WO2010090069A1 - Egr device and engine device with same - Google Patents

Egr device and engine device with same Download PDF

Info

Publication number
WO2010090069A1
WO2010090069A1 PCT/JP2010/050544 JP2010050544W WO2010090069A1 WO 2010090069 A1 WO2010090069 A1 WO 2010090069A1 JP 2010050544 W JP2010050544 W JP 2010050544W WO 2010090069 A1 WO2010090069 A1 WO 2010090069A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
engine
intake
gas
intake manifold
Prior art date
Application number
PCT/JP2010/050544
Other languages
French (fr)
Japanese (ja)
Inventor
恭志 小野寺
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009024736A external-priority patent/JP2010180768A/en
Priority claimed from JP2009025643A external-priority patent/JP2010180793A/en
Priority claimed from JP2009025644A external-priority patent/JP5328022B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2010090069A1 publication Critical patent/WO2010090069A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/16Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system with EGR valves located at or near the connection to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage

Definitions

  • the present invention relates to an EGR device and an engine device equipped with the EGR device. Specifically, an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas;
  • the present invention relates to an engine device mounted on a work vehicle provided with the above.
  • Patent Document 1 An example of this type of EGR apparatus is disclosed in Patent Document 1.
  • a reflux pipe branched from an exhaust manifold of a diesel engine is connected to an intake manifold.
  • EGR gas exhaust gas
  • the mixed gas is introduced into each cylinder (inside the intake stroke) of the diesel engine.
  • an EGR valve for adjusting the EGR rate is provided in the reflux line.
  • the opening degree of the EGR valve according to the engine driving state such as the engine speed and the load, the supply amount of the EGR gas is adjusted so as to obtain an optimum EGR rate.
  • the EGR rate between the cylinders may be uneven. That is, when the return pipe is directly connected to the intake manifold, EGR gas and fresh air are mixed in the intake manifold. Then, depending on the shape of the intake manifold, the flow of EGR gas is uneven, and the mixed state with fresh air becomes uneven. If the mixed gas with unevenness is distributed to the cylinders as it is, the EGR gas is not sent evenly to the cylinders, and the EGR rate between the cylinders becomes non-uniform. If the EGR rate between the cylinders becomes uneven, a cylinder with a high EGR rate falls short of fresh air. When the EGR rate in the cylinder exceeds a predetermined value, the combustion state of the diesel engine is abruptly deteriorated and black smoke (smoke) is generated.
  • diesel engines are versatile and are used in various fields such as agricultural machines, construction machinery, and ships.
  • the installation space for diesel engines varies depending on the target vehicle.
  • the present invention aims to improve the current situation as described above.
  • the present invention includes an EGR device and an engine device equipped with the EGR device.
  • the invention according to claim 1 is an EGR device that recirculates a part of exhaust gas discharged from the exhaust manifold as EGR gas to the intake manifold in the EGR device, wherein the intake manifold and an intake throttle member for introducing fresh air are provided. Are connected via a relay line, and the outlet side of the reflux line extending from the exhaust manifold is connected to the relay line.
  • the outlet side of the reflux pipe is connected to the relay pipe via an EGR valve member that adjusts the supply amount of the EGR gas.
  • the inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay conduit, and the EGR valve member are exposed on the intake manifold, and the relay conduit and the EGR valve member Are arranged side by side.
  • a plurality of temperature detection means for calculating an EGR rate of the mixed gas supplied to the intake manifold is provided in the relay pipe. It is.
  • the invention of claim 5 is an engine device comprising an engine having an intake manifold and an exhaust manifold, and the EGR device according to any one of claims 1 to 4.
  • the intake throttle member is positioned closer to the flywheel housing of the engine, and the relay conduit is connected to the output shaft of the engine in a plan view. It is arrange
  • the inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay pipe line, and the EGR valve member are located on the intake manifold. The cooling air from the cooling fan provided in the engine is hit.
  • the EGR device is an EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas, and relays between the intake manifold and an intake throttle member for introducing fresh air Since the outlet side of the reflux line extending from the exhaust manifold is connected to the relay pipe, the fresh air and the EGR gas are mixed before being sent to the intake manifold. Will be. For this reason, the EGR gas can be widely dispersed in the mixed gas, and there is an effect that the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold.
  • the direction of the intake system upstream of the intake manifold can be selected / changed without changing the structure of the relay conduit. Therefore, variations in the layout of the intake system can be easily increased.
  • the intake manifold and an intake throttle member for introducing fresh air are connected via a relay line. Since the outlet side of the reflux pipe extending from the exhaust manifold is connected to the relay pipe, the fresh air and the EGR gas are mixed before being sent to the intake manifold.
  • the EGR gas can be widely and uniformly dispersed in the mixed gas, and the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold, and the EGR gas is unevenly mixed in the mixed gas. Problems with mixing can be reduced.
  • the outlet side of the reflux pipe is connected to the relay pipe via an EGR valve member that adjusts the supply amount of the EGR gas, and the intake throttle member and the relay pipe Since the passage and the EGR valve member are unitized, the intake throttle member, the relay pipe line, and the EGR valve member can be shared as a gas mixing unit even between different models. Therefore, each model equipped with the same type engine can be handled with a single gas mixing unit configuration, so that the EGR rate for each model equipped with the same type engine is suppressed from varying. This eliminates the trouble of confirming the test and applying for shipping. As a result, the manufacturing cost can be suppressed. It also becomes possible to reduce the assembly adjustment man-hours for performance matching between the EGR device and the engine.
  • the outlet side of the reflux line is connected to the relay line via an EGR valve member that adjusts the supply amount of the EGR gas, while the inlet part of the intake manifold is
  • the intake throttle member, the relay pipe line, and the EGR valve member are exposed on the intake manifold, and the relay pipe line and the EGR valve member are arranged side by side. Therefore, the influence of the gas mixing unit formed by combining the intake throttle member, the relay pipe line, and the EGR valve member can be reduced with respect to the total height of the engine on which the EGR device is mounted. Therefore, even if the engine incorporates the EGR device (gas mixing unit), the overall height can be kept as low as possible, and the EGR device (gas mixing unit) can be compactly arranged with respect to the engine.
  • a plurality of temperature detecting means for calculating the EGR rate of the mixed gas supplied to the intake manifold is provided in the relay pipe line, fresh air and EGR gas are: It will be mixed before being sent to the intake manifold. For this reason, EGR gas can be widely dispersed in the mixed gas, and uneven mixing of EGR gas in the mixed gas can be reduced before being sent to the intake manifold.
  • a plurality of temperature detecting means are concentrated on the relay pipe. For this reason, the electrical system (the intake throttle member, the EGR valve member, and the temperature detecting means) of the EGR device around the intake manifold is compactly arranged, and the EGR device can be arranged compactly with respect to the engine. In addition, the wiring relation of the electrical system can be consolidated.
  • the EGR device according to any one of claims 1 to 4 is provided in an engine having an intake manifold and an exhaust manifold, a mixed gas with less unevenness is distributed to each cylinder of the engine.
  • variation in the EGR rate between the cylinders can be suppressed.
  • the amount of NOx can be efficiently reduced while suppressing the generation of black smoke and keeping the combustion state of the engine in good condition.
  • the inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay pipe line, and the EGR valve member are located on the intake manifold and are connected to the engine. Since the cooling air from the installed cooling fan is hit, the temperature of the gas mixing unit by cooling air, and by extension, the temperature of the mixed gas inside it can be suppressed, and the effect of reducing the NOx amount by the mixed gas is appropriate. There is an effect that it is easy to maintain a stable state.
  • FIG. 2 is an exploded front sectional view of FIG. 1. It is a front view of a diesel engine. It is a rear view of a diesel engine. It is a top view of a diesel engine. It is a left view of a diesel engine.
  • FIG. 7 is a plan view of a diesel engine in a case where the mounting direction of the EGR main body case is reversed by 180 ° from the state of FIG. 6.
  • FIG. 7 is a plan view of a diesel engine when an EGR main body case is attached by 90 ° rotation from the state shown in FIG. 6. It is a front view of the diesel engine when the intake direction of the intake throttle member is set to the vertical direction.
  • the exhaust gas inflow side is simply referred to as the left side
  • the exhaust gas discharge side is simply referred to as the right side.
  • a continuous regeneration type diesel particulate filter 1 (hereinafter referred to as DPF) is provided as an exhaust gas purification device.
  • the DPF 1 is for physically collecting particulate matter (PM) and the like in the exhaust gas.
  • the DPF 1 of the embodiment includes a diesel oxidation catalyst 2 such as platinum that generates nitrogen dioxide (NO2), and a soot filter 3 having a honeycomb structure that continuously oxidizes and removes the collected particulate matter (PM) at a relatively low temperature.
  • the DPF 1 is configured so that the soot filter 3 is continuously regenerated.
  • the DPF 1 can reduce carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas in addition to the removal of particulate matter (PM) in the exhaust gas.
  • a diesel oxidation catalyst 2 as a gas purification filter for purifying exhaust gas discharged from a diesel engine 70 described later is provided in a substantially cylindrical catalyst inner case 4 made of a heat-resistant metal material.
  • the catalyst inner case 4 is made of a heat resistant metal material and is provided in a substantially cylindrical catalyst outer case 5. That is, the catalyst inner case 4 is fitted on the outside of the diesel oxidation catalyst 2 via the mat-shaped ceramic fiber catalyst heat insulating material 6. Further, the catalyst outer case 5 is fitted on the outer side of the catalyst inner case 4 via a thin plate support 7 having an I-shaped end face. Note that the diesel oxidation catalyst 2 is protected by the catalyst heat insulating material 6. The stress (deformation force) of the catalyst outer case 5 transmitted to the catalyst inner case 4 is reduced by the thin plate support 7.
  • a disc-shaped left lid 8 is fixed to the left end of the catalyst inner case 4 and the catalyst outer case 5 by welding.
  • a sensor connection plug 10 is fixed to the left lid body 8 through a seat plate body 9.
  • the left end face 2a of the diesel oxidation catalyst 2 and the left lid 8 are opposed to each other with a predetermined distance L1 for gas inflow space.
  • An exhaust gas inflow space 11 is formed between the left end face 2 a of the diesel oxidation catalyst 2 and the left lid 8.
  • the sensor connection plug 10 is connected to an unillustrated inlet side exhaust gas pressure sensor, an inlet side exhaust gas temperature sensor, and the like.
  • an elliptical exhaust gas inlet 12 is opened at the left end of the catalyst inner case 4 and the catalyst outer case 5 in which the exhaust gas inflow space 11 is formed.
  • the elliptical exhaust gas inlet 12 has a short diameter in the exhaust gas movement direction (center line direction of the cases 4 and 5) and a direction orthogonal to the exhaust gas movement direction (circumferential direction of the cases 4 and 5). It has a long diameter.
  • a closing ring body 15 is fixed between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 in a sandwiched manner. A gap between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 is closed by the closing ring body 15.
  • An exhaust ring 15 prevents the exhaust gas from flowing between the catalyst inner case 4 and the catalyst outer case 5.
  • an exhaust gas inlet pipe 16 is disposed on the outer surface of the catalyst outer case 5 in which the exhaust gas inlet 12 is formed.
  • An exhaust connection flange body 17 is welded to a true circular opening end portion 16 a on the small diameter side of the exhaust gas inlet pipe 16.
  • the exhaust connection flange body 17 is fastened to an exhaust throttle device 86 and an exhaust manifold 71 which will be described later via bolts 18.
  • a large circular opening end 16 b on the large diameter side of the exhaust gas inlet pipe 16 is welded to the outer surface of the catalyst outer case 5.
  • the exhaust gas inlet pipe 16 is formed in a divergent shape (a trumpet shape) from the small-diameter-side perfect circular opening end 16a toward the large-diameter-side perfect circular opening end 16b.
  • a large-diameter open end 16 b formed in a true circle is formed at the left end of the outer surface of the catalyst outer case 5, and an open edge 14 is formed by the exhaust gas inlet pipe 16. It is welded to cover it.
  • the exhaust gas inlet pipe 16 (large-diameter-side opening end portion 16b) is offset with respect to the elliptical exhaust gas inlet 12, and is arranged offset to the exhaust gas movement downstream side (right side of the catalyst outer case 5).
  • the elliptical exhaust gas inlet 12 is offset to the exhaust gas movement upstream side (the left side of the catalyst outer case 5) with respect to the exhaust gas inlet pipe 16 (large-diameter side opening end portion 16b).
  • the exhaust gas of the diesel engine 70 enters the exhaust gas inlet pipe 16 from the exhaust manifold 71, enters the exhaust gas inflow space 11 from the exhaust gas inlet pipe 16 through the exhaust gas inlet 12, and the diesel oxidation catalyst. 2 is supplied from the left end face 2a. Nitrogen dioxide (NO 2) is generated by the oxidation action of the diesel oxidation catalyst 2.
  • the catalyst outer case 5 is fixed to the cylinder head 72 of the diesel engine 70 via a support bracket (not shown).
  • the soot filter 3 as a gas purification filter for purifying exhaust gas discharged from the diesel engine 70 is provided in a substantially cylindrical filter inner case 20 made of a heat-resistant metal material.
  • the inner case 4 is made of a heat-resistant metal material and is provided in a substantially cylindrical filter outer case 21. That is, the filter inner case 20 is fitted on the outside of the soot filter 3 via the mat-shaped ceramic fiber filter heat insulating material 22. The soot filter 3 is protected by the filter heat insulating material 22.
  • the catalyst side flange 25 is welded to the end of the catalyst outer case 5 on the downstream side (right side) of the exhaust gas movement.
  • the filter-side flange 26 is welded to the middle of the filter inner case 20 in the exhaust gas movement direction and the end of the filter outer case 21 on the upstream side (left side) of the exhaust gas movement.
  • the catalyst side flange 25 and the filter side flange 26 are detachably fastened by bolts 27 and nuts 28.
  • the diameter of the cylindrical catalyst inner case 4 and the diameter of the cylindrical filter inner case 20 are substantially the same. Further, the diameter of the cylindrical catalyst outer case 5 and the diameter of the cylindrical filter outer case 21 are substantially the same.
  • the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 is shown in a state where the filter outer case 21 is connected to the catalyst outer case 5 via the catalyst side flange 25 and the filter side flange 26, the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 is shown.
  • the end portion on the upstream side (left side) of the exhaust gas movement of the filter inner case 20 faces the portion spaced apart by a fixed interval L2 for sensor attachment.
  • the sensor mounting space 29 is formed between the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 and the exhaust gas movement upstream side (left side) end of the filter inner case 20.
  • a sensor connection plug 50 is fixed to the catalyst outer case 5 at the sensor mounting space 29 position.
  • the sensor connection plug 50 is connected to a filter inlet side exhaust gas pressure sensor (not shown), a filter inlet side exhaust gas temperature sensor (thermistor), and the like.
  • the cylindrical length L4 of the catalyst outer case 5 in the exhaust gas movement direction is longer than the cylindrical length L3 of the catalyst inner case 4 in the exhaust gas movement direction.
  • the cylindrical length L6 of the filter outer case 21 in the exhaust gas movement direction is shorter than the cylindrical length L5 of the filter inner case 20 in the exhaust gas movement direction.
  • a length (L2 + L3 + L5) obtained by adding the constant interval L2 of the sensor mounting space 29, the cylindrical length L3 of the catalyst inner case 4 and the cylindrical length L5 of the filter inner case 20 is the cylindrical length L4 of the catalyst outer case 5.
  • nitrogen dioxide (NO2) generated by the oxidation action of the diesel oxidation catalyst 2 is supplied to the soot filter 3 from the left end face 3a.
  • the collected particulate matter (PM) in the exhaust gas of the diesel engine 70 collected by the soot filter 3 is continuously oxidized and removed at a relatively low temperature by nitrogen dioxide (NO2).
  • nitrogen dioxide (NO2) generated by the oxidation action of the diesel oxidation catalyst 2
  • the collected particulate matter (PM) in the exhaust gas of the diesel engine 70 collected by the soot filter 3 is continuously oxidized and removed at a relatively low temperature by nitrogen dioxide (NO2).
  • carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas of the diesel engine 70 are reduced.
  • the diesel oxidation catalyst 2 and the soot filter 3 are provided as gas purification filters for purifying the exhaust gas discharged from the engine.
  • urea reducing agent
  • NOx selective reduction catalyst NOx removal catalyst
  • NH3 ammonia
  • NOx removal catalyst a NOx selective reduction catalyst
  • ammonia removal catalyst is provided in the filter inner case 20 as a gas purification filter
  • nitrogen oxidation in the exhaust gas exhausted by the engine is performed.
  • the substance (NOx) is reduced and can be discharged as harmless nitrogen gas (N2).
  • the silencer 30 for attenuating the exhaust gas sound discharged from the diesel engine 70 includes a substantially cylindrical silencer inner case 31 made of a heat resistant metal material and a substantially cylindrical shape made of a heat resistant metal material.
  • a silencer inner case 31 is provided in the silencer outer case 32.
  • the diameter size of the cylindrical catalyst inner case 4, the diameter size of the cylindrical filter inner case 20, and the cylindrical sound deadening inner case 31 are substantially the same size. Further, the diameter of the cylindrical catalyst outer case 5, the diameter of the cylindrical filter outer case 21, and the cylindrical silencing outer case 32 are substantially the same.
  • An exhaust gas outlet pipe 34 is passed through the silencer inner case 31 and the silencer outer case 32. One end side of the exhaust gas outlet pipe 34 is closed by an outlet lid 35. A number of exhaust holes (not shown) are formed in the entire exhaust gas outlet pipe 34 inside the silencer inner case 31. The interior of the muffler inner case 31 communicates with the exhaust gas outlet pipe 34 through the numerous exhaust holes described above. A tail pipe 135 and an existing silencing member (not shown) to be described later are connected to the other end side of the exhaust gas outlet pipe 34.
  • the inside of the muffling inner case 31 is communicated between the muffling inner case 31 and the muffling outer case 32 through a number of muffler holes (not shown).
  • the space between the silencer inner case 31 and the silencer outer case 32 is closed by the right lid 33 or the like.
  • a ceramic fiber silencer (not shown) is filled between the silencer inner case 31 and the silencer outer case 32.
  • the end of the silencing inner case 31 on the upstream side (left side) of the exhaust gas movement is connected to the end of the silencing outer case 32 on the upstream side (left side) of the exhaust gas movement via a thin plate support (not shown). Yes.
  • exhaust gas is discharged from the muffler inner case 31 through the exhaust gas outlet pipe 34. Further, in the silencer inner case 31, exhaust gas sound (mainly high frequency band sound) is absorbed by the silencer material from a large number of silencer holes. Therefore, the noise of the exhaust gas discharged from the outlet side of the exhaust gas outlet pipe 34 is attenuated.
  • exhaust gas sound mainly high frequency band sound
  • the filter side outlet flange 40 is welded to the exhaust gas movement downstream side (right side) ends of the filter inner case 20 and the filter outer case 21.
  • the silencer flange 41 is welded to the exhaust gas movement upstream side (left side) of the silencer outer case 32.
  • the filter side outlet flange 40 and the silencer side flange 41 are detachably fastened by bolts 42 and nuts 43.
  • a sensor connection plug 44 is fixed to the filter inner case 20 and the filter outer case 21.
  • the sensor connection plug 44 is connected to an unillustrated outlet side exhaust gas pressure sensor, an outlet side exhaust gas temperature sensor (thermistor) and the like.
  • an exhaust manifold 71 is disposed on the front side surface of the cylinder head 72 of the diesel engine 70.
  • An intake manifold 73 is disposed on the rear side of the cylinder head 72.
  • the cylinder head 72 is mounted on a cylinder block 75 having an engine output shaft 74 (crank shaft, see FIG. 7) and a piston (not shown).
  • the left and right ends of the engine output shaft 74 are protruded from the left and right side surfaces of the cylinder block 75.
  • a cooling fan 76 is provided on the right side surface of the cylinder block 75. The rotational force is transmitted from the right end side of the engine output shaft 74 to the cooling fan 76 via the V belt 77.
  • a flywheel housing 78 is fixed to the left side surface of the cylinder block 75.
  • a flywheel 79 is provided in the flywheel housing 78.
  • a flywheel 79 is pivotally supported on the left end side of the engine output shaft 74.
  • the power of the diesel engine 70 is extracted via a flywheel 79 to operating parts such as a backhoe 100 and a forklift car 120 described later.
  • an oil pan 95 is disposed on the lower surface of the cylinder block 75.
  • Engine leg mounting portions 96 are provided on the front and rear side surfaces of the cylinder block 75 and the front and rear side surfaces of the flywheel housing 78, respectively. Each engine leg mounting portion 96 is bolted to an engine leg body 97 having vibration-proof rubber.
  • the diesel engine 70 is supported in an anti-vibration manner on an engine mounting chassis 81 such as a work vehicle (backhoe 100, forklift car 120) via each engine leg 97.
  • the inlet portion 73 a of the intake manifold 73 protrudes upward from a substantially central portion of the intake manifold 73.
  • the inlet portion 73a of the intake manifold 73 is connected to an air cleaner (not shown) via an EGR device 91 (exhaust gas recirculation device).
  • the fresh air (external air) sucked into the air cleaner is dust-removed and purified by the air cleaner, is sent to the intake manifold 73 via the EGR device 91, and is supplied to each cylinder of the diesel engine 70.
  • the EGR device 91 mixes a part of exhaust gas of the diesel engine 70 (EGR gas from the exhaust manifold 71) and fresh air (external air from the air cleaner 88) to intake air.
  • a gas pipe 148 and an EGR valve member 149 that allows the EGR main body case 145 to communicate with the recirculated exhaust gas pipe 148 are provided.
  • the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145.
  • the EGR main body case 145 communicates with the outlet side of the recirculated exhaust gas pipe 148 extending from the exhaust manifold 71.
  • the EGR main body case 145 is formed in a long cylindrical shape.
  • the intake throttle member 146 is bolted to one end of the EGR main body case 145 in the longitudinal direction.
  • a downward opening end 145 a formed at a portion of the EGR main body case 145 opposite to the intake throttle member 146 is fastened to the inlet 73 a of the intake manifold 73 by a bolt 150 so as to be detachable.
  • the EGR main body case 145 is provided with three temperature sensors 151 to 153 as temperature detecting means.
  • a fresh air temperature sensor 151 that detects the temperature of fresh air from the air cleaner is disposed in a portion of the EGR main body case 145 near the intake throttle member 146.
  • An EGR gas temperature sensor 152 that detects the temperature of the EGR gas from the exhaust manifold 71 is disposed near the EGR valve member 149 (recirculation exhaust gas pipe 148).
  • a mixed gas temperature sensor 153 that detects the temperature of the mixed gas is disposed at a portion of the intake manifold 73 near the inlet 73a.
  • the temperature sensors 151 to 153 are used for obtaining the EGR rate of the mixed gas.
  • the outlet side of the recirculation exhaust gas pipe 148 is connected to the EGR main body case 145 via the EGR valve member 149.
  • the EGR valve member 149 adjusts the supply amount of EGR gas to the EGR main body case 145 by adjusting the opening degree of an EGR valve (not shown) in the EGR valve member 149.
  • the outer shape of the EGR valve member 149 is formed in a long cylindrical shape, similar to the EGR main body case 145.
  • the EGR main body case 145 and the EGR valve member 149 are arranged side by side.
  • An opening end projecting obliquely downward from the outer peripheral surface of the EGR valve member 149 is connected to a longitudinal midway portion of the EGR main body case 145.
  • the inlet side of the recirculated exhaust gas pipe 148 is connected to the lower surface side of the exhaust manifold 73 via an EGR cooler 147.
  • the intake throttle member 146 and the EGR valve member 149 are assembled in a common EGR main body case 145.
  • the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member.
  • the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. It is configured.
  • fresh air is supplied from the air cleaner through the intake throttle member 146 into the EGR main body case 145, while EGR gas (from the exhaust manifold 71 to the EGR main body case 145 through the EGR valve 149 is A part of the exhaust gas discharged from the exhaust manifold 71 is supplied.
  • EGR gas from the exhaust manifold 71 to the EGR main body case 145 through the EGR valve 149 is A part of the exhaust gas discharged from the exhaust manifold 71 is supplied.
  • the mixed gas in the EGR main body case 145 is supplied to the intake manifold 73.
  • the DPF 1 has a long shape along the engine output shaft 74 and is arranged close to the exhaust manifold 71 on the cylinder head 72. Further, the exhaust gas inlet pipe 16 and the exhaust gas outlet pipe 34 are arranged on the left and right sides of the DPF 1 at one end in the longitudinal direction and the other end in the longitudinal direction.
  • the outlet 71 a of the exhaust manifold 71 protrudes upward from the left end side of the exhaust manifold 71.
  • An exhaust gas inlet pipe 16 of the DPF 1 is detachably connected to the outlet portion 71a of the exhaust manifold 71 via an exhaust throttle device 86 for adjusting the exhaust pressure of the diesel engine 70.
  • the exhaust connection flange body 17 of the exhaust gas inlet pipe 16 is fastened to the exhaust throttle device 86 and thus the exhaust manifold 71 via the bolt 18. For this reason, the above-described DPF 1 is supported by the highly rigid exhaust manifold 71 via the exhaust throttle device 86.
  • the exhaust throttle device 86 is for regenerating the soot filter 3. That is, when soot is deposited on the soot filter 3, the exhaust gas temperature from the diesel engine 70 is increased by increasing the exhaust pressure of the diesel engine 70 by controlling the exhaust throttle device 86. The soot accumulated on the soot filter 3 burns. As a result, the soot disappears and the soot filter 3 is regenerated.
  • the soot filter 3 can be regenerated by forcibly increasing the exhaust pressure by the exhaust throttling device 86 even if the work with a small load and the temperature of the exhaust gas that tends to be low (the work that tends to accumulate soot) is continued. Can maintain the exhaust gas purification ability of Further, a burner or the like for burning the soot deposited on the soot filter 3 becomes unnecessary.
  • the exhaust gas that has moved from the outlet portion 71a of the exhaust manifold 71 into the DPF 1 through the exhaust gas inlet pipe 16 is purified by the DPF 1 and then moved from the exhaust gas outlet pipe 34 to the tail pipe (not shown). Finally, it will be discharged out of the machine.
  • the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145, and are connected to the EGR main body case 145. Since the outlet side of the recirculation exhaust gas pipe 148 extending from the exhaust manifold 71 communicates, the fresh air and the EGR gas are mixed before being sent to the intake manifold 73. For this reason, the EGR gas can be widely dispersed in the mixed gas, and the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold 73.
  • the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member, they are different models of various work vehicles (for example, the backhoe 100 and the forklift car 120).
  • these members 145, 146 and 149 can be shared as a gas mixing unit. Therefore, each model equipped with the same type of diesel engine 70 can be dealt with by a single gas mixing unit configuration, so that the EGR rate for each model equipped with the same type of diesel engine 70 is suppressed from varying. Therefore, it is possible to omit the trouble of confirming the test and applying for shipping for each model. As a result, the manufacturing cost can be suppressed. It is also possible to reduce the assembly adjustment man-hours for performance matching between the EGR device 91 and the diesel engine 70.
  • the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. Therefore, it is possible to suppress an increase in the temperature of the gas mixing unit due to the cooling air, and hence the mixed gas temperature therein, and to easily maintain the NOx reduction effect by the mixed gas in an appropriate state.
  • the cooling performance of the EGR cooler 147 can be reduced by the amount by which the cooling air from the cooling fan 76 can suppress the rise of the gas mixing unit and thus the temperature of the mixed gas inside the unit. Become.
  • the inlet portion 73a of the intake manifold 73 protrudes upward from the substantially central portion of the intake manifold 73, and the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned on the intake manifold 73 ( Since the EGR main body case 145 and the EGR valve member 149 are arranged side by side with each other, the influence of the gas mixing units 145, 146, and 149 on the overall height of the diesel engine 70 can be reduced. . Therefore, even if the diesel engine 70 incorporates the EGR device 91 (gas mixing units 145, 146, 149), the overall height can be kept as low as possible. 146, 149 can be arranged compactly.
  • three temperature sensors 151 to 153 are attached to the EGR main body case 145 as temperature detection means used for obtaining the EGR rate of the mixed gas, and the temperature detection means are centrally arranged on the EGR main body case 145.
  • the electrical system around the intake manifold 73 (the intake throttle member 146, the EGR valve member 149, and the temperature sensors 151 to 153) is gathered in a compact manner.
  • the wiring relations of these electrical systems can be consolidated.
  • the EGR main body case 145 is provided so that the mounting direction can be changed in a plurality of directions around the inlet portion 73 a in the intake manifold 73.
  • the downward opening end portion 145a of the EGR main body case 145 is provided at the inlet of the intake manifold 73.
  • the positional relationship of the insertion hole of the downward opening end part 145a and the entrance part 73a is set so that the bolt 150 can be fastened to the part 73a.
  • FIG. 6 shows an example in which the EGR main body case 145 is arranged in a posture extending parallel to the engine output shaft 74 in a plan view so that the intake throttle member 146 is positioned closer to the flywheel housing 78 of the diesel engine 70. Show.
  • FIG. 8 shows an example in which the intake throttle member 146 is positioned on the left side by reversing the mounting direction of the EGR main body case 145 with respect to the intake manifold 73 from the state of FIG. That is, the EGR main body case 145 is arranged in a posture extending in parallel with the engine output shaft 74 in a plan view so that the intake throttle member 146 is positioned closer to the cooling fan 76.
  • FIG. 9 shows an example where the mounting direction of the EGR main body case 145 with respect to the intake manifold 73 is rotated by 90 ° from the state of FIG. 6 and the intake throttle member 146 is positioned on the rear side. That is, the EGR main body case 145 is arranged in a posture extending in a direction orthogonal to the engine output shaft 74 in plan view so that the intake throttle member 146 is separated from the intake manifold 73.
  • the direction of the intake system upstream of the intake manifold 73 can be selected / changed without changing the structure of the EGR main body case 145, and variations in the layout of the intake system can be easily increased.
  • the configuration of FIG. 6 may be adopted, and there is an air cleaner near the cooling fan 76.
  • the configuration of FIG. 8 may be employed.
  • the configuration of FIG. 9 may be employed. 6, 8, and 9, it is necessary to replace the recirculated exhaust gas pipe 148 with a length and shape corresponding to the mounting direction of the EGR body case 145.
  • the manner of changing the mounting direction of the intake throttle member 146 will be described.
  • the intake throttle member 146 is directly attached to one end side in the longitudinal direction of the EGR main body case 145 (see FIG. 5) or attached via a spacer 154 (see FIG. 10)
  • the EGR main body case 145 is attached.
  • the mounting direction of the intake throttle member 146 can be changed.
  • the intake direction of the intake throttle member 146 can be set to the left-right direction along the intake direction of the EGR main body case 145, or the vertical direction intersecting the intake direction of the EGR main body case 145.
  • FIG. 10 shows an example in which the intake throttle member 146 is attached to one end side in the longitudinal direction of the EGR main body case 145 via a spacer 154 so that the intake direction of the intake throttle member 146 is set from top to bottom.
  • the spacer 154 is formed in an L-shaped cylinder.
  • One opening end of the spacer 154 is bolted to one end in the longitudinal direction of the EGR main body case 145, and the other opening end is bolted to the intake throttle member 146, whereby the intake throttle member 146 is in the intake direction.
  • the vertical direction intersects the intake direction of the EGR main body case 145.
  • the engine controller 140 as a control means for controlling the driving of the diesel engine 70, in addition to the CPU 141 that executes various arithmetic processes and controls, the ROM 142 for storing control programs and data, and the control programs and data are temporarily stored.
  • a RAM 143 an input / output interface, and the like.
  • the engine controller 140 includes three temperature sensors 151 to 153 as temperature detecting means, a rotational speed sensor 157 for detecting the rotational speed Ne of the diesel engine 70, a load sensor 158 for detecting the load L of the diesel engine 70, and the like. Connected.
  • the fresh air temperature sensor 151 detects the temperature T1 of fresh air supplied from the air cleaner
  • the EGR gas temperature sensor 152 includes the EGR gas from the exhaust manifold 71.
  • the temperature T2 of the gas is detected.
  • the mixed gas temperature sensor 153 detects the temperature T3 of the mixed gas mixed in the EGR main body.
  • the load sensor 158 of the embodiment employs a rack position sensor that detects a fuel supply amount from a rack position of a fuel injection pump with an electronic governor (not shown) that is a fuel supply unit.
  • the engine load L may be calculated directly from the fuel supply amount, or may be obtained from the deviation between the target engine speed and the actual engine speed.
  • the engine controller 140 of the embodiment calculates the EGR rate of the mixed gas based on the detection information of the sensors 151 to 153, 157, and 158 when the diesel engine 70 is driven, and the EGR valve member 149 of the EGR valve member 149 is calculated according to the EGR rate.
  • An EGR control for adjusting the opening degree is executed.
  • the engine speed Ne, the engine load L, the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3 are read (step S100).
  • the values of the engine speed Ne and the engine load L are substituted into the EGR valve opening map f (Ne, L) to calculate the reference EGR opening EGR_s (step S200).
  • the EGR valve opening map f (Ne, L) is a two-dimensional map showing the relationship between the engine speed Ne, the engine load L, and the reference EGR opening EGR_s, and is stored in advance in the ROM 142 of the engine controller 140 or the like. It is remembered.
  • step S300 using the engine speed Ne detected (sampled) every predetermined time, the engine load L, the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3, the latest sampling multiple times (for example, A simple moving average for 10 times is calculated (step S300).
  • the engine speed Ne, the engine load L, the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3 described in the following steps are all assumed to be simple moving average values. In this way, an appropriate index EGR rate can be calculated even when the driving state of the diesel engine 70 is in a transient state.
  • the index EGR rate EGR_t is calculated based on the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3, which are simple moving average values (step S400).
  • the index EGR rate EGR_t will be described in detail with reference to FIG.
  • the fresh air (external air) with the fresh air temperature T1 and the flow rate m1 and the EGR gas with the EGR gas temperature T2 and the flow rate m2 merge to form a mixed gas with the mixed gas temperature T3 and the flow rate m3.
  • the EGR rate (%) refers to the ratio of EGR gas in the mixed gas, and is represented by the following (Formula 1).
  • EGR rate (%) m1 / (m1 + m2) ⁇ 100 (Equation 1) Moreover, as shown in the following (Formula 2), the amount of heat of fresh air and EGR gas is equal to the amount of heat of mixed gas. Cp is the constant pressure molar specific heat of fresh air, and Cp ′ is the constant pressure molar specific heat of EGR gas.
  • EGR_t (%) (T3 ⁇ T1) / (T2 ⁇ T1) ⁇ 100 (Equation 3)
  • the values of the engine speed Ne and the engine load L are substituted into the reference EGR rate map F (Ne, L), and the reference EGR rate EGR_std that is an appropriate EGR rate is obtained. Is calculated (step S500).
  • the reference EGR rate map F (Ne, L) is a two-dimensional map representing the relationship between the engine speed Ne and the engine load L and the reference EGR rate EGR_std, and is stored in advance in the ROM 142 of the engine controller 140 or the like. ing.
  • a corrected EGR value EGR_re is calculated so that the deviation EGR_gap becomes 0 (step S700). Then, based on the corrected EGR value EGR_re, the reference EGR opening degree EGR_s is corrected to the corrected EGR opening degree EGR_s_re (step S800), and the opening degree of the EGR valve member 149 is adjusted based on the value of the corrected EGR opening degree EGR_s_re. (Step S900).
  • the EGR rate can be easily and accurately obtained using the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3.
  • EGR_std and EGR_t can be calculated.
  • the detection means for calculating the EGR rates EGR_std and EGR_t only needs to have a simple configuration for detecting the temperature.
  • the EGR main body can be constructed without constructing a complicated control system for detecting the EGR rates EGR_std and EGR_t by detecting the flow rate and flow velocity of each gas.
  • An appropriate amount of EGR gas can be supplied to the case 145. Therefore, it is possible to contribute to the suppression of the component cost and the manufacturing cost.
  • the backhoe 100 includes a crawler-type traveling device 102 having a pair of left and right traveling crawlers 103, and a turning machine body 104 provided on the traveling device 102.
  • the revolving machine body 104 is configured to be horizontally revolved over 360 ° in all directions by a revolving hydraulic motor (not shown).
  • An earthwork plate 105 for ground work is mounted on the rear part of the traveling device 102 so as to be movable up and down.
  • a steering unit 106 and a diesel engine 70 are mounted on the left side of the revolving machine body 104.
  • a working unit 110 having a boom 111 and a bucket 113 for excavation work is provided on the right side of the revolving machine body 104.
  • the control unit 106 is provided with a control seat 108 on which an operator is seated, an operation means for operating the diesel engine 70 and the like, and a lever or switch as an operation means for the working unit 110.
  • a boom cylinder 112 and a bucket cylinder 114 are arranged on a boom 111 which is a component of the working unit 110.
  • a bucket 113 as an attachment for excavation is pivotally attached to the tip end portion of the boom 111 so as to be inserted and rotated.
  • the boom cylinder 112 or the bucket cylinder 114 is operated to perform earthwork work (ground work such as grooving) by the bucket 113.
  • the forklift car 120 includes a traveling machine body 124 having a pair of left and right front wheels 122 and a rear wheel 123.
  • the traveling body 124 is equipped with a control unit 125 and a diesel engine 70.
  • the diesel engine 70 is covered from above with a cover body 133, and the control unit 125 is provided on the cover body 133.
  • a working part 127 having a fork 126 for cargo handling work is provided on the front side of the traveling machine body 124.
  • a counterweight 131 is provided on the rear side of the traveling machine body 124 to balance the weight with the working unit 127.
  • the control unit 125 is provided with a control seat 128 on which an operator is seated, a control handle 129, levers and switches as operation means for the diesel engine 70 and the working unit 127, and the like.
  • a fork 126 is mounted on the mast 130, which is a component of the working unit 127, so as to be movable up and down.
  • the fork 126 is moved up and down, a pallet (not shown) loaded with a load is placed on the fork 126, the traveling machine body 124 is moved forward and backward, and a cargo handling operation such as transportation of the pallet is performed. Yes.
  • the diesel engine 70 is arranged such that the flywheel housing 78 is located on the front side of the traveling machine body 124 and the cooling fan 76 is located on the rear side of the traveling machine body 124. That is, the diesel engine 70 is arranged so that the direction of the engine output shaft 74 is along the front-rear direction in which the working unit 127 and the counterweight 131 are arranged.
  • the diesel engine 70 is supported in an anti-vibration manner via an engine leg 97 on an engine mounting chassis 81 constituting the traveling machine body 124.
  • a mission case 132 is connected to the front side of the flywheel housing 78. The power from the diesel engine 70 via the flywheel 79 is appropriately changed in the transmission case 132 and transmitted to the hydraulic drive sources of the front wheels 122, the rear wheels 123, and the forks 126.
  • a radiator 134 for cooling the engine opposes the cooling fan 76 at a high position near the counterweight 131 between the control seat 128 and the counterweight 131 disposed behind the control seat 128 in the cover body 133.
  • the engine device for mounting a work vehicle according to the present invention is not limited to the backhoe 100 and the forklift car 120 as described above, but various work vehicles such as agricultural machines such as a combine and a tractor, and special work vehicles such as a crane truck. Widely applicable to.
  • the structure of each part in this invention is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

