WO2010095238A1 - 利用側ユニット及び空気調和装置 - Google Patents

利用側ユニット及び空気調和装置 Download PDF

Info

Publication number
WO2010095238A1
WO2010095238A1 PCT/JP2009/052947 JP2009052947W WO2010095238A1 WO 2010095238 A1 WO2010095238 A1 WO 2010095238A1 JP 2009052947 W JP2009052947 W JP 2009052947W WO 2010095238 A1 WO2010095238 A1 WO 2010095238A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
air
temperature
bulb temperature
dry bulb
Prior art date
Application number
PCT/JP2009/052947
Other languages
English (en)
French (fr)
Inventor
由之 渡辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200980156860.1A priority Critical patent/CN102317699B/zh
Priority to US13/142,873 priority patent/US9562700B2/en
Priority to EP09840345.4A priority patent/EP2400234B1/en
Priority to JP2011500409A priority patent/JP4975187B2/ja
Priority to PCT/JP2009/052947 priority patent/WO2010095238A1/ja
Publication of WO2010095238A1 publication Critical patent/WO2010095238A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present invention relates to a use-side unit and an air conditioner for performing air conditioning by a reheating method so that a target space for air conditioning or the like is set to a set temperature and humidity, for example.
  • a heat source side unit (outdoor unit) having a compressor and an outdoor heat exchanger (heat source side heat exchanger), an expansion device serving as an expansion valve, and a use side heat exchanger (load side heat exchanger)
  • a refrigerant circuit is configured by connecting a user side unit (indoor unit) having Then, a fluid such as a refrigerant serving as a heat transfer medium is circulated to exchange heat with air in a target space to be air-conditioned and ventilated (hereinafter referred to as a target space such as air-conditioner) in an indoor unit, and the temperature of the target space such as air-conditioner Is adjusted.
  • temperature is the dry bulb temperature.
  • temperature value and data are also referred to as temperature
  • humidity unless otherwise specified, The humidity is assumed to be relative humidity, and the humidity value and data may also be referred to as humidity). For this reason, after the inhaled air is cooled to the dew point temperature related to the set humidity, dew condensation is performed, and the moisture is reduced, the air is heated again to a predetermined temperature, and then reheated (reheat) type air is sent to the target space such as an air conditioner.
  • reheated (reheat) type air is sent to the target space such as an air conditioner.
  • the use side unit in such an air conditioner functions as, for example, a heat exchanger functioning as an evaporator (hereinafter referred to as a use side evaporator) as a use side heat exchanger and a condenser as a reheat device.
  • a heat exchanger hereinafter referred to as a use-side condenser.
  • the use side condenser heats the air dehumidified by cooling so that the set humidity becomes the set humidity
  • the use side condenser for example, heats the target space such that the target space such as the air conditioner becomes the set temperature, and targets the air conditioner etc. It sends out (spouts) into space. JP 2001-91097 A
  • the dew point temperature is high due to the set humidity
  • the air temperature on the secondary side (blowing, discharge side) of the use side evaporator is high, and the set temperature is low.
  • the reheating device for example, (minimum heating amount of the reheating device)> (required heating amount obtained from the difference between the target temperature and the temperature of the air on the primary side (suction, suction side) of the use side condenser) It may become.
  • air higher than the target temperature may be blown out (sent out) into the target space such as air-conditioning by heating the air of the reheating device.
  • This invention was made in order to solve the above problems, and provides a use side unit and an air conditioner that can send air to a target space such as an air conditioner at a target temperature corresponding to a set temperature. Objective.
  • the utilization side unit comprises an evaporator that collects moisture condensed by cooling air sent to a target space such as an air conditioner by heat exchange, and heats the air that has passed through the evaporator by heat exchange.
  • the target intermediate dry bulb temperature which is the dry bulb temperature target of the air that has passed through, is determined, and it is determined that the difference between the dry bulb temperature related to the detection by the first temperature detector and the target dry bulb temperature is greater than a predetermined value.
  • a control device that calculates a correction value based on the difference between the dry bulb temperature related to detection by the first temperature detector and the target dry bulb temperature and corrects the target intermediate dry bulb temperature based on the correction value Are provided.
  • the target intermediate dry bulb temperature is calculated based on the calculated correction value. Is corrected so that the temperature of the air that has passed through the evaporator is lowered.For example, even if the minimum condensation capacity of the condenser is high, the temperature and humidity of the air sent to the target space such as air conditioning are set to the target temperature, Can be close to the target humidity.
  • FIG. 3 is a diagram illustrating a configuration of a usage-side unit in Embodiment 1.
  • FIG. It is a figure showing an example of the arrangement
  • FIG. 3 is a diagram showing a flowchart showing control contents in the first embodiment. It is a figure which shows the relationship between the driving
  • FIG. 11 is a diagram showing a flowchart showing control contents in the second embodiment. It is a figure showing the structural example of the air conditioning apparatus which concerns on Embodiment 3.
  • 1 use side evaporator unit, 2 blower, 3 use side evaporator, 4 use side condenser, 5 evaporation side control device, 5A evaporation side processing means, 5B evaporation side storage means, 6 condensation side control device, 6A condensation side processing Means, 6B condensing side storage means, 7, 8 temperature detector, 9 humidity detector, 10 evaporating side adjusting valve, 11 condensing side adjusting valve, 12, 13 piping, 14 intake air, 15, 16 blowing air, 17 remote control, 18 use side condenser unit, 100 heat source side unit, 101 compressor, 102 oil separator, 103 heat source side condenser, 104 heat source side fan, 105 accumulator, 111 heat source side control device, 200 use side unit.
  • FIG. 1 is a diagram showing a configuration of a use side unit of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the usage-side unit in FIG. 1 includes a usage-side evaporator unit 1, a usage-side condenser unit 18, and a remote controller (hereinafter referred to as a remote controller) 17.
  • a remote controller hereinafter referred to as a remote controller 17.
  • the blown air 15 sucked as the suction air 14 from the primary side by the use side evaporator unit 1 and blown out from the secondary side passes through the secondary side from the primary side of the use side condenser unit 18. It is blown out (sent out) as blown air 16 into a target space such as an air conditioner.
  • the use side evaporator unit 1 of the present embodiment includes a blower 2, a use side evaporator 3, an evaporation side adjustment valve 10, and an evaporation side control device 5.
  • the blower 2 is for forming a flow of air for adjusting the humidity and temperature of the inhaled air and blowing it out to a target space such as an air conditioner.
  • the blower 2 causes the primary side of the usage side evaporator unit 1 (use side evaporator 3) to the secondary side of the usage side evaporator unit 1 (use side evaporator 3) (use side condenser unit 18).
  • Primary side of the use side condenser 4 ⁇ The air flow of the secondary side of the use side condenser unit 18 (use side condenser 4) can be made.
  • the use side evaporator 3 performs heat exchange between a heat transfer medium (fluid) such as a refrigerant flowing through the pipe 12 and air flowing from the primary side of the use side evaporator unit 1. This cools the air flowing in from the primary side, condenses and collects moisture in the air, performs dehumidification, and flows out from the secondary side.
  • the evaporation side adjusting valve 10 is a valve for adjusting the evaporation capacity in the usage side evaporator 3 by adjusting the flow rate and pressure of the fluid flowing through the usage side evaporator 3 by changing the opening degree. In the present embodiment, it is assumed that the valve is an electric valve that can electrically adjust the opening degree by driving a motor by passing an electric current or the like.
  • the evaporation side control device 5 performs control by transmitting a signal including an instruction to each device and means constituting the use side evaporator unit 1. For this reason, in this embodiment, the evaporation side processing means 5A for performing processing related to control, and the evaporation side storage means 5B for storing data, programs, and the like necessary for the evaporation side processing means 5A to perform processing, have.
  • a communication unit (not shown) is provided, communication with a signal including various data and the like can be performed with the condensation side control device 6, and control can be performed in cooperation with each other.
  • the target temperature Tm and the target humidity hm of the blown air 16 are determined from the set temperature and the set humidity related to the user settings, and further the target intermediate temperature T1m is determined. And in order to make the temperature of the blowing air 15 into target intermediate temperature, the opening degree of the evaporation side adjustment valve 10 is controlled.
  • the set temperature and the target temperature Tm, and the set humidity and the target humidity hm are different.
  • the temperature detector 8 and the humidity detector 9 detect the temperature and humidity of the target space such as air conditioning, they may be handled as the same temperature and humidity.
  • the use side condenser unit 18 of the present embodiment includes the use side condenser 4, the condensation side adjustment valve 11, and the condensation side control device 6.
  • the use side condenser 4 performs heat exchange between the refrigerant flowing through the pipe 13 and the air from the primary side of the use side condenser unit 18. Thereby, the air from the primary side once cooled by the use side evaporator unit 1 is heated again (reheated) and discharged from the secondary side.
  • the condensing side adjustment valve 11 is a valve for adjusting the condensing capacity in the use side condenser 4 by adjusting the amount and pressure of the refrigerant flowing through the use side condenser 4 by changing the opening degree. It is assumed that the condensing side adjustment valve 11 is also an electric valve capable of electrically adjusting the opening degree.
  • the condensing side control device 6 controls each device constituting the use side condenser unit 18.
  • the condensing side control device 6 also has condensing side processing means 6A and condensing side storage means 6B in the same manner as the evaporation side control device 5.
