a ratio of 1 to 300% of the volume of sodium aluminate solution.
  • the initial temperature of decomposition is 30-80 ° C
  • the final decomposition temperature is 20-70 ° C
  • the decomposition time is 1.5-80 h.
  • the composite catalyst YHA is prepared by mixing one or more of a surfactant, an alcohol and an ester in an arbitrary ratio, wherein the composite catalyst YHB is one of a saccharide or an inorganic one or The two are mixed in any ratio.
  • the mixing process for preparing the composite catalysts YHA, YHB and YHC belongs to the prior art, and the mixing ratio between the various preparations of the composite catalysts YHA and YHB and the composite catalyst YHA and the composite catalyst YHB when preparing the composite catalyst YHC are The mixing ratio can be adjusted according to the nature of the sodium aluminate solution (semen) combined with the decomposition system to achieve the decomposition rate of the production demand, the particle size of the aluminum hydroxide product, and the impurity content of the aluminum hydroxide product.
  • the surfactant is cetylpyridinium bromide, ethyl(1-alkylaminoethyl imidazoline), sodium dodecyl benzene or sodium succinate;
  • the alcohol is decyl alcohol, ethanol, glycerol, n-hexadecanol or n-butanol;
  • the ester is ethyl acetate, phenyl acetate or decyl benzoate;
  • the saccharide is sucrose, glucose , fructose or maltose;
  • the inorganic class is aluminum hydroxide, aluminum fluoride or aluminum oxide.
  • the sodium aluminate solution is catalytically decomposed and then separated, and the liquid phase filtrate is subjected to catalyst recovery.
  • the recovered reagents are the composite catalyst YHA and the composite catalyst YHB, respectively, and are recycled for recycling, and the recovered residual liquid is catalytically decomposed mother liquor, and separated.
  • the solid phase filter cake is sent to the corresponding next process.
  • the specific recovery method of the catalyst can select a conventional solid-liquid, solid-solid separation process such as separation, distillation or evaporation depending on the different properties of the agent.
  • the catalytic decomposition mother liquid is sent to the next mother liquid evaporation process; the separated solid phase filter cake is sent to the next washing process, and the aluminum hydroxide finished product is washed, dried to obtain a dried aluminum hydroxide finished product, and calcined to obtain an alumina finished product.
  • the washing liquid produced by the solid phase filter cake washing also passes through the catalyst recovery step, and the recovered composite catalyst YHA and the composite catalyst YHB are also returned to the recycling process, and the residual liquid is sent to the red mud washing process or the mother liquor evaporation process is also sent as the catalytic decomposition mother liquor. .
  • the concentration of A1 2 0 3 is 40-200 g/l
  • the caustic ratio a k is 1.3-4.5
  • the concentration of Na 2 O c is 10-50 g/l
  • the concentration of Si0 2 is 0.2-5 g/ l.
  • the concentration of A1 2 0 3 is 5 ⁇ 150g/l
  • the caustic ratio a k is 1.5-100
  • the concentration of Na 2 O c is 3 ⁇ 40g/l
  • the concentration of Si0 2 is 0.004 ⁇ 4.5g/ l.
  • the decomposition rate of the catalytic decomposition of the sodium aluminate solution is 20 to 95%, and is normally over 60% under normal conditions.
  • the process from left to right of the equation is the catalytic decomposition process of sodium aluminate solution (semen).
  • the process from the right to the left of the equation is the dissolution process of bauxite.
  • the decomposition capacity can be improved on the basis of the existing decomposition equipment.
  • Composite catalyst YHC can adjust the mixing ratio of various types of composite catalyst YHA and composite catalyst YHB according to the properties of sodium aluminate solution (semen), and the composite catalyst YHA and composite catalyst YHB can be recycled.
  • the sodium aluminate solution (semen) is catalytically decomposed.
  • the catalytic decomposition mother liquor after recovery of the composite catalyst is compared with the traditional seed mother liquor: the alumina content is greatly reduced, the sodium carbonate content is greatly reduced, and the silica content is also reduced.
  • the evaporation efficiency of the mother liquor is improved, and the degree of crusting of the mother liquor is reduced, which is beneficial to the normal operation of the system, the improvement of the productivity, and the reduction of energy consumption.