An EGR device (91) for recirculating, as an EGR gas, a part of the exhaust gas, which is discharged from an exhaust manifold (71), to an intake manifold (73) is adapted so that the EGR device (91) can be used in common among different models of various working vehicles. In the EGR device (91), the intake manifold (73) and an intake throttle member (146) for introducing fresh air are connected through a relay conduit (145). The exit side of a recirculation conduit (148) extending from the exhaust manifold (71) is connected to the relay conduit (145). The relay conduit (145) is provided so that the direction thereof can be changed in multiple directions about the inlet section (73a) of the intake manifold (73). Thus, the direction of an intake system on the upstream side of the intake manifold (73) can be selected and changed without changing the structure of the relay conduit (145).

Description

EGR装置及びこれを備えたエンジン装置EGR device and engine device provided with the same
 本願発明は、EGR装置及びこれを備えたエンジン装置に関するものであり、詳しくは排気マニホールドから排出される排気ガスの一部をEGRガスとして吸気マニホールドに還流させるEGR(排気ガス再循環)装置と、これを備えた作業車両搭載用のエンジン装置とに関するものである。 The present invention relates to an EGR device and an engine device equipped with the EGR device. Specifically, an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas; The present invention relates to an engine device mounted on a work vehicle provided with the above.
 従来から、ディーゼルエンジン等の排気ガス対策として、排気ガスの一部を吸気側に還流させる排気ガス再循環用のEGR装置を設けることにより、燃焼温度を低く抑えて排気ガス中のNOx(窒素酸化物)量を低減させるという技術が知られている。 Conventionally, as an exhaust gas countermeasure for diesel engines and the like, by providing an EGR device for exhaust gas recirculation that recirculates a part of the exhaust gas to the intake side, NOx (nitrogen oxidation in the exhaust gas is suppressed while keeping the combustion temperature low. A technique for reducing the amount of material) is known.
 この種のEGR装置の一例が特許文献1に開示されている。特許文献1のEGR装置では、ディーゼルエンジンの排気マニホールドから分岐した還流管路が吸気マニホールドに接続されている。排気ガスの一部(EGRガス)を還流管路経由で吸気マニホールドに供給することによって、EGRガスと吸気側からの新気とが混合される。当該混合ガスがディーゼルエンジンの各気筒内(吸気行程の気筒内)に導入される。 An example of this type of EGR apparatus is disclosed in Patent Document 1. In the EGR device of Patent Document 1, a reflux pipe branched from an exhaust manifold of a diesel engine is connected to an intake manifold. By supplying a part of the exhaust gas (EGR gas) to the intake manifold via the reflux line, the EGR gas and fresh air from the intake side are mixed. The mixed gas is introduced into each cylinder (inside the intake stroke) of the diesel engine.
 また、還流管路にはEGR率調節用のEGRバルブが設けられている。この場合、エンジン回転数や負荷等のエンジン駆動状態に応じてEGRバルブの開度を調節することによって、最適なEGR率となるようにEGRガスの供給量が調節される。その結果、ディーゼルエンジンの燃焼状態を良好に保ちながらNOx量が低減されることになる。なお、EGR率とは、EGRガス量と新気量との和で、EGRガス量を割った値(=EGRガス量/(EGRガス量+新気量))のことを言う。 In addition, an EGR valve for adjusting the EGR rate is provided in the reflux line. In this case, by adjusting the opening degree of the EGR valve according to the engine driving state such as the engine speed and the load, the supply amount of the EGR gas is adjusted so as to obtain an optimum EGR rate. As a result, the amount of NOx is reduced while maintaining a good combustion state of the diesel engine. The EGR rate means a value obtained by dividing the EGR gas amount by the sum of the EGR gas amount and the fresh air amount (= EGR gas amount / (EGR gas amount + new air amount)).
特開平8-261072号公報JP-A-8-261072
 しかし、特許文献1のEGR装置を備えたディーゼルエンジンでは、吸気マニホールドに還流管路が直接接続されているため、各気筒間のEGR率が不均等になるおそれがあった。すなわち、吸気マニホールドに還流管路を直接接続した場合は、EGRガスと新気とが吸気マニホールド内で混合される。そうすると、吸気マニホールドの形状によっては、EGRガスの流れが偏って新気との混合状態にムラが生ずる。このままムラのある混合ガスが各気筒に分配されることによって、EGRガスが各気筒に均等に送られず、各気筒間のEGR率が不均等(バラツキ)になる。各気筒間のEGR率が不均等になれば、その中でもEGR率の高い気筒が新気不足に陥る。そして、当該気筒においてEGR率が所定値を超えると、ディーゼルエンジンの燃焼状態が急激に悪化して黒煙(スモーク)の発生を招来するのであった。 However, in the diesel engine equipped with the EGR device of Patent Document 1, since the return pipe is directly connected to the intake manifold, the EGR rate between the cylinders may be uneven. That is, when the return pipe is directly connected to the intake manifold, EGR gas and fresh air are mixed in the intake manifold. Then, depending on the shape of the intake manifold, the flow of EGR gas is uneven, and the mixed state with fresh air becomes uneven. If the mixed gas with unevenness is distributed to the cylinders as it is, the EGR gas is not sent evenly to the cylinders, and the EGR rate between the cylinders becomes non-uniform. If the EGR rate between the cylinders becomes uneven, a cylinder with a high EGR rate falls short of fresh air. When the EGR rate in the cylinder exceeds a predetermined value, the combustion state of the diesel engine is abruptly deteriorated and black smoke (smoke) is generated.
 他方、ディーゼルエンジンは汎用性が広く、農作業機、建設機械、船舶といった様々な分野で用いられる。ディーゼルエンジンの搭載スペースは搭載対象車両によって様々である。 On the other hand, diesel engines are versatile and are used in various fields such as agricultural machines, construction machinery, and ships. The installation space for diesel engines varies depending on the target vehicle.
 しかし、従来、EGR装置付きのディーゼルエンジンを作業車両に搭載するに当たっては、その機種毎に還流管路やEGRバルブの配置レイアウトを決めていたから、例えば還流管路の長さ・形状やEGRバルブの位置等が機種毎に異なることになり、これらEGR装置関連の部材を共用化できない。このため、部品コストひいては製造コストが嵩むという問題があった。また、EGR装置関連の部材の配置レイアウトが異なるということは、ディーゼルエンジン全体のEGR率も機種毎に変わることになるという問題もあった。 However, conventionally, when a diesel engine with an EGR device is mounted on a work vehicle, the layout of the reflux pipe and EGR valve is determined for each model. For example, the length and shape of the reflux pipe and the position of the EGR valve Etc. will be different for each model, and these EGR device-related members cannot be shared. For this reason, there existed a problem that component cost and by extension manufacturing cost increased. Further, the fact that the arrangement layout of the members related to the EGR device is different also has a problem that the EGR rate of the entire diesel engine also changes for each model.
 そこで、本願発明は、上記のような現状を改善することを目的とするものである。 Therefore, the present invention aims to improve the current situation as described above.
 本願発明は、EGR装置と、これを備えたエンジン装置とを含んでいる。請求項1の発明は、EGR装置において、排気マニホールドから排出される排気ガスの一部をEGRガスとして吸気マニホールドに還流させるEGR装置であって、前記吸気マニホールドと新気導入用の吸気スロットル部材とが中継管路を介して接続されており、前記中継管路には前記排気マニホールドから延びる還流管路の出口側が接続されているものである。 The present invention includes an EGR device and an engine device equipped with the EGR device. The invention according to claim 1 is an EGR device that recirculates a part of exhaust gas discharged from the exhaust manifold as EGR gas to the intake manifold in the EGR device, wherein the intake manifold and an intake throttle member for introducing fresh air are provided. Are connected via a relay line, and the outlet side of the reflux line extending from the exhaust manifold is connected to the relay line.
 請求項2の発明は、請求項1に記載したEGR装置において、前記還流管路の出口側は、前記EGRガスの供給量を調節するEGRバルブ部材を介して前記中継管路に接続されており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とがユニット化されているものである。 According to a second aspect of the present invention, in the EGR device according to the first aspect, the outlet side of the reflux pipe is connected to the relay pipe via an EGR valve member that adjusts the supply amount of the EGR gas. The intake throttle member, the relay pipe line, and the EGR valve member are unitized.
 請求項3の発明は、請求項1に記載したEGR装置において、前記還流管路の出口側は、前記EGRガスの供給量を調節するEGRバルブ部材を介して前記中継管路に接続されている一方、前記吸気マニホールドの入口部は上向きに突出しており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とは前記吸気マニホールド上に露出していて、前記中継管路と前記EGRバルブ部材とが横並びに並べて配置されているものである。 According to a third aspect of the present invention, in the EGR device according to the first aspect, the outlet side of the reflux pipe is connected to the relay pipe via an EGR valve member that adjusts the supply amount of the EGR gas. On the other hand, the inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay conduit, and the EGR valve member are exposed on the intake manifold, and the relay conduit and the EGR valve member Are arranged side by side.
 請求項4の発明は、請求項3に記載したEGR装置において、前記吸気マニホールドに供給される混合ガスのEGR率算出のための複数の温度検出手段が、前記中継管路に設けられているものである。 According to a fourth aspect of the present invention, in the EGR device according to the third aspect, a plurality of temperature detection means for calculating an EGR rate of the mixed gas supplied to the intake manifold is provided in the relay pipe. It is.
 請求項5の発明は、エンジン装置において、吸気マニホールド及び排気マニホールドを有するエンジンと、請求項1~4のうちいずれかに記載したEGR装置とを備えているものである。 The invention of claim 5 is an engine device comprising an engine having an intake manifold and an exhaust manifold, and the EGR device according to any one of claims 1 to 4.
 請求項6の発明は、請求項5に記載したエンジン装置において、前記吸気スロットル部材が前記エンジンのフライホイールハウジング寄りに位置するようにして、前記中継管路が平面視で前記エンジンの出力軸と平行状に延びる姿勢で配置されているものである。 According to a sixth aspect of the present invention, in the engine device according to the fifth aspect, the intake throttle member is positioned closer to the flywheel housing of the engine, and the relay conduit is connected to the output shaft of the engine in a plan view. It is arrange | positioned with the attitude | position extended in parallel.
 請求項7の発明は、請求項5に記載したエンジン装置において、前記吸気マニホールドの入口部は上向きに突出しており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とは前記吸気マニホールド上に位置していて、前記エンジンに設けられた冷却ファンからの冷却風が当たるように構成されているものである。 According to a seventh aspect of the present invention, in the engine device according to the fifth aspect, the inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay pipe line, and the EGR valve member are located on the intake manifold. The cooling air from the cooling fan provided in the engine is hit.
 本願発明に係るEGR装置によると、排気マニホールドから排出される排気ガスの一部をEGRガスとして吸気マニホールドに還流させるEGR装置であって、前記吸気マニホールドと新気導入用の吸気スロットル部材とが中継管路を介して接続されており、前記中継管路には前記排気マニホールドから延びる還流管路の出口側が接続されているから、新気とEGRガスとは、前記吸気マニホールドに送り込まれる前に混合されることになる。このため、混合ガス中においてEGRガスを広く分散でき、前記吸気マニホールドに送り込まれる前段階で、混合ガスにおける混合状態のバラツキ(ムラ)が少なくなるという効果を奏する。また、前記中継管路の構造を変更することなく、前記吸気マニホールドより上流側の吸気系統の向きを選択・変更できる。従って、吸気系統のレイアウトのバリエーションを簡単に増やせる。さらに、排気マニホールドから排出される排気ガスの一部をEGRガスとして吸気マニホールドに還流させるEGR装置において、前記吸気マニホールドと新気導入用の吸気スロットル部材とが中継管路を介して接続されており、前記中継管路には前記排気マニホールドから延びる還流管路の出口側が接続されているから、新気とEGRガスとは、前記吸気マニホールドに送り込まれる前に混合されることになる。このため、混合ガス中においてEGRガスを広く均一に分散でき、前記吸気マニホールドに送り込まれる前段階で、混合ガスにおける混合状態のバラツキ(ムラ)が少なくなり、混合ガス中においてEGRガスが不均一に混合する不具合を低減できる。 The EGR device according to the present invention is an EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas, and relays between the intake manifold and an intake throttle member for introducing fresh air Since the outlet side of the reflux line extending from the exhaust manifold is connected to the relay pipe, the fresh air and the EGR gas are mixed before being sent to the intake manifold. Will be. For this reason, the EGR gas can be widely dispersed in the mixed gas, and there is an effect that the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold. Further, the direction of the intake system upstream of the intake manifold can be selected / changed without changing the structure of the relay conduit. Therefore, variations in the layout of the intake system can be easily increased. Further, in the EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas, the intake manifold and an intake throttle member for introducing fresh air are connected via a relay line. Since the outlet side of the reflux pipe extending from the exhaust manifold is connected to the relay pipe, the fresh air and the EGR gas are mixed before being sent to the intake manifold. For this reason, the EGR gas can be widely and uniformly dispersed in the mixed gas, and the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold, and the EGR gas is unevenly mixed in the mixed gas. Problems with mixing can be reduced.
 請求項2の発明によると、前記還流管路の出口側は、前記EGRガスの供給量を調節するEGRバルブ部材を介して前記中継管路に接続されており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とがユニット化されているから、異なる機種間であっても、前記吸気スロットル部材、前記中継管路及び前記EGRバルブ部材をガス混合用ユニットとして共用化できる。従って、同型のエンジンを搭載した各機種に対して、1種類のガス混合用ユニットの構成で対処できるから、同型のエンジンを搭載した機種毎のEGR率がばらつくことを抑制して、これら機種毎に試験確認したり出荷申請したりする手間等を省略できる。その結果、製造コストを抑制できる。前記EGR装置と前記エンジンとの性能マッチングのための組付け調整工数を低減することも可能になる。 According to a second aspect of the present invention, the outlet side of the reflux pipe is connected to the relay pipe via an EGR valve member that adjusts the supply amount of the EGR gas, and the intake throttle member and the relay pipe Since the passage and the EGR valve member are unitized, the intake throttle member, the relay pipe line, and the EGR valve member can be shared as a gas mixing unit even between different models. Therefore, each model equipped with the same type engine can be handled with a single gas mixing unit configuration, so that the EGR rate for each model equipped with the same type engine is suppressed from varying. This eliminates the trouble of confirming the test and applying for shipping. As a result, the manufacturing cost can be suppressed. It also becomes possible to reduce the assembly adjustment man-hours for performance matching between the EGR device and the engine.
 請求項3の発明によると、前記還流管路の出口側は、前記EGRガスの供給量を調節するEGRバルブ部材を介して前記中継管路に接続されている一方、前記吸気マニホールドの入口部は上向きに突出しており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とは前記吸気マニホールド上に露出していて、前記中継管路と前記EGRバルブ部材とが横並びに並べて配置されているから、EGR装置が搭載されるエンジンの全高に対して、前記吸気スロットル部材、前記中継管路及び前記EGRバルブ部材を組み合わせてなるガス混合用ユニットの影響を小さくできる。従って、前記EGR装置(ガス混合用ユニット)を組み込んだエンジンであっても、全高を極力低く抑えることが可能になり、エンジンに対して前記EGR装置(ガス混合用ユニット)をコンパクトに配置できる。 According to the invention of claim 3, the outlet side of the reflux line is connected to the relay line via an EGR valve member that adjusts the supply amount of the EGR gas, while the inlet part of the intake manifold is The intake throttle member, the relay pipe line, and the EGR valve member are exposed on the intake manifold, and the relay pipe line and the EGR valve member are arranged side by side. Therefore, the influence of the gas mixing unit formed by combining the intake throttle member, the relay pipe line, and the EGR valve member can be reduced with respect to the total height of the engine on which the EGR device is mounted. Therefore, even if the engine incorporates the EGR device (gas mixing unit), the overall height can be kept as low as possible, and the EGR device (gas mixing unit) can be compactly arranged with respect to the engine.
 請求項4の発明によると、前記吸気マニホールドに供給される混合ガスのEGR率算出のための複数の温度検出手段が、前記中継管路に設けられているから、新気とEGRガスとは、前記吸気マニホールドに送り込まれる前に混合されることになる。このため、混合ガス中においてEGRガスを広く分散でき、前記吸気マニホールドに送り込まれる前段階で、混合ガスにおけるEGRガスの不均一な混合を低減できる。複数の温度検出手段は前記中継管路に集中配置されることになる。このため、前記吸気マニホールド周辺にあるEGR装置の電装系(前記吸気スロットル部材、前記EGRバルブ部材、及び前記温度検出手段)がコンパクトにまとまり、エンジンに対して前記EGR装置をコンパクトに配置できる。また、当該電装系の配線関係の集約化も可能になる。 According to the invention of claim 4, since a plurality of temperature detecting means for calculating the EGR rate of the mixed gas supplied to the intake manifold is provided in the relay pipe line, fresh air and EGR gas are: It will be mixed before being sent to the intake manifold. For this reason, EGR gas can be widely dispersed in the mixed gas, and uneven mixing of EGR gas in the mixed gas can be reduced before being sent to the intake manifold. A plurality of temperature detecting means are concentrated on the relay pipe. For this reason, the electrical system (the intake throttle member, the EGR valve member, and the temperature detecting means) of the EGR device around the intake manifold is compactly arranged, and the EGR device can be arranged compactly with respect to the engine. In addition, the wiring relation of the electrical system can be consolidated.
 請求項5の発明によると、吸気マニホールド及び排気マニホールドを有するエンジンに、請求項1~4のうちいずれかに記載したEGR装置を備えているから、エンジンの各気筒にムラの少ない混合ガスを分配でき、各気筒間のEGR率のバラツキを抑制できることになる。その結果、黒煙の発生を抑制して、前記エンジンの燃焼状態を良好に保ちながら、NOx量を効率よく低減できるという効果を奏する。 According to the invention of claim 5, since the EGR device according to any one of claims 1 to 4 is provided in an engine having an intake manifold and an exhaust manifold, a mixed gas with less unevenness is distributed to each cylinder of the engine. Thus, variation in the EGR rate between the cylinders can be suppressed. As a result, there is an effect that the amount of NOx can be efficiently reduced while suppressing the generation of black smoke and keeping the combustion state of the engine in good condition.