  • the condensing side control device 6 of the present embodiment is a signal including temperature and humidity data of the blown air 16 relating to detection by the temperature detector 8 and the humidity detector 9, for example, because the evaporation side control device 5 performs processing. Send. Further, the opening degree of the condensing side adjustment valve 11 is controlled so that the temperature of the blown air 16 becomes the target temperature determined by the evaporation side control device 5.
  • the fluid (heat transfer medium) flowing through the use side evaporator 3 and the use side condenser 4 via the pipes 12 and 13 is a refrigerant such as R410A in the present embodiment.
  • the refrigerant is not limited to water, brine, or the like.
  • the evaporation side adjustment valve 10 and the condensation side adjustment valve 11 function as a throttle device.
  • it acts as a flow control valve.
  • FIG. 2 is a diagram illustrating an example of an arrangement relationship between the temperature detector 7, the temperature detector 8, and the humidity detector 9.
  • the temperature detector 7 serving as a second temperature detector detects the temperature of the blown air 15 (air entering the primary side of the use side condenser unit 18) from the secondary side of the use side evaporator unit 1, A signal based on the temperature is transmitted to the evaporation side control device 5.
  • the temperature detector 8 serving as the first temperature detector detects the temperature of the blown air 16 that has exited from the secondary side of the use-side condenser unit 18, and sends a signal based on the temperature to the condensation-side control device 6. Send.
  • the humidity detector 9 detects the humidity of the blown air 16 exiting from the secondary side of the use side condenser unit 18 and transmits a signal based on the humidity to the condensation side control device 6. For this reason, in this Embodiment, the temperature detector 8 and the humidity detector 9 shall be provided in the blower outlet, the blower duct, etc. in the utilization side condenser unit 18. FIG. However, the locations where the temperature detector 8 and the humidity detector 9 are provided are not limited to these locations. For example, in order to detect the temperature and humidity of the target space such as air conditioning, it may be provided at a position outside the use-side condenser unit 18.
  • the air flow by the use side unit is drawn in from the primary side of the use side evaporator 3, the blown air 15 blown out from the secondary side of the use side evaporator 3, and the use side condenser 4. It represents as the blowing air 16 which comes out from the secondary side.
  • the suction air 14, the blown air 15, and the blown air 16 have higher humidity than the blown air 15 and the blown air 16 because the sucked air 14 is air before dehumidification.
  • the blown air 15 is air cooled by the use-side evaporator 3 when dehumidified, the temperature is basically lower than that of the intake air 14 and the blown air 16.
  • the blown air 15 is air heated by the use side condenser 4.
  • the intake air 14 may suck outdoor air (outside air) in order to ventilate the target space such as air conditioning, or may be air in the target space such as air conditioning (indoor air). Alternatively, outside air and room air may be sucked at a certain rate, and ventilation and air conditioning may be performed on the target space such as air conditioning.
  • the remote controller 17 transmits a signal based on an instruction input from the user to the evaporation side control device 5.
  • a signal related to the set temperature and set humidity relating to the user input is transmitted to the evaporation side control device 5.
  • the setting method of temperature and humidity in the remote controller 17 is not particularly limited.
  • the user may be able to input numerical values for temperature and humidity.
  • humidity may not be strictly managed as compared to temperature. Therefore, for example, two types of humidity change switches, high and low, may be provided so that the user can be switched.
  • the evaporation side control device 5 determines the target temperature Tm and the target humidity hm based on the set temperature and the set humidity related to transmission from the remote controller 17. Moreover, it converts into target dew point temperature Tdwm (temperature in the state where the absolute humidity in the state of target temperature Tm and target humidity hm becomes relative humidity 100%) based on target temperature Tm and target humidity hm.
  • target dew point temperature Tdwm is determined as the target intermediate temperature T1m of the blown air 15.
  • the opening degree of the evaporation side adjustment valve 10 is controlled based on the temperature which the temperature detector 7 detects so that the blowing air 15 may become target intermediate temperature T1m.
  • a mathematical formula or the like based on a wet air diagram is stored as data in the evaporation side storage means 5B, and the evaporation side processing means 5A performs a calculation process based on the mathematical formula to obtain the target dew point. Convert to temperature Tdwm.
  • control is performed so that dehumidification is performed up to the absolute humidity at which the target humidity hm is reached at the target temperature Tm.
  • the target intermediate temperature T1m is corrected and the temperature of the blowout temperature 15 is lowered so that the temperature of the blowout temperature 16 becomes the target temperature Tm. To be. At this time, it goes to the direction where humidity becomes low.
  • the difference in temperature (temperature) is more sensitive than humidity. Therefore, even if the humidity is low, the temperature is basically prioritized so that it is closer to the target. Pursuing harmony comfort.
  • FIG. 3 is a diagram illustrating a flowchart of a process related to air conditioning control of a target space such as an air conditioning centering on the evaporation side control device 5 and the condensation side control device 6 according to the first embodiment.
  • the evaporation side control device 5 evaporation side processing means 5A
  • the condensation side control device 6 condensation side processing means 6A
  • the processing related to the control of the condenser side unit 18 is performed based on the determination of the above.
  • the division of roles related to control is not limited to this.
  • the control is started (A1)
  • the temperature T2 old previously detected by the temperature detector 8 is set as the temperature T2 related to the detection by the temperature detector 8 (A2).
  • the evaporation side control apparatus 5 determines the target temperature Tm and the target humidity hm of the blowing air 16 based on the set temperature and the set humidity set by the user via the remote controller 17. Further, the target dew point temperature Tdwm is determined based on the target temperature Tm and the target humidity hm, and is set as the target intermediate temperature T1m of the blown air 15 (A3).
  • the set temperature and the set humidity may be used as the target temperature Tm and the target humidity hm as they are.
  • the evaporation side control device 5 inputs the temperature T1 related to the detection by the temperature detector 7, the temperature T2 related to the detection by the temperature detector 8, and the humidity h related to the detection by the humidity detector 9 (A4). Then, a difference ⁇ T1 between the temperature T1 and the target intermediate temperature T1m is calculated, and the opening degree of the evaporation side adjusting valve 10 is controlled based on the difference ⁇ T1 (A5). As a result, the amount and pressure of the refrigerant flowing through the use side evaporator 3 are adjusted to adjust the evaporation capacity of the use side evaporator 3, and the intake air 14 is cooled to the target intermediate temperature T1m. And the moisture in the suction air 14 which condensed by cooling is collect
  • the condensation side control device 6 calculates the difference ⁇ T2 between the temperature T2 and the target temperature Tm, and changes the opening degree of the condensation side adjustment valve 11 based on the difference ⁇ T2 (A5). Thereby, the refrigerant
  • the difference ⁇ T2 is calculated in the condensing side control device 6, but may be performed in the evaporation side control device 5.
  • the evaporation side control device 5 compares the temperature T1 with the target intermediate temperature T1m, and determines whether or not the difference ⁇ T1 is within an allowable range ( ⁇ B ⁇ T1 ⁇ B) (A7).
  • B represents a control allowable range constant. If it is determined that the temperature is outside the allowable range, the process returns to A4 assuming that the temperature of the blown air 15 has not approached the target intermediate temperature T1m, and processing is performed until the temperature is within the allowable range.
  • the evaporation side control device 5 next compares the temperature T2 with the target temperature Tm based on the difference ⁇ T2 calculated by the condensation side control device 6, and within the allowable range ( ⁇ C It is determined whether or not ⁇ T2 ⁇ C) (A8).
  • C represents a control allowable range constant. If it is determined that the temperature is within the allowable range, it is assumed that the temperature of the blown air 16 has reached the target temperature Tm, the operation state is maintained (operation is performed without changing the target intermediate temperature T1m) (A9), and the process returns to A4 Process.
  • ⁇ T2 ⁇ ⁇ C it is further determined whether ⁇ T2 ⁇ ⁇ C (A10). If it is determined that ⁇ T2 ⁇ ⁇ C, it is only necessary to heat the blown air 15 by the use-side condenser 4 and it is not necessary to change the target intermediate temperature T1m. Therefore, the operating state is maintained (A9), The process returns to A4.
  • A8 and A10 are performed separately, but the processing may be performed together.
  • the target intermediate temperature T1m is corrected based on the following equation (2) (A12). Then, the control is performed with the corrected T1m as the new target intermediate temperature T1m.
  • the use-side condenser unit 18 is controlled to maintain the state (A13).
  • T1m T1m ⁇ X (2)
  • FIG. 4 is a diagram showing the relationship between the air diagram representing the temperature and humidity of the intake air and the operation to be performed.
  • (5) represents a range that can be regarded as the target temperature Tm and the target humidity hm.
  • the humidity is lower than the target humidity hm, so it is necessary to perform humidification.
  • the humidity is higher than the target humidity hm. Therefore, dehumidification is performed in the usage-side evaporator unit 1 (processing according to A5 to A7 in FIG. 3).
  • the use side condenser unit 18 is heated so that the control is performed to be in the range of (5) (FIG. 3) A10). If the operation is within the range of (6), the control is performed by lowering the absolute humidity while reducing the absolute humidity by correcting the target intermediate temperature T1m (processing related to A11 to A13 in FIG. 3).