  • Figure 1 Flow chart of carbonation decomposition of traditional sodium aluminate solution
  • Figure 2 Flow chart of seed crystal decomposition of traditional sodium aluminate solution
  • Figure 3 Flow chart of catalytic decomposition of the sodium aluminate solution of the present invention. detailed description
  • the catalytic decomposition process of the sodium aluminate solution shown in Figure 3 firstly comprises 10%: 90% of the composite catalyst YHA (80% by weight of sterol, 20% of ethanol) and the composite catalyst YHB (aluminum hydroxide). The weight percentage is mixed to form a liquid composite catalyst YHC, and then the composite catalyst YHC is added to the sodium aluminate solution in a ratio of 1% by volume of the sodium aluminate solution for catalytic decomposition, the initial temperature of decomposition is 40 ° C, and the decomposition temperature is 20 °C, the decomposition time is 60h. The sodium aluminate solution is decomposed and separated, and the liquid filtrate is recovered by the catalyst.
  • the composite catalyst YHA 80% by weight of sterol, 20% of ethanol
  • YHB aluminum hydroxide
  • the recovered reagent is the composite catalyst YHA and the composite catalyst YHB, and is recycled for recycling.
  • the recovered residual liquid is the catalytic decomposition mother liquor, and the separated solid phase filter cake. Send the corresponding subsequent steps separately.
  • sodium aluminate solution A1 2 0 3 concentration is 100 ⁇ 180g/l, caustic ratio a k is 1.3 ⁇ 1.6, Na 2 O c concentration is 10 ⁇ 50g/l, Si0 2 concentration is 0.2 ⁇ 0.8g/ l ;
  • catalytic decomposition of the mother A1 2 0 3 concentration of 60 ⁇ 120g / l, caustic ratio a k is 2.5-4.50, Na 2 O c concentration of 5 ⁇ 40g / l, Si0 2 concentration of 0.1 ⁇ 0.7g / l
  • the decomposition rate of catalytic decomposition is 30 ⁇ 60%.
  • the composite catalyst YHA (ethanol) and the composite catalyst YHB (alumina) were mixed and blended in a weight percentage of 50%: 50% to form a liquid composite catalyst YHC, and then the composite catalyst YHC was added in a proportion of 50% of the volume of the sodium aluminate solution.
  • Catalytic decomposition was carried out in sodium aluminate solution, the initial temperature of decomposition was 50 ° C, the final decomposition temperature was 40 ° C, and the decomposition time was 60 h.
  • the other processes and procedures are the same as in the first embodiment.
  • the catalytic decomposition mother liquid is sent to the next mother liquid evaporation process; the separated solid phase filter cake is sent to the next washing process, and the aluminum hydroxide finished product is washed, dried to obtain a dried aluminum hydroxide finished product, and calcined to obtain an alumina finished product.
  • the washing liquid produced by the solid phase filter cake washing also passes through the catalyst recovery step, and the recovered composite catalyst YHA and the composite catalyst YHB are also returned to the recycling process, and the residual liquid is sent to the red mud washing process or the mother liquor evaporation process is also sent as the catalytic decomposition mother liquor. .
  • sodium aluminate solution A1 2 0 3 concentration is 40 ⁇ 200g/l, caustic ratio a k is 1.3 ⁇ 4.5, Na 2 O c concentration is 10 ⁇ 50g/l, Si0 2 concentration is 0.2 ⁇ 5g/l
  • Catalytic decomposition of mother liquor A1 2 0 3 concentration is 10 ⁇ 50g/l, caustic ratio a k is 4.5 40, Na 2 O c concentration is 2 ⁇ 10g/l, Si0 2 concentration is 0.1 ⁇ 2g/l; catalytic decomposition The decomposition rate is 70 ⁇ 85%; the obtained aluminum hydroxide product particle size D 5Q is 20 ⁇ 80 ⁇ ; according to the weight percentage, the impurity content of the aluminum hydroxide product: Si0 2 0.005-5%, Fe 2 0 3 0.002-0.02%, Na 2 O 0.10 ⁇ 3.0%.
  • the composite catalyst YHA (ethanol) and the composite catalyst YHB (aluminum hydroxide) were mixed and mixed in a weight percentage of 40%: 60% to form a liquid composite catalyst YHC, and then the composite catalyst YHC was 130% of the volume of the sodium aluminate solution.
  • Catalytic decomposition was carried out by adding sodium aluminate solution, the initial temperature of decomposition was 60 ° C, the final decomposition temperature was 50 ° C, and the decomposition time was 80 h.