 請求項6の発明によると、前記吸気スロットル部材が前記エンジンのフライホイールハウジング寄りに位置するようにして、前記中継管路が平面視で前記エンジンの出力軸と平行状に延びる姿勢で配置されているから、例えば吸気系統の配管長さを短くするとき、又は吸気系統の部品点数を低減するときに、フライホイールハウジング寄りにエアクリーナを設けることによって、前記吸気スロットル部材及び前記中継管路の組付け構成(請求項6の構成)によって対処できる。即ち、吸気系統の配管を短縮してコンパクトに構成できる。吸気系統の部品点数を低減して製造コストを削減できる。 According to a sixth aspect of the present invention, the relay conduit is arranged in a posture extending in parallel with the output shaft of the engine in a plan view so that the intake throttle member is positioned closer to the flywheel housing of the engine. For example, when shortening the piping length of the intake system, or when reducing the number of parts of the intake system, an assembly of the intake throttle member and the relay pipe is provided by providing an air cleaner near the flywheel housing. This can be dealt with by the configuration (configuration of claim 6). That is, the piping of the intake system can be shortened and configured compactly. Manufacturing costs can be reduced by reducing the number of parts in the intake system.
 請求項7の発明によると、前記吸気マニホールドの入口部は上向きに突出しており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とは前記吸気マニホールド上に位置していて、前記エンジンに設けられた冷却ファンからの冷却風が当たるように構成されているから、冷却風によるガス混合用ユニット、ひいてはその内部の混合ガスの温度上昇を抑制でき、混合ガスによるNOx量の低減効果を適正な状態に維持し易いという効果を奏する。 According to the invention of claim 7, the inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay pipe line, and the EGR valve member are located on the intake manifold and are connected to the engine. Since the cooling air from the installed cooling fan is hit, the temperature of the gas mixing unit by cooling air, and by extension, the temperature of the mixed gas inside it can be suppressed, and the effect of reducing the NOx amount by the mixed gas is appropriate. There is an effect that it is easy to maintain a stable state.
実施形態におけるDPFの正面視断面図である。It is a front view sectional view of DPF in an embodiment. 同外観底面図である。It is the same external appearance bottom view. 図1の正面視分解断面図である。FIG. 2 is an exploded front sectional view of FIG. 1. ディーゼルエンジンの正面図である。It is a front view of a diesel engine. ディーゼルエンジンの背面図である。It is a rear view of a diesel engine. ディーゼルエンジンの平面図である。It is a top view of a diesel engine. ディーゼルエンジンの左側面図である。It is a left view of a diesel engine. EGR本体ケースの取付け向きを図6の状態から180°反転させた場合におけるディーゼルエンジンの平面図である。FIG. 7 is a plan view of a diesel engine in a case where the mounting direction of the EGR main body case is reversed by 180 ° from the state of FIG. 6. EGR本体ケースの取付け向きを図6の状態から90°回転させた場合におけるディーゼルエンジンの平面図である。FIG. 7 is a plan view of a diesel engine when an EGR main body case is attached by 90 ° rotation from the state shown in FIG. 6. 吸気スロットル部材の吸気方向を上下方向にした場合におけるディーゼルエンジンの正面図である。It is a front view of the diesel engine when the intake direction of the intake throttle member is set to the vertical direction. バックホウの側面図である。It is a side view of a backhoe. バックホウの平面図である。It is a top view of a backhoe. フォークリフトカーの側面図である。It is a side view of a forklift car. フォークリフトカーの平面図である。It is a top view of a forklift car. エンジンコントローラの機能ブロック図である。It is a functional block diagram of an engine controller. EGR制御の一例を示すフローチャートである。It is a flowchart which shows an example of EGR control. EGR本体ケース内での温度センサとガスとの関係を示す概念図である。It is a conceptual diagram which shows the relationship between the temperature sensor and gas in an EGR main body case.
 以下に、本発明を具体化した実施形態を図面に基づいて説明する。なお、以下の説明では、排気ガス流入側を単に左側と称し、排気ガス排出側を単に右側と称する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, the exhaust gas inflow side is simply referred to as the left side, and the exhaust gas discharge side is simply referred to as the right side.
 まず、図1~図3を参照しながら、排気ガス浄化装置の全体構造を説明する。図1~図3に示す如く、排気ガス浄化装置としての連続再生式のディーゼルパティキュレートフィルタ1(以下、DPFという)を備えている。DPF1は、排気ガス中の粒子状物質(PM)等を物理的に捕集するためのものである。実施形態のDPF1は、二酸化窒素(NO2)を生成する白金等のディーゼル酸化触媒2と、捕集した粒子状物質(PM)を比較的低温で連続的に酸化除去するハニカム構造のスートフィルタ3とを、排気ガスの移動方向(図1の左側から右側方向)に直列に並べた構造になっている。DPF1は、スートフィルタ3が連続的に再生されるように構成している。DPF1によって、排気ガス中の粒子状物質(PM)の除去に加え、排気ガス中の一酸化炭素(CO)や炭化水素(HC)を低減できる。 First, the overall structure of the exhaust gas purifying device will be described with reference to FIGS. As shown in FIGS. 1 to 3, a continuous regeneration type diesel particulate filter 1 (hereinafter referred to as DPF) is provided as an exhaust gas purification device. The DPF 1 is for physically collecting particulate matter (PM) and the like in the exhaust gas. The DPF 1 of the embodiment includes a diesel oxidation catalyst 2 such as platinum that generates nitrogen dioxide (NO2), and a soot filter 3 having a honeycomb structure that continuously oxidizes and removes the collected particulate matter (PM) at a relatively low temperature. Are arranged in series in the exhaust gas movement direction (from the left side to the right side in FIG. 1). The DPF 1 is configured so that the soot filter 3 is continuously regenerated. The DPF 1 can reduce carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas in addition to the removal of particulate matter (PM) in the exhaust gas.
 図1~図3を参照して、ディーゼル酸化触媒2の取付け構造を説明する。図1~図3に示す如く、後述するディーゼルエンジン70が排出した排気ガスを浄化するガス浄化フィルタとしてのディーゼル酸化触媒2は、耐熱金属材料製で略筒型の触媒内側ケース4内に設けられている。触媒内側ケース4は、耐熱金属材料製で略筒型の触媒外側ケース5内に設けられている。即ち、ディーゼル酸化触媒2の外側にマット状のセラミックファイバー製触媒断熱材6を介して触媒内側ケース4を被嵌させている。また、触媒内側ケース4の外側に端面I字状の薄板製支持体7を介して触媒外側ケース5を被嵌させている。なお、触媒断熱材6によってディーゼル酸化触媒2が保護される。触媒内側ケース4に伝わる触媒外側ケース5の応力(変形力)を薄板製支持体7にて低減させる。 Referring to FIGS. 1 to 3, the structure for attaching the diesel oxidation catalyst 2 will be described. As shown in FIGS. 1 to 3, a diesel oxidation catalyst 2 as a gas purification filter for purifying exhaust gas discharged from a diesel engine 70 described later is provided in a substantially cylindrical catalyst inner case 4 made of a heat-resistant metal material. ing. The catalyst inner case 4 is made of a heat resistant metal material and is provided in a substantially cylindrical catalyst outer case 5. That is, the catalyst inner case 4 is fitted on the outside of the diesel oxidation catalyst 2 via the mat-shaped ceramic fiber catalyst heat insulating material 6. Further, the catalyst outer case 5 is fitted on the outer side of the catalyst inner case 4 via a thin plate support 7 having an I-shaped end face. Note that the diesel oxidation catalyst 2 is protected by the catalyst heat insulating material 6. The stress (deformation force) of the catalyst outer case 5 transmitted to the catalyst inner case 4 is reduced by the thin plate support 7.
 図1~図3に示す如く、触媒内側ケース4及び触媒外側ケース5の左側端部に円板状の左側蓋体8を溶接にて固着している。左側蓋体8に座板体9を介してセンサ接続プラグ10を固着している。ディーゼル酸化触媒2の左側端面2aと左側蓋体8とをガス流入空間用一定距離L1だけ離間させて対向させる。ディーゼル酸化触媒2の左側端面2aと左側蓋体8との間に排気ガス流入空間11を形成している。なお、センサ接続プラグ10には、図示しない入口側排気ガス圧力センサや入口側排気ガス温度センサ等が接続される。 As shown in FIGS. 1 to 3, a disc-shaped left lid 8 is fixed to the left end of the catalyst inner case 4 and the catalyst outer case 5 by welding. A sensor connection plug 10 is fixed to the left lid body 8 through a seat plate body 9. The left end face 2a of the diesel oxidation catalyst 2 and the left lid 8 are opposed to each other with a predetermined distance L1 for gas inflow space. An exhaust gas inflow space 11 is formed between the left end face 2 a of the diesel oxidation catalyst 2 and the left lid 8. The sensor connection plug 10 is connected to an unillustrated inlet side exhaust gas pressure sensor, an inlet side exhaust gas temperature sensor, and the like.
 図1及び図3に示す如く、排気ガス流入空間11が形成された触媒内側ケース4及び触媒外側ケース5の左側端部に楕円形状の排気ガス流入口12を開口させている。楕円形状の排気ガス流入口12は、排気ガス移動方向(前記ケース4,5の中心線方向)を短尺直径とし、排気ガス移動方向(前記ケース4,5の円周方向)に直交する方向を長尺直径に形成している。触媒内側ケース4の開口縁13と触媒外側ケース5の開口縁14の間に閉塞リング体15を挟持状に固着している。触媒内側ケース4の開口縁13と触媒外側ケース5の開口縁14の間の隙間が閉塞リング体15によって閉鎖される。触媒内側ケース4と触媒外側ケース5の間に排気ガスが流入するのを、閉塞リング体15によって防止している。 1 and 3, an elliptical exhaust gas inlet 12 is opened at the left end of the catalyst inner case 4 and the catalyst outer case 5 in which the exhaust gas inflow space 11 is formed. The elliptical exhaust gas inlet 12 has a short diameter in the exhaust gas movement direction (center line direction of the cases 4 and 5) and a direction orthogonal to the exhaust gas movement direction (circumferential direction of the cases 4 and 5). It has a long diameter. A closing ring body 15 is fixed between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 in a sandwiched manner. A gap between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 is closed by the closing ring body 15. An exhaust ring 15 prevents the exhaust gas from flowing between the catalyst inner case 4 and the catalyst outer case 5.
 図1及び図3に示す如く、排気ガス流入口12が形成された触媒外側ケース5の外側面に排気ガス入口管16を配置している。排気ガス入口管16の小径側の真円形の開口端部16aに排気接続フランジ体17を溶接している。排気接続フランジ体17は、ボルト18を介して、後述する排気絞り装置86ひいては排気マニホールド71に締結されている。排気ガス入口管16の大径側の真円形の開口端部16bは、触媒外側ケース5の外側面に溶接されている。排気ガス入口管16は、小径側の真円形の開口端部16aから大径側の真円形の開口端部16bに向けて末広がり形状(ラッパ状)に形成されている。 As shown in FIGS. 1 and 3, an exhaust gas inlet pipe 16 is disposed on the outer surface of the catalyst outer case 5 in which the exhaust gas inlet 12 is formed. An exhaust connection flange body 17 is welded to a true circular opening end portion 16 a on the small diameter side of the exhaust gas inlet pipe 16. The exhaust connection flange body 17 is fastened to an exhaust throttle device 86 and an exhaust manifold 71 which will be described later via bolts 18. A large circular opening end 16 b on the large diameter side of the exhaust gas inlet pipe 16 is welded to the outer surface of the catalyst outer case 5. The exhaust gas inlet pipe 16 is formed in a divergent shape (a trumpet shape) from the small-diameter-side perfect circular opening end 16a toward the large-diameter-side perfect circular opening end 16b.
 図1及び図3に示す如く、触媒外側ケース5における外側面の左側端部には、真円形に形成された大径側の開口端部16bが、排気ガス入口管16にて開口縁14を覆うように溶接されている。この場合、楕円形状の排気ガス流入口12に対して、排気ガス入口管16(大径側の開口端部16b)は、排気ガス移動下流側(触媒外側ケース5の右側)にオフセットして配置されている。すなわち、楕円形状の排気ガス流入口12は、排気ガス入口管16(大径側の開口端部16b)に対して、排気ガス移動上流側(触媒外側ケース5の左側)にオフセットされている。 As shown in FIGS. 1 and 3, a large-diameter open end 16 b formed in a true circle is formed at the left end of the outer surface of the catalyst outer case 5, and an open edge 14 is formed by the exhaust gas inlet pipe 16. It is welded to cover it. In this case, the exhaust gas inlet pipe 16 (large-diameter-side opening end portion 16b) is offset with respect to the elliptical exhaust gas inlet 12, and is arranged offset to the exhaust gas movement downstream side (right side of the catalyst outer case 5). Has been. That is, the elliptical exhaust gas inlet 12 is offset to the exhaust gas movement upstream side (the left side of the catalyst outer case 5) with respect to the exhaust gas inlet pipe 16 (large-diameter side opening end portion 16b).
 上記の構成により、ディーゼルエンジン70の排気ガスが、排気マニホールド71から排気ガス入口管16に入り込み、排気ガス入口管16から排気ガス流入口12を介して排気ガス流入空間11に入り込み、ディーゼル酸化触媒2にこの左側端面2aから供給される。ディーゼル酸化触媒2の酸化作用によって、二酸化窒素(NO2)が生成される。なお、ディーゼルエンジン70にDPF1を組付ける場合は、ディーゼルエンジン70のシリンダヘッド72等に、支持ブラケット(図示省略)を介して触媒外側ケース5を固着させる。 With the above configuration, the exhaust gas of the diesel engine 70 enters the exhaust gas inlet pipe 16 from the exhaust manifold 71, enters the exhaust gas inflow space 11 from the exhaust gas inlet pipe 16 through the exhaust gas inlet 12, and the diesel oxidation catalyst. 2 is supplied from the left end face 2a. Nitrogen dioxide (NO 2) is generated by the oxidation action of the diesel oxidation catalyst 2. When the DPF 1 is assembled to the diesel engine 70, the catalyst outer case 5 is fixed to the cylinder head 72 of the diesel engine 70 via a support bracket (not shown).
 図1及び図3を参照して、スートフィルタ3の取付け構造を説明する。図1及び図3に示す如く、ディーゼルエンジン70が排出した排気ガスを浄化するガス浄化フィルタとしてのスートフィルタ3は、耐熱金属材料製で略筒型のフィルタ内側ケース20内に設けられている。内側ケース4は、耐熱金属材料製で略筒型のフィルタ外側ケース21内に設けられている。即ち、スートフィルタ3の外側にマット状のセラミックファイバー製フィルタ断熱材22を介してフィルタ内側ケース20を被嵌させている。なお、フィルタ断熱材22によってスートフィルタ3が保護される。 The mounting structure of the soot filter 3 will be described with reference to FIG. 1 and FIG. As shown in FIGS. 1 and 3, the soot filter 3 as a gas purification filter for purifying exhaust gas discharged from the diesel engine 70 is provided in a substantially cylindrical filter inner case 20 made of a heat-resistant metal material. The inner case 4 is made of a heat-resistant metal material and is provided in a substantially cylindrical filter outer case 21. That is, the filter inner case 20 is fitted on the outside of the soot filter 3 via the mat-shaped ceramic fiber filter heat insulating material 22. The soot filter 3 is protected by the filter heat insulating material 22.
 図1及び図3に示す如く、触媒外側ケース5の排気ガス移動下流側(右側)の端部に触媒側フランジ25を溶接する。フィルタ内側ケース20の排気ガス移動方向の中間と、フィルタ外側ケース21の排気ガス移動上流側(左側)の端部にフィルタ側フランジ26を溶接する。触媒側フランジ25と、フィルタ側フランジ26とを、ボルト27及びナット28によって着脱可能に締結している。なお、円筒形の触媒内側ケース4の直径寸法と、円筒形のフィルタ内側ケース20の直径寸法とが略同一寸法である。また、円筒形の触媒外側ケース5の直径寸法と、円筒形のフィルタ外側ケース21の直径寸法とが略同一寸法である。 1 and 3, the catalyst side flange 25 is welded to the end of the catalyst outer case 5 on the downstream side (right side) of the exhaust gas movement. The filter-side flange 26 is welded to the middle of the filter inner case 20 in the exhaust gas movement direction and the end of the filter outer case 21 on the upstream side (left side) of the exhaust gas movement. The catalyst side flange 25 and the filter side flange 26 are detachably fastened by bolts 27 and nuts 28. The diameter of the cylindrical catalyst inner case 4 and the diameter of the cylindrical filter inner case 20 are substantially the same. Further, the diameter of the cylindrical catalyst outer case 5 and the diameter of the cylindrical filter outer case 21 are substantially the same.
 図1に示す如く、触媒側フランジ25とフィルタ側フランジ26を介して、触媒外側ケース5にフィルタ外側ケース21が連結された状態では、触媒内側ケース4の排気ガス移動下流側(右側)の端部に、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部が、センサ取付け用一定間隔L2だけ離間して対峙する。即ち、触媒内側ケース4の排気ガス移動下流側(右側)の端部と、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部との間に、センサ取付け空間29が形成される。センサ取付け空間29位置の触媒外側ケース5に、センサ接続プラグ50を固着している。センサ接続プラグ50には、図示しないフィルタ入口側排気ガス圧力センサやフィルタ入口側排気ガス温度センサ(サーミスタ)等が接続される。 As shown in FIG. 1, in a state where the filter outer case 21 is connected to the catalyst outer case 5 via the catalyst side flange 25 and the filter side flange 26, the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 is shown. The end portion on the upstream side (left side) of the exhaust gas movement of the filter inner case 20 faces the portion spaced apart by a fixed interval L2 for sensor attachment. In other words, the sensor mounting space 29 is formed between the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 and the exhaust gas movement upstream side (left side) end of the filter inner case 20. A sensor connection plug 50 is fixed to the catalyst outer case 5 at the sensor mounting space 29 position. The sensor connection plug 50 is connected to a filter inlet side exhaust gas pressure sensor (not shown), a filter inlet side exhaust gas temperature sensor (thermistor), and the like.
 図3に示す如く、触媒内側ケース4の排気ガス移動方向の円筒長さL3よりも、触媒外側ケース5の排気ガス移動方向の円筒長さL4を長く形成している。フィルタ内側ケース20の排気ガス移動方向の円筒長さL5よりも、フィルタ外側ケース21の排気ガス移動方向の円筒長さL6を短く形成している。センサ取付け空間29の一定間隔L2と、触媒内側ケース4の円筒長さL3と、フィルタ内側ケース20の円筒長さL5とを加算した長さ(L2+L3+L5)が、触媒外側ケース5の円筒長さL4と、フィルタ外側ケース21の円筒長さL6とを加算した長さ(L4+L6)に略等しくなるように構成している。 As shown in FIG. 3, the cylindrical length L4 of the catalyst outer case 5 in the exhaust gas movement direction is longer than the cylindrical length L3 of the catalyst inner case 4 in the exhaust gas movement direction. The cylindrical length L6 of the filter outer case 21 in the exhaust gas movement direction is shorter than the cylindrical length L5 of the filter inner case 20 in the exhaust gas movement direction. A length (L2 + L3 + L5) obtained by adding the constant interval L2 of the sensor mounting space 29, the cylindrical length L3 of the catalyst inner case 4 and the cylindrical length L5 of the filter inner case 20 is the cylindrical length L4 of the catalyst outer case 5. And a length (L4 + L6) obtained by adding the cylindrical length L6 of the filter outer case 21 to be substantially equal to each other.