  • the correction value X is based on the difference ⁇ T2 between the target temperature Tm and the temperature T2.
  • the minimum condensation capacity of the use side condenser 4 is Even if it is high, the temperature and humidity of the blown air 16 can be brought close to the target temperature and target humidity. Therefore, comfort related to air conditioning can be pursued.
  • the use side condenser unit 18 that performs reheating heats the blown air 15 by heat exchange with the refrigerant or the like in the use side condenser 4. Therefore, it is not necessary to reheat with an electric heater or the like, and an accident such as a fire can be prevented because the electric heater becomes high temperature. Therefore, the reliability of the user side unit is increased, and it is not necessary to use a fireproof structure device. Therefore, the structure can be simplified and the device can be miniaturized.
  • Embodiment 2 The utilization side unit of the first embodiment described above corrects the target intermediate temperature T1m of the blown air 15 based on the difference ⁇ T2 between the temperature T2 of the blown air 16 and the target temperature Tm. By this correction, the temperature of the blown air 15 is lowered and the temperature of the blown air 16 is adjusted. For this reason, temperature is prioritized over humidity so as to approach the target.
  • the intake air 14 is cooled in order to lower the temperature of the blown air 15, but if the target intermediate temperature T1m (target dew point temperature Tdwm) of the blown air 15 is lowered, the humidity may be lowered too much (FIG. 4). (It becomes the range of (2)). When the humidity decreases, for example, the number of occurrences of static electricity increases. For this reason, comfort may be impaired compared with the case where the temperature of air is not controlled.
  • Fig. 5 is a graph showing the relative humidity and the number of shocks due to static electricity reported in one day. As shown in FIG. 5, for example, when the humidity is lower than 35%, the number of shocks due to static electricity increases rapidly. For this reason, if the humidity is maintained at 35% or more, the number of shocks due to static electricity can be reduced.
  • the second embodiment by preventing the humidity from being lowered too much by correcting the target intermediate temperature T1m, the number of static electricity shocks is reduced and a more comfortable air conditioner is provided.
  • the configuration of the usage-side unit according to the second embodiment of the present invention is the same as that of the first embodiment, description of the devices and the like of the usage-side unit will be made with reference to FIG.
  • FIG. 6 is a diagram illustrating a flowchart relating to control of air conditioning processing centering on the evaporation side control device 5 (condensation side control device 6) according to the second embodiment.
  • the processing in steps A1 to A12 is the same as that in the first embodiment.
  • a lower limit humidity h min representing a lower limit value of humidity is set in advance.
  • the evaporation side control device 5 converts the relative humidity h temp based on the target intermediate temperature T1m corrected by the correction value X in step A12 and the target temperature Tm (A20). Then, by comparing the relative humidity h temp and lower humidity h min, determines the relative humidity h temp is whether equal to or higher than the lower limit humidity h min (A21). If it is determined that the relative humidity h temp is equal to or higher than the lower limit humidity h min , control is performed based on the corrected target intermediate temperature T1m. The use-side condenser unit 18 is controlled to maintain the state (A13).
  • the user may be able to set it by inputting an arbitrary numerical value from the remote controller 17. Moreover, it may be possible to set by switching a switch provided on the remote controller 17 or the like.
  • the lower limit humidity h min can be set, and when the target intermediate temperature T1m is corrected, the humidity of the blown air 16 becomes lower than the lower limit humidity h min. If it is determined that, since so as to determine the target intermediate temperature T1m based on the lower limit humidity h min, never humidity of the outlet air 16 becomes lower than the lower limit humidity h min. Therefore, for example, generation of static electricity can be suppressed, and comfort in the target space such as air conditioning can be pursued.
  • FIG. 7 is a diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 3.
  • the air conditioner of FIG. 7 includes a heat source side unit (outdoor unit) 100 and the use side unit (indoor unit) 200 described in the first and second embodiments. And these are connected by refrigerant
  • a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300
  • a pipe through which a liquid refrigerant (liquid refrigerant, which may be a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400.
  • the heat source side unit 100 is configured by each device (means) of the compressor 101, the oil separator 102, the heat source side condenser 103, the heat source side fan 104, the accumulator 105, and the heat source side control device 111. .
  • the compressor 101 sucks in the refrigerant, compresses the refrigerant, converts it into a high-temperature and high-pressure gas state, and flows it through the refrigerant pipe.
  • an inverter circuit (not shown) or the like is provided in the compressor 101, and the capacity of the compressor 101 (amount of refrigerant sent out per unit time) is arbitrarily changed by changing the operation frequency. Can be changed finely.
  • the oil separator 102 is for separating the lubricating oil discharged from the compressor 101 mixed with the refrigerant. The separated lubricating oil is returned to the compressor 101.
  • the heat source side condenser 103 performs heat exchange between the refrigerant and the outside air. Heat exchange is performed between the refrigerant compressed in the compressor 101 and air, and the refrigerant is condensed and liquefied.
  • the heat source side condenser 103 is provided with a heat source side fan 104 in order to efficiently exchange heat between the refrigerant and the air.
  • the heat source side fan 104 may also have an inverter circuit (not shown), and the operation frequency of the fan motor may be arbitrarily changed to finely change the rotation speed of the fan.
  • the accumulator 105 is means for storing, for example, liquid surplus refrigerant.
  • the heat source side control device 111 is composed of, for example, a microcomputer. It is possible to perform wired or wireless communication with the evaporation side control device 5 (condensation side control device 6) described above. For example, based on temperature, humidity, and the like related to detection by various detection means (sensors) in the air conditioner, an inverter The operation control of the entire air conditioner is performed by controlling each means related to the air conditioner such as the operation frequency control of the compressor 101 by circuit control.
  • the pipes 12 and 13 are connected in series so that the pipe 13 is on the upstream side with respect to the refrigerant flow. Therefore, the refrigerant further condensed in the use side condenser 4 as well as the heat source side condenser 103 flows into the use side evaporator 3.
  • the operation of the air conditioner will be described based on the circulation of the refrigerant in the refrigerant circuit.
  • the high-temperature, high-pressure gas (gas) refrigerant discharged from the compressor 101 condenses by passing through the heat source side condenser 103, and the liquid refrigerant (or gas-liquid two-phase refrigerant) And the heat source side unit 100 flows out.
  • the refrigerant that has flowed into the usage-side unit 200 through the liquid pipe 400 passes through the condensation-side adjustment valve 11 and the usage-side condenser 4 to heat the blown air 15, and the evaporation-side adjustment valve 10 and the usage-side evaporator.
  • the intake air 14 is cooled and dehumidified.
  • the refrigerant that has passed through the use side evaporator 3 evaporates and flows out. Then, the gas flows into the heat source unit 100 through the gas pipe 300, is sucked into the compressor 101, is pressurized again, and is circulated by being discharged.
  • the amount of refrigerant discharged from the compressor 101 by adjusting the amount of refrigerant discharged from the compressor 101, the amount of refrigerant flowing through the use side evaporator 3 and the use side condenser 4 is changed, and the evaporation capacity of the use side evaporator 3 and the use side condenser 4 are changed.
  • the condensing capacity may be changed. Thereby, the temperature and humidity of the blowing air 15 and the blowing air 16 can be adjusted.
  • the use side unit 200 described in the first and second embodiments and the heat source side unit 100 including the compressor 101 and the heat source side condenser 103 are provided.
  • a refrigerant circuit is configured by pipe connection through the gas pipe 300 and the liquid pipe 400. Then, the refrigerant flows through the pipes 12 and 13 to the use side evaporator unit 1 and the use side condenser unit 18. For this reason, the amount of heat that the heat source side condenser 103 of the heat source side unit 100 originally wastes by cooling and dehumidification by the usage side evaporator unit 1 is used in the usage side condenser 4 of the usage side condenser unit 18.
  • the blown air 15 can be reheated (heated), and energy saving can be achieved.
  • Embodiment 4 FIG.
  • the case where the temperature and humidity of the blown air 16 are controlled to the target temperature and target humidity has been described.
  • the humidity is fixed, and the temperature of the blown air 15 and 16 is simply set to the target temperature. It can also be used in cases such as when controlling.
  • the use side evaporator 3 and the use side condenser 4 are provided, and air is cooled (dehumidified) and reheated by heat exchange with a heat transfer medium such as a refrigerant. And sent out to the target space such as air conditioning.
  • air cooling (dehumidification) and reheating may be performed using another cooling means and heating means.
  • Embodiment 5 FIG.
  • the heat source side condenser 103 which is a heat exchanger of the heat source side unit 100 has a condensing function, but is not limited thereto.
  • an evaporator having an evaporation function may be used.
  • a four-way valve or the like may be provided so that either evaporation or condensation can be performed by the flowing refrigerant.
  • the flow of the refrigerant in the use side unit 200 must be changed by changing the pipe connection in the use side unit 200 to be different from that in FIG.
  • Embodiment 3 the use-side evaporator 3 and the use-side condenser 4 are connected in series and configured in the same refrigerant circuit, but different refrigerant circuits may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 目標温度によって対象空間に空気を送り出すことができる利用側ユニット及び空気調和装置を提供する。  空調等対象空間に送り出す空気を熱交換により冷却して凝結させた水分を回収し、目標相対湿度にするための除湿を行う利用側蒸発器3と、利用側蒸発器3を通過した空気を熱交換により加熱し、目標乾球温度に調整して空調等対象空間に送り出すための利用側凝縮器4と、対象空間に送り出す空気の乾球温度を検知するための温度検知器8の検知に係る乾球温度と目標乾球温度との差が所定値より大きいと補正値を算出し、目標中間乾球温度を補正する処理を行う利用側制御装置5とを備えるものである。