  • the other processes and procedures are the same as in the first embodiment.
  • the concentration of A1 2 0 3 is 40-200 g/l, the caustic ratio a k is 1.3 4.5, the concentration of Na 2 O c is 10-50 g/l, and the concentration of Si0 2 is 0.2-5 g/l;
  • Catalytic decomposition of mother liquor A1 2 0 3 concentration is 10 ⁇ 50g/l, caustic ratio a k is 6.5 ⁇ 60, Na 2 O c concentration is l ⁇ 15g/l, Si0 2 concentration is 0.1 ⁇ lg/l; catalytic decomposition The decomposition rate is 70 ⁇ 85%.
  • the composite catalyst YHA (ethanol) and the composite catalyst YHB (aluminum hydroxide) are mixed and mixed in a weight percentage of 80%: 20% to form a liquid composite catalyst YHC, and then the composite catalyst YHC is 230% of the volume of the sodium aluminate solution.
  • Catalytic decomposition was carried out by adding sodium aluminate solution, the initial temperature of decomposition was 65 ° C, the final decomposition temperature was 60 ° C, and the decomposition time was 50 h.
  • the other processes and procedures are the same as in the first embodiment.
  • the concentration of A1 2 0 3 is 40-200 g/l, the caustic ratio a k is 1.3 4.5, the concentration of Na 2 O c is 10-50 g/l, and the concentration of Si0 2 is 0.2-5 g/l;
  • Catalytic decomposition of mother liquor A1 2 0 3 concentration is 5 ⁇ 30g/l, caustic ratio a k is 10 ⁇ 100, Na 2 O c concentration is 0.5 ⁇ 10g/l, Si0 2 concentration is 0.004 ⁇ 0.5g/l; catalysis The decomposition rate of decomposition is 70 to 90%.
  • the composite catalyst YHA (sterol) and the composite catalyst YHB (alumina) are mixed and mixed in a weight percentage of 10%: 90% to form a liquid composite catalyst YHC, and then the composite catalyst YHC is 300% of the volume of the sodium aluminate solution.
  • Catalytic decomposition was carried out by adding sodium aluminate solution, the initial temperature of decomposition was 80 ° C, the final decomposition temperature was 70 ° C, and the decomposition time was 1.5 h.
  • the other processes and procedures are the same as in the first embodiment.
  • sodium aluminate solution A1 2 0 3 concentration is 40 ⁇ 200g/l, caustic ratio a k is 1.3-4.5, Na 2 O c concentration is 10 ⁇ 50g/l, Si0 2 concentration is 0.2 ⁇ 5g/l
  • Catalytic decomposition of mother liquor A1 2 0 3 concentration is 32 ⁇ : lOOg/1, caustic ratio a k is 2 ⁇ 5.65, Na 2 O c ; 3 ⁇ 4 degree is 5 ⁇ 40g/l, Si0 2 The concentration is 0.15 ⁇ 4.5g/l; the decomposition rate of catalytic decomposition is 20 ⁇ 50%.
  • the composite catalyst YHA (ethanol) and the composite catalyst YHB (alumina) were mixed and blended in a weight percentage of 60%: 40% to form a liquid composite catalyst YHC, and then the composite catalyst YHC was added in a ratio of 120% of the volume of the sodium aluminate solution.
  • Catalytic decomposition was carried out in sodium aluminate solution, the initial temperature of decomposition was 30 ° C, the final decomposition temperature was 20 ° C, and the decomposition time was 20 h.
  • the other processes and procedures are the same as in the first embodiment.