 フィルタ外側ケース21の排気ガス移動上流側(左側)の端部から、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部が、それらの長さの差(L7=L5-L6)だけ突出する。即ち、触媒外側ケース5にフィルタ外側ケース21を連結した場合、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部が、オーバーラップ寸法L7だけ、触媒外側ケース5の排気ガス移動下流側(右側)に内挿される。 The exhaust gas movement upstream side (left side) end of the filter outer case 21 is connected to the exhaust gas movement upstream side (left side) end of the filter inner case 20 by a difference in length (L7 = L5-L6). Protruding. That is, when the filter outer case 21 is connected to the catalyst outer case 5, the exhaust gas movement upstream side (left side) end of the filter inner case 20 is the overlap dimension L7, and the exhaust gas movement downstream side of the catalyst outer case 5 (Right side) is interpolated.
 上記の構成により、ディーゼル酸化触媒2の酸化作用によって生成された二酸化窒素(NO2)が、スートフィルタ3にこの左側端面3aから供給される。スートフィルタ3に捕集されたディーゼルエンジン70の排気ガス中の捕集粒状物質(PM)が、二酸化窒素(NO2)によって、比較的低温で連続的に酸化除去される。ディーゼルエンジン70の排気ガス中の粒状物質(PM)の除去に加え、ディーゼルエンジン70の排気ガス中の一酸化炭素(CO)や炭化水素(HC)が低減される。 With the above configuration, nitrogen dioxide (NO2) generated by the oxidation action of the diesel oxidation catalyst 2 is supplied to the soot filter 3 from the left end face 3a. The collected particulate matter (PM) in the exhaust gas of the diesel engine 70 collected by the soot filter 3 is continuously oxidized and removed at a relatively low temperature by nitrogen dioxide (NO2). In addition to the removal of particulate matter (PM) in the exhaust gas of the diesel engine 70, carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas of the diesel engine 70 are reduced.
 なお、上記のように、エンジンが排出した排気ガスを浄化するガス浄化フィルタとして、ディーゼル酸化触媒2及びスートフィルタ3を設けたが、ディーゼル酸化触媒2及びスートフィルタ3に代えて、尿素(還元剤)の添加にて発生したアンモニア(NH3)によってエンジン70の排気ガス中の窒素酸化物(NOx)を還元するNOx選択還元触媒(NOx除去触媒)と、NOx選択還元触媒から排出される残留アンモニアを取り除くアンモニア除去触媒とを設けてもよい。 As described above, the diesel oxidation catalyst 2 and the soot filter 3 are provided as gas purification filters for purifying the exhaust gas discharged from the engine. However, instead of the diesel oxidation catalyst 2 and the soot filter 3, urea (reducing agent) is used. NOx selective reduction catalyst (NOx removal catalyst) for reducing nitrogen oxide (NOx) in the exhaust gas of the engine 70 by ammonia (NH3) generated by the addition of)) and residual ammonia discharged from the NOx selective reduction catalyst You may provide the ammonia removal catalyst to remove.
 上記のように、ガス浄化フィルタとして、触媒内側ケース4にNOx選択還元触媒(NOx除去触媒)を設け、フィルタ内側ケース20にアンモニア除去触媒を設けた場合、エンジンが排出した排気ガス中の窒素酸化物(NOx)が還元され、無害な窒素ガス(N2)として排出できる。 As described above, when a NOx selective reduction catalyst (NOx removal catalyst) is provided in the catalyst inner case 4 and an ammonia removal catalyst is provided in the filter inner case 20 as a gas purification filter, nitrogen oxidation in the exhaust gas exhausted by the engine is performed. The substance (NOx) is reduced and can be discharged as harmless nitrogen gas (N2).
 図1~図3を参照して、消音器30の取付け構造を説明する。図1~図3に示す如く、ディーゼルエンジン70が排出した排気ガス音を減衰させる消音器30は、耐熱金属材料製で略筒型の消音内側ケース31と、耐熱金属材料製で略筒型の消音外側ケース32と、消音内側ケース31及び消音外側ケース32の右側端部に溶接にて固着した円板状の右側蓋体33とを有する。消音外側ケース32内に消音内側ケース31を設けている。なお、円筒形の触媒内側ケース4の直径寸法と、円筒形のフィルタ内側ケース20の直径寸法と、円筒形の消音内側ケース31とが略同一寸法である。また、円筒形の触媒外側ケース5の直径寸法と、円筒形のフィルタ外側ケース21の直径寸法と、円筒形の消音外側ケース32とが略同一寸法である。 The mounting structure of the silencer 30 will be described with reference to FIGS. As shown in FIGS. 1 to 3, the silencer 30 for attenuating the exhaust gas sound discharged from the diesel engine 70 includes a substantially cylindrical silencer inner case 31 made of a heat resistant metal material and a substantially cylindrical shape made of a heat resistant metal material. The sound-absorbing outer case 32, and the sound-absorbing inner case 31 and the disc-shaped right-side cover 33 fixed to the right end of the sound-absorbing outer case 32 by welding. A silencer inner case 31 is provided in the silencer outer case 32. The diameter size of the cylindrical catalyst inner case 4, the diameter size of the cylindrical filter inner case 20, and the cylindrical sound deadening inner case 31 are substantially the same size. Further, the diameter of the cylindrical catalyst outer case 5, the diameter of the cylindrical filter outer case 21, and the cylindrical silencing outer case 32 are substantially the same.
 消音内側ケース31及び消音外側ケース32には、排気ガス出口管34を貫通させている。排気ガス出口管34の一端側が出口蓋体35によって閉塞されている。消音内側ケース31の内部における排気ガス出口管34の全体に多数の排気孔(図示省略)が開設されている。消音内側ケース31の内部が、前述した多数の排気孔を介して、排気ガス出口管34に連通されている。後述するテールパイプ135や既設の消音部材(図示省略)が排気ガス出口管34の他端側に接続される。 An exhaust gas outlet pipe 34 is passed through the silencer inner case 31 and the silencer outer case 32. One end side of the exhaust gas outlet pipe 34 is closed by an outlet lid 35. A number of exhaust holes (not shown) are formed in the entire exhaust gas outlet pipe 34 inside the silencer inner case 31. The interior of the muffler inner case 31 communicates with the exhaust gas outlet pipe 34 through the numerous exhaust holes described above. A tail pipe 135 and an existing silencing member (not shown) to be described later are connected to the other end side of the exhaust gas outlet pipe 34.
 なお、消音内側ケース31の内部は、多数の消音孔(図示省略)を介して、消音内側ケース31と消音外側ケース32との間に連通されている。消音内側ケース31と消音外側ケース32との間の空間は、右側蓋体33等によって閉塞されている。消音内側ケース31と消音外側ケース32との間にセラミックファイバー製消音材(図示省略)が充填されている。消音内側ケース31の排気ガス移動上流側(左側)の端部が、薄板製支持体(図示省略)を介して、消音外側ケース32の排気ガス移動上流側(左側)の端部に連結されている。 In addition, the inside of the muffling inner case 31 is communicated between the muffling inner case 31 and the muffling outer case 32 through a number of muffler holes (not shown). The space between the silencer inner case 31 and the silencer outer case 32 is closed by the right lid 33 or the like. A ceramic fiber silencer (not shown) is filled between the silencer inner case 31 and the silencer outer case 32. The end of the silencing inner case 31 on the upstream side (left side) of the exhaust gas movement is connected to the end of the silencing outer case 32 on the upstream side (left side) of the exhaust gas movement via a thin plate support (not shown). Yes.
 上記の構成により、消音内側ケース31内から排気ガス出口管34を介して排気ガスが排出される。また、消音内側ケース31の内部において、多数の消音孔から消音材に排気ガス音(主に高周波帯の音)が吸音される。従って、排気ガス出口管34の出口側から排出される排気ガスの騒音が減衰される。 With the above configuration, exhaust gas is discharged from the muffler inner case 31 through the exhaust gas outlet pipe 34. Further, in the silencer inner case 31, exhaust gas sound (mainly high frequency band sound) is absorbed by the silencer material from a large number of silencer holes. Therefore, the noise of the exhaust gas discharged from the outlet side of the exhaust gas outlet pipe 34 is attenuated.
 図1及び図3に示す如く、フィルタ内側ケース20とフィルタ外側ケース21の排気ガス移動下流側(右側)の端部にフィルタ側出口フランジ40を溶接する。消音外側ケース32の排気ガス移動上流側(左側)の端部に、消音側フランジ41を溶接する。フィルタ側出口フランジ40と、消音側フランジ41とを、ボルト42及びナット43によって着脱可能に締結している。なお、フィルタ内側ケース20とフィルタ外側ケース21にセンサ接続プラグ44を固着している。センサ接続プラグ44には、図示しない出口側排気ガス圧力センサや出口側排気ガス温度センサ(サーミスタ)等が接続される。 1 and 3, the filter side outlet flange 40 is welded to the exhaust gas movement downstream side (right side) ends of the filter inner case 20 and the filter outer case 21. The silencer flange 41 is welded to the exhaust gas movement upstream side (left side) of the silencer outer case 32. The filter side outlet flange 40 and the silencer side flange 41 are detachably fastened by bolts 42 and nuts 43. A sensor connection plug 44 is fixed to the filter inner case 20 and the filter outer case 21. The sensor connection plug 44 is connected to an unillustrated outlet side exhaust gas pressure sensor, an outlet side exhaust gas temperature sensor (thermistor) and the like.
 次に、主として図4~図7を参照しながら、ディーゼルエンジン70にDPF1及びEGR装置91(詳細は後述する)を設けた構造を説明する。図4~図7に示す如く、ディーゼルエンジン70のシリンダヘッド72の前側面に排気マニホールド71が配置されている。シリンダヘッド72の後側面には吸気マニホールド73が配置されている。シリンダヘッド72は、エンジン出力軸74(クランク軸、図7参照)とピストン(図示省略)を有するシリンダブロック75に上載されている。シリンダブロック75の左右両側面からエンジン出力軸74の左右両端を突出させている。シリンダブロック75の右側面には冷却ファン76が設けられている。エンジン出力軸74の右端側からVベルト77を介して冷却ファン76に回転力を伝達するように構成している。 Next, a structure in which the DPF 1 and the EGR device 91 (details will be described later) are provided in the diesel engine 70 will be described mainly with reference to FIGS. As shown in FIGS. 4 to 7, an exhaust manifold 71 is disposed on the front side surface of the cylinder head 72 of the diesel engine 70. An intake manifold 73 is disposed on the rear side of the cylinder head 72. The cylinder head 72 is mounted on a cylinder block 75 having an engine output shaft 74 (crank shaft, see FIG. 7) and a piston (not shown). The left and right ends of the engine output shaft 74 are protruded from the left and right side surfaces of the cylinder block 75. A cooling fan 76 is provided on the right side surface of the cylinder block 75. The rotational force is transmitted from the right end side of the engine output shaft 74 to the cooling fan 76 via the V belt 77.
 図4~図7に示す如く、シリンダブロック75の左側面にフライホイールハウジング78を固着している。フライホイールハウジング78内にフライホイール79を設ける。エンジン出力軸74の左端側にフライホイール79を軸支させている。後述するバックホウ100やフォークリフトカー120等の作動部に、フライホイール79を介してディーゼルエンジン70の動力を取り出すように構成している。 4 to 7, a flywheel housing 78 is fixed to the left side surface of the cylinder block 75. A flywheel 79 is provided in the flywheel housing 78. A flywheel 79 is pivotally supported on the left end side of the engine output shaft 74. The power of the diesel engine 70 is extracted via a flywheel 79 to operating parts such as a backhoe 100 and a forklift car 120 described later.
 また、シリンダブロック75の下面にはオイルパン95が配置されている。シリンダブロック75の前後側面とフライホイールハウジング78の前後側面とには、機関脚取付け部96がそれぞれ設けられている。各機関脚取付け部96には、防振ゴムを有する機関脚体97がボルト締結されている。ディーゼルエンジン70は、各機関脚体97を介して、作業車両(バックホウ100、フォークリフトカー120)等のエンジン取付けシャーシ81に防振支持されている。 Further, an oil pan 95 is disposed on the lower surface of the cylinder block 75. Engine leg mounting portions 96 are provided on the front and rear side surfaces of the cylinder block 75 and the front and rear side surfaces of the flywheel housing 78, respectively. Each engine leg mounting portion 96 is bolted to an engine leg body 97 having vibration-proof rubber. The diesel engine 70 is supported in an anti-vibration manner on an engine mounting chassis 81 such as a work vehicle (backhoe 100, forklift car 120) via each engine leg 97.
 図5に示すように、吸気マニホールド73の入口部73aは、当該吸気マニホールド73の略中央部から上向きに突出している。そして、吸気マニホールド73の入口部73aは、EGR装置91(排気ガス再循環装置)を介してエアクリーナ(図示省略)に連結されている。エアクリーナに吸い込まれた新気(外部空気)は、当該エアクリーナにて除塵・浄化されたのち、EGR装置91を介して吸気マニホールド73に送られ、そして、ディーゼルエンジン70の各気筒に供給される。 As shown in FIG. 5, the inlet portion 73 a of the intake manifold 73 protrudes upward from a substantially central portion of the intake manifold 73. The inlet portion 73a of the intake manifold 73 is connected to an air cleaner (not shown) via an EGR device 91 (exhaust gas recirculation device). The fresh air (external air) sucked into the air cleaner is dust-removed and purified by the air cleaner, is sent to the intake manifold 73 via the EGR device 91, and is supplied to each cylinder of the diesel engine 70.
 図5及び図6に示すように、EGR装置91は、ディーゼルエンジン70の排気ガスの一部(排気マニホールド71からのEGRガス)と新気(エアクリーナ88からの外部空気)とを混合させて吸気マニホールド73に供給するEGR本体ケース(コレクタ)145と、エアクリーナにEGR本体ケース145を連通させる吸気スロットル部材146と、排気マニホールド71にEGRクーラ147を介して接続される還流管路としての再循環排気ガス管148と、再循環排気ガス管148にEGR本体ケース145を連通させるEGRバルブ部材149とを備えている。 As shown in FIGS. 5 and 6, the EGR device 91 mixes a part of exhaust gas of the diesel engine 70 (EGR gas from the exhaust manifold 71) and fresh air (external air from the air cleaner 88) to intake air. An EGR main body case (collector) 145 to be supplied to the manifold 73, an intake throttle member 146 for communicating the EGR main body case 145 with an air cleaner, and a recirculation exhaust as a return line connected to the exhaust manifold 71 via an EGR cooler 147 A gas pipe 148 and an EGR valve member 149 that allows the EGR main body case 145 to communicate with the recirculated exhaust gas pipe 148 are provided.
 すなわち、吸気マニホールド73と新気導入用の吸気スロットル部材146とがEGR本体ケース145を介して接続されている。そして、EGR本体ケース145には、排気マニホールド71から延びる再循環排気ガス管148の出口側が連通している。図6に示すように、EGR本体ケース145は長筒状に形成されている。吸気スロットル部材146は、EGR本体ケース145の長手方向の一端部にボルト締結されている。EGR本体ケース145のうち吸気スロットル部材146と反対側の部位に形成された下向きの開口端部145aが、吸気マニホールド73の入口部73aに着脱可能にボルト150締結されている。 That is, the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145. The EGR main body case 145 communicates with the outlet side of the recirculated exhaust gas pipe 148 extending from the exhaust manifold 71. As shown in FIG. 6, the EGR main body case 145 is formed in a long cylindrical shape. The intake throttle member 146 is bolted to one end of the EGR main body case 145 in the longitudinal direction. A downward opening end 145 a formed at a portion of the EGR main body case 145 opposite to the intake throttle member 146 is fastened to the inlet 73 a of the intake manifold 73 by a bolt 150 so as to be detachable.
 図6に示すように、EGR本体ケース145には、温度検出手段としての3つの温度センサ151~153が取り付けられている。EGR本体ケース145のうち吸気スロットル部材146寄りの部位に、エアクリーナからの新気の温度を検出する新気温度センサ151が配置されている。EGRバルブ部材149(再循環排気ガス管148)寄りの部位には、排気マニホールド71からのEGRガスの温度を検出するEGRガス温度センサ152が配置されている。吸気マニホールド73の入口部73a寄りの部位には、混合ガスの温度を検出する混合ガス温度センサ153が配置されている。温度センサ151~153群は、混合ガスのEGR率を求めるのに用いられるものである。ここで、EGR率とは、EGRガス量と新気量との和で、EGRガス量を割った値(=EGRガス量/(EGRガス量+新気量))のことを言う。 As shown in FIG. 6, the EGR main body case 145 is provided with three temperature sensors 151 to 153 as temperature detecting means. A fresh air temperature sensor 151 that detects the temperature of fresh air from the air cleaner is disposed in a portion of the EGR main body case 145 near the intake throttle member 146. An EGR gas temperature sensor 152 that detects the temperature of the EGR gas from the exhaust manifold 71 is disposed near the EGR valve member 149 (recirculation exhaust gas pipe 148). A mixed gas temperature sensor 153 that detects the temperature of the mixed gas is disposed at a portion of the intake manifold 73 near the inlet 73a. The temperature sensors 151 to 153 are used for obtaining the EGR rate of the mixed gas. Here, the EGR rate means a value obtained by dividing the EGR gas amount by the sum of the EGR gas amount and the fresh air amount (= EGR gas amount / (EGR gas amount + new air amount)).
 実施形態では、再循環排気ガス管148の出口側が、EGRバルブ部材149を介してEGR本体ケース145に連結されている。EGRバルブ部材149は、その内部にあるEGRバルブ(図示省略)の開度を調節することにより、EGR本体ケース145へのEGRガスの供給量を調節するものである。EGRバルブ部材149の外形は、EGR本体ケース145と同様に、長筒状に形成されている。EGR本体ケース145とEGRバルブ部材149とは互いに横並びに並べて配置されている。EGRバルブ部材149の外周面から斜め下向きに突出した開口端部がEGR本体ケース145の長手中途部に連結されている。再循環排気ガス管148の入口側は、EGRクーラ147を介して排気マニホールド73の下面側に連結されている。 In the embodiment, the outlet side of the recirculation exhaust gas pipe 148 is connected to the EGR main body case 145 via the EGR valve member 149. The EGR valve member 149 adjusts the supply amount of EGR gas to the EGR main body case 145 by adjusting the opening degree of an EGR valve (not shown) in the EGR valve member 149. The outer shape of the EGR valve member 149 is formed in a long cylindrical shape, similar to the EGR main body case 145. The EGR main body case 145 and the EGR valve member 149 are arranged side by side. An opening end projecting obliquely downward from the outer peripheral surface of the EGR valve member 149 is connected to a longitudinal midway portion of the EGR main body case 145. The inlet side of the recirculated exhaust gas pipe 148 is connected to the lower surface side of the exhaust manifold 73 via an EGR cooler 147.
 図5及び図6に示すように、吸気スロットル部材146とEGRバルブ部材149とは、共通のEGR本体ケース145に組み付けられている。換言すると、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、1つの部材としてユニット化されている。また、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、吸気マニホールド73上に位置(露出)していて、冷却ファン76からの冷却風がこれらの部材145,146,149に当たるように構成されている。 As shown in FIGS. 5 and 6, the intake throttle member 146 and the EGR valve member 149 are assembled in a common EGR main body case 145. In other words, the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member. The intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. It is configured.