Description

利用側ユニット及び空気調和装置
 この発明は、空調等を行う対象空間を、例えば設定した温度、湿度にするため、再熱方式での空気調和を行うための利用側ユニット及び空気調和装置に関するものである。
 空気調和装置では、圧縮機と室外熱交換器(熱源側熱交換器)とを有する熱源側ユニット(室外機)と、膨張弁となる絞り装置と利用側熱交換器(負荷側熱交換器)とを有する利用側ユニット(室内機)とを配管接続して冷媒回路を構成している。そして、熱量搬送媒体となる冷媒等の流体を循環させて、室内機において、空調、換気等を行う対象空間(以下、空調等対象空間という)の空気と熱交換させ、空調等対象空間の温度を調整している。
 また、温度(特に断らない限り、以下、温度とは乾球温度であるものとする。また、温度の値、データについても温度というものとする)だけでなく湿度(特に断らない限り、以下、湿度とは相対湿度であるものとする。また、湿度の値、データについても湿度というものとする)の調整を要求されることもある。このため、吸入した空気を設定した湿度に係る露点温度まで冷却して結露させて減湿した後、再度、所定の温度に加熱した空気を空調等対象空間に送り出す再熱(レヒート)方式の空気調和装置がある(例えば特許文献1参照)。このような空気調和装置での利用側ユニットは、例えば、利用側熱交換器として、蒸発器として機能する熱交換器(以下、利用側蒸発器という)と再熱機器となる凝縮器として機能する熱交換器(以下、利用側凝縮器という)とを有している。そして、利用側蒸発器が、設定湿度になるように冷却により除湿を行った空気を利用側凝縮器が、例えば、空調等対象空間が設定温度になるような目標温度に加熱して空調等対象空間に送り出す(吹き出す)ようにしている。
特開2001-91097号公報
 しかし、例えば、設定された湿度の関係で露点温度が高く、利用側蒸発器の二次側(吹き出し、排出側)における空気の温度が高い場合、また、設定された温度が低い場合がある。このとき、再熱機器において、例えば(再熱機器の最小加熱量)>(目標温度と利用側凝縮器の一次側(吸い込み、吸入側)における空気の温度との差から求められる必要加熱量)となることがある。このため、従来の再熱方式の空気調和装置では、再熱機器の空気の加熱により、目標温度より高い空気を空調等対象空間に吹き出してしまう(送り出してしまう)ことがあった。
 この発明は、上記のような課題を解決するためになされたもので、設定温度に対応した目標温度によって空調等対象空間に空気を送り出すことができる利用側ユニット及び空気調和装置を提供することを目的とする。
 この発明に係る利用側ユニットは、空調等対象空間に送り出す空気を熱交換により冷却して凝結させた水分を回収して除湿を行う蒸発器と、蒸発器を通過した空気を熱交換により加熱して空調等対象空間に送り出すための凝縮器と、空調等対象空間に送り出す空気の乾球温度を検知するための第一の温度検知器と、目標乾球温度及び目標相対湿度に基づいて蒸発器を通過した空気の乾球温度目標となる目標中間乾球温度を決定し、また、第一の温度検知器の検知に係る乾球温度と目標乾球温度との差が所定値より大きいと判定すると、第一の温度検知器の検知に係る乾球温度と目標乾球温度との差に基づいて補正値を算出し、補正値に基づいて目標中間乾球温度を補正する処理を行う制御装置とを備えるものである。
 この発明に係る利用側ユニットにおいては、第一の温度検知器の検知に係る乾球温度と目標乾球温度との差が所定値より大きいと判定すると、算出した補正値により目標中間乾球温度を補正して蒸発器を通過した空気の温度を低くするように制御するようにしたので、例えば凝縮器の最小凝縮能力が高くても空調等対象空間に送り出す空気の温度、湿度を目標温度、目標湿度に近づけることができる。
実施の形態1における利用側ユニットの構成を示す図である。 検知器の配置関係の一例を表す図である。 実施の形態1における制御内容を示すフローチャートを示す図である。 空気調和装置の運転と空気線図との関係を示す図である。 相対湿度と静電気のショック回数との関係を示した図である。 実施の形態2における制御内容を示すフローチャートを示す図である。 実施の形態3に係る空気調和装置の構成例を表す図である。
符号の説明
 1 利用側蒸発器ユニット、2 送風機、3 利用側蒸発器、4 利用側凝縮器、5 蒸発側制御装置、5A 蒸発側処理手段、5B 蒸発側記憶手段、6 凝縮側制御装置、6A 凝縮側処理手段、6B 凝縮側記憶手段、7,8 温度検知器、9 湿度検知器、10 蒸発側調整弁、11 凝縮側調整弁、12,13 配管、14 吸込空気、15,16 吹出空気、17 リモコン、18 利用側凝縮器ユニット、100 熱源側ユニット、101 圧縮機、102 油分離器、103 熱源側凝縮器、104 熱源側ファン、105 アキュムレータ、111 熱源側制御装置、200 利用側ユニット。
実施の形態1.
 図1は本発明の実施の形態1に係る空気調和装置の利用側ユニットの構成を示す図である。図1の利用側ユニットは、利用側蒸発器ユニット1、利用側凝縮器ユニット18及びリモートコントローラ(以下、リモコンという)17を有している。利用側ユニット内では、利用側蒸発器ユニット1が一次側から吸込空気14として吸い込んで二次側から吹き出した吹出空気15が、利用側凝縮器ユニット18の一次側から二次側を通過して空調等対象空間に吹出空気16として吹き出される(送り出される)。
 本実施の形態の利用側蒸発器ユニット1は、送風機2、利用側蒸発器3、蒸発側調整弁10及び蒸発側制御装置5を有している。送風機2は、吸入した空気を湿度、温度を調整して空調等対象空間に吹き出すための空気の流れを形成するためのものである。利用側ユニット内では送風機2により、利用側蒸発器ユニット1(利用側蒸発器3)の一次側→利用側蒸発器ユニット1(利用側蒸発器3)の二次側(利用側凝縮器ユニット18(利用側凝縮器4)の一次側)→利用側凝縮器ユニット18(利用側凝縮器4)の二次側という空気の流れができる。
 利用側蒸発器3は、配管12を流れる冷媒等の熱量搬送媒体(流体)と利用側蒸発器ユニット1の一次側から流入する空気との熱交換を行う。これにより、一次側から流入した空気を冷却し、空気内の水分を凝結させて回収して除湿を行い、二次側から流出させる。蒸発側調整弁10は、開度を変化させて利用側蒸発器3を流れる流体の流量、圧力を調整して、利用側蒸発器3における蒸発能力を調整するための弁である。本実施の形態では、電流等を流してモータを駆動させて電気的に開度を調整できる電動弁であるものとする。
 蒸発側制御装置5は、利用側蒸発器ユニット1を構成する各機器、手段に指示等を含む信号を送信し、制御を行う。そのため、本実施の形態では、制御に係る処理を行う蒸発側処理手段5Aと、蒸発側処理手段5Aが処理を行うために必要とするデータ、プログラム等を記憶するための蒸発側記憶手段5Bとを有している。また、例えば通信手段(図示せず)を備え、凝縮側制御装置6との間で各種データ等を含む信号による通信を行うことができ、連携して制御を行うこともできる。本実施の形態では、利用者の設定に係る設定温度、設定湿度から、吹出空気16の目標温度Tm、目標湿度hmを決定し、さらに目標中間温度T1mを決定する。そして、吹出空気15の温度を目標中間温度にするため、蒸発側調整弁10の開度を制御する。ここで、本実施の形態では、設定温度と目標温度Tm、設定湿度と目標湿度hmとが異なるものとして説明する。ただ、例えば温度検知器8及び湿度検知器9に空調等対象空間の温度、湿度を検知させる等の場合には同一の温度、湿度として扱うようにしてもよい。
 また、本実施の形態の利用側凝縮器ユニット18は、利用側凝縮器4、凝縮側調整弁11、及び凝縮側制御装置6を有している。利用側凝縮器4は、配管13を流れる冷媒と利用側凝縮器ユニット18の一次側からの空気との熱交換を行う。これにより、利用側蒸発器ユニット1により一度冷却された一次側からの空気を再度加熱(再熱)して二次側から排出する。凝縮側調整弁11は、開度を変化させて利用側凝縮器4を流れる冷媒量、圧力を調整して、利用側凝縮器4における凝縮能力を調整するための弁である。凝縮側調整弁11も電気的に開度を調整できる電動弁であるものとする。
 凝縮側制御装置6は、利用側凝縮器ユニット18を構成する各機器の制御を行う。凝縮側制御装置6についても、蒸発側制御装置5と同様に凝縮側処理手段6A及び凝縮側記憶手段6Bを有しているものとする。本実施の形態の凝縮側制御装置6は、例えば、蒸発側制御装置5が処理を行うため、温度検知器8及び湿度検知器9の検知に係る吹出空気16の温度、湿度のデータを含む信号を送る。また、吹出空気16の温度を蒸発側制御装置5が決定した目標温度にするため、凝縮側調整弁11の開度を制御する。
 ここで、配管12、13を介して利用側蒸発器3、利用側凝縮器4を流れる流体(熱量搬送媒体)は、本実施の形態ではR410A等の冷媒であるものとする。ただ、冷媒に限定するものではなく、水、ブライン等としてもよい。冷媒の場合は蒸発側調整弁10及び凝縮側調整弁11は絞り装置として作用する。また、水やブラインの場合は流量調整弁として作用する。