  • sodium aluminate solution A1 2 0 3 concentration is 100 ⁇ 160g/l, caustic ratio a k is 1.3-1.8, Na 2 O c concentration is 10 ⁇ 50g/l, Si0 2 concentration is 0.2 ⁇ 5g/l
  • Catalytic decomposition mother A1 2 0 3 concentration is 15 ⁇ 60g/l, caustic ratio a k is 4.5 40, Na 2 O c concentration is 2 ⁇ 20g/l, Si0 2 concentration is 0.1 ⁇ 2g/l; catalytic decomposition The decomposition rate is 70 to 95%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

一种铝酸钠溶液的催化分解方法 技术领域
本发明属于氢氧化铝或氧化铝的生产工艺中铝酸钠溶液的分解技术领 域, 具体涉及了一种铝酸钠溶液的催化分解方法。 背景技术
传统的氢氧化铝或氧化铝生产中, 铝酸钠溶液(俗称精液) 的分解过 程一般釆用晶种分解过程和碳酸化分解过程。
铝酸钠溶液(精液) 的碳酸化是在铝酸钠溶液(精液) 中通入二氧化 碳实现的, 虽然其分解率可以达到 90%左右, 但其需要制取二氧化碳, 对 铝酸钠溶液(精液) 的要求高, 硅量指数要达到 600 以上才行, 需要耗能 很大、 氧化铝损失也很大的粗液脱硅, 并且氢氧化铝处理后的母液基本上 是碳酸钠溶液, 蒸发阶段要求高, 蒸发母液不能参与拜耳法配料, 就是参 加烧结法过程配料, 也要在烧成阶段消耗大量能量使碳酸盐分解, 释放出 无用的二氧化碳废气。 铝酸钠溶液碳酸化分解流程图见图 1。
铝酸钠溶液(精液)的晶种分解过程,精液中 A1203浓度为 120~190g/l , 苛性比 ak为 1.45 1.70, 分解初温为 50~75°C , 分解时间一般为 30~72h, 分 解率为 30~55%。 不加催化剂, 只在强调粒度时加五氧化二磷等添加剂, 并 且其添加剂是不能重复使用的。 但是晶种分解过程对铝酸钠溶液(精液) 的要求低, 硅量指数大于 200 350就可以了, 不需要深度脱硅, 形成的分 解母液是优质的母液, 其中的碱以氢氧化钠的形式存在, 蒸发要求低, 且 蒸发后母液可以直接参与拜耳法过程或者是烧结法过程的配料。 铝酸钠溶 液晶种分解流程图见图 2。
如果有一种铝酸钠溶液的分解方法能够兼有碳酸化分解和晶种分解的 优点, 而摒除各自的缺点就好了。 发明内容
为克服现有技术的不足, 本发明的目的就是在于提供一种铝酸钠溶液 的催化分解方法, 该方法兼备铝酸钠溶液(精液)碳酸化分解分解率高、 晶种分解对铝酸钠溶液(精液)要求低, 成本低、 母液优质特点。
为实现上述目的, 本发明釆取的技术方案如下: 一种铝酸钠溶液的催 化分解方法, 其特别之处在于: 将复合催化剂 YHA和复合催化剂 YHB混 合调配形成复合催化剂 YHC, 将复合催化剂 YHC 以铝酸钠溶液体积的 1~300%的比例加入铝酸钠溶液中进行催化分解, 分解初温为 30~80°C , 分 解终温为 20~70°C , 分解时间为 1.5~80h, 其中所述的复合催化剂 YHA由 表面活性剂、 醇类、 酯类之其中一种或两种以上以任意比例混合而成, 其 中所述的复合催化剂 YHB由糖类、无机类之其中一种或两种以任意比例混 合而成。 制备复合催化剂 YHA、 YHB、 YHC时的混合工艺均属于现有技 术, 且制备复合催化剂 YHA、 YHB 时各种之间的混合比例以及制备复合 催化剂 YHC时的复合催化剂 YHA和复合催化剂 YHB之间的混合比例均 可根据铝酸钠溶液(精液) 的性质结合分解制度进行调整, 以达到所生产 需求的分解率、 氢氧化铝产品的粒度、 氢氧化铝产品的杂质含量为准。
较好地, 所述的表面活性剂为溴代十六烷基吡啶、 乙一烷基氨基乙基 咪唑啉、 十二烷基苯横酸钠或琥珀酸二乙辞酯横酸钠; 所述的醇类为曱醇、 乙醇、 丙三醇、 正十六醇或正丁醇; 所述的酯类为乙酸乙酯、 乙酸苯酯或 苯曱酸曱酯; 所述的糖类为蔗糖、 葡萄糖、 果糖或麦芽糖; 所述的无机类 为氢氧化铝、 氟化铝或氧化铝。