 上記の構成により、エアクリーナから吸気スロットル部材146を介してEGR本体ケース145内に新気(外部空気)を供給する一方、排気マニホールド71からEGRバルブ149を介してEGR本体ケース145内にEGRガス(排気マニホールド71から排出される排気ガスの一部)を供給する。エアクリーナからの新気と、排気マニホールド71からのEGRガスとが、EGR本体ケース145内で混合された後、EGR本体ケース145内の混合ガスが吸気マニホールド73に供給される。すなわち、ディーゼルエンジン70から排気マニホールド71に排出された排気ガスの一部が、吸気マニホールド73からディーゼルエンジン70に還流されることによって、高負荷運転時の最高燃焼温度が低下し、ディーゼルエンジン70からのNOx(窒素酸化物)の排出量が低減される。 With the above configuration, fresh air (external air) is supplied from the air cleaner through the intake throttle member 146 into the EGR main body case 145, while EGR gas (from the exhaust manifold 71 to the EGR main body case 145 through the EGR valve 149 is A part of the exhaust gas discharged from the exhaust manifold 71 is supplied. After fresh air from the air cleaner and EGR gas from the exhaust manifold 71 are mixed in the EGR main body case 145, the mixed gas in the EGR main body case 145 is supplied to the intake manifold 73. That is, a part of the exhaust gas discharged from the diesel engine 70 to the exhaust manifold 71 is recirculated from the intake manifold 73 to the diesel engine 70, so that the maximum combustion temperature at the time of high load operation is lowered. NOx (nitrogen oxide) emissions are reduced.
 図4~図7に示すように、実施形態のDPF1は、エンジン出力軸74に沿って長い形態になっていて、シリンダヘッド72上における排気マニホールド71寄りの箇所に寄せて配置されている。また、DPF1における長手方向一端側と長手方向他端側とには、排気ガス入口管16と排気ガス出口管34とが左右振り分けて配置されている。 As shown in FIGS. 4 to 7, the DPF 1 according to the embodiment has a long shape along the engine output shaft 74 and is arranged close to the exhaust manifold 71 on the cylinder head 72. Further, the exhaust gas inlet pipe 16 and the exhaust gas outlet pipe 34 are arranged on the left and right sides of the DPF 1 at one end in the longitudinal direction and the other end in the longitudinal direction.
 図4に示すように、排気マニホールド71の出口部71aは、当該排気マニホールド71の左端部側から上向きに突出している。排気マニホールド71の出口部71aには、ディーゼルエンジン70の排気圧を調節するための排気絞り装置86を介して、DPF1の排気ガス入口管16が着脱可能に連結されている。実施形態では、排気ガス入口管16の排気接続フランジ体17が、ボルト18を介して、排気絞り装置86ひいては排気マニホールド71に締結されている。このため、上記したDPF1は、排気絞り装置86を介して高剛性の排気マニホールド71に支持される。 As shown in FIG. 4, the outlet 71 a of the exhaust manifold 71 protrudes upward from the left end side of the exhaust manifold 71. An exhaust gas inlet pipe 16 of the DPF 1 is detachably connected to the outlet portion 71a of the exhaust manifold 71 via an exhaust throttle device 86 for adjusting the exhaust pressure of the diesel engine 70. In the embodiment, the exhaust connection flange body 17 of the exhaust gas inlet pipe 16 is fastened to the exhaust throttle device 86 and thus the exhaust manifold 71 via the bolt 18. For this reason, the above-described DPF 1 is supported by the highly rigid exhaust manifold 71 via the exhaust throttle device 86.
 排気絞り装置86は、スートフィルタ3を再生させるためのものである。すなわち、スート(すす)がスートフィルタ3に堆積したときに、排気絞り装置86の制御にてディーゼルエンジン70の排気圧を高くすることにより、ディーゼルエンジン70からの排気ガスの温度を高温にして、スートフィルタ3に堆積したスート(すす)が燃焼する。その結果、スート(すす)が消失し、スートフィルタ3が再生することになる。 The exhaust throttle device 86 is for regenerating the soot filter 3. That is, when soot is deposited on the soot filter 3, the exhaust gas temperature from the diesel engine 70 is increased by increasing the exhaust pressure of the diesel engine 70 by controlling the exhaust throttle device 86. The soot accumulated on the soot filter 3 burns. As a result, the soot disappears and the soot filter 3 is regenerated.
 従って、負荷が小さく排気ガスの温度が低くなり易い作業(スートが堆積し易い作業)を継続して行っても、排気絞り装置86による排気圧の強制上昇にてスートフィルタ3を再生でき、DPF1の排気ガス浄化能力を適正に維持できる。また、スートフィルタ3に堆積したスートを燃やすためのバーナー等も不要になる。 Therefore, the soot filter 3 can be regenerated by forcibly increasing the exhaust pressure by the exhaust throttling device 86 even if the work with a small load and the temperature of the exhaust gas that tends to be low (the work that tends to accumulate soot) is continued. Can maintain the exhaust gas purification ability of Further, a burner or the like for burning the soot deposited on the soot filter 3 becomes unnecessary.
 排気マニホールド71の出口部71aから、排気ガス入口管16を介してDPF1内に移動した排気ガスは、DPF1にて浄化されたのち、排気ガス出口管34からテールパイプ(図示省略)に移動して、最終的に機外に排出されることになる。 The exhaust gas that has moved from the outlet portion 71a of the exhaust manifold 71 into the DPF 1 through the exhaust gas inlet pipe 16 is purified by the DPF 1 and then moved from the exhaust gas outlet pipe 34 to the tail pipe (not shown). Finally, it will be discharged out of the machine.
 以上の構成から明らかなように、実施形態のEGR装置91によると、吸気マニホールド73と新気導入用の吸気スロットル部材146とがEGR本体ケース145を介して接続されており、EGR本体ケース145には、排気マニホールド71から延びる再循環排気ガス管148の出口側が連通しているから、新気とEGRガスとは、吸気マニホールド73に送り込まれる前に混合されることになる。このため、混合ガス中においてEGRガスを広く分散でき、吸気マニホールド73に送り込まれる前段階で、混合ガスにおける混合状態のバラツキ(ムラ)が少なくなる。従って、ディーゼルエンジン70の各気筒にムラの少ない混合ガスを分配でき、各気筒間のEGR率のバラツキを抑制できる。その結果、黒煙の発生を抑制して、ディーゼルエンジン70の燃焼状態を良好に保ちながら、NOx量を効率よく低減できる。 As is clear from the above configuration, according to the EGR device 91 of the embodiment, the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145, and are connected to the EGR main body case 145. Since the outlet side of the recirculation exhaust gas pipe 148 extending from the exhaust manifold 71 communicates, the fresh air and the EGR gas are mixed before being sent to the intake manifold 73. For this reason, the EGR gas can be widely dispersed in the mixed gas, and the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold 73. Therefore, a mixed gas with little unevenness can be distributed to each cylinder of the diesel engine 70, and variations in the EGR rate between the cylinders can be suppressed. As a result, the amount of NOx can be efficiently reduced while suppressing the generation of black smoke and keeping the combustion state of the diesel engine 70 in good condition.
 また、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、1つの部材としてユニット化されているから、各種作業車両(例えばバックホウ100やフォークリフトカー120等)の異なる機種間であっても、これらの部材145,146,149をガス混合用ユニットとして共用化できる。従って、同型のディーゼルエンジン70を搭載した各機種に対して、1種類のガス混合用ユニットの構成で対処できるから、同型のディーゼルエンジン70を搭載した機種毎のEGR率がばらつくことを抑制して、これら機種毎に試験確認したり出荷申請したりする手間等を省略できる。その結果、製造コストを抑制できる。EGR装置91とディーゼルエンジン70との性能マッチングのための組付け調整工数を低減することも可能になる。 In addition, since the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member, they are different models of various work vehicles (for example, the backhoe 100 and the forklift car 120). However, these members 145, 146 and 149 can be shared as a gas mixing unit. Therefore, each model equipped with the same type of diesel engine 70 can be dealt with by a single gas mixing unit configuration, so that the EGR rate for each model equipped with the same type of diesel engine 70 is suppressed from varying. Therefore, it is possible to omit the trouble of confirming the test and applying for shipping for each model. As a result, the manufacturing cost can be suppressed. It is also possible to reduce the assembly adjustment man-hours for performance matching between the EGR device 91 and the diesel engine 70.
 更に、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、吸気マニホールド73上に位置(露出)していて、冷却ファン76からの冷却風がこれらの部材145,146,149に当たるように構成されているから、冷却風によるガス混合用ユニット、ひいてはその内部の混合ガス温度の上昇を抑制でき、混合ガスによるNOx量低減効果を適正な状態に維持し易い。その上、冷却ファン76からの冷却風にて、ガス混合用ユニットひいてはその内部の混合ガス温度の上昇を抑制できる分だけ、EGRクーラの冷却性能を落とせるから、EGRクーラ147の小型化が可能になる。 Further, the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. Therefore, it is possible to suppress an increase in the temperature of the gas mixing unit due to the cooling air, and hence the mixed gas temperature therein, and to easily maintain the NOx reduction effect by the mixed gas in an appropriate state. In addition, the cooling performance of the EGR cooler 147 can be reduced by the amount by which the cooling air from the cooling fan 76 can suppress the rise of the gas mixing unit and thus the temperature of the mixed gas inside the unit. Become.
 しかも、吸気マニホールド73の入口部73aは、当該吸気マニホールド73の略中央部から上向きに突出しており、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、吸気マニホールド73上に位置(露出)していて、EGR本体ケース145とEGRバルブ部材149とは互いに横並びに並べて配置されているから、ディーゼルエンジン70の全高に対して、ガス混合用ユニット145,146,149の影響を小さくできる。従って、EGR装置91(ガス混合用ユニット145,146,149)を組み込んだディーゼルエンジン70であっても、全高を極力低く抑えることが可能になり、ディーゼルエンジン70に対してガス混合用ユニット145,146,149をコンパクトに配置できる。 Moreover, the inlet portion 73a of the intake manifold 73 protrudes upward from the substantially central portion of the intake manifold 73, and the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned on the intake manifold 73 ( Since the EGR main body case 145 and the EGR valve member 149 are arranged side by side with each other, the influence of the gas mixing units 145, 146, and 149 on the overall height of the diesel engine 70 can be reduced. . Therefore, even if the diesel engine 70 incorporates the EGR device 91 ( gas mixing units 145, 146, 149), the overall height can be kept as low as possible. 146, 149 can be arranged compactly.
 実施形態では、EGR本体ケース145に、混合ガスのEGR率を求めるのに用いられる温度検出手段として、3つの温度センサ151~153が取り付けられていて、温度検出手段がEGR本体ケース145に集中配置されるから、吸気マニホールド73周辺の電装系(吸気スロットル部材146、EGRバルブ部材149、及び温度センサ151~153群)がコンパクトにまとまることになる。また、これら電装系の配線関係の集約化が可能になる。 In the embodiment, three temperature sensors 151 to 153 are attached to the EGR main body case 145 as temperature detection means used for obtaining the EGR rate of the mixed gas, and the temperature detection means are centrally arranged on the EGR main body case 145. As a result, the electrical system around the intake manifold 73 (the intake throttle member 146, the EGR valve member 149, and the temperature sensors 151 to 153) is gathered in a compact manner. In addition, the wiring relations of these electrical systems can be consolidated.
 図6、図8及び図9を参照しながら、EGR本体ケース145の取付け向き変更の態様を説明する。EGR本体ケース145は、吸気マニホールド73における入口部73a回りの複数方向に取付け向き変更可能に設けられている。実施形態では、吸気スロットル部材146が左右及び後ろ側に位置する3方向それぞれにEGR本体ケース145の取付け向きを変更した状態でも、EGR本体ケース145における下向きの開口端部145aを吸気マニホールド73の入口部73aにボルト150締結できるように、下向きの開口端部145aと入口部73aとの挿通穴の位置関係が設定されている。 Referring to FIGS. 6, 8 and 9, the manner of changing the mounting direction of the EGR main body case 145 will be described. The EGR main body case 145 is provided so that the mounting direction can be changed in a plurality of directions around the inlet portion 73 a in the intake manifold 73. In the embodiment, even when the mounting direction of the EGR main body case 145 is changed in each of the three directions where the intake throttle member 146 is located on the left and right and the rear side, the downward opening end portion 145a of the EGR main body case 145 is provided at the inlet of the intake manifold 73. The positional relationship of the insertion hole of the downward opening end part 145a and the entrance part 73a is set so that the bolt 150 can be fastened to the part 73a.
 図6は、吸気スロットル部材146がディーゼルエンジン70のフライホイールハウジング78寄りに位置するようにして、EGR本体ケース145を平面視でエンジン出力軸74と平行状に延びる姿勢で配置した場合の一例を示している。 FIG. 6 shows an example in which the EGR main body case 145 is arranged in a posture extending parallel to the engine output shaft 74 in a plan view so that the intake throttle member 146 is positioned closer to the flywheel housing 78 of the diesel engine 70. Show.
 図8は、吸気マニホールド73に対するEGR本体ケース145の取付け向きを図6の状態から180°反転させて、吸気スロットル部材146を左側に位置させた場合の一例を示している。すなわち、吸気スロットル部材146が冷却ファン76寄りに位置するようにして、EGR本体ケース145が平面視でエンジン出力軸74と平行状に延びる姿勢で配置されている。 FIG. 8 shows an example in which the intake throttle member 146 is positioned on the left side by reversing the mounting direction of the EGR main body case 145 with respect to the intake manifold 73 from the state of FIG. That is, the EGR main body case 145 is arranged in a posture extending in parallel with the engine output shaft 74 in a plan view so that the intake throttle member 146 is positioned closer to the cooling fan 76.
 図9は、吸気マニホールド73に対するEGR本体ケース145の取付け向きを図6の状態から90°回転させて、吸気スロットル部材146を後ろ側に位置させた場合の一例を示している。すなわち、吸気スロットル部材146が吸気マニホールド73から離れるようにして、EGR本体ケース145が平面視でエンジン出力軸74と直交する方向に延びる姿勢で配置されている。 FIG. 9 shows an example where the mounting direction of the EGR main body case 145 with respect to the intake manifold 73 is rotated by 90 ° from the state of FIG. 6 and the intake throttle member 146 is positioned on the rear side. That is, the EGR main body case 145 is arranged in a posture extending in a direction orthogonal to the engine output shaft 74 in plan view so that the intake throttle member 146 is separated from the intake manifold 73.
 以上のように構成すると、EGR本体ケース145の構造を変更することなく、吸気マニホールド73より上流側の吸気系統の向きを選択・変更でき、吸気系統のレイアウトのバリエーションを簡単に増やせることになる。例えば吸気系統の配管長さを短くしたり部品点数を低減したりするにおいて、フライホイールハウジング78寄りにエアクリーナがある場合は図6の構成を採用すればよいし、冷却ファン76寄りにエアクリーナがある場合は図8の構成を採用すればよい。吸気マニホールド73から外向きに離れてエアクリーナがある場合は図9の構成を採用すればよい。なお、図6、図8及び図9に示すように、再循環排気ガス管148を、EGR本体ケース145の取付け向きに応じた長さ・形状のものに交換する必要がある。 With the above configuration, the direction of the intake system upstream of the intake manifold 73 can be selected / changed without changing the structure of the EGR main body case 145, and variations in the layout of the intake system can be easily increased. For example, when shortening the piping length of the intake system or reducing the number of parts, if there is an air cleaner near the flywheel housing 78, the configuration of FIG. 6 may be adopted, and there is an air cleaner near the cooling fan 76. In that case, the configuration of FIG. 8 may be employed. When there is an air cleaner away from the intake manifold 73, the configuration of FIG. 9 may be employed. 6, 8, and 9, it is necessary to replace the recirculated exhaust gas pipe 148 with a length and shape corresponding to the mounting direction of the EGR body case 145.
 図5及び図10を参照しながら、吸気スロットル部材146の取付け向き変更の態様を説明する。実施形態においては、吸気スロットル部材146をEGR本体ケース145の長手方向の一端側に直接取り付けるか(図5参照)、間座154を介して取り付けるか(図10参照)で、EGR本体ケース145に対する吸気スロットル部材146の取付け向きを変更し得るように構成されている。このため、吸気スロットル部材146の吸気方向を、EGR本体ケース145の吸気方向に沿う左右方向にしたり、EGR本体ケース145の吸気方向に交差する上下方向にしたりすることが可能になっている。 Referring to FIG. 5 and FIG. 10, the manner of changing the mounting direction of the intake throttle member 146 will be described. In the embodiment, whether the intake throttle member 146 is directly attached to one end side in the longitudinal direction of the EGR main body case 145 (see FIG. 5) or attached via a spacer 154 (see FIG. 10), the EGR main body case 145 is attached. The mounting direction of the intake throttle member 146 can be changed. For this reason, the intake direction of the intake throttle member 146 can be set to the left-right direction along the intake direction of the EGR main body case 145, or the vertical direction intersecting the intake direction of the EGR main body case 145.
 図10は、吸気スロットル部材146をEGR本体ケース145の長手方向の一端側に間座154を介して取り付けることにより、吸気スロットル部材146の吸気方向を上から下向きに設定した場合の一例を示している。間座154はL字筒状に形成されている。間座154のうち一方の開口端部をEGR本体ケース145の長手方向の一端側にボルト締結し、他方の開口端部を吸気スロットル部材146にボルト締結することにより、吸気スロットル部材146の吸気方向が、EGR本体ケース145の吸気方向に交差する上下方向になる。 FIG. 10 shows an example in which the intake throttle member 146 is attached to one end side in the longitudinal direction of the EGR main body case 145 via a spacer 154 so that the intake direction of the intake throttle member 146 is set from top to bottom. Yes. The spacer 154 is formed in an L-shaped cylinder. One opening end of the spacer 154 is bolted to one end in the longitudinal direction of the EGR main body case 145, and the other opening end is bolted to the intake throttle member 146, whereby the intake throttle member 146 is in the intake direction. However, the vertical direction intersects the intake direction of the EGR main body case 145.
 このように構成すると、吸気スロットル部材146より更に上流側の吸気系統の向きを選択・変更できるから、EGR本体ケース145の取付け向きの変更と相俟って、吸気系統のレイアウトのバリエーションを飛躍的に増やせるのである。例えば吸気系統の配管長さを短くしたり部品点数を低減したりするにおいて、ディーゼルエンジン70の上方にエアクリーナがある場合は図10の構成を採用すれば好適である。 With this configuration, since the direction of the intake system further upstream than the intake throttle member 146 can be selected and changed, coupled with the change in the mounting direction of the EGR main body case 145, the layout variation of the intake system has been dramatically improved. It can be increased. For example, when shortening the piping length of the intake system or reducing the number of parts, when the air cleaner is above the diesel engine 70, it is preferable to adopt the configuration of FIG.
 次に、図15~図17を参照しながら、図4~図7に示すディーゼルエンジン70においてEGR制御を実行する構成とその制御態様の一例とについて説明する。 Next, the configuration for executing EGR control in the diesel engine 70 shown in FIGS. 4 to 7 and an example of the control mode will be described with reference to FIGS.