 図2は温度検知器7、温度検知器8及び湿度検知器9の配置関係の一例を表す図である。第二の温度検知器となる温度検知器7は、利用側蒸発器ユニット1の二次側からの吹出空気15(利用側凝縮器ユニット18の一次側に入る空気)の温度を検知し、その温度に基づく信号を蒸発側制御装置5に送信する。また、第一の温度検知器となる温度検知器8は、利用側凝縮器ユニット18の二次側から出た吹出空気16の温度を検知し、その温度に基づく信号を凝縮側制御装置6に送信する。湿度検知器9は、利用側凝縮器ユニット18の二次側から出た吹出空気16の湿度を検知し、その湿度に基づく信号を凝縮側制御装置6に送信する。このため、本実施の形態では、温度検知器8及び湿度検知器9を利用側凝縮器ユニット18内の吹出口、吹出ダクト等に設けているものとする。ただ、温度検知器8及び湿度検知器9を設ける場所については、これらの場所に限定するものではない。例えば、空調等対象空間の温度、湿度を検知するため、利用側凝縮器ユニット18外の位置に設けるようにしてもよい。
 さらに、図1では、利用側ユニットによる空気の流れを、利用側蒸発器3の一次側から吸い込まれる吸込空気14、利用側蒸発器3の二次側から吹き出す吹出空気15、利用側凝縮器4の二次側から出る吹出空気16として表している。ここで、吸込空気14、吹出空気15、吹出空気16について、吸込空気14は除湿前の空気であるため、吹出空気15、吹出空気16に比して湿度が高い。また、吹出空気15は、除湿される際に利用側蒸発器3により冷却された空気であるため、基本的に吸込空気14、吹出空気16に比して温度が低い。吹出空気15は利用側凝縮器4により加熱された空気である。吸込空気14は、空調等対象空間の換気を行うために屋外の空気(外気)を吸い込むようにしてもよいし、空調等対象空間の空気(室内空気)であってもよい。また、外気と室内空気とを一定の割合で吸い込み、空調等対象空間に対して換気と空調とを行うようにしてもよい。
 リモコン17は、利用者から入力された指示に基づく信号を蒸発側制御装置5に送信する。また、ここでは特に示していないが、例えば表示手段等を有している場合には、蒸発側制御装置5から送信される信号に基づく表示等を行う。本実施の形態では、特に利用者の入力に係る設定温度、設定湿度に関する信号を蒸発側制御装置5に送信する。ここで、リモコン17における温度、湿度の設定方法については、特に限定するものではない。例えば、温度、湿度の数値を利用者が入力できるようにしてもよい。また、例えば湿度に関しては、温度に比べて厳密な管理をしなくてもよいことがある。そのため、例えば高低の2種類の湿度の切り換えスイッチを設けておき、利用者が切り換えられるようにしてもよい。
 リモコン17からの送信に係る設定温度、設定湿度に基づいて、蒸発側制御装置5(蒸発側処理手段5A)は、目標温度Tmと目標湿度hmとを決定する。また、目標温度Tm及び目標湿度hmに基づいて目標露点温度Tdwm(目標温度Tm、目標湿度hmの状態における絶対湿度が相対湿度100%となる状態の温度)に換算する。そして、本実施の形態では、目標露点温度Tdwmを吹出空気15の目標中間温度T1mとして決定する。そして、吹出空気15が目標中間温度T1mとなるように、温度検知器7の検知に係る温度に基づいて蒸発側調整弁10の開度を制御する。目標露点温度Tdwmの換算処理については、例えば湿り空気線図に基づく数式等をデータとして蒸発側記憶手段5Bに記憶させておき、蒸発側処理手段5Aは、数式に基づく演算処理を行い、目標露点温度Tdwmに換算する。
 本実施の形態は、目標温度Tmのときに目標湿度hmになる絶対湿度まで除湿を行うように制御する。その後、吹出温度16の温度が、所定の範囲を越えて目標温度Tmより高い場合には、目標中間温度T1mを補正して吹出温度15の温度を下げることで吹出温度16の温度が目標温度Tmとなるようにする。このとき湿度が低くなる方に向かうこととなる。ただ、特に高湿度でない場合には、湿度に比して温度(気温)の違いの方が敏感に感じるため、湿度が低くなっても基本的に温度を優先して目標に近づけるようにし、空気調和に係る快適性を追求する。
 図3は実施の形態1に係る蒸発側制御装置5及び凝縮側制御装置6を中心とする空調等対象空間の空気調和の制御に係る処理のフローチャートを表す図である。本実施の形態では、蒸発側制御装置5(蒸発側処理手段5A)が主として図3の制御に係る処理を行うものとし、凝縮側制御装置6(凝縮側処理手段6A)は蒸発側制御装置5の決定等に基づいて凝縮器側ユニット18の制御に係る処理を行うものとして説明する。ただし、制御に係る役割分担等をこれに限定するものではない。まず、制御を開始すると(A1)、温度検知器8が前回検知した温度T2old を温度検知器8の検知に係る温度T2としておく(A2)。
 そして、蒸発側制御装置5は、リモコン17を介して利用者が設定した設定温度と設定湿度とに基づき、吹出空気16の目標温度Tm及び目標湿度hmを決定する。さらに目標温度Tmと目標湿度hmとに基づいて目標露点温度Tdwmを決定し、吹出空気15の目標中間温度T1mとする(A3)。ここで、設定温度と設定湿度とをそのまま目標温度Tm及び目標湿度hmとしてもよい。
 さらに、蒸発側制御装置5は、温度検知器7の検知に係る温度T1、温度検知器8の検知に係る温度T2及び湿度検知器9の検知に係る湿度hを入力する(A4)。そして、温度T1と目標中間温度T1mとの差ΔT1を算出し、差ΔT1に基づいて、蒸発側調整弁10の開度を制御する(A5)。これにより利用側蒸発器3を流れる冷媒量、圧力を調整して利用側蒸発器3における蒸発能力を調整し、目標中間温度T1mとなるように吸込空気14を冷却する。そして冷却により結露した吸込空気14中の水分を回収して除湿を行う。
 一方、凝縮側制御装置6は、温度T2と目標温度Tmとの差ΔT2を算出し、差ΔT2に基づいて、凝縮側調整弁11の開度を変化させる(A5)。これにより利用側凝縮器4を流れる冷媒量を調整して、利用側凝縮器4における凝縮能力を調整し、所定の温度で吹出空気15を加熱する。また、凝縮側制御装置6は、差ΔT2のデータを含む信号を蒸発側制御装置5に送る。ここでは凝縮側制御装置6において差ΔT2を算出しているが、蒸発側制御装置5において行うようにしてもよい。
 そして、蒸発側制御装置5は、温度T1と目標中間温度T1mとを比較し、その差ΔT1が許容範囲内(-B<ΔT1<B)であるかどうかを判定する(A7)。ここでBは制御許容範囲定数を表す。許容範囲外であると判定すると、吹出空気15の温度が目標中間温度T1mに近づいていないものとしてA4に戻り、許容範囲内となるまで処理を行う。
 ΔT1が許容範囲内であると判定すると、次に蒸発側制御装置5は、凝縮側制御装置6が算出した差ΔT2に基づいて温度T2と目標温度Tmとを比較し、許容範囲内(-C<ΔT2<C)であるかどうかを判定する(A8)。ここでCは制御許容範囲定数を表す。許容範囲内であると判定すると、吹出空気16の温度が目標温度Tmになったとみなし、運転状態を保持する(目標中間温度T1mを変更しないで運転を行う)ものとし(A9)、A4に戻って処理を行う。
 ΔT2が許容範囲外であると判定すると、さらに、ΔT2≦-Cであるかどうかを判定する(A10)。ΔT2≦-Cであると判定すると、利用側凝縮器4により吹出空気15を加熱させればよく、目標中間温度T1mを変更しなくてもよいため、運転状態を保持するものとし(A9)、A4に戻って処理を行う。なお、ここではA8とA10とを個別に行っているが合わせて処理を行うようにしてもよい。
 ΔT2が許容範囲外、かつΔT2≦-Cでない(C≦ΔT2)と判定すると、蒸発側制御装置5は、検知温度T2、目標温度T及び制御許容範囲定数Cに基づき、次式(1)を用いて補正値Xを算出する(A11)。
 X=T2-(Tm+C)                     …(1)
 さらに補正値Xに基づいて、目標中間温度T1mを次式(2)に基づいて補正する(A12)。そして、補正したT1mを新たな目標中間温度T1mとして制御を行うようにする。利用側凝縮器ユニット18については状態を保持させる制御を行うようにする(A13)。
 T1m=T1m-X                       …(2)
 図4は吸込空気の温度及び湿度を表す空気線図と行う運転との関係を表す図である。図4において、(5)は目標温度Tmと目標湿度hmとみなせる範囲を表す。(1)、(2)、(3)の範囲においては、目標湿度hmよりも低い湿度となるため、加湿を行う必要がある。(7)、(8)、(9)の範囲においては、目標湿度hmよりも湿度が高い状態となる。そのため、利用側蒸発器ユニット1において除湿を行う(図3のA5~A7に係る処理)。その結果、(4)の範囲(目標湿度hmとなった)となれば、利用側凝縮器ユニット18において加熱を行うことで、(5)の範囲となるように制御を行うようにする(図3のA10に係る処理)。また、(6)の範囲における運転となれば、目標中間温度T1mの補正により絶対湿度を下げながら温度を下げるようにして制御を行うようにする(図3のA11~A13に係る処理)。
 以上のように、実施の形態1の空気調和装置の利用側ユニットでは、利用側蒸発器ユニット1において、目標温度Tmのときに目標湿度hmになる絶対湿度まで除湿を行うように制御した後、吹出温度16の温度を表す温度検知器8の検知に係る温度T2が、所定の範囲を越えて目標温度Tmより高いと判定すると、目標温度Tmと温度T2との差ΔT2に基づいて補正値Xを算出し、補正値Xにより補正した目標中間温度T1mに基づいて利用側凝縮器4の一次側における吹出空気15の温度を低くするようにしたので、例えば利用側凝縮器4の最小凝縮能力が高くても吹出空気16の温度、湿度を目標温度、目標湿度に近づけることができる。そのため、空気調和に係る快適性を追求することができる。