进一步地, 铝酸钠溶液催化分解后进行分离, 液相滤液进行催化剂回 收, 回收的药剂分别为复合催化剂 YHA和复合催化剂 YHB, 返回循环使 用, 回收后的残液为催化分解母液, 与分离的固相滤饼分别送去相应的下 道工序。 催化剂的具体回收方法可以依据药剂的不同性质分别选择分离、 蒸馏或蒸发等常规固 -液、 固-固分离工艺。
进一步地, 催化分解母液送去下道的母液蒸发工序; 分离的固相滤饼 送去下道的洗涤工序, 洗涤后得氢氧化铝成品, 干燥得到干燥氢氧化铝成 品, 焙烧得到氧化铝成品, 同时固相滤饼洗涤产生的洗液同样经过催化剂 回收工序,回收的复合催化剂 YHA和复合催化剂 YHB同样返回循环使用, 残液送去赤泥洗涤工序或同样作为催化分解母液送去母液蒸发工序。
进一步地,铝酸钠溶液中: A1203浓度为 40~200g/l ,苛性比 ak为 1.3~4.5, Na2Oc浓度为 10~50g/l , Si02浓度为 0.2~5g/l。 进一步地, 催化分解母液中: A1203浓度为 5~150g/l, 苛性比 ak为 1.5-100, Na2Oc浓度为 3~40g/l, Si02浓度为 0.004~4.5g/l。
所述的铝酸钠溶液催化分解的分解率为 20~95%,正常情况下都在 60% 以上。
本发明的铝酸钠溶液(精液)催化分解新工艺基本工作原理如下:
丫 HC i ^b
2NaAl (OH) 4+aq ― Α1203·(1或 3)¾0+2NaOH +aq
方程式从左边到右边的过程是铝酸钠溶液(精液) 的催化分解过程, 方程式从右边到左边的过程是铝土矿的溶出过程。
相对于现有技术, 本发明的优点在于:
1. 本发明产业化后, 可以在现有分解的设备基础上, 将分解产能提高
20-120%, 从而显著提高分解设备的产能及生产效率, 改善产品的层次, 它兼备了铝酸钠溶液(精液)碳酸化分解分解率高、 晶种分解对铝酸钠溶 液(精液)要求低, 成本低、 母液优质特点, 是传统铝酸钠溶液(精液) 分解工艺的一次重大革命。
2. 复合催化剂 YHC可以根据铝酸钠溶液(精液) 的性质对复合催化 剂 YHA、 复合催化剂 YHB的各类之间的配合比例进行调整, 并且复合催 化剂 YHA和复合催化剂 YHB都可以循环使用。
3. 铝酸钠溶液(精液)催化分解, 回收复合催化剂后的催化分解母液 与传统种分母液相比: 氧化铝含量大幅度降低, 碳酸钠含量大幅度降低, 二氧化硅含量也有所降低, 使母液蒸发效率提高, 母液蒸发的结疤程度减 轻, 有利于系统的正常运转、 产能提高及降低能耗。 附图说明
图 1 : 传统铝酸钠溶液碳酸化分解流程图;
图 2: 传统铝酸钠溶液晶种分解流程图;
图 3: 本发明铝酸钠溶液催化分解流程图。 具体实施方式
以下结合具体实施例和附图对本发明作进一步的详细说明, 但本发明 的保护范围并不局限于此:
实施例 1
如图 3所示的铝酸钠溶液的催化分解流程,首先将复合催化剂 YHA(按 重量百分比计, 曱醇 80%, 乙醇 20% )和复合催化剂 YHB (氢氧化铝)以 10%: 90%的重量百分比混合调配形成液态复合催化剂 YHC, 随后将复合 催化剂 YHC以铝酸钠溶液体积的 1 %的比例加入铝酸钠溶液中进行催化分 解, 分解初温为 40 °C , 分解终温为 20 °C , 分解时间为 60h。 铝酸钠溶液催 化分解后进行分离, 液相滤液进行催化剂回收, 回收的药剂为复合催化剂 YHA和复合催化剂 YHB, 返回循环使用, 回收后的残液为催化分解母液, 与分离的固相滤饼分别送去相应的后续工序。 其中, 铝酸钠溶液中: A1203 浓度为 100~180g/l , 苛性比 ak为 1.3~1.6, Na2Oc浓度为 10~50g/l , Si02浓 度为 0.2~0.8g/l ; 催化分解母中: A1203浓度为 60~120g/l , 苛性比 ak为 2.5-4.50, Na2Oc浓度为 5~40g/l , Si02浓度为 0.1~0.7g/l; 催化分解的分解 率为 30~60%。 实施例 2