 ディーゼルエンジン70の駆動を制御する制御手段としてのエンジンコントローラ140は、各種演算処理や制御を実行するCPU141の他、制御プログラムやデータを記憶させるためのROM142、制御プログラムやデータを一時的に記憶させるためのRAM143、及び入出力インターフェイス等を備えている。エンジンコントローラ140には、温度検出手段としての3つの温度センサ151~153、ディーゼルエンジン70の回転数Neを検出する回転数センサ157、並びにディーゼルエンジン70の負荷Lを検出する負荷センサ158等が電気的に接続されている。 The engine controller 140 as a control means for controlling the driving of the diesel engine 70, in addition to the CPU 141 that executes various arithmetic processes and controls, the ROM 142 for storing control programs and data, and the control programs and data are temporarily stored. A RAM 143, an input / output interface, and the like. The engine controller 140 includes three temperature sensors 151 to 153 as temperature detecting means, a rotational speed sensor 157 for detecting the rotational speed Ne of the diesel engine 70, a load sensor 158 for detecting the load L of the diesel engine 70, and the like. Connected.
 前述の通り、3つの温度センサ151~153のうち新気温度センサ151は、エアクリーナから供給される新気の温度T1を検出するものであり、EGRガス温度センサ152は、排気マニホールド71からのEGRガスの温度T2を検出するものである。混合ガス温度センサ153は、EGR本体内で混合された混合ガスの温度T3を検出するものである。なお、実施形態の負荷センサ158は、燃料供給手段である電子ガバナ付き燃料噴射ポンプ(図示省略)のラック位置から燃料供給量を検出するラック位置センサを採用している。エンジン負荷Lは、燃料供給量から直接算出してもよいし、又は、目標エンジン回転数と実際のエンジン回転数との偏差から求めてもよい。 As described above, of the three temperature sensors 151 to 153, the fresh air temperature sensor 151 detects the temperature T1 of fresh air supplied from the air cleaner, and the EGR gas temperature sensor 152 includes the EGR gas from the exhaust manifold 71. The temperature T2 of the gas is detected. The mixed gas temperature sensor 153 detects the temperature T3 of the mixed gas mixed in the EGR main body. Note that the load sensor 158 of the embodiment employs a rack position sensor that detects a fuel supply amount from a rack position of a fuel injection pump with an electronic governor (not shown) that is a fuel supply unit. The engine load L may be calculated directly from the fuel supply amount, or may be obtained from the deviation between the target engine speed and the actual engine speed.
 実施形態のエンジンコントローラ140は、ディーゼルエンジン70の駆動時に、各センサ151~153,157,158の検出情報に基づいて混合ガスのEGR率を演算し、前記EGR率に応じてEGRバルブ部材149の開度を調節するEGR制御を実行するように構成されている。 The engine controller 140 of the embodiment calculates the EGR rate of the mixed gas based on the detection information of the sensors 151 to 153, 157, and 158 when the diesel engine 70 is driven, and the EGR valve member 149 of the EGR valve member 149 is calculated according to the EGR rate. An EGR control for adjusting the opening degree is executed.
 この場合、図16のフローチャートに示すように、まず始めに、エンジン回転数Neと、エンジン負荷Lと、新気温度T1と、EGRガス温度T2と、混合ガス温度T3とを読み込み(ステップS100)、次いで、エンジン回転数Ne及びエンジン負荷Lの値をEGRバルブ開度マップf(Ne、L)に代入して、基準EGR開度EGR_sを算出する(ステップS200)。ここで、EGRバルブ開度マップf(Ne、L)は、エンジン回転数Ne及びエンジン負荷Lと基準EGR開度EGR_sとの関係を表した2次元マップであり、エンジンコントローラ140のROM142等に予め記憶されている。 In this case, as shown in the flowchart of FIG. 16, first, the engine speed Ne, the engine load L, the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3 are read (step S100). Next, the values of the engine speed Ne and the engine load L are substituted into the EGR valve opening map f (Ne, L) to calculate the reference EGR opening EGR_s (step S200). Here, the EGR valve opening map f (Ne, L) is a two-dimensional map showing the relationship between the engine speed Ne, the engine load L, and the reference EGR opening EGR_s, and is stored in advance in the ROM 142 of the engine controller 140 or the like. It is remembered.
 次いで、所定時間毎に検出(サンプリング)したエンジン回転数Neと、エンジン負荷Lと、新気温度T1と、EGRガス温度T2と、混合ガス温度T3とを用いて、直近のサンプリング複数回(例えば10回)分の単純移動平均を算出する(ステップS300)。以下のステップで説明するエンジン回転数Ne、エンジン負荷L、新気温度T1、EGRガス温度T2、及び混合ガス温度T3はいずれも、単純移動平均の値であるものとする。このようにして、ディーゼルエンジン70の駆動状態が過渡状態であっても適正な指標EGR率の算出が可能になっている。 Next, using the engine speed Ne detected (sampled) every predetermined time, the engine load L, the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3, the latest sampling multiple times (for example, A simple moving average for 10 times is calculated (step S300). The engine speed Ne, the engine load L, the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3 described in the following steps are all assumed to be simple moving average values. In this way, an appropriate index EGR rate can be calculated even when the driving state of the diesel engine 70 is in a transient state.
 次いで、単純移動平均の値である新気温度T1と、EGRガス温度T2と、混合ガス温度T3とに基づいて指標EGR率EGR_tを算出する(ステップS400)。ここで、図17を参照しながら、指標EGR率EGR_tについて詳述する。EGR本体ケース145内では、新気温度T1、流量m1の新気(外部空気)と、EGRガス温度T2、流量m2のEGRガスとが合流し、混合ガス温度T3、流量m3の混合ガスとなる。EGR率(%)とは、混合ガス中におけるEGRガスの割合のことを言い、下記の(式1)で表される。 Next, the index EGR rate EGR_t is calculated based on the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3, which are simple moving average values (step S400). Here, the index EGR rate EGR_t will be described in detail with reference to FIG. In the EGR main body case 145, the fresh air (external air) with the fresh air temperature T1 and the flow rate m1 and the EGR gas with the EGR gas temperature T2 and the flow rate m2 merge to form a mixed gas with the mixed gas temperature T3 and the flow rate m3. . The EGR rate (%) refers to the ratio of EGR gas in the mixed gas, and is represented by the following (Formula 1).
 EGR率(%)=m1/(m1+m2)×100………(式1)
 また、下記の(式2)に示すように、新気及びEGRガスの熱量と混合ガスの熱量とは等しい。なお、Cpは新気の定圧モル比熱、Cp′はEGRガスの定圧モル比熱である。
EGR rate (%) = m1 / (m1 + m2) × 100 (Equation 1)
Moreover, as shown in the following (Formula 2), the amount of heat of fresh air and EGR gas is equal to the amount of heat of mixed gas. Cp is the constant pressure molar specific heat of fresh air, and Cp ′ is the constant pressure molar specific heat of EGR gas.
 m1Cp(T3-T1)=m2Cp′(T2-T3)………(式2)
 そして、新気の定圧モル比熱Cp及びEGRガスの定圧モル比熱Cp´が等しいと近似し、(式1)を(式2)に代入すると、下記の(式3)に示すように、指標EGR率EGR_tが得られるのである。
m1Cp (T3-T1) = m2Cp ′ (T2-T3) (Equation 2)
Then, it is approximated that the constant pressure molar specific heat Cp of fresh air and the constant pressure molar specific heat Cp ′ of EGR gas are equal, and substituting (Equation 1) into (Equation 2), the index EGR as shown in The rate EGR_t is obtained.
 EGR_t(%)=(T3-T1)/(T2-T1)×100………(式3)
 ステップS400にて指標EGR率EGR_tを算出した後は、エンジン回転数Ne及びエンジン負荷Lの値を基準EGR率マップF(Ne、L)に代入して、適正なEGR率である基準EGR率EGR_stdを算出する(ステップS500)。ここで、基準EGR率マップF(Ne、L)は、エンジン回転数Ne及びエンジン負荷Lと基準EGR率EGR_stdとの関係を表した2次元マップであり、エンジンコントローラ140のROM142等に予め記憶されている。
EGR_t (%) = (T3−T1) / (T2−T1) × 100 (Equation 3)
After calculating the index EGR rate EGR_t in step S400, the values of the engine speed Ne and the engine load L are substituted into the reference EGR rate map F (Ne, L), and the reference EGR rate EGR_std that is an appropriate EGR rate is obtained. Is calculated (step S500). Here, the reference EGR rate map F (Ne, L) is a two-dimensional map representing the relationship between the engine speed Ne and the engine load L and the reference EGR rate EGR_std, and is stored in advance in the ROM 142 of the engine controller 140 or the like. ing.
 次いで、指標EGR率EGR_tと基準EGR率EGR_stdとの偏差である偏差EGR_gapを算出したのち(ステップS600)、偏差EGR_gapが0となるように補正EGR値EGR_reを算出する(ステップS700)。それから、補正EGR値EGR_reに基づいて、基準EGR開度EGR_sを補正EGR開度EGR_s_reに補正し(ステップS800)、補正EGR開度EGR_s_reの値に基づいて、EGRバルブ部材149の開度を調節するのである(ステップS900)。 Next, after calculating a deviation EGR_gap that is a deviation between the index EGR rate EGR_t and the reference EGR rate EGR_std (step S600), a corrected EGR value EGR_re is calculated so that the deviation EGR_gap becomes 0 (step S700). Then, based on the corrected EGR value EGR_re, the reference EGR opening degree EGR_s is corrected to the corrected EGR opening degree EGR_s_re (step S800), and the opening degree of the EGR valve member 149 is adjusted based on the value of the corrected EGR opening degree EGR_s_re. (Step S900).
 以上のように、各ガスの流量や流速を検出するための手段(センサ)がなくても、新気温度T1、EGRガス温度T2及び混合ガス温度T3を用いて、簡単に精度よく、EGR率EGR_std,EGR_tを算出できる。このため、EGR率EGR_std,EGR_t算出のための検出手段が、温度検出をする簡単な構成のもので済む。 As described above, even if there is no means (sensor) for detecting the flow rate and flow velocity of each gas, the EGR rate can be easily and accurately obtained using the fresh air temperature T1, the EGR gas temperature T2, and the mixed gas temperature T3. EGR_std and EGR_t can be calculated. For this reason, the detection means for calculating the EGR rates EGR_std and EGR_t only needs to have a simple configuration for detecting the temperature.
 その上、これらの算出結果に基づいてEGRバルブ部材149をフィードバック制御するため、各ガスの流量や流速を検出してEGR率EGR_std,EGR_tを求める複雑な制御システムを構築しなくても、EGR本体ケース145に適正量のEGRガスを供給できる。従って、部品コストひいては製造コストの抑制に寄与できる。 In addition, since the EGR valve member 149 is feedback controlled based on these calculation results, the EGR main body can be constructed without constructing a complicated control system for detecting the EGR rates EGR_std and EGR_t by detecting the flow rate and flow velocity of each gas. An appropriate amount of EGR gas can be supplied to the case 145. Therefore, it is possible to contribute to the suppression of the component cost and the manufacturing cost.
 図11及び図12を参照して、図4~図7に示すディーゼルエンジン70をバックホウ100に搭載した構造を説明する。図11及び図12に示す如く、バックホウ100は、左右一対の走行クローラ103を有する履帯式の走行装置102と、走行装置102上に設けられた旋回機体104とを備えている。旋回機体104は、旋回用油圧モータ(図示省略)によって、360°の全方位にわたって水平旋回可能に構成されている。走行装置102の後部には、対地作業用の土工板105が昇降動可能に装着されている。旋回機体104の左側部には、操縦部106とディーゼルエンジン70とが搭載されている。旋回機体104の右側部には、掘削作業のためのブーム111及びバケット113を有する作業部110が設けられている。 11 and 12, a structure in which the diesel engine 70 shown in FIGS. 4 to 7 is mounted on the backhoe 100 will be described. As shown in FIGS. 11 and 12, the backhoe 100 includes a crawler-type traveling device 102 having a pair of left and right traveling crawlers 103, and a turning machine body 104 provided on the traveling device 102. The revolving machine body 104 is configured to be horizontally revolved over 360 ° in all directions by a revolving hydraulic motor (not shown). An earthwork plate 105 for ground work is mounted on the rear part of the traveling device 102 so as to be movable up and down. A steering unit 106 and a diesel engine 70 are mounted on the left side of the revolving machine body 104. A working unit 110 having a boom 111 and a bucket 113 for excavation work is provided on the right side of the revolving machine body 104.
 操縦部106には、オペレータが着座する操縦座席108と、ディーゼルエンジン70等を出力操作する操作手段や、作業部110用の操作手段としてのレバー又はスイッチ等が配置されている。作業部110の構成要素であるブーム111には、ブームシリンダ112とバケットシリンダ114とが配置されている。ブーム111の先端部には、掘削用アタッチメントとしてのバケット113が、掬い込み回動可能に枢着されている。ブームシリンダ112又はバケットシリンダ114を作動させて、バケット113によって土工作業(作溝等の対地作業)を実行するように構成している。 The control unit 106 is provided with a control seat 108 on which an operator is seated, an operation means for operating the diesel engine 70 and the like, and a lever or switch as an operation means for the working unit 110. A boom cylinder 112 and a bucket cylinder 114 are arranged on a boom 111 which is a component of the working unit 110. A bucket 113 as an attachment for excavation is pivotally attached to the tip end portion of the boom 111 so as to be inserted and rotated. The boom cylinder 112 or the bucket cylinder 114 is operated to perform earthwork work (ground work such as grooving) by the bucket 113.
 図13及び図14を参照して、図4~図7に示すディーゼルエンジン70をフォークリフトカー120に搭載した構造を説明する。図13及び図14に示す如く、フォークリフトカー120は、左右一対の前輪122及び後輪123を有する走行機体124を備えている。走行機体124には、操縦部125とディーゼルエンジン70とが搭載されている。ディーゼルエンジン70はカバー体133にて上方から覆われており、カバー体133上に操縦部125が設けられることになる。 A structure in which the diesel engine 70 shown in FIGS. 4 to 7 is mounted on the forklift car 120 will be described with reference to FIGS. As shown in FIGS. 13 and 14, the forklift car 120 includes a traveling machine body 124 having a pair of left and right front wheels 122 and a rear wheel 123. The traveling body 124 is equipped with a control unit 125 and a diesel engine 70. The diesel engine 70 is covered from above with a cover body 133, and the control unit 125 is provided on the cover body 133.
 走行機体124の前部側には、荷役作業のためのフォーク126を有する作業部127が設けられている。走行機体124の後部側には、作業部127との重量バランスを取るためのカウンタウェイト131が設けられている。操縦部125には、オペレータが着座する操縦座席128と、操縦ハンドル129と、ディーゼルエンジン70や作業部127用の操作手段としてのレバー及びスイッチ等が配置されている。 A working part 127 having a fork 126 for cargo handling work is provided on the front side of the traveling machine body 124. A counterweight 131 is provided on the rear side of the traveling machine body 124 to balance the weight with the working unit 127. The control unit 125 is provided with a control seat 128 on which an operator is seated, a control handle 129, levers and switches as operation means for the diesel engine 70 and the working unit 127, and the like.
 作業部127の構成要素であるマスト130には、フォーク126が昇降可能に装着されている。フォーク126を昇降動させて、荷物を積んだパレット(図示省略)をフォーク126に上載させ、走行機体124を前後進移動させて、前記パレットの運搬等の荷役作業を実行するように構成している。 A fork 126 is mounted on the mast 130, which is a component of the working unit 127, so as to be movable up and down. The fork 126 is moved up and down, a pallet (not shown) loaded with a load is placed on the fork 126, the traveling machine body 124 is moved forward and backward, and a cargo handling operation such as transportation of the pallet is performed. Yes.
 ディーゼルエンジン70は、フライホイールハウジング78が走行機体124の前部側に、冷却ファン76が走行機体124の後部側に位置するように配置されている。すなわち、エンジン出力軸74の向きが作業部127とカウンタウェイト131とが並ぶ前後方向に沿うように、ディーゼルエンジン70が配置されている。走行機体124を構成するエンジン取付けシャーシ81に、機関脚体97を介してディーゼルエンジン70が防振支持されている。フライホイールハウジング78の前面側にはミッションケース132が連結されている。ディーゼルエンジン70からフライホイール79を経由した動力は、ミッションケース132にて適宜変速され、前輪122及び後輪123やフォーク126の油圧駆動源に伝達されることになる。 The diesel engine 70 is arranged such that the flywheel housing 78 is located on the front side of the traveling machine body 124 and the cooling fan 76 is located on the rear side of the traveling machine body 124. That is, the diesel engine 70 is arranged so that the direction of the engine output shaft 74 is along the front-rear direction in which the working unit 127 and the counterweight 131 are arranged. The diesel engine 70 is supported in an anti-vibration manner via an engine leg 97 on an engine mounting chassis 81 constituting the traveling machine body 124. A mission case 132 is connected to the front side of the flywheel housing 78. The power from the diesel engine 70 via the flywheel 79 is appropriately changed in the transmission case 132 and transmitted to the hydraulic drive sources of the front wheels 122, the rear wheels 123, and the forks 126.
 カバー体133内であって操縦座席128とこれより後方に配置されたカウンタウェイト131との間には、カウンタウェイト131寄りの高位置に、エンジン冷却用のラジエータ134が冷却ファン76に相対向するように配置されている。冷却ファン76の回転駆動にてラジエータ134に冷却風を吹き付けることにより、ラジエータ134が空冷されることになる。 A radiator 134 for cooling the engine opposes the cooling fan 76 at a high position near the counterweight 131 between the control seat 128 and the counterweight 131 disposed behind the control seat 128 in the cover body 133. Are arranged as follows. By blowing cooling air to the radiator 134 by the rotation drive of the cooling fan 76, the radiator 134 is air-cooled.
 なお、本願発明は、前述の実施形態に限定されるものではなく、様々な態様に具体化できる。例えば本願発明に係る作業車両搭載用のエンジン装置は、前述のようなバックホウ100及びフォークリフトカー120に限らず、コンバイン、トラクタ等の農作業機やクレーン車等の特殊作業用車両のような各種作業車両に対して広く適用できる。また、本願発明における各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。 In addition, this invention is not limited to the above-mentioned embodiment, It can be embodied in various aspects. For example, the engine device for mounting a work vehicle according to the present invention is not limited to the backhoe 100 and the forklift car 120 as described above, but various work vehicles such as agricultural machines such as a combine and a tractor, and special work vehicles such as a crane truck. Widely applicable to. Moreover, the structure of each part in this invention is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.
1 DPF(ガス浄化フィルタ)
70 ディーゼルエンジン
71 排気マニホールド
73 吸気マニホールド
76 冷却ファン
91 EGR装置
145 中継管路としてのEGR本体ケース
146 吸気スロットル部材
148 還流管路としての再循環排気ガス管
149 EGRバルブ部材
154 間座
1 DPF (gas purification filter)
70 Diesel Engine 71 Exhaust Manifold 73 Intake Manifold 76 Cooling Fan 91 EGR Device 145 EGR Body Case 146 as Relay Pipeline Intake Throttle Member 148 Recirculated Exhaust Gas Pipe 149 EGR Valve Member 154 Spacer