 また、再熱を行う利用側凝縮器ユニット18は、利用側凝縮器4において冷媒等との熱交換により吹出空気15を加熱するようにしたものである。そのため、電気加熱器等による再熱を行う必要がなく、電気加熱器が高温となることで火災等の事故を防止することができる。したがって、利用側ユニットに対する信頼性が高くなり、耐火構造の装置にする必要がないため、構造を簡単にし、装置を小型化することができる。
実施の形態2.
 上述した実施の形態1の利用側ユニットは、吹出空気16の温度T2と目標温度Tmとの差ΔT2に基づいて、吹出空気15の目標中間温度T1mを補正する。この補正により、吹出空気15の温度を下げ、吹出空気16の温度を調整するようにしたものである。そのため、湿度に比して温度を優先させて目標に近づけるようにしている。ここで、吹出空気15の温度を下げるために吸込空気14を冷却するが、吹出空気15の目標中間温度T1m(目標露点温度Tdwm)を下げると湿度が下がりすぎてしまうことがある(図4の(2)の範囲となる)。湿度が下がると例えば静電気の発生回数が多くなる。このため、空気の温度が制御されていない場合よりも快適性を損なう場合がある。
 図5は相対湿度と一日で報告された静電気によるショック回数を示したグラフである。図5に示すように、例えば、湿度が35%よりも低い場合に、静電気によるショック回数が急激に増加する。このため、湿度を35%以上に保つようにすれば静電気によるショック回数を減少させることが可能である。
 そこで、実施の形態2では、目標中間温度T1mの補正により湿度が下がりすぎることを防止することにより、静電気のショック回数を減らし、より快適性の高い空気調和装置を提供するようにしたものである。ここで、本発明の実施形態2に係る利用側ユニットの構成は実施の形態1と同じ構成となっているため、利用側ユニットの機器等の説明については図1を用いて行う。
 図6は実施の形態2に係る蒸発側制御装置5(凝縮側制御装置6)を中心とする空調処理の制御に係るフローチャートを表す図である。ステップA1~A12における処理については実施の形態1と同様である。ここで、本実施の形態では、湿度の下限値を表す下限湿度hmin をあらかじめ設定しておくものとする。
 蒸発側制御装置5は、ステップA12で補正値Xにより補正した目標中間温度T1mと、目標温度Tmとに基づいて、相対湿度htempに換算する(A20)。そして、相対湿度htempと下限湿度hmin とを比較し、相対湿度htempが下限湿度hmin 以上であるかどうかを判定する(A21)。相対湿度htempが下限湿度hmin 以上であると判定すれば、補正した目標中間温度T1mに基づいて制御を行うようにする。利用側凝縮器ユニット18については状態を保持させる制御を行うようにする(A13)。
 一方、相対湿度htempが下限湿度hmin 以上でない(相対湿度htempが下限湿度hmin より小さい)と判定すれば、目標温度Tmと下限湿度hmin とに基づいて、目標中間温度T1mを決定し(A22)、制御を行うようにする(A13)。
 ここで、上述した下限湿度hmin の設定に関しては、例えば利用者がリモコン17から任意の数値を入力することで設定できるようにしてもよい。また、リモコン17等に設けたスイッチを切り替えることで設定することが可能であってもよい。
 以上のように、実施の形態2の空気調和装置の利用側ユニットでは、下限湿度hmin を設定できるようにし、目標中間温度T1mを補正すると吹出空気16の湿度が下限湿度hmin より低くなるものと判定すると、下限湿度hmin に基づく目標中間温度T1mを決定するようにしたので、吹出空気16の湿度が下限湿度hmin より低くなることがない。そのため、例えば静電気の発生を抑えることができ、空調等対象空間における快適性を追求することができる。
実施の形態3.
 図7は実施の形態3に係る空気調和装置の構成例を表す図である。図7の空気調和装置は、熱源側ユニット(室外機)100と実施の形態1及び2において説明した利用側ユニット(室内機)200とを備える。そして、これらが冷媒配管で連結され、冷媒回路を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。
 熱源側ユニット100は、本実施の形態においては、圧縮機101、油分離器102、熱源側凝縮器103、熱源側ファン104、アキュムレータ105および熱源側制御装置111の各装置(手段)で構成する。
 圧縮機101は、冷媒を吸入して、その冷媒を圧縮して高温・高圧のガス状態にして冷媒配管に流す。圧縮機101の運転制御については、例えばインバータ回路(図示せず)等を圧縮機101に備え、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものとする。
 また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油を分離させるものである。分離された潤滑油は圧縮機101に戻される。また、熱源側凝縮器103は、冷媒と外気との熱交換を行う。圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側凝縮器103には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン104が設けられている。熱源側ファン104もインバータ回路(図示せず)を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。
 アキュムレータ105は例えば液体の余剰冷媒を溜めておく手段である。熱源側制御装置111は、例えばマイクロコンピュータ等からなる。上述した蒸発側制御装置5(凝縮側制御装置6)と有線または無線通信することができ、例えば、空気調和装置内の各種検知手段(センサ)の検知に係る温度、湿度等に基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、空気調和装置に係る各手段を制御して空気調和装置全体の動作制御を行う。
 一方、図7の利用側ユニット200では、配管12、13について、冷媒の流れに対して配管13が上流側となるように直列に配管接続しているものとする。そのため、熱源側凝縮器103だけでなく利用側凝縮器4においてさらに凝縮された冷媒が利用側蒸発器3に流入することになる。
 次に空気調和装置の動作について、冷媒回路における冷媒の循環に基づいて説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、熱源側凝縮器103内を通過することで凝縮し、液冷媒(又は気液二相冷媒)となって熱源側ユニット100を流出する。液配管400を通って利用側ユニット200に流入した冷媒は、凝縮側調整弁11及び利用側凝縮器4を通過して吹出空気15を加熱させ、また、蒸発側調整弁10及び利用側蒸発器3を通過して吸込空気14を冷却、除湿させる。利用側蒸発器3を通過した冷媒は蒸発して流出する。そして、ガス配管300を通って熱源側ユニット100に流入し、圧縮機101に吸入され、再度加圧され吐出することで循環する。
 ここで、圧縮機101から吐出する冷媒量を調節することで、利用側蒸発器3及び利用側凝縮器4に流れる冷媒量を変化させ、利用側蒸発器3の蒸発能力、利用側凝縮器4の凝縮能力を変化させるようにしてもよい。これにより、吹出空気15、吹出空気16の温度、湿度を調節することができる。
 以上のように実施の形態3の空気調和装置によれば、上述の実施の形態1、2で説明した利用側ユニット200と、圧縮機101、熱源側凝縮器103を有する熱源側ユニット100とをガス配管300、液配管400により配管接続して冷媒回路を構成する。そして、配管12、13により利用側蒸発器ユニット1及び利用側凝縮器ユニット18に冷媒が流れるようにする。このため、利用側蒸発器ユニット1による冷却、除湿によって、本来、熱源側ユニット100の熱源側凝縮器103が廃熱する熱量を、利用側凝縮器ユニット18の利用側凝縮器4において用いることで、吹出空気15の再熱(加熱)を行うことができ、省エネルギー化を図ることができる。
実施の形態4.
 上述の実施の形態1、2では、吹出空気16の温度、湿度を目標温度、目標湿度に制御する場合について述べたが、例えば、湿度は固定し、単に吹出空気15、16の温度を目標温度に制御するような場合にも利用することができる。
 また、上述の実施の形態1、2では、利用側蒸発器3及び利用側凝縮器4を有し、冷媒等の熱搬送媒体との熱交換により、空気の冷却(除湿)及び再熱を行って空調等対象空間に送り出すようにした。例えば空気の冷却(除湿)及び再熱を別の冷却手段、加熱手段を用いて行うようにしてもよい。
実施の形態5.
 上述の実施の形態3では、熱源側ユニット100の熱交換器である熱源側凝縮器103は凝縮機能を有するものであるが、これに限定するものではない。例えば、蒸発機能を有する蒸発器としてもよい。また、例えば四方弁等を設け、流入する冷媒によって、蒸発、凝縮のいずれかを行えるようにしてもよい。これらの場合には、例えば利用側ユニット200においても、図7とは異なる配管接続に変更する、切り換えを行えるようにする等して、利用側ユニット200内における冷媒の流れを変更しなければならない
 また、実施の形態3では、利用側蒸発器3と利用側凝縮器4とを直列に配管接続して、同一の冷媒回路内に構成しているが、それぞれ異なる冷媒回路としてもよい。