首先将复合催化剂 YHA (乙醇)和复合催化剂 YHB (氧化铝)以 50%: 50%的重量百分比混合调配形成液态复合催化剂 YHC, 随后将复合催化剂 YHC以铝酸钠溶液体积的 50%的比例加入铝酸钠溶液中进行催化分解, 分 解初温为 50°C , 分解终温为 40°C , 分解时间为 60h。 其它工序及流程均同 实施例 1。 进一步地, 催化分解母液送去下道的母液蒸发工序; 分离的固相 滤饼送去下道的洗涤工序, 洗涤后得氢氧化铝成品, 干燥得到干燥氢氧化 铝成品, 焙烧得到氧化铝成品, 同时固相滤饼洗涤产生的洗液同样经过催 化剂回收工序, 回收的复合催化剂 YHA和复合催化剂 YHB同样返回循环 使用,残液送去赤泥洗涤工序或同样作为催化分解母液送去母液蒸发工序。 其中, 铝酸钠溶液中: A1203浓度为 40~200g/l , 苛性比 ak为 1.3~4.5 , Na2Oc 浓度为 10~50g/l , Si02浓度为 0.2~5g/l ; 催化分解母液中: A1203浓度为 10~50g/l ,苛性比 ak为 4.5 40, Na2Oc浓度为 2~10g/l , Si02浓度为 0.1~2g/l; 催化分解的分解率为 70~85%; 所得氢氧化铝产品粒度 D5Q为 20~80μπι; 按 重量百分比计,氢氧化铝产品杂质含量: Si02 0.005-5%, Fe203 0.002-0.02%, Na2O 0.10~3.0%。 实施例 3
首先将复合催化剂 YHA (乙醇)和复合催化剂 YHB (氢氧化铝) 以 40%: 60%的重量百分比混合调配形成液态复合催化剂 YHC, 随后将复合 催化剂 YHC以铝酸钠溶液体积的 130%的比例加入铝酸钠溶液中进行催化 分解, 分解初温为 60°C , 分解终温为 50°C , 分解时间为 80h。 其它工序及 流程均同实施例 1。 其中, 铝酸钠溶液中: A1203浓度为 40~200g/l, 苛性比 ak为 1.3 4.5, Na2Oc浓度为 10~50g/l, Si02浓度为 0.2~5g/l; 催化分解母液 中: A1203浓度为 10~50g/l,苛性比 ak为 6.5~60, Na2Oc浓度为 l~15g/l, Si02 浓度为 0.1~lg/l; 催化分解的分解率为 70~85%。 实施例 4
首先将复合催化剂 YHA (乙醇)和复合催化剂 YHB (氢氧化铝) 以 80%: 20%的重量百分比混合调配形成液态复合催化剂 YHC, 随后将复合 催化剂 YHC以铝酸钠溶液体积的 230%的比例加入铝酸钠溶液中进行催化 分解, 分解初温为 65°C , 分解终温为 60°C , 分解时间为 50h。 其它工序及 流程均同实施例 1。 其中, 铝酸钠溶液中: A1203浓度为 40~200g/l, 苛性比 ak为 1.3 4.5, Na2Oc浓度为 10~50g/l, Si02浓度为 0.2~5g/l; 催化分解母液 中: A1203浓度为 5~30g/l, 苛性比 ak为 10~100, Na2Oc浓度为 0.5~10g/l, Si02浓度为 0.004~0.5g/l; 催化分解的分解率为 70~90%。 实施例 5
首先将复合催化剂 YHA (曱醇)和复合催化剂 YHB (氧化铝)以 10%: 90%的重量百分比混合调配形成液态复合催化剂 YHC, 随后将复合催化剂 YHC以铝酸钠溶液体积的 300%的比例加入铝酸钠溶液中进行催化分解, 分解初温为 80°C , 分解终温为 70°C , 分解时间为 1.5h。 其它工序及流程均 同实施例 1。 其中, 铝酸钠溶液中: A1203浓度为 40~200g/l, 苛性比 ak为 1.3-4.5, Na2Oc浓度为 10~50g/l, Si02浓度为 0.2~5g/l; 催化分解母液中: A1203浓度为 32〜: lOOg/1, 苛性比 ak为 2~5.65, Na2Oc ;¾度为 5~40g/l, Si02 浓度为 0.15~4.5g/l; 催化分解的分解率为 20~50%。 实施例 6
首先将复合催化剂 YHA (乙醇)和复合催化剂 YHB (氧化铝)以 60%: 40%的重量百分比混合调配形成液态复合催化剂 YHC, 随后将复合催化剂 YHC以铝酸钠溶液体积的 120%的比例加入铝酸钠溶液中进行催化分解, 分解初温为 30°C , 分解终温为 20°C , 分解时间为 20h。 其它工序及流程均 同实施例 1。 其中, 铝酸钠溶液中: A1203浓度为 100~160g/l , 苛性比 ak为 1.3-1.8, Na2Oc浓度为 10~50g/l , Si02浓度为 0.2~5g/l;催化分解母中: A1203 浓度为 15~60g/l , 苛性比 ak为 4.5 40, Na2Oc浓度为 2~20g/l , Si02浓度为 0.1~2g/l; 催化分解的分解率为 70~95%。

Claims

权利要求书
1. 一种铝酸钠溶液的催化分解方法,其特征在于:将复合催化剂 YHA 和复合催化剂 YHB混合调配形成复合催化剂 YHC,将复合催化剂 YHC以 铝酸钠溶液体积的 1~300%的比例加入铝酸钠溶液中进行催化分解,分解初 温为 30~80°C , 分解终温为 20~70°C , 分解时间为 1.5~80h, 其中所述的复 合催化剂 YHA由表面活性剂、醇类、酯类之其中一种或两种以上混合而成, 其中所述的复合催化剂 YHB由糖类、 无机类之其中一种或两种混合而成。