Claims (7)

  1.  排気マニホールドから排出される排気ガスの一部をEGRガスとして吸気マニホールドに還流させるEGR装置であって、
     前記吸気マニホールドと新気導入用の吸気スロットル部材とが中継管路を介して接続されており、前記中継管路には前記排気マニホールドから延びる還流管路の出口側が接続されている、
    EGR装置。
    An EGR device that recirculates a part of exhaust gas discharged from an exhaust manifold to an intake manifold as EGR gas,
    The intake manifold and an intake throttle member for introducing fresh air are connected via a relay line, and an outlet side of a return line extending from the exhaust manifold is connected to the relay line.
    EGR device.
  2.  前記還流管路の出口側は、前記EGRガスの供給量を調節するEGRバルブ部材を介して前記中継管路に接続されており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とがユニット化されている、
    請求項1に記載したEGR装置。
    The outlet side of the reflux line is connected to the relay line via an EGR valve member that adjusts the supply amount of the EGR gas, and the intake throttle member, the relay line, and the EGR valve member are connected to each other. Unitized,
    The EGR device according to claim 1.
  3.  前記還流管路の出口側は、前記EGRガスの供給量を調節するEGRバルブ部材を介して前記中継管路に接続されている一方、
     前記吸気マニホールドの入口部は上向きに突出しており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とは前記吸気マニホールド上に露出していて、前記中継管路と前記EGRバルブ部材とが横並びに並べて配置されている、
    請求項1に記載したEGR装置。
    While the outlet side of the reflux line is connected to the relay line via an EGR valve member that adjusts the supply amount of the EGR gas,
    The inlet portion of the intake manifold protrudes upward, the intake throttle member, the relay conduit, and the EGR valve member are exposed on the intake manifold, and the relay conduit and the EGR valve member are Arranged side by side,
    The EGR device according to claim 1.
  4.  前記吸気マニホールドに供給される混合ガスのEGR率算出のための複数の温度検出手段が、前記中継管路に設けられている、
    請求項3に記載したEGR装置。
    A plurality of temperature detection means for calculating the EGR rate of the mixed gas supplied to the intake manifold is provided in the relay pipe line.
    The EGR apparatus according to claim 3.
  5.  吸気マニホールド及び排気マニホールドを有するエンジンと、請求項1~4のうちいずれかに記載したEGR装置とを備えている、
    エンジン装置。
    An engine having an intake manifold and an exhaust manifold, and the EGR device according to any one of claims 1 to 4,
    Engine equipment.
  6.  前記吸気スロットル部材が前記エンジンのフライホイールハウジング寄りに位置するようにして、前記中継管路が平面視で前記エンジンの出力軸と平行状に延びる姿勢で配置されている、
    請求項5に記載したエンジン装置。
    The relay pipe is arranged in a posture extending in parallel with the output shaft of the engine in plan view so that the intake throttle member is positioned closer to the flywheel housing of the engine.
    The engine device according to claim 5.
  7.  前記吸気マニホールドの入口部は上向きに突出しており、前記吸気スロットル部材と前記中継管路と前記EGRバルブ部材とは前記吸気マニホールド上に位置していて、前記エンジンに設けられた冷却ファンからの冷却風が当たるように構成されている、
    請求項5に記載したエンジン装置。
    An inlet portion of the intake manifold protrudes upward, and the intake throttle member, the relay pipe line, and the EGR valve member are located on the intake manifold, and are cooled by a cooling fan provided in the engine. Configured to hit the wind,
    The engine device according to claim 5.
PCT/JP2010/050544 2009-02-05 2010-01-19 Egr device and engine device with same WO2010090069A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-024736 2009-02-05
JP2009024736A JP2010180768A (en) 2009-02-05 2009-02-05 Egr device, and engine device with the same to be mounted on working vehicle
JP2009025643A JP2010180793A (en) 2009-02-06 2009-02-06 Egr device, and engine with the same
JP2009-025643 2009-02-06
JP2009-025644 2009-02-06
JP2009025644A JP5328022B2 (en) 2009-02-06 2009-02-06 Engine device for work vehicle

Publications (1)

Publication Number Publication Date
WO2010090069A1 true WO2010090069A1 (en) 2010-08-12

Family

ID=42541973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050544 WO2010090069A1 (en) 2009-02-05 2010-01-19 Egr device and engine device with same

Country Status (1)

Country Link
WO (1) WO2010090069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459377A (en) * 2011-03-18 2013-12-18 鲁平有限公司 Benzo [b] [1, 4] oxazin derivatives as calcium sensing receptor modulators
WO2015141470A1 (en) * 2014-03-20 2015-09-24 ヤンマー株式会社 Engine device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155957A (en) * 2001-09-04 2003-05-30 Mitsubishi Motors Corp Egr control device and egr control method
JP2007085302A (en) * 2005-09-26 2007-04-05 Kubota Corp Multicylinder engine
JP2008101472A (en) * 2006-10-17 2008-05-01 Yamaha Motor Co Ltd Spark ignition multicylinder engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155957A (en) * 2001-09-04 2003-05-30 Mitsubishi Motors Corp Egr control device and egr control method
JP2007085302A (en) * 2005-09-26 2007-04-05 Kubota Corp Multicylinder engine
JP2008101472A (en) * 2006-10-17 2008-05-01 Yamaha Motor Co Ltd Spark ignition multicylinder engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459377A (en) * 2011-03-18 2013-12-18 鲁平有限公司 Benzo [b] [1, 4] oxazin derivatives as calcium sensing receptor modulators
WO2015141470A1 (en) * 2014-03-20 2015-09-24 ヤンマー株式会社 Engine device
JP2015183539A (en) * 2014-03-20 2015-10-22 ヤンマー株式会社 Engine device
US10161282B2 (en) 2014-03-20 2018-12-25 Yanmar Co., Ltd. Engine device

Similar Documents

Publication Publication Date Title
JP5324952B2 (en) Engine equipment
JP5243224B2 (en) Engine device for work vehicle
JP5328023B2 (en) engine
JP5653585B2 (en) Engine equipment
WO2010050314A1 (en) Engine device for mounting on working vehicle
US9624814B2 (en) Engine device
JP5243223B2 (en) Engine device for work vehicle
JP5658310B2 (en) Engine device for work vehicle
JP2013189980A (en) Engine device
WO2010101018A1 (en) Engine device
JP2010144640A (en) Engine
WO2010071082A1 (en) Engine device
JP5328022B2 (en) Engine device for work vehicle
WO2010090069A1 (en) Egr device and engine device with same
JP5793169B2 (en) Engine device for work vehicle
JP5782219B2 (en) Engine equipment
JP5328024B2 (en) engine
JP6411411B2 (en) Work vehicle
JP5820901B2 (en) EGR device and engine device mounted on work vehicle equipped with the same
JP2014088878A (en) Engine device loaded in work vehicle
WO2010092857A1 (en) Engine device
JP5989155B2 (en) Engine equipment
JP5450865B2 (en) Engine device for work vehicle
JP2010180793A (en) Egr device, and engine with the same
JP6181631B2 (en) Engine device for work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738407

Country of ref document: EP

Kind code of ref document: A1