Claims (6)

  1.  空調対象空間に送り出す空気を熱交換により冷却して凝結させた水分を回収して除湿を行う蒸発器と、
     該蒸発器を通過した空気を熱交換により加熱して前記空調等対象空間に送り出すための凝縮器と、
     前記空調等対象空間に送り出す空気の乾球温度を検知するための第一の温度検知器と、
     目標乾球温度及び目標相対湿度に基づいて前記蒸発器を通過した空気の乾球温度目標となる目標中間乾球温度を決定し、また、前記第一の温度検知器の検知に係る乾球温度と前記目標乾球温度との差が所定値より大きいと判定すると、前記第一の温度検知器の検知に係る乾球温度と前記目標乾球温度との差に基づいて補正値を算出し、該補正値に基づいて前記目標中間乾球温度を補正する処理を行う制御装置と
    を備えることを特徴とする利用側ユニット。
  2.  前記蒸発器を通過する空気との熱交換を行う熱量搬送媒体の流量を調節するための蒸発側調整弁と、
     前記凝縮器を通過する空気との熱交換を行う熱量搬送媒体の流量を調節するための凝縮側調整弁と、
     前記蒸発器を通過した空気の乾球温度を検知する第二の温度検知器とをさらに備え、
     前記制御装置は、前記第二の温度検知器の検知に係る乾球温度が前記目標中間乾球温度となるように前記蒸発側調整弁の開度を制御し、前記第一の温度検知器の検知に係る乾球温度が前記目標乾球温度となるように前記凝縮側調整弁の開度を制御することを特徴とする請求項1に記載の利用側ユニット。
  3.  乾球温度及び/又は相対湿度を設定するための入力手段をさらに備え、
     前記制御装置は、設定に係る乾球温度及び/又は相対湿度に基づいて、前記目標乾球温度及び/又は前記目標相対湿度を決定することを特徴とする請求項1又は2に記載の利用側ユニット。
  4.  前記空調等対象空間に送り出す空気の相対湿度に対する下限値をデータとして記憶する記憶装置をさらに備え、
     前記制御装置は、算出した補正値により補正した前記目標中間乾球温度における空気の相対湿度が前記下限値よりも低くなるものと判断すると、前記下限値に基づく目標中間乾球温度により補正する処理を行うことを特徴とする請求項1~3のいずれかに記載の利用側ユニット。
  5.  請求項1~4に記載の利用側ユニットと、
     熱量搬送媒体を加圧する圧縮機及び熱交換により前記熱量搬送媒体を凝縮させる熱源側熱交換器を有する熱源側ユニットと
    を配管接続して前記熱量搬送媒体を循環させる冷媒回路を構成する空気調和装置。
  6.  前記圧縮機からの前記熱量搬送媒体の吐出量を制御して前記蒸発器及び/又は前記凝縮器を通過する前記熱量搬送媒体の流量を調節することを特徴とする請求項5に記載の空気調和装置。
PCT/JP2009/052947 2009-02-20 2009-02-20 利用側ユニット及び空気調和装置 WO2010095238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980156860.1A CN102317699B (zh) 2009-02-20 2009-02-20 使用侧单元及空气调节装置
US13/142,873 US9562700B2 (en) 2009-02-20 2009-02-20 Use-side unit and air conditioner
EP09840345.4A EP2400234B1 (en) 2009-02-20 2009-02-20 Use-side unit and air conditioner
JP2011500409A JP4975187B2 (ja) 2009-02-20 2009-02-20 利用側ユニット及び空気調和装置
PCT/JP2009/052947 WO2010095238A1 (ja) 2009-02-20 2009-02-20 利用側ユニット及び空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052947 WO2010095238A1 (ja) 2009-02-20 2009-02-20 利用側ユニット及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2010095238A1 true WO2010095238A1 (ja) 2010-08-26

Family

ID=42633539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052947 WO2010095238A1 (ja) 2009-02-20 2009-02-20 利用側ユニット及び空気調和装置

Country Status (5)

Country Link
US (1) US9562700B2 (ja)
EP (1) EP2400234B1 (ja)
JP (1) JP4975187B2 (ja)
CN (1) CN102317699B (ja)
WO (1) WO2010095238A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175725A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 空調システム
JP2013242119A (ja) * 2012-05-23 2013-12-05 Parker Engineering Kk 空調装置
WO2014132433A1 (ja) * 2013-03-01 2014-09-04 三菱電機株式会社 空気調和装置
WO2023024636A1 (zh) * 2021-08-25 2023-03-02 青岛海尔空调电子有限公司 一种烘干机组控制方法及烘干系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120303165A1 (en) * 2011-05-23 2012-11-29 Lennox Industries Inc. Control system and method for both energy saving and comfort control in an air conditioning system
US10337777B2 (en) * 2012-07-20 2019-07-02 Lennox Industries, Inc. Controlling air conditioning systems
EP2932342B1 (en) 2012-12-12 2021-05-19 S. A. Armstrong Limited Co-ordinated sensorless control system
KR102057859B1 (ko) * 2013-01-25 2019-12-20 엘지전자 주식회사 의류처리장치
GB201313444D0 (en) * 2013-07-29 2013-09-11 Ambi Labs Ltd Energy efficient indoor climate controller
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
CN105588251B (zh) * 2014-10-20 2018-10-02 株式会社理光 控制空气调节系统的方法和装置
US10962243B2 (en) 2014-12-22 2021-03-30 Mitsubishi Electric Us, Inc. Air conditioning system with dehumidification mode
JP5886463B1 (ja) * 2015-08-07 2016-03-16 伸和コントロールズ株式会社 空気調和装置及びその運転方法
WO2017081820A1 (ja) * 2015-11-13 2017-05-18 三菱電機株式会社 空気調和システムおよび空気調和システムの制御方法
DE102015016330A1 (de) * 2015-12-17 2017-06-22 Eisenmann Se Zuluftanlage
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
CN108302656A (zh) * 2016-08-31 2018-07-20 创升科技股份有限公司 适温式除湿装置
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US11339986B2 (en) * 2017-12-12 2022-05-24 Mitsubishi Electric Corporation Remote controller and air-conditioning apparatus
US10935260B2 (en) * 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11035585B2 (en) * 2018-05-31 2021-06-15 Carrier Corporation Dehumidification control at part load
JP7070129B2 (ja) * 2018-06-18 2022-05-18 株式会社島津製作所 サンプル温調機能を備えた装置
CN108954555A (zh) * 2018-08-17 2018-12-07 安徽新网讯科技发展有限公司 一种建筑智能化空气处理装置及其使用方法
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
CA3081986A1 (en) 2019-07-15 2021-01-15 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
CN110578998A (zh) * 2019-08-06 2019-12-17 武汉理工大学 一种空调蒸发器蒸发压力的控制方法
CN113418248B (zh) * 2021-08-25 2021-11-12 徐州立卓智能科技有限公司 一种基于传感器的家用干燥机
IT202100027206A1 (it) * 2021-10-22 2023-04-22 Mitsubishi Electric Hydronics & It Cooling Systems S P A Metodo di controllo della temperatura e dell'umidita' di un flusso di aria condizionata e deumidificata in un impianto di condizionamento e impianto di condizionamento che utilizza il metodo

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223316A (ja) * 1992-02-12 1993-08-31 Mitsubishi Electric Corp 除湿装置
JPH085131A (ja) * 1994-06-17 1996-01-12 Komatsu Ltd 恒温恒湿空気の供給方法及びその装置
JP2001091097A (ja) 1999-09-20 2001-04-06 Fujitsu General Ltd 空気調和機
JP2004132572A (ja) * 2002-10-09 2004-04-30 Daikin Ind Ltd 空気調和機
JP2006118822A (ja) * 2004-10-25 2006-05-11 Samsung Electronics Co Ltd 空気湿度検出方法、空気湿度検出装置、及び空気調和機