2. 如权利要求 1所述的铝酸钠溶液的催化分解方法, 其特征在于: 所 述的表面活性剂为溴代十六烷基吡啶、 乙一烷基氨基乙基咪唑啉、 十二烷 基苯横酸钠或琥珀酸二乙辞酯横酸钠; 所述的醇类为曱醇、 乙醇、 丙三醇、 正十六醇或正丁醇; 所述的酯类为乙酸乙酯、 乙酸苯酯或苯曱酸曱酯; 所 述的糖类为蔗糖、 葡萄糖、 果糖或麦芽糖; 所述的无机类为氢氧化铝、 氟 化铝或氧化铝。
3. 如权利要求 1或 2所述的铝酸钠溶液的催化分解方法,其特征在于: 铝酸钠溶液催化分解后进行分离, 液相滤液进行催化剂回收, 回收的药剂 分别为复合催化剂 YHA和复合催化剂 YHB, 返回循环使用, 回收后的残 液为催化分解母液, 与分离的固相滤饼分别送去相应的下道工序。
4. 如权利要求 3所述的铝酸钠溶液的催化分解方法, 其特征在于: 催 化分解母液送去下道的母液蒸发工序; 分离的固相滤饼送去下道的洗涤工 序, 洗涤后得氢氧化铝成品, 干燥得到干燥氢氧化铝成品, 焙烧得到氧化 铝成品, 同时固相滤饼洗涤产生的洗液同样经过催化剂回收工序, 回收的 复合催化剂 YHA和复合催化剂 YHB同样返回循环使用, 残液送去赤泥洗 涤工序或同样作为催化分解母液送去母液蒸发工序。
5. 如权利要求 3所述的铝酸钠溶液的催化分解方法, 其特征在于: 铝 酸钠溶液中: A1203浓度为 40~200g/l , 苛性比 ak为 1.3~4.5, Na2Oc浓度为 10~50g/l , Si02浓度为 0.2~5g/l。
6. 如权利要求 5所述的铝酸钠溶液的催化分解方法, 其特征在于: 催 化分解母液中: A1203浓度为 5~150g/l , 苛性比 ak为 1.5~100, Na2Oc浓度 为 3~40g/l , Si02浓度为 0.004~4.5g/l。
7. 如权利要求 6所述的铝酸钠溶液的催化分解方法, 其特征在于: 酸钠溶液催化分解的分解率为 20~95%。
PCT/CN2009/070632 2009-02-24 2009-03-04 一种铝酸钠溶液的催化分解方法 WO2010096971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910064261 2009-02-24
CN200910064261.9 2009-02-24

Publications (1)

Publication Number Publication Date
WO2010096971A1 true WO2010096971A1 (zh) 2010-09-02

Family

ID=42665010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070632 WO2010096971A1 (zh) 2009-02-24 2009-03-04 一种铝酸钠溶液的催化分解方法

Country Status (1)

Country Link
WO (1) WO2010096971A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822593A (en) * 1986-12-11 1989-04-18 Aluminum Company Of America Control of form of crystal precipitation of aluminum hydroxide using cosolvents and varying caustic concentration
WO2001092148A1 (de) * 2000-06-02 2001-12-06 Gerald Ziegenbalg Verfahren zur herstellung von feinkristallinen feststoffen und/oder zur abscheidung von schichten schwerlöslicher verbindungen
CN1433964A (zh) * 2003-03-12 2003-08-06 湖南化工研究院 超微细氢氧化铝的制备方法
CN1911809A (zh) * 2006-09-05 2007-02-14 中国铝业股份有限公司 一种片状超细氢氧化铝的制备方法
CN101348272A (zh) * 2008-08-29 2009-01-21 河南未来铝业(集团)有限公司 一种干燥氢氧化铝细料应用工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822593A (en) * 1986-12-11 1989-04-18 Aluminum Company Of America Control of form of crystal precipitation of aluminum hydroxide using cosolvents and varying caustic concentration
WO2001092148A1 (de) * 2000-06-02 2001-12-06 Gerald Ziegenbalg Verfahren zur herstellung von feinkristallinen feststoffen und/oder zur abscheidung von schichten schwerlöslicher verbindungen
CN1433964A (zh) * 2003-03-12 2003-08-06 湖南化工研究院 超微细氢氧化铝的制备方法
CN1911809A (zh) * 2006-09-05 2007-02-14 中国铝业股份有限公司 一种片状超细氢氧化铝的制备方法
CN101348272A (zh) * 2008-08-29 2009-01-21 河南未来铝业(集团)有限公司 一种干燥氢氧化铝细料应用工艺

Similar Documents

Publication Publication Date Title
WO2016202271A1 (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
US20130343971A1 (en) Method for co-producing alumina and activated calcium silicate from high-alumina fly ash
CN101607725B (zh) 一种回收拜尔法赤泥中氧化铝和氧化钠的方法
CN109879295A (zh) 一种zsm-5分子筛
CN102476820B (zh) 一种湿法从粉煤灰中提取氧化铝的方法
CN102020299B (zh) 粉煤灰生产工业活性氧化铝的方法
CN103693665A (zh) 一种粉煤灰制备高纯氧化铝的方法
CN103303952A (zh) 一种利用高铝粉煤灰低温液相碱溶法制备铝酸钠联产硅基材料的方法
CN104817100B (zh) 一种制备砂状氧化铝的方法
CN104192880A (zh) 一种制备高纯度拟薄水铝石的方法
CN102897810A (zh) 一种利用粉煤灰生产氧化铝的方法
CN102807230A (zh) 一种多级孔mcm-22分子筛的制备方法
CN102773117A (zh) 一种中油型加氢裂化催化剂及其制备方法
CN113292088A (zh) 一种从结晶氯化铝生产低镁和低钙氧化铝的方法
CN113929125A (zh) 一种利用粉煤灰制备拟薄水铝石的方法
CN108658092B (zh) 粉煤灰酸法提铝残渣制备p型分子筛和高硅丝光沸石的方法以及粉煤灰的利用方法
WO2010135856A1 (zh) 一种拜耳法氢氧化铝或氧化铝的生产工艺
CN103657626A (zh) Al2O3/CaMgO复合固体碱催化剂的制备方法
CN114455618B (zh) 一种制备低钠低铁超细α-氧化铝及大孔容拟薄水铝石的方法
CN114560481B (zh) 一种低钠低铁复合拟薄水铝石及联产氯化铵的制备方法
WO2010096971A1 (zh) 一种铝酸钠溶液的催化分解方法
CN108929435B (zh) 低聚山梨糖醇含量的聚山梨酯80的合成方法
CN116282062A (zh) 一种可调节的FAU/LTA(CuⅠ)沸石纳米晶、其制备方法及用途
CN101947473A (zh) 一种适用于高温环境、抗硫化的催化剂载体材料生产方法
CN114621097A (zh) 一种2,4-二氟硝基苯催化加氢制备2,4-二氟苯胺的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840639

Country of ref document: EP

Kind code of ref document: A1