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089667A (en) * 1976-10-27 1978-05-16 Sun-Econ, Inc. Heat extraction or reclamation apparatus for refrigerating and air conditioning systems
US4182131A (en) * 1978-11-27 1980-01-08 Consoli Ronald P High efficiency air conditioner
CA1101211A (en) * 1979-11-28 1981-05-19 Reinhold Kittler Swimming pool dehumidifier
US4483154A (en) * 1980-04-14 1984-11-20 Smeal William J Refrigerated air conditioning system using diaphragm pump
US4373346A (en) * 1981-03-25 1983-02-15 Hebert Thomas H Precool/subcool system and condenser therefor
US4377074A (en) * 1981-06-29 1983-03-22 Kaman Sciences Corporation Economizer refrigeration cycle space heating and cooling system and process
DK534783D0 (da) * 1983-11-23 1983-11-23 Christen Kjeldahl Bak Metode til optimering af affugtningsanlaeg
JPS63259707A (ja) * 1987-04-16 1988-10-26 Tabai Esupetsuku Kk 環境試験装置における恒温恒湿を得る方法及び装置
US5058388A (en) * 1989-08-30 1991-10-22 Allan Shaw Method and means of air conditioning
US5509272A (en) * 1991-03-08 1996-04-23 Hyde; Robert E. Apparatus for dehumidifying air in an air-conditioned environment with climate control system
US5150580A (en) * 1991-03-08 1992-09-29 Hyde Robert E Liquid pressure amplification with superheat suppression
US5193352A (en) * 1991-05-03 1993-03-16 Amsted Industries, Inc. Air pre-cooler method and apparatus
US5493871A (en) * 1991-11-12 1996-02-27 Eiermann; Kenneth L. Method and apparatus for latent heat extraction
US5228302A (en) * 1991-11-12 1993-07-20 Eiermann Kenneth L Method and apparatus for latent heat extraction
US5181552A (en) * 1991-11-12 1993-01-26 Eiermann Kenneth L Method and apparatus for latent heat extraction
US5802862A (en) * 1991-11-12 1998-09-08 Eiermann; Kenneth L. Method and apparatus for latent heat extraction with cooling coil freeze protection and complete recovery of heat of rejection in Dx systems
US5168754A (en) * 1992-01-02 1992-12-08 Carrier Corporation Method and apparatus for detecting room humidity
US5666813A (en) * 1992-11-17 1997-09-16 Brune; Paul C. Air conditioning system with reheater
US5564281A (en) * 1993-01-08 1996-10-15 Engelhard/Icc Method of operating hybrid air-conditioning system with fast condensing start-up
US5649428A (en) * 1993-01-08 1997-07-22 Engelhard/Icc Hybrid air-conditioning system with improved recovery evaporator and subcool condenser coils
US5551245A (en) * 1995-01-25 1996-09-03 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
JPH06241534A (ja) 1993-02-12 1994-08-30 Mitsubishi Heavy Ind Ltd 空気調和機
US5651264A (en) * 1993-06-29 1997-07-29 Siemens Electric Limited Flexible process controller
US5309725A (en) * 1993-07-06 1994-05-10 Cayce James L System and method for high-efficiency air cooling and dehumidification
US5390505A (en) * 1993-07-23 1995-02-21 Baltimore Aircoil Company, Inc. Indirect contact chiller air-precooler method and apparatus
US5595000A (en) * 1995-01-17 1997-01-21 U.S. Natural Resources, Inc. No-vent dry kiln
US5517828A (en) * 1995-01-25 1996-05-21 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
US5775580A (en) * 1995-07-20 1998-07-07 Sizemore; Timothy J. Evaporative cooling system
US5622057A (en) * 1995-08-30 1997-04-22 Carrier Corporation High latent refrigerant control circuit for air conditioning system
US5675979A (en) * 1996-03-01 1997-10-14 Honeywell Inc. Enthalpy based thermal comfort controller
US6131653A (en) * 1996-03-08 2000-10-17 Larsson; Donald E. Method and apparatus for dehumidifying and conditioning air
US5737934A (en) * 1996-06-12 1998-04-14 Honeywell Inc. Thermal comfort controller
JP2968232B2 (ja) * 1997-04-11 1999-10-25 株式会社荏原製作所 空調システム及びその運転方法
US6070110A (en) * 1997-06-23 2000-05-30 Carrier Corporation Humidity control thermostat and method for an air conditioning system
AUPO783697A0 (en) * 1997-07-10 1997-07-31 Shaw, Allan A low energy high performance variable coolant temperature air conditioning system
US6012296A (en) * 1997-08-28 2000-01-11 Honeywell Inc. Auctioneering temperature and humidity controller with reheat
JP2968241B2 (ja) * 1997-10-24 1999-10-25 株式会社荏原製作所 除湿空調システム及びその運転方法
JP3334660B2 (ja) * 1998-05-19 2002-10-15 三菱電機株式会社 冷凍サイクルの制御装置およびその制御方法
US6442951B1 (en) * 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
US6170271B1 (en) * 1998-07-17 2001-01-09 American Standard Inc. Sizing and control of fresh air dehumidification unit
US6129285A (en) * 1998-08-11 2000-10-10 Schafka; Mark Louis System and method for air humidification
US20010019120A1 (en) * 1999-06-09 2001-09-06 Nicolas E. Schnur Method of improving performance of refrigerant systems
US6427454B1 (en) * 2000-02-05 2002-08-06 Michael K. West Air conditioner and controller for active dehumidification while using ambient air to prevent overcooling
US7139564B2 (en) * 2000-08-08 2006-11-21 Hebert Thomas H Wireless communication device for field personnel
US6711907B2 (en) * 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
JP3253021B1 (ja) * 2001-03-02 2002-02-04 株式会社荏原製作所 ヒートポンプ及び除湿空調装置
US6694757B1 (en) * 2002-02-21 2004-02-24 Thomas J. Backman Multiple stage dehumidification and cooling system
US6973793B2 (en) * 2002-07-08 2005-12-13 Field Diagnostic Services, Inc. Estimating evaporator airflow in vapor compression cycle cooling equipment
US7191607B2 (en) * 2002-10-23 2007-03-20 Morton Curtis Air conditioning system with moisture control
WO2004076948A1 (en) * 2003-02-28 2004-09-10 Delta S Technologies Limited Improved efficiency dehumidifier drier with reversible airflow and improved control
NZ526648A (ja) * 2003-06-24 2006-03-31 Delta S Technologies Ltd
CN1254648C (zh) * 2003-12-05 2006-05-03 清华大学 一种并联型热泵调温调湿机组
US7606683B2 (en) * 2004-01-27 2009-10-20 Emerson Climate Technologies, Inc. Cooling system design simulator
US20050166618A1 (en) * 2004-01-30 2005-08-04 Bussjager Ruddy C. Two phase or subcooling reheat system
US7043930B2 (en) * 2004-01-30 2006-05-16 Carrier Corporation Two phase or subcooling reheat system
US20060137369A1 (en) * 2004-12-27 2006-06-29 Carrier Corporation Single sensor three-step refrigerant charge indicator
US7908126B2 (en) * 2005-04-28 2011-03-15 Emerson Climate Technologies, Inc. Cooling system design simulator
CN1793747A (zh) * 2005-12-31 2006-06-28 东莞市广大制冷有限公司 调温型除湿机的控制方法
US20110120693A1 (en) * 2006-07-14 2011-05-26 Az Evap, Llc Integrated evaporative cooler and flat plate air to air heat exchanger
US9347676B2 (en) * 2006-10-26 2016-05-24 Lennox Industries Inc. Enhanced dehumidification control with variable condenser reheat
US20080196425A1 (en) * 2006-11-14 2008-08-21 Temple Keith A Method for evaluating refrigeration cycle performance
US7874499B2 (en) * 2006-11-22 2011-01-25 Store-N-Stuff Llc System and method to control sensible and latent heat in a storage unit
US20080127661A1 (en) * 2006-12-04 2008-06-05 Mohinder Singh Bhatti Evaporatively cooled condenser
WO2008079829A2 (en) * 2006-12-22 2008-07-03 Duncan Scot M Optimized control system for cooling systems
WO2008084528A1 (ja) * 2007-01-10 2008-07-17 Mitsubishi Electric Corporation 冷凍装置
MX2009008097A (es) * 2007-02-01 2009-08-12 Fluor Tech Corp Vaporizador con aire ambiental.
JP5248488B2 (ja) * 2007-05-15 2013-07-31 エスペック株式会社 調湿装置、環境試験装置及び調温調湿装置
US20100170273A1 (en) * 2007-09-20 2010-07-08 Mitsubishi Electric Corporation Refrigerating and air conditioning apparatus
US7975495B2 (en) * 2008-11-06 2011-07-12 Trane International Inc. Control scheme for coordinating variable capacity components of a refrigerant system
US20120011865A1 (en) * 2009-03-27 2012-01-19 Set Ip Holdings, Llc Combined Water Extractor and Electricity Generator
US20100269521A1 (en) * 2009-04-28 2010-10-28 Steven Clay Moore Air-conditioning with dehumidification
GB201008825D0 (en) * 2010-05-26 2010-07-14 Bripco Bvba Data centre cooling system
US8689574B2 (en) * 2010-08-25 2014-04-08 Lennox Industries Inc. Dedicated dehumidifier and water heater
US8660702B2 (en) * 2010-09-29 2014-02-25 Online Energy Manager Llc Central cooling and circulation energy management control system
US9234667B2 (en) * 2010-12-02 2016-01-12 Mitsubishi Electric Corporation Dehumidifying system
CA2736085C (en) * 2011-03-28 2013-05-14 Fakieh Research & Development Center Combined air conditioning and water generating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223316A (ja) * 1992-02-12 1993-08-31 Mitsubishi Electric Corp 除湿装置
JPH085131A (ja) * 1994-06-17 1996-01-12 Komatsu Ltd 恒温恒湿空気の供給方法及びその装置
JP2001091097A (ja) 1999-09-20 2001-04-06 Fujitsu General Ltd 空気調和機
JP2004132572A (ja) * 2002-10-09 2004-04-30 Daikin Ind Ltd 空気調和機
JP2006118822A (ja) * 2004-10-25 2006-05-11 Samsung Electronics Co Ltd 空気湿度検出方法、空気湿度検出装置、及び空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2400234A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175725A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 空調システム
JP2013242087A (ja) * 2012-05-21 2013-12-05 Daikin Industries Ltd 空調システム
JP2013242119A (ja) * 2012-05-23 2013-12-05 Parker Engineering Kk 空調装置
WO2014132433A1 (ja) * 2013-03-01 2014-09-04 三菱電機株式会社 空気調和装置
WO2023024636A1 (zh) * 2021-08-25 2023-03-02 青岛海尔空调电子有限公司 一种烘干机组控制方法及烘干系统

Also Published As

Publication number Publication date
CN102317699A (zh) 2012-01-11
JPWO2010095238A1 (ja) 2012-08-16
EP2400234A4 (en) 2017-08-30
CN102317699B (zh) 2014-11-12
JP4975187B2 (ja) 2012-07-11
EP2400234B1 (en) 2018-05-02
US20110276185A1 (en) 2011-11-10
EP2400234A1 (en) 2011-12-28
US9562700B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP4975187B2 (ja) 利用側ユニット及び空気調和装置
CN109196287B (zh) 空气调节系统
EP3067635B1 (en) Air conditioning device
US8572995B2 (en) Refrigeration system
US8522568B2 (en) Refrigeration system
US8020395B2 (en) Air conditioning apparatus
JP2008190759A (ja) 空気調和装置
JP6538975B2 (ja) 空気調和システム
JP4258117B2 (ja) 空気調和機
WO2019155614A1 (ja) 空気調和装置、空調システム及び熱交換ユニット
JP5634248B2 (ja) 空気調和装置
JP6049324B2 (ja) 空気調和機
US20240230137A9 (en) Air-conditioning apparatus
JP6707698B2 (ja) 空気調和システムの制御装置および制御方法ならびに空気調和システム
JP4483141B2 (ja) 空気調和機
CN113574328A (zh) 空调机和空调系统
WO2019043941A1 (ja) 空気調和装置
EP4390260A1 (en) Air conditioning device
CN118613684A (zh) 换气装置
JP2006300401A (ja) 空気調和装置
WO2016002052A1 (ja) 冷凍空調装置
CN115127221A (zh) 恒温恒湿空调系统及其控制方法
JP2024119497A (ja) 空気調和装置
CN113639443A (zh) 空调器及其控制方法
CN112136007A (zh) 空气调节机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156860.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500409

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13142873

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009840345

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE