WO2010092857A1 - Engine device - Google Patents
Engine device Download PDFInfo
- Publication number
- WO2010092857A1 WO2010092857A1 PCT/JP2010/050593 JP2010050593W WO2010092857A1 WO 2010092857 A1 WO2010092857 A1 WO 2010092857A1 JP 2010050593 W JP2010050593 W JP 2010050593W WO 2010092857 A1 WO2010092857 A1 WO 2010092857A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- egr
- exhaust
- diesel engine
- exhaust gas
- gas
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/18—Construction facilitating manufacture, assembly, or disassembly
- F01N13/1838—Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
- F01N13/1844—Mechanical joints
- F01N13/1855—Mechanical joints the connection being realised by using bolts, screws, rivets or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2450/00—Methods or apparatus for fitting, inserting or repairing different elements
- F01N2450/30—Removable or rechangeable blocks or cartridges, e.g. for filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/08—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present invention relates to an engine device used for a work vehicle such as a forklift, a backhoe or a tractor.
- exhaust gas purification devices that purify air pollutants in exhaust gas are being applied to agricultural machinery, construction machinery, ships, etc., on which diesel engines are mounted. It is being requested to install.
- DPF diesel particulate filter
- NOx catalyst and the like are known (see Patent Documents 1 to 3).
- an EGR device exhaust gas recirculation device that recirculates part of the exhaust gas to the intake side is provided, so that the combustion temperature is kept low and the amount of NOx (nitrogen oxide) in the exhaust gas is reduced.
- the technique of reducing is also known (refer patent document 4).
- a reflux pipe branched from an exhaust manifold of a diesel engine is connected to an intake manifold.
- EGR gas exhaust gas
- the mixed gas is introduced into each cylinder (inside the intake stroke) of the diesel engine.
- an EGR cooler that uses the cooling water of the diesel engine as a refrigerant is disposed in the reflux pipe.
- the EGR gas flowing through the reflux pipe is heat-exchanged by the EGR cooler, and the EGR gas temperature is lowered.
- the combustion temperature is kept low while suppressing the generation of black smoke (smoke) during combustion, and the effect of reducing the amount of NOx in the exhaust gas is enhanced.
- JP 2000-145430 A Japanese Patent Laid-Open No. 2003-27922 JP 2008-82201 A JP 2000-282916 A
- the present invention has a technical problem to provide an engine device that has been improved by examining such a current situation.
- the invention according to claim 1 is an engine device comprising a diesel engine having an intake manifold and an exhaust manifold, and an EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold as EGR gas to the intake manifold.
- An EGR cooler for cooling EGR gas is disposed in a reflux pipe connecting the exhaust manifold and the intake manifold, and the gas inlet side of the EGR cooler is communicated with the exhaust manifold via an EGR gas take-out pipe. While connecting, the gas outlet side of the EGR cooler is attached to the diesel engine via a support member, and the EGR cooler is supported by being separated from the outer surface of the diesel engine by the EGR gas take-out pipe and the support member. It is configured.
- an EGR gas discharge line for communicating the EGR cooler and the reflux line is formed in the support member.
- an engine device wherein an exhaust gas purification device for purifying exhaust gas from the diesel engine, an inlet side exhaust pressure and an outlet side exhaust pressure of the exhaust gas purification device.
- the exhaust pressure detection means for detecting the pressure difference between the exhaust pressure detection means and the exhaust pressure detection means is attached to the outer surface of the diesel engine via a support bracket.
- a sensing body provided at a distal end portion of a harness extending from the detection main body is attached to the exhaust gas purification device, and an outer surface of the exhaust gas purification device is provided.
- a plate member provided on the outer surface side of the exhaust gas purifying device is configured to support a longitudinal midway portion of the harness so as to be separated from the harness.
- an engine device comprising a diesel engine having an intake manifold and an exhaust manifold, and an EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas.
- An EGR cooler for cooling EGR gas is disposed in a reflux line connecting the exhaust manifold and the intake manifold, and a gas inlet side of the EGR cooler is connected to the exhaust manifold via an EGR gas take-out pipe. While connecting to the diesel engine, a gas outlet side of the EGR cooler is attached to the diesel engine via a support member, and the EGR cooler is supported by being separated from the outer surface of the diesel engine by the EGR gas take-out pipe and the support member.
- the diesel engine is provided with a cooling fan, it is possible to allow cooling air to pass between the outer surface of the diesel engine and the EGR cooler, so that heat transfer from the diesel engine to the EGR cooler can be further improved. This further suppresses the cooling efficiency of the EGR cooler by the cooling air.
- the support member that supports the EGR cooler is made of EGR gas. It can be used as part of the distribution channel and can contribute to the reduction of the number of parts related to the EGR device.
- an exhaust gas purification device for purifying exhaust gas from the diesel engine, and an exhaust pressure for detecting a pressure difference between an inlet side exhaust pressure and an outlet side exhaust pressure of the exhaust gas purification device.
- the detection body of the exhaust pressure detection means is attached to the outer surface of the diesel engine via a support bracket, so that the detection body of the exhaust pressure detection means is the diesel engine itself. It will be arranged away from. For this reason, it is difficult for heat generated by the diesel engine to be transmitted to the detection body. Therefore, although the detection main body is assembled to the diesel engine, the detection main body can be prevented from malfunctioning due to overheating.
- a sensing body provided at a tip of a harness extending from the detection main body is attached to the exhaust gas purification device, and the outer surface of the exhaust gas purification device and the harness can be separated from each other, Since the plate member provided on the outer surface side of the exhaust gas purifying apparatus is configured to support the midway part of the harness in the longitudinal direction, it is possible to suppress vibration of the harness due to vibration of the diesel engine. For this reason, the harness and the sensing body can be prevented from loosening and coming off, and detection by the exhaust pressure detecting means can be performed normally.
- FIG. 2 is an exploded front sectional view of FIG. 1. It is a left view of a diesel engine. It is a right view of a diesel engine. It is a top view of a diesel engine. It is a rear side view of a diesel engine. It is a front side view of a diesel engine. It is a left view of the diesel engine which shows the state which omitted the alternator. It is a rear side view of the diesel engine which shows the state which omitted DPF. It is expansion explanatory drawing of an EGR cooler. It is an expanded sectional side view of a supporting member. It is a side view of a backhoe.
- FIG. 9 is an enlarged front side view of FIG. 8. It is a front side view of the diesel engine which shows the state which omitted a cooling fan, an alternator, etc.
- FIG. 19 is an enlarged front side view of FIG. 18.
- the exhaust gas inflow side is simply referred to as the left side
- the exhaust gas discharge side is simply referred to as the right side.
- a continuous regeneration type diesel particulate filter 1 (hereinafter referred to as DPF) is provided as an exhaust gas purification device.
- the DPF 1 is for physically collecting particulate matter (PM) in the exhaust gas.
- the DPF 1 of the embodiment includes a diesel oxidation catalyst 2 such as platinum that generates nitrogen dioxide (NO 2 ), and a soot filter 3 having a honeycomb structure that continuously oxidizes and removes the collected particulate matter (PM) at a relatively low temperature.
- the DPF 1 is configured so that the soot filter 3 is continuously regenerated.
- the DPF 1 can reduce carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas in addition to the removal of particulate matter (PM) in the exhaust gas.
- Diesel Oxidation Catalyst Mounting Structure With reference to FIGS. 1 to 3, the diesel oxidation catalyst 2 mounting structure will be described. As shown in FIGS. 1 to 3, a diesel oxidation catalyst 2 as a gas purification filter for purifying exhaust gas discharged from a diesel engine 70 described later is provided in a substantially cylindrical catalyst inner case 4 made of a heat-resistant metal material. ing. The catalyst inner case 4 is made of a heat resistant metal material and is provided in a substantially cylindrical catalyst outer case 5. That is, the catalyst inner case 4 is fitted on the outside of the diesel oxidation catalyst 2 via the mat-shaped ceramic fiber catalyst heat insulating material 6.
- the catalyst outer case 5 is fitted on the outer side of the catalyst inner case 4 via a thin plate support 7 having an I-shaped end face. Note that the diesel oxidation catalyst 2 is protected by the catalyst heat insulating material 6. The stress (deformation force) of the catalyst outer case 5 transmitted to the catalyst inner case 4 is reduced by the thin plate support 7.
- a disc-shaped left lid 8 is fixed to the left end of the catalyst inner case 4 and the catalyst outer case 5 by welding.
- a sensor connection plug 10 is fixed to the left lid body 8 through a seat plate body 9.
- the left end face 2a of the diesel oxidation catalyst 2 and the left lid 8 are opposed to each other with a predetermined distance L1 for gas inflow space.
- An exhaust gas inflow space 11 is formed between the left end face 2 a of the diesel oxidation catalyst 2 and the left lid 8.
- a sensor connection plug 10 is fixed to a portion of the exhaust gas inflow space 11 in the catalyst inner case 4 and the catalyst outer case 5.
- An inlet side sensing body 64 of a differential pressure sensor 60 as exhaust pressure detecting means for detecting the pressure of exhaust gas in the exhaust gas inflow space 11 is inserted into the sensor connection plug 10 (see FIGS. 4, 6 and 6). 7).
- an elliptical exhaust gas inlet 12 is opened at the left end of the catalyst inner case 4 and the catalyst outer case 5 in which the exhaust gas inflow space 11 is formed.
- the elliptical exhaust gas inlet 12 has a short diameter in the exhaust gas movement direction (center line direction of the cases 4 and 5) and a direction orthogonal to the exhaust gas movement direction (circumferential direction of the cases 4 and 5). It has a long diameter.
- a closing ring body 15 is fixed between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 in a sandwiched manner. A gap between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 is closed by the closing ring body 15.
- An exhaust ring 15 prevents the exhaust gas from flowing between the catalyst inner case 4 and the catalyst outer case 5.
- an exhaust gas inlet pipe 16 is disposed on the outer surface of the catalyst outer case 5 in which the exhaust gas inlet 12 is formed.
- An exhaust connection flange body 17 is welded to a true circular opening end portion 16 a on the small diameter side of the exhaust gas inlet pipe 16.
- the exhaust connection flange body 17 is connected to a first relay pipe 84 connected to an exhaust throttle device 86 of the diesel engine 70 via a bolt 18.
- a large circular opening end 16 b on the large diameter side of the exhaust gas inlet pipe 16 is welded to the outer surface of the catalyst outer case 5.
- the exhaust gas inlet pipe 16 is formed in a divergent shape (a trumpet shape) from the small-diameter-side perfect circular opening end 16a toward the large-diameter-side perfect circular opening end 16b.
- a large-diameter open end 16 b formed in a true circle is formed at the left end of the outer surface of the catalyst outer case 5, and an open edge 14 is formed by the exhaust gas inlet pipe 16. It is welded to cover it.
- the exhaust gas inlet pipe 16 (large-diameter-side opening end portion 16b) is offset with respect to the elliptical exhaust gas inlet 12, and is arranged offset to the exhaust gas movement downstream side (right side of the catalyst outer case 5).
- the elliptical exhaust gas inlet 12 is offset to the exhaust gas movement upstream side (the left side of the catalyst outer case 5) with respect to the exhaust gas inlet pipe 16 (large-diameter side opening end portion 16b).
- the exhaust gas of the diesel engine 70 enters the exhaust gas inlet pipe 16 from the exhaust manifold 71, enters the exhaust gas inflow space 11 from the exhaust gas inlet pipe 16 through the exhaust gas inlet 12, and the diesel oxidation catalyst. 2 is supplied from the left end face 2a. Nitrogen dioxide (NO 2 ) is generated by the oxidation action of the diesel oxidation catalyst 2.
- the catalyst outer case 5 is fixed to the flywheel housing 78 of the diesel engine 70 via the support leg 19.
- the soot filter 3 as a gas purification filter for purifying exhaust gas discharged from the diesel engine 70 is provided in a substantially cylindrical filter inner case 20 made of a heat-resistant metal material.
- the inner case 4 is made of a heat-resistant metal material and is provided in a substantially cylindrical filter outer case 21. That is, the filter inner case 20 is fitted on the outside of the soot filter 3 via the mat-shaped ceramic fiber filter heat insulating material 22. The soot filter 3 is protected by the filter heat insulating material 22.
- the catalyst side flange 25 is welded to the end of the catalyst outer case 5 on the downstream side (right side) of the exhaust gas movement.
- the filter-side flange 26 is welded to the middle of the filter inner case 20 in the exhaust gas movement direction and the end of the filter outer case 21 on the upstream side (left side) of the exhaust gas movement.
- the catalyst side flange 25 and the filter side flange 26 are detachably fastened by bolts 27 and nuts 28.
- the diameter of the cylindrical catalyst inner case 4 and the diameter of the cylindrical filter inner case 20 are substantially the same. Further, the diameter of the cylindrical catalyst outer case 5 and the diameter of the cylindrical filter outer case 21 are substantially the same.
- the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 is shown in a state where the filter outer case 21 is connected to the catalyst outer case 5 via the catalyst side flange 25 and the filter side flange 26, the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 is shown.
- the end portion on the upstream side (left side) of the exhaust gas movement of the filter inner case 20 faces the portion spaced apart by a fixed interval L2 for sensor attachment.
- the sensor mounting space 29 is formed between the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 and the exhaust gas movement upstream side (left side) end of the filter inner case 20.
- a sensor connection plug 50 is fixed to the catalyst outer case 5 at the sensor mounting space 29 position.
- an inlet side exhaust gas temperature sensor is connected to the sensor connection plug 50.
- the cylindrical length L4 of the catalyst outer case 5 in the exhaust gas movement direction is longer than the cylindrical length L3 of the catalyst inner case 4 in the exhaust gas movement direction.
- the cylindrical length L6 of the filter outer case 21 in the exhaust gas movement direction is shorter than the cylindrical length L5 of the filter inner case 20 in the exhaust gas movement direction.
- a length (L2 + L3 + L5) obtained by adding the constant interval L2 of the sensor mounting space 29, the cylindrical length L3 of the catalyst inner case 4 and the cylindrical length L5 of the filter inner case 20 is the cylindrical length L4 of the catalyst outer case 5.
- nitrogen dioxide (NO 2 ) generated by the oxidation action of the diesel oxidation catalyst 2 is supplied to the soot filter 3 from the left end face 3a.
- the collected particulate matter (PM) in the exhaust gas of the diesel engine 70 collected by the soot filter 3 is continuously oxidized and removed at a relatively low temperature by nitrogen dioxide (NO 2 ).
- carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas of the diesel engine 70 are reduced.
- the diesel oxidation catalyst 2 and the soot filter 3 are provided as gas purification filters for purifying the exhaust gas discharged from the engine.
- urea reducing agent
- NOx selective reduction catalyst NOx removal catalyst
- NH 3 ammonia
- An ammonia removal catalyst that removes water may be provided.
- the NOx selective reduction catalyst NOx removal catalyst
- the ammonia removal catalyst is provided in the filter inner case 20 as the gas purification filter
- the oxidation of nitrogen in the exhaust gas exhausted by the engine is performed.
- the substance (NOx) is reduced and can be discharged as harmless nitrogen gas (N 2 ).
- the silencer 30 for attenuating the exhaust gas sound discharged from the diesel engine 70 includes a substantially cylindrical silencer inner case 31 made of a heat resistant metal material and a substantially cylindrical shape made of a heat resistant metal material.
- the sound-absorbing outer case 32, and the sound-absorbing inner case 31 and the disc-shaped right-side cover 33 fixed to the right end of the sound-absorbing outer case 32 by welding are provided.
- a silencer inner case 31 is provided in the silencer outer case 32.
- the diameter of the cylindrical catalyst inner case 4, the diameter of the cylindrical filter inner case 20, and the cylindrical muffler inner case 31 are substantially the same. Further, the diameter size of the cylindrical catalyst outer case 5, the diameter size of the cylindrical filter outer case 21, and the cylindrical silencing outer case 32 are substantially the same size.
- An exhaust gas outlet pipe 34 is passed through the silencer inner case 31 and the silencer outer case 32. One end side of the exhaust gas outlet pipe 34 is closed by an outlet lid 35. A number of exhaust holes (not shown) are formed in the entire exhaust gas outlet pipe 34 inside the silencer inner case 31. The interior of the muffler inner case 31 communicates with the exhaust gas outlet pipe 34 through the numerous exhaust holes described above. A tail pipe 135 and an existing silencing member (not shown) to be described later are connected to the other end side of the exhaust gas outlet pipe 34.
- the inside of the muffling inner case 31 is communicated between the muffling inner case 31 and the muffling outer case 32 through a number of muffler holes (not shown).
- the space between the silencer inner case 31 and the silencer outer case 32 is closed by the right lid 33 or the like.
- a ceramic fiber silencer (not shown) is filled between the silencer inner case 31 and the silencer outer case 32.
- the end of the silencing inner case 31 on the upstream side (left side) of the exhaust gas movement is connected to the end of the silencing outer case 32 on the upstream side (left side) of the exhaust gas movement via a thin plate support (not shown). Yes.
- exhaust gas is discharged from the muffler inner case 31 through the exhaust gas outlet pipe 34. Further, in the silencer inner case 31, exhaust gas sound (mainly high frequency band sound) is absorbed by the silencer material from a large number of silencer holes. Therefore, the noise of the exhaust gas discharged from the outlet side of the exhaust gas outlet pipe 34 is attenuated.
- exhaust gas sound mainly high frequency band sound
- the filter side outlet flange 40 is welded to the exhaust gas movement downstream side (right side) ends of the filter inner case 20 and the filter outer case 21.
- the silencer flange 41 is welded to the exhaust gas movement upstream side (left side) of the silencer outer case 32.
- the filter side outlet flange 40 and the silencer side flange 41 are detachably fastened by bolts 42 and nuts 43.
- a sensor connection plug 44 is fixed to the filter inner case 20 and the filter outer case 21.
- An outlet-side sensing body 65 of a differential pressure sensor 60 as exhaust pressure detecting means for detecting the pressure of exhaust gas in the muffler inner case 31 is inserted into the sensor connection plug 44 (see FIGS. 4, 6, and 7). reference).
- an exhaust manifold 71 is disposed on the left side surface of the cylinder head 72 of the diesel engine 70.
- An intake manifold 73 is disposed on the right side surface of the cylinder head 72.
- the cylinder head 72 is mounted on a cylinder block 75 having an engine output shaft 74 (crank shaft, see FIG. 7) and a piston (not shown). Front and rear front ends of the engine output shaft 74 are projected from both front and rear side surfaces of the cylinder block 75, respectively.
- a cooling fan 76 is provided on the front side surface of the cylinder block 75. The rotational force is transmitted from the front end side of the engine output shaft 74 to the cooling fan 76 via the V belt 77.
- a flywheel housing 78 is fixed to the rear side of the cylinder block 75.
- a flywheel 79 is provided in the flywheel housing 78.
- a flywheel 79 is pivotally supported on the rear end side of the engine output shaft 74. The power of the diesel engine 70 is taken out via the flywheel 79 to the working part of the work vehicle (backhoe 100, forklift car 120, etc.).
- an oil pan 95 is disposed on the lower surface of the cylinder block 75.
- Lubricating oil is stored in the oil pan 95.
- Lubricating oil in the oil pan 95 is sucked by an oil pump 156 disposed in a portion near the right side surface in the cylinder block 75 and is passed through an oil filter 157 disposed on the right side surface of the cylinder block 75, and the diesel engine. 70 is supplied to each lubrication section. The lubricating oil supplied to each lubricating part is then returned to the oil pan 95.
- the oil pump 156 is configured to be driven by rotation of the engine output shaft 74.
- a fuel injection pump 158 for supplying fuel to the combustion chamber in the cylinder block 75 is attached above the oil filter 157 on the right side surface of the cylinder block 75 (below the intake manifold 73).
- the fuel injection pump 158 includes an electronic governor and a fuel feed pump for adjusting the fuel injection amount. By driving the fuel feed pump, the fuel in the fuel tank is sent to the fuel injection pump 158 via the fuel filter.
- a cooling water pump 159 for lubricating lubricating water is disposed coaxially with the fan shaft 80 of the cooling fan 76 at a portion on the left side of the front surface of the cylinder block 75.
- the cooling water pump 159 is configured to be driven together with the cooling fan 76 by the rotation of the engine output shaft 74.
- Cooling water in a radiator 134 (described in detail later) mounted on the work vehicle is supplied to the cooling water pump 159 via a thermostat case 160 provided on the upper part of the cooling water pump 159. Then, by driving the cooling water pump 159, cooling water is supplied to a water cooling jacket (not shown) formed in the cylinder head 72 and the cylinder block 75 to cool the diesel engine 70. Cooling water that has contributed to cooling the diesel engine 70 is returned to the radiator 134.
- the engine output shaft 74 and the fan shaft 80 of the cooling fan 76 extend in parallel in the vertical direction.
- a cooling water pump 159 is disposed on the exhaust manifold 71 side and an oil pump 156 is disposed on the intake manifold 73 side with the engine output shaft 74 (fan shaft 80) interposed therebetween in plan view.
- the cooling water pump 159 faces the cooling fan 76, and the cooling air from the cooling fan 76 hits the cooling water pump 159.
- An alternator 161 is provided on the left side of the cooling water pump 159.
- Engine leg mounting portions 96 are provided on the left and right side surfaces of the cylinder block 75 and the left and right side surfaces of the flywheel housing 78, respectively. Each engine leg mounting portion 96 is bolted to an engine leg body 97 having vibration-proof rubber.
- the diesel engine 70 is supported in an anti-vibration manner on an engine mounting chassis 81 such as a work vehicle (backhoe 100, forklift car 120) via each engine leg 97.
- the inlet portion of the intake manifold 73 protrudes upward from the substantially central portion of the intake manifold 73.
- the inlet portion of the intake manifold 73 is connected to an air cleaner (not shown) via an EGR device 91 (exhaust gas recirculation device).
- the fresh air (external air) sucked into the air cleaner is dust-removed and purified by the air cleaner, is sent to the intake manifold 73 via the EGR device 91, and is supplied to each cylinder of the diesel engine 70.
- the EGR device 91 mixes a part of exhaust gas of the diesel engine 70 (EGR gas from the exhaust manifold 71) and fresh air (external air from the air cleaner 88) to intake air.
- a gas pipe 148 and an EGR valve member 149 that allows the EGR main body case 145 to communicate with the recirculated exhaust gas pipe 148 are provided.
- the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145.
- the EGR main body case 145 communicates with the outlet side of the recirculated exhaust gas pipe 148 extending from the exhaust manifold 71.
- the EGR main body case 145 is formed in a long cylindrical shape.
- the intake throttle member 146 is bolted to one end of the EGR main body case 145 in the longitudinal direction.
- a downward opening end formed in a portion of the EGR main body case 145 opposite to the intake throttle member 146 is detachably bolted to the inlet portion of the intake manifold 73.
- the EGR main body case 145 is provided with two temperature sensors 151 and 153 as temperature detecting means.
- a fresh air temperature sensor 151 that detects the temperature of fresh air from the air cleaner is disposed in a portion of the EGR main body case 145 near the intake throttle member 146.
- a mixed gas temperature sensor 153 that detects the temperature of the mixed gas is disposed at a portion of the intake manifold 73 near the inlet 73a.
- an EGR gas temperature sensor 152 as temperature detecting means for detecting the temperature of the EGR gas from the exhaust manifold 71 is attached to the EGR valve member 149 (recirculation exhaust gas pipe 148).
- the temperature sensors 151 to 153 are used for obtaining the EGR rate of the mixed gas.
- the outlet side of the recirculation exhaust gas pipe 148 is connected to the EGR main body case 145 via the EGR valve member 149.
- the EGR valve member 149 adjusts the supply amount of EGR gas to the EGR main body case 145 by adjusting the opening degree of an EGR valve (not shown) in the EGR valve member 149.
- An opening end projecting obliquely downward from the outer peripheral surface of the EGR valve member 149 is connected to a longitudinal midway portion of the EGR main body case 145.
- the inlet side of the recirculated exhaust gas pipe 148 is connected to the lower surface side of the exhaust manifold 71 via an EGR cooler 147.
- the intake throttle member 146 and the EGR valve member 149 are assembled in a common EGR main body case 145.
- the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member.
- the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. It is configured.
- fresh air is supplied from the air cleaner through the intake throttle member 146 into the EGR main body case 145, while EGR gas (from the exhaust manifold 71 to the EGR main body case 145 through the EGR valve 149 is A part of the exhaust gas discharged from the exhaust manifold 71 is supplied.
- EGR gas from the exhaust manifold 71 to the EGR main body case 145 through the EGR valve 149 is A part of the exhaust gas discharged from the exhaust manifold 71 is supplied.
- the mixed gas in the EGR main body case 145 is supplied to the intake manifold 73.
- the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145, and are connected to the EGR main body case 145. Since the outlet side of the recirculation exhaust gas pipe 148 extending from the exhaust manifold 71 communicates, the fresh air and the EGR gas are mixed before being sent to the intake manifold 73. For this reason, the EGR gas can be widely dispersed in the mixed gas, and the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold 73.
- the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member, they are different models of various work vehicles (for example, the backhoe 100 and the forklift car 120).
- these members 145, 146 and 149 can be shared as a gas mixing unit. Therefore, each model equipped with the same type of diesel engine 70 can be dealt with by a single gas mixing unit configuration, so that the EGR rate for each model equipped with the same type of diesel engine 70 is suppressed from varying. Therefore, it is possible to omit the trouble of confirming the test and applying for shipping for each model. As a result, the manufacturing cost can be suppressed. It is also possible to reduce the assembly adjustment man-hours for performance matching between the EGR device 91 and the diesel engine 70.
- the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. Therefore, it is possible to suppress an increase in the temperature of the gas mixing unit due to the cooling air, and hence the mixed gas temperature therein, and to easily maintain the NOx reduction effect by the mixed gas in an appropriate state.
- the cooling performance of the EGR cooler 147 can be reduced by the amount by which the cooling air from the cooling fan 76 can suppress the rise of the gas mixing unit and thus the temperature of the mixed gas inside the unit. Become.
- one end side of a plate-like support leg 19 as a filter support is welded and fixed to the catalyst outer case 5.
- the other end side of the support leg 19 is fastened to a DPF attachment portion 82 formed on the upper surface of the flywheel housing 78 by a bolt 83 so as to be detachable. For this reason, the above-described DPF 1 is supported by the high-rigidity flywheel housing 78 via both support legs 19.
- the DPF 1 of the embodiment has a shape that is long in a direction orthogonal to the engine output shaft 74, and the exhaust gas movement direction is higher than that of the engine output shaft 74 above the flywheel housing 78. It arrange
- the DPF 1 is located in the vicinity of the cylinder head 72. Specifically, the cylinder head 72 is disposed opposite to the rear side surface near the flywheel housing 78.
- the upper end of the DPF 1 is lower than the upper end of the diesel engine 70 (cylinder head 72).
- the diesel engine 70 is viewed from the cooling fan 76 side (see FIG. 8), most of the DPF 1 is hidden by the diesel engine 70.
- the exhaust gas inlet pipe 16 and the exhaust gas outlet pipe 34 are arranged on the left and right sides of the DPF 1 at one end in the longitudinal direction and the other end in the longitudinal direction.
- a plate member 53 extending along the longitudinal direction of the DPF 1 is attached to the outer surface side of the DPF 1.
- the plate member 53 is for supporting the harnesses 62 and 63 group (details will be described later) of the differential pressure sensor 60, and the long plate-like long main body 54 and the same direction from both ends of the long main body 54. It is comprised by the connection arm part 55 and 56 which protrudes.
- the left connecting arm portion 55 is fastened together with the seat plate body 9 by bolts and nuts that fix the seat plate body 9 to the left side lid body 8 of the DPF 1.
- the right connecting arm portion 56 is fastened together with the catalyst side flange 25 and the filter side flange 26 by bolts 27 and nuts 28.
- the plate member 53 in a state where the plate member 53 is attached to the outer surface side of the DPF 1, the distance between the outer surface of the DPF 1 (catalyst outer case 5) and the base (long body 54) of the plate member 53 is set. ing.
- the plate member 53 is arranged in such a posture as to straddle the seat plate body 9 of the DPF 1, the catalyst side flange 25 and the filter side flange 26, so that the outer surface of the DPF 1 (catalyst outer case 5) and the plate member 53 are disposed. Is spaced from the base (the long main body 54).
- the outlet of the exhaust manifold 71 protrudes upward from the left end side of the exhaust manifold 71.
- An outlet portion of the exhaust manifold 71 is detachably connected to the exhaust gas inlet pipe 16 via an exhaust throttle device 86 for adjusting the exhaust pressure of the diesel engine 70.
- the inlet side of the first relay pipe 84 is bolted to the outlet portion of the exhaust manifold 71, and the outlet side of the first relay pipe 84 is bolted to the inlet side of the exhaust throttle device 86.
- the outlet side of the exhaust throttle device 86 is bolted to the inlet side of the second relay pipe 85, and the outlet side of the second relay pipe 85 is bolted to the exhaust connection flange body 17 of the exhaust gas inlet pipe 16. Therefore, the above-described DPF 1 is supported by the highly rigid exhaust manifold 71 via the first and second relay pipes 84 and 85 and the exhaust throttle device 86.
- the exhaust throttle device 86 is for increasing the exhaust pressure of the diesel engine 70 as described above. That is, when soot accumulates on the soot filter 3, the exhaust gas temperature from the diesel engine 70 is increased by increasing the exhaust pressure of the diesel engine 70 by controlling the operation of the exhaust throttle device 86. The soot accumulated on the soot filter 3 burns. As a result, the soot disappears and the soot filter 3 is regenerated.
- the soot filter 3 can be regenerated by forcibly increasing the exhaust pressure by the exhaust throttle device 86 even if the work with a small load and the temperature of the exhaust gas is easily reduced (the work in which soot is likely to accumulate) is continuously performed.
- the exhaust gas purification capacity of the DPF 1 can be properly maintained. Further, a burner or the like for burning the soot deposited on the soot filter 3 becomes unnecessary.
- the temperature of the exhaust gas from the diesel engine 70 can be raised to promote the warm-up of the diesel engine 70.
- the exhaust gas that has moved from the outlet of the exhaust manifold 71 into the DPF 1 via the exhaust gas inlet pipe 16 is purified by the DPF 1 and then moved from the exhaust gas outlet pipe 34 to the tail pipe (not shown). Eventually it will be discharged out of the machine.
- the DPF 1 of the embodiment is connected to the exhaust manifold 71 of the engine 70 and is connected to the flywheel housing 78 via a plurality of filter supports (support legs 19). .
- the DPF 1 can be disposed with high rigidity in the diesel engine 70, the exhaust gas countermeasures for each equipment such as a work vehicle can be dispensed with, and the versatility of the diesel engine 70 can be improved. There is an effect.
- the use of the flywheel housing 78 which is a highly rigid part of the diesel engine 70, supports the DPF 1 with high rigidity and prevents damage to the DPF 1 due to vibration or the like. Further, it is possible to ship the DPF 1 incorporated in the diesel engine 70 at the manufacturing site of the diesel engine 70, and there is an advantage that the diesel engine 70 and the DPF 1 can be configured in a compact manner.
- the DPF 1 can be communicated with the exhaust manifold 71 at a close distance, the DPF 1 can be easily maintained at an appropriate temperature, and high exhaust gas purification performance can be maintained. In addition, the DPF 1 can be reduced in size.
- the DPF 1 is long in the direction orthogonal to the engine output shaft 74, and is disposed away from the upper surface of the diesel engine 70. Therefore, the cylinder head 72, the exhaust manifold 72, and The upper surface side of the intake manifold 73 can be exposed, and maintenance work related to the diesel engine 70 is easy.
- the DPF 1 is disposed in the vicinity of the cylinder head 72 located at the upper part of the diesel engine 70, the DPF 1 is located in the lee of the cooling fan 76 of the diesel engine 70. It will be hidden behind. Therefore, the wind from the cooling fan 76 can be prevented from directly hitting the DPF 1, and the decrease of the DPF 1 and the exhaust gas temperature inside the DPF 1 due to the wind from the cooling fan 76 can be suppressed, so that the exhaust gas temperature can be maintained. .
- a detection main body 61 of a differential pressure sensor 60 which is an exhaust pressure detection means, is attached via a support bracket 59.
- a support bracket 59 having a square cross section is bolted to the rear side of the cylinder head 72 near the flywheel housing 78 (see FIGS. 6 and 7).
- the upper portion of the support bracket 59 extends so as to cover the upper surface of the head cover 90 that covers the upper surface of the cylinder head 72 in plan view.
- the detection main body 61 is screwed to the upper surface side of the support bracket 59. Therefore, the detection main body 61 is located away from the upper surface of the head cover 90.
- the differential pressure sensor 60 which is an exhaust pressure detecting means is for detecting a pressure difference between the upstream side and the downstream side across the soot filter 3 in the DPF 1.
- the exhaust throttle device 86 By operating the exhaust throttle device 86 based on the pressure difference detected by the differential pressure sensor 60, regeneration control of the soot filter 3 is executed.
- the differential pressure sensor 60 includes the above-described detection main body 61, two harnesses 62 and 63 extending from the detection main body 61 toward the DPF, and an inlet-side sensor 64 provided at the distal end of the left harness 62. And an outlet-side sensing body 65 provided at the tip of the right harness 63.
- the inlet side sensing body 64 on the left harness 62 side is inserted and attached to the sensor connection plug 10 on the inlet side of the DPF 1 (the part of the exhaust gas inflow space 11 in the catalyst inner case 4 and the catalyst outer case 5).
- the outlet side sensing element 65 on the right harness 63 side is inserted and attached to the sensor connection plug 44 on the outlet side of the DPF 1 (the filter inner case 20 and the filter outer case 21).
- the longitudinal intermediate portions of the harnesses 62 and 63 are supported by the plate member 53.
- the midway portions of the harnesses 62 and 63 are placed on the long main body 54 while being clamped by the clamp body 66, and the clamp body 66 is fastened to the long main body 54 with bolts 67.
- the clamp body 66 is fastened to the long main body 54 with bolts 67.
- both The distance between the harnesses 62 and 63 and the outer surface of the DPF 1 (catalyst outer case 5 or the like) is set to be large. In other words, both the harnesses 62 and 63 are set so as not to contact the outer surface of the DPF 1 (catalyst outer case 5 or the like).
- the exhaust pressure detection means is not limited to the differential pressure sensor 60, and may be an exhaust pressure sensor that detects the pressure on the upstream side of the soot filter 3 in the DPF 1.
- the exhaust pressure sensor is employed, the pressure (reference pressure) on the upstream side of the soot filter 3 when no soot is deposited on the soot filter 3 is compared with the current pressure detected by the exhaust pressure sensor. Thus, the clogged state of the soot filter 3 is determined.
- the detection main body 61 of the differential pressure sensor 60 is attached to the outer surface of the diesel engine 70 (head cover 90) via the support bracket 59, the detection main body 61 of the differential pressure sensor 60 is the diesel engine. It will be located away from the engine 70 itself. For this reason, the heat generated by the diesel engine 70 is difficult to be transmitted to the detection main body 61, and the detection main body 61 can be prevented from malfunctioning due to overheating while the detection main body 61 is assembled to the diesel engine 70.
- the sensing bodies 64 and 65 provided at the distal ends of both the harnesses 62 and 63 extending from the detection main body 61 are attached to the DPF 1 so that the distance between the outer surface of the DPF 1 and the harnesses 62 and 63 is increased.
- the longitudinally midway portions of the harnesses 62 and 63 are supported by the plate member 53 provided on the outer surface side of the DPF 1, the vibrations of the harnesses 62 and 63 due to the vibration of the diesel engine 70 can be suppressed. For this reason, the looseness and detachment of both the harnesses 62 and 63 and the sensing bodies 64 and 65 can be prevented, and the detection by the differential pressure sensor 60 can be performed normally.
- the DPF 1 is provided in the vicinity of the cylinder head 72 at the top of the diesel engine 70, and is supported by the cylinder head 72. Since the bracket 59 is attached so as to protrude upward, and the detection main body 61 is attached to the upper part of the support bracket 59, the detection main body 61 is separated from the upper surface of the head cover 90 that covers the upper surface of the cylinder head 72. The effect of suppressing damage to the detection main body 61 due to overheating is high.
- the lengths of the two harnesses 62 and 63 that connect the DPF 1 and the detection main body 61 can be set short, so that the assembly workability can be improved and the cost can be reduced. It is.
- an EGR cooler 147 that cools EGR gas using the cooling water of the diesel engine 70 as a refrigerant is disposed below the exhaust manifold 71 on the left side surface of the cylinder block 75.
- the EGR cooler 147 has a known structure including a cylindrical outer case 165 and a plurality of heat exchange tubes 166 (see FIG. 12) provided in the outer case 165. Sites near both ends inside the outer case 165 are partitioned by a cutout plate 167. Each heat exchange tube 166 is disposed between both the punched plates 167 so as to communicate with each other through respective punch holes. Accordingly, the internal space of each heat exchange tube 166 communicates with the EGR gas inlet 168 and outlet 169 of the EGR cooler 147 (outer case 165).
- the area between both the cutout plates 167 inside the outer case 165 is a sealed space.
- a cooling water inlet portion 170 and a cooling water outlet portion 171 are provided in a portion of the outer case 165 between both the cutout plates 167.
- a cooling water flow path 172 from the cooling water pump 159 to the EGR cooler 147 and the exhaust throttle device 86 is provided on the left side of the diesel engine 70 (exhaust manifold side).
- the cooling water from the cooling water pump 159 is configured not only to be supplied to the water cooling jacket of the diesel engine 70 but also to send a part thereof to the cooling water flow path 172. That is, the cooling water flow path 172 is configured as a separate system from the cooling water system (path toward the water cooling jacket) to the diesel engine 70 itself.
- the EGR cooler 147 and the exhaust throttle device 86 are connected in series in the cooling water flow path 172.
- the EGR cooler 147 is positioned upstream of the exhaust throttle device 86 and closer to the cooling water pump 159. That is, the cooling water discharge part 173 protruding from the cooling water pump 159 toward the alternator 161 is connected to the cooling water inlet part 170 of the EGR cooler 147 through the feed pipe 174.
- the cooling water outlet 171 of the EGR cooler 147 is connected to the cooling water inlet of the exhaust throttle device 86 via a relay pipe 175.
- the cooling water outlet 88 of the exhaust throttle device 86 is connected to the thermostat case 161 through a return pipe 176. Accordingly, a part of the cooling water from the cooling water pump 159 is supplied and circulated in the order of the EGR cooler 147 ⁇ the exhaust throttle device 86 ⁇ the thermostat case 160.
- the EGR gas inlet 168 of the outer case 165 in the EGR cooler 147 is connected to the lower surface side of the exhaust manifold 71 via a cylindrical EGR gas take-out pipe 177.
- the EGR gas inlet portion 168 of the outer case 165 is bolted to the lower flange portion of the EGR gas extraction pipe 177.
- the upper flange portion of the EGR gas take-out pipe 177 is bolted to a downward opening formed on the lower surface side of the exhaust manifold 71.
- the EGR gas outlet 169 of the outer case 165 in the EGR cooler 147 is connected to a support member 180 attached to the cylinder block 75.
- the EGR cooler 147 is supported by the EGR gas take-out pipe 177 and the support member 180 by supporting the longitudinal end portions (EGR gas inlet portion 168 and outlet portion 169) of the EGR cooler 147 so that the cylinder block 75 (specifically Is appropriately separated from the left side surface (see FIGS. 10 and 12).
- a gap SP is provided between the cylinder block 75 and the alternator 161 in the front side view (front view) of the diesel engine 70.
- the EGR cooler 147 is located beyond the gap SP (the EGR cooler 147 faces the gap SP). Therefore, the cooling air from the cooling fan 76 blows through the gap SP between the left side surface of the cylinder block 75 and the EGR cooler 147 (see FIGS. 9, 18 and 19). For this reason, the transfer of heat from the cylinder block 75 to the EGR cooler 147 is suppressed, and the cooling efficiency of the EGR cooler 147 by the cooling air is also increased.
- the support member 180 is integrally provided with a nut portion 181 into which the mounting bolt 184 is inserted, and a cylindrical portion 182 having an exhaust gas outlet pipe line 183 that allows the EGR cooler 147 and the recirculated exhaust gas pipe 148 to communicate with each other.
- the support member 180 of the embodiment is made of a material such as aluminum that is resistant to rust and corrosion.
- a support member 180 is detachably fastened to the left side surface of the cylinder block 75 with a mounting bolt 184 inserted into the nut portion 181.
- the base side of the cylindrical portion 182 in the support member 180 is connected to the EGR gas outlet 169 of the outer case 165 in the EGR cooler 147 from the lateral side.
- the upper side of the cylindrical portion 183 is connected in communication with the outlet side of the recirculation exhaust gas pipe 148. Therefore, the EGR gas outlet 169 of the outer case 165 communicates with the recirculated exhaust gas pipe 148 via the EGR gas discharge pipe 183 in the cylindrical part 182.
- the EGR gas appropriately cooled after passing through the EGR cooler 147 is sent from the EGR gas outlet 169 to the recirculation exhaust gas pipe 148 via the EGR gas discharge pipe 183 in the cylindrical part 182, and to the intake manifold 73 side. Supplied.
- a communication hole 185 that connects the EGR gas outlet 169 and the EGR gas discharge pipe 183 is formed in the middle of the cylindrical portion 182 near the root (see FIG. 12). That is, the EGR gas discharge pipe 183 extends further to the far side than the position of the communication hole 185.
- the height position of the bottom portion on the back side in the EGR gas discharge pipe 183 is lower than the bottom of the communication hole 185. In other words, a step is formed between the bottom portion on the back side in the EGR gas discharge pipe 183 and the bottom of the communication hole 185.
- the back portion of the EGR gas discharge pipe 183 functions as a condensed water receiving portion 186 for storing condensed water generated along with EGR gas cooling. For this reason, the condensed water generated along with the EGR gas cooling flows into the condensed water receiving portion 186 and is difficult to be discharged to the recirculation exhaust gas pipe 148.
- the EGR cooler 147 and the exhaust throttle device 86 are disposed on the exhaust manifold 71 side of the diesel engine 70, and the EGR cooler is disposed in the cooling water flow path 172 extending from the cooling water pump 159. 147 and the exhaust throttle device 86 are connected in series, the cooling water supplied to the EGR cooler 147 can be used to cool the exhaust throttle device 86, and the heat balance between the EGR cooler 147 and the exhaust throttle device 86 can be improved. It can be maintained in a good state.
- the cooling water flow path 172 can be configured compactly.
- the EGR cooler 147 is located upstream of the exhaust throttle device 86 in the cooling water flow path 172, the cold cooling water directly sent from the cooling water pump 159 is ahead of the exhaust throttle device 86. Since it is supplied to the EGR cooler 147, the EGR gas can be efficiently cooled, and the NOx emission reduction effect from the diesel engine 70 can be further improved.
- a cooling water pump 159 is disposed on the exhaust manifold 71 side of the diesel engine 70, and a cooling water flow path 172 to the EGR cooler 147 and the exhaust throttle device 86 is connected to a cooling water system (water cooling jacket) to the diesel engine 70 itself. Since it is configured in a separate system from the route to which the air travels, the cooling water that has reached a high temperature after contributing to the cooling of the diesel engine 70 (the temperature has increased) is supplied to the EGR cooler 147 and the exhaust throttle device 86 side. There is nothing. Therefore, the trouble accompanying the temperature rise of the cooling water can be prevented, and in particular, the cooling performance of the EGR cooler 147 can be improved.
- the cooling water flow path 172 is provided on the exhaust manifold 71 side of the diesel engine 70, the cooling water flow path 172 for the EGR cooler 147 and the exhaust throttle device 86 is on the exhaust manifold 71 side where these 147 and 86 are located. I will come together. Accordingly, the cooling water flow path 172 can be easily routed, which can contribute to an improvement in assembly workability.
- an EGR cooler 147 for cooling the EGR gas is disposed in the recirculation exhaust gas pipe 148 that connects the exhaust manifold 71 and the intake manifold 73, and the EGR gas inlet side of the EGR cooler 147 has an EGR gas.
- the gas outlet side of the EGR cooler 147 is connected to a support member 180 attached to the diesel engine 70, and the EGR cooler 147 is connected to the EGR gas extraction.
- the pipe 177 and the support member 180 are appropriately separated from the outer surface of the diesel engine 70. For this reason, the heat generated by the diesel engine 70 is difficult to be transmitted to the EGR cooler 147. Therefore, damage to the EGR cooler 147 due to overheating can be suppressed.
- a gap SP is provided between the cylinder block 75 and the alternator 161, and the EGR cooler 147 is located beyond the gap SP. Therefore, the cooling air from the cooling fan 76 passes through the gap SP and blows between the left side surface of the cylinder block 75 and the EGR cooler 147. For this reason, the transfer of heat from the cylinder block 75 to the EGR cooler 147 is further suppressed, and the cooling efficiency of the EGR cooler 147 by the cooling air is high.
- the support member 180 is formed with an EGR gas discharge pipe 183 that allows the EGR cooler 147 and the recirculation exhaust gas pipe 148 to communicate with each other. Therefore, the support member 180 that supports the EGR cooler 147 is connected to the EGR gas flow path. This can be used as a part of the EGR device 91 and can contribute to a reduction in the number of parts related to the EGR device 91.
- a condensate receiving portion 186 for storing condensate generated with the cooling of the EGR gas is formed in the EGR gas discharge pipe 183 of the support member 180, which causes rust, corrosion, and the like.
- the backhoe 100 includes a crawler-type traveling device 102 having a pair of left and right traveling crawlers 103, and a revolving machine body 104 provided on the traveling device 102.
- the revolving machine body 104 is configured to be horizontally revolved over 360 ° in all directions by a revolving hydraulic motor (not shown).
- An earthwork plate 105 for ground work is mounted on the rear part of the traveling device 102 so as to be movable up and down.
- a steering unit 106 and a diesel engine 70 are mounted on the left side of the revolving machine body 104.
- a working unit 110 having a boom 111 and a bucket 113 for excavation work is provided on the right side of the revolving machine body 104.
- the control unit 106 is provided with a control seat 108 on which an operator is seated, an operation means for operating the diesel engine 70 and the like, and a lever or switch as an operation means for the working unit 110.
- a boom cylinder 112 and a bucket cylinder 114 are arranged on a boom 111 which is a component of the working unit 110.
- a bucket 113 as an attachment for excavation is pivotally attached to the tip end portion of the boom 111 so as to be inserted and rotated.
- the boom cylinder 112 or the bucket cylinder 114 is operated to perform earthwork work (ground work such as grooving) by the bucket 113.
- the forklift car 120 includes a traveling machine body 124 having a pair of left and right front wheels 122 and a rear wheel 123.
- the traveling body 124 is equipped with a control unit 125 and a diesel engine 70.
- the diesel engine 70 is covered from above with a cover body 133, and the control unit 125 is provided on the cover body 133.
- a working part 127 having a fork 126 for cargo handling work is provided on the front side of the traveling machine body 124.
- a counterweight 131 is provided on the rear side of the traveling machine body 124 to balance the weight with the working unit 127.
- the control unit 125 is provided with a control seat 128 on which an operator is seated, a control handle 129, levers and switches as operation means for the diesel engine 70 and the working unit 127, and the like.
- a fork 126 is mounted on the mast 130, which is a component of the working unit 127, so as to be movable up and down.
- the fork 126 is moved up and down, a pallet (not shown) loaded with a load is placed on the fork 126, the traveling machine body 124 is moved forward and backward, and a cargo handling operation such as transportation of the pallet is performed. Yes.
- the diesel engine 70 is arranged such that the flywheel housing 78 is located on the front side of the traveling machine body 124 and the cooling fan 76 is located on the rear side of the traveling machine body 124. That is, the diesel engine 70 is arranged so that the direction of the engine output shaft 74 is along the front-rear direction in which the working unit 127 and the counterweight 131 are arranged.
- the diesel engine 70 is supported in an anti-vibration manner via an engine leg 97 on an engine mounting chassis 81 constituting the traveling machine body 124.
- a mission case 132 is connected to the front side of the flywheel housing 78. The power from the diesel engine 70 via the flywheel 79 is appropriately changed in the transmission case 132 and transmitted to the hydraulic drive sources of the front wheels 122, the rear wheels 123, and the forks 126.
- a radiator 134 for cooling the engine opposes the cooling fan 76 at a high position near the counterweight 131 between the control seat 128 and the counterweight 131 disposed behind the control seat 128 in the cover body 133.
- the engine device for mounting a work vehicle according to the present invention is not limited to the backhoe 100 and the forklift car 120 as described above, but various work vehicles such as agricultural machines such as a combine and a tractor, and special work vehicles such as a crane truck. Widely applicable to.
- the structure of each part in this invention is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
An EGR cooler (147) which constitutes an EGR device (91) is adapted to be less susceptible to heat from a diesel engine (70). An engine device for mounting on a working vehicle, the engine device being provided with the diesel engine (70) having an intake manifold (71) and an exhaust manifold (73), and also with the EGR device (91) for recirculating, as an EGR gas, a part of the exhaust gas, which is discharged from the exhaust manifold (73), to the intake manifold (71). The EGR cooler (147) for cooling the EGR gas is provided in a recirculation conduit which connects the exhaust manifold (73) and the intake manifold (71). The gas inlet side of the EGR cooler (147) is connected and communicated with the exhaust manifold (73) through an EGR gas take-out pipe (177) while the gas outlet side of the EGR cooler (147) is mounted to the diesel engine (70) through a support member (180), and the EGR cooler is supported by the EGR gas take-out pipe (177) and the support member (180) so as to be separated from the outer surface of the diesel engine (70).
Description
本願発明は、例えばフォークリフト、バックホウ又はトラクタのような作業車両に用いられるエンジン装置に関するものである。
The present invention relates to an engine device used for a work vehicle such as a forklift, a backhoe or a tractor.
昨今、ディーゼルエンジンに関する高次の排ガス規制が適用されるのに伴い、ディーゼルエンジンが搭載される農作業機、建設機械、船舶等に、排気ガス中の大気汚染物質を浄化処理する排気ガス浄化装置を搭載することが要望されつつある。排気ガス浄化装置としては、DPF(ディーゼルパティキュレートフィルタ)やNOx触媒等が知られている(特許文献1~3参照)。また、排気ガス対策として、排気ガスの一部を吸気側に還流させるEGR装置(排気ガス再循環装置)を備えることにより、燃焼温度を低く抑えて排気ガス中のNOx(窒素酸化物)量を低減させるという技術も知られている(特許文献4参照)。
In recent years, due to the application of higher-level exhaust gas regulations related to diesel engines, exhaust gas purification devices that purify air pollutants in exhaust gas are being applied to agricultural machinery, construction machinery, ships, etc., on which diesel engines are mounted. It is being requested to install. As exhaust gas purifying devices, DPF (diesel particulate filter), NOx catalyst, and the like are known (see Patent Documents 1 to 3). In addition, as an exhaust gas countermeasure, an EGR device (exhaust gas recirculation device) that recirculates part of the exhaust gas to the intake side is provided, so that the combustion temperature is kept low and the amount of NOx (nitrogen oxide) in the exhaust gas is reduced. The technique of reducing is also known (refer patent document 4).
特許文献4のEGR装置では、ディーゼルエンジンの排気マニホールドから分岐した還流管路が吸気マニホールドに接続されている。排気ガスの一部(EGRガス)を還流管路経由で吸気マニホールドに供給することによって、EGRガスと吸気側からの新気とが混合される。当該混合ガスがディーゼルエンジンの各気筒内(吸気行程の気筒内)に導入される。
In the EGR device of Patent Document 4, a reflux pipe branched from an exhaust manifold of a diesel engine is connected to an intake manifold. By supplying a part of the exhaust gas (EGR gas) to the intake manifold via the reflux line, the EGR gas and fresh air from the intake side are mixed. The mixed gas is introduced into each cylinder (inside the intake stroke) of the diesel engine.
また、還流管路中には、ディーゼルエンジンの冷却水を冷媒とするEGRクーラが配置されている。この場合、還流管路内を流通するEGRガスがEGRクーラにて熱交換され、EGRガス温度が低下する。その結果、燃焼時の黒煙(スモーク)の発生を抑制しながら燃焼温度が低く抑えられ、排気ガス中のNOx量低減効果を高めることになる。
Also, an EGR cooler that uses the cooling water of the diesel engine as a refrigerant is disposed in the reflux pipe. In this case, the EGR gas flowing through the reflux pipe is heat-exchanged by the EGR cooler, and the EGR gas temperature is lowered. As a result, the combustion temperature is kept low while suppressing the generation of black smoke (smoke) during combustion, and the effect of reducing the amount of NOx in the exhaust gas is enhanced.
しかし、前記特許文献4のEGRクーラは、排気マニホールドの横側方に沿った姿勢で排気マニホールドに連結されているから、排気マニホールドからの排熱をEGRクーラが受け易く、過熱によってEGRクーラ損傷のおそれが懸念される。また、排気マニホールドからの排熱の影響を抑制するために、EGRクーラの冷却性能を高める必要があり、EGRクーラの大型化を招来するという問題もあった。
However, since the EGR cooler of Patent Document 4 is connected to the exhaust manifold in a posture along the side of the exhaust manifold, the EGR cooler easily receives exhaust heat from the exhaust manifold, and overheating causes damage to the EGR cooler. There is concern about fear. Moreover, in order to suppress the influence of the exhaust heat from the exhaust manifold, it is necessary to improve the cooling performance of the EGR cooler, which causes a problem of increasing the size of the EGR cooler.
そこで、本願発明は、このような現状を検討して改善を施したエンジン装置を提供することを技術的課題とするものである。
Therefore, the present invention has a technical problem to provide an engine device that has been improved by examining such a current situation.
請求項1の発明は、吸気マニホールド及び排気マニホールドを有するディーゼルエンジンと、前記排気マニホールドから排出される排気ガスの一部をEGRガスとして前記吸気マニホールドに還流させるEGR装置とを備えているエンジン装置において、前記排気マニホールドと前記吸気マニホールドとをつなぐ還流管路中に、EGRガスを冷却するためのEGRクーラが配置され、前記排気マニホールドにEGRガス取出し管を介して前記EGRクーラのガス入口側を連通接続させる一方、前記ディーゼルエンジンに支持部材を介して前記EGRクーラのガス出口側を取付け、前記EGRガス取出し管及び前記支持部材によって、前記ディーゼルエンジンの外面から離間させて前記EGRクーラを支持するように構成したものである。
The invention according to claim 1 is an engine device comprising a diesel engine having an intake manifold and an exhaust manifold, and an EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold as EGR gas to the intake manifold. An EGR cooler for cooling EGR gas is disposed in a reflux pipe connecting the exhaust manifold and the intake manifold, and the gas inlet side of the EGR cooler is communicated with the exhaust manifold via an EGR gas take-out pipe. While connecting, the gas outlet side of the EGR cooler is attached to the diesel engine via a support member, and the EGR cooler is supported by being separated from the outer surface of the diesel engine by the EGR gas take-out pipe and the support member. It is configured.
請求項2の発明は、請求項1に記載したエンジン装置において、前記EGRクーラと前記還流管路とを連通させるEGRガス排出管路が、前記支持部材に形成されているというものである。
According to a second aspect of the present invention, in the engine device according to the first aspect, an EGR gas discharge line for communicating the EGR cooler and the reflux line is formed in the support member.
請求項3の発明は、請求項1に記載したエンジン装置において、前記ディーゼルエンジンからの排気ガスを浄化するための排気ガス浄化装置と、前記排気ガス浄化装置の入口側排気圧と出口側排気圧との圧力差を検出する排気圧検出手段とを備えた構造であって、前記ディーゼルエンジンの外面に、支持ブラケットを介して、前記排気圧検出手段の検出本体を取付けたというものである。
According to a third aspect of the present invention, there is provided an engine device according to the first aspect, wherein an exhaust gas purification device for purifying exhaust gas from the diesel engine, an inlet side exhaust pressure and an outlet side exhaust pressure of the exhaust gas purification device. The exhaust pressure detection means for detecting the pressure difference between the exhaust pressure detection means and the exhaust pressure detection means is attached to the outer surface of the diesel engine via a support bracket.
請求項4の発明は、請求項3に記載したエンジン装置において、前記検出本体から延びるハーネスの先端部に設けた感知体が、前記排気ガス浄化装置に取付けられ、前記排気ガス浄化装置の外面と前記ハーネスとが離間可能に、前記排気ガス浄化装置の外面側に設けたプレート部材に、前記ハーネスの長手中途部を支持するように構成したものである。
According to a fourth aspect of the present invention, in the engine device according to the third aspect, a sensing body provided at a distal end portion of a harness extending from the detection main body is attached to the exhaust gas purification device, and an outer surface of the exhaust gas purification device is provided. A plate member provided on the outer surface side of the exhaust gas purifying device is configured to support a longitudinal midway portion of the harness so as to be separated from the harness.
請求項1の発明によると、吸気マニホールド及び排気マニホールドを有するディーゼルエンジンと、前記排気マニホールドから排出される排気ガスの一部をEGRガスとして前記吸気マニホールドに還流させるEGR装置とを備えているエンジン装置において、前記排気マニホールドと前記吸気マニホールドとをつなぐ還流管路中に、EGRガスを冷却するためのEGRクーラが配置され、前記排気マニホールドにEGRガス取出し管を介して前記EGRクーラのガス入口側を連通接続させる一方、前記ディーゼルエンジンに支持部材を介して前記EGRクーラのガス出口側を取付け、前記EGRガス取出し管及び前記支持部材によって、前記ディーゼルエンジンの外面から離間させて前記EGRクーラを支持するように構成したものであるから、ディーゼルエンジンの発する熱が前記EGRクーラに伝わり難くなる。従って、過熱による前記EGRクーラの損傷を抑制できる。前記ディーゼルエンジンに冷却ファンを備える場合は、前記ディーゼルエンジンの外面と前記EGRクーラとの間に冷却風を通過させることが可能になるから、前記ディーゼルエンジンから前記EGRクーラへの熱の伝達がより一層抑制され、冷却風による前記EGRクーラの冷却効率も高くなる。
According to the first aspect of the present invention, an engine device comprising a diesel engine having an intake manifold and an exhaust manifold, and an EGR device that recirculates a part of the exhaust gas discharged from the exhaust manifold to the intake manifold as EGR gas. An EGR cooler for cooling EGR gas is disposed in a reflux line connecting the exhaust manifold and the intake manifold, and a gas inlet side of the EGR cooler is connected to the exhaust manifold via an EGR gas take-out pipe. While connecting to the diesel engine, a gas outlet side of the EGR cooler is attached to the diesel engine via a support member, and the EGR cooler is supported by being separated from the outer surface of the diesel engine by the EGR gas take-out pipe and the support member. It is configured as From comprises heat generated by the diesel engine is easily transmitted to the EGR cooler. Therefore, damage to the EGR cooler due to overheating can be suppressed. When the diesel engine is provided with a cooling fan, it is possible to allow cooling air to pass between the outer surface of the diesel engine and the EGR cooler, so that heat transfer from the diesel engine to the EGR cooler can be further improved. This further suppresses the cooling efficiency of the EGR cooler by the cooling air.
請求項2の発明によると、前記EGRクーラと前記還流管路とを連通させるEGRガス排出管路が、前記支持部材に形成されているから、前記EGRクーラを支持する前記支持部材をEGRガスの流通経路の一部として流用でき、EGR装置関連の部品点数の削減に寄与できる。
According to the second aspect of the present invention, since the EGR gas discharge pipe that connects the EGR cooler and the reflux pipe is formed in the support member, the support member that supports the EGR cooler is made of EGR gas. It can be used as part of the distribution channel and can contribute to the reduction of the number of parts related to the EGR device.
請求項3の発明によると、前記ディーゼルエンジンからの排気ガスを浄化するための排気ガス浄化装置と、前記排気ガス浄化装置の入口側排気圧と出口側排気圧との圧力差を検出する排気圧検出手段とを備えた構造であって、前記ディーゼルエンジンの外面に、支持ブラケットを介して、前記排気圧検出手段の検出本体を取付けたから、前記排気圧検出手段の前記検出本体が前記ディーゼルエンジン自体からは離れて配置されることになる。このため、前記ディーゼルエンジンの発する熱が前記検出本体に伝わり難い。従って、前記ディーゼルエンジンに前記検出本体を組み付けたものでありながら、過熱による前記検出本体の故障を抑制できるという効果を奏する。
According to the invention of claim 3, an exhaust gas purification device for purifying exhaust gas from the diesel engine, and an exhaust pressure for detecting a pressure difference between an inlet side exhaust pressure and an outlet side exhaust pressure of the exhaust gas purification device. The detection body of the exhaust pressure detection means is attached to the outer surface of the diesel engine via a support bracket, so that the detection body of the exhaust pressure detection means is the diesel engine itself. It will be arranged away from. For this reason, it is difficult for heat generated by the diesel engine to be transmitted to the detection body. Therefore, although the detection main body is assembled to the diesel engine, the detection main body can be prevented from malfunctioning due to overheating.
請求項4の発明によると、前記検出本体から延びるハーネスの先端部に設けた感知体が、前記排気ガス浄化装置に取付けられ、前記排気ガス浄化装置の外面と前記ハーネスとが離間可能に、前記排気ガス浄化装置の外面側に設けたプレート部材に、前記ハーネスの長手中途部を支持するように構成したから、前記ディーゼルエンジンの振動に起因する前記ハーネスの振れを抑制できる。このため、前記ハーネス及び前記感知体の緩みや外れを防止でき、前記排気圧検出手段での検出を正常に行える。しかも、前記プレート部材の存在により、前記排気ガス浄化装置の外面と前記ハーネスとの間の間隔が空くことになるから、前記排気ガス浄化装置の発する熱の悪影響は前記ハーネスに及び難くなる。従って、過熱による前記ハーネスの損傷を抑制する効果もある。
According to the invention of claim 4, a sensing body provided at a tip of a harness extending from the detection main body is attached to the exhaust gas purification device, and the outer surface of the exhaust gas purification device and the harness can be separated from each other, Since the plate member provided on the outer surface side of the exhaust gas purifying apparatus is configured to support the midway part of the harness in the longitudinal direction, it is possible to suppress vibration of the harness due to vibration of the diesel engine. For this reason, the harness and the sensing body can be prevented from loosening and coming off, and detection by the exhaust pressure detecting means can be performed normally. In addition, because of the presence of the plate member, there is a gap between the outer surface of the exhaust gas purifying device and the harness, so that the adverse effect of the heat generated by the exhaust gas purifying device does not easily affect the harness. Accordingly, there is an effect of suppressing damage to the harness due to overheating.
以下に、本発明を具体化した実施形態を図面に基づいて説明する。なお、以下の説明では、排気ガス流入側を単に左側と称し、排気ガス排出側を単に右側と称する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, the exhaust gas inflow side is simply referred to as the left side, and the exhaust gas discharge side is simply referred to as the right side.
(1).DPFの全体構造
まず、図1~図3を参照しながら、排気ガス浄化装置の全体構造を説明する。図1~図3に示す如く、排気ガス浄化装置としての連続再生式のディーゼルパティキュレートフィルタ1(以下、DPFという)を備えている。DPF1は、排気ガス中の粒子状物質(PM)等を物理的に捕集するためのものである。実施形態のDPF1は、二酸化窒素(NO2)を生成する白金等のディーゼル酸化触媒2と、捕集した粒子状物質(PM)を比較的低温で連続的に酸化除去するハニカム構造のスートフィルタ3とを、排気ガスの移動方向(図1の左側から右側方向)に直列に並べた構造になっている。DPF1は、スートフィルタ3が連続的に再生されるように構成している。DPF1によって、排気ガス中の粒子状物質(PM)の除去に加え、排気ガス中の一酸化炭素(CO)や炭化水素(HC)を低減できる。 (1). First, the overall structure of the exhaust gas purifying apparatus will be described with reference to FIGS. As shown in FIGS. 1 to 3, a continuous regeneration type diesel particulate filter 1 (hereinafter referred to as DPF) is provided as an exhaust gas purification device. TheDPF 1 is for physically collecting particulate matter (PM) in the exhaust gas. The DPF 1 of the embodiment includes a diesel oxidation catalyst 2 such as platinum that generates nitrogen dioxide (NO 2 ), and a soot filter 3 having a honeycomb structure that continuously oxidizes and removes the collected particulate matter (PM) at a relatively low temperature. Are arranged in series in the moving direction of the exhaust gas (from the left side to the right side in FIG. 1). The DPF 1 is configured so that the soot filter 3 is continuously regenerated. The DPF 1 can reduce carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas in addition to the removal of particulate matter (PM) in the exhaust gas.
まず、図1~図3を参照しながら、排気ガス浄化装置の全体構造を説明する。図1~図3に示す如く、排気ガス浄化装置としての連続再生式のディーゼルパティキュレートフィルタ1(以下、DPFという)を備えている。DPF1は、排気ガス中の粒子状物質(PM)等を物理的に捕集するためのものである。実施形態のDPF1は、二酸化窒素(NO2)を生成する白金等のディーゼル酸化触媒2と、捕集した粒子状物質(PM)を比較的低温で連続的に酸化除去するハニカム構造のスートフィルタ3とを、排気ガスの移動方向(図1の左側から右側方向)に直列に並べた構造になっている。DPF1は、スートフィルタ3が連続的に再生されるように構成している。DPF1によって、排気ガス中の粒子状物質(PM)の除去に加え、排気ガス中の一酸化炭素(CO)や炭化水素(HC)を低減できる。 (1). First, the overall structure of the exhaust gas purifying apparatus will be described with reference to FIGS. As shown in FIGS. 1 to 3, a continuous regeneration type diesel particulate filter 1 (hereinafter referred to as DPF) is provided as an exhaust gas purification device. The
(2).ディーゼル酸化触媒の取付け構造
図1~図3を参照して、ディーゼル酸化触媒2の取付け構造を説明する。図1~図3に示す如く、後述するディーゼルエンジン70が排出した排気ガスを浄化するガス浄化フィルタとしてのディーゼル酸化触媒2は、耐熱金属材料製で略筒型の触媒内側ケース4内に設けられている。触媒内側ケース4は、耐熱金属材料製で略筒型の触媒外側ケース5内に設けられている。即ち、ディーゼル酸化触媒2の外側にマット状のセラミックファイバー製触媒断熱材6を介して触媒内側ケース4を被嵌させている。また、触媒内側ケース4の外側に端面I字状の薄板製支持体7を介して触媒外側ケース5を被嵌させている。なお、触媒断熱材6によってディーゼル酸化触媒2が保護される。触媒内側ケース4に伝わる触媒外側ケース5の応力(変形力)を薄板製支持体7にて低減させる。 (2). Diesel Oxidation Catalyst Mounting Structure With reference to FIGS. 1 to 3, thediesel oxidation catalyst 2 mounting structure will be described. As shown in FIGS. 1 to 3, a diesel oxidation catalyst 2 as a gas purification filter for purifying exhaust gas discharged from a diesel engine 70 described later is provided in a substantially cylindrical catalyst inner case 4 made of a heat-resistant metal material. ing. The catalyst inner case 4 is made of a heat resistant metal material and is provided in a substantially cylindrical catalyst outer case 5. That is, the catalyst inner case 4 is fitted on the outside of the diesel oxidation catalyst 2 via the mat-shaped ceramic fiber catalyst heat insulating material 6. Further, the catalyst outer case 5 is fitted on the outer side of the catalyst inner case 4 via a thin plate support 7 having an I-shaped end face. Note that the diesel oxidation catalyst 2 is protected by the catalyst heat insulating material 6. The stress (deformation force) of the catalyst outer case 5 transmitted to the catalyst inner case 4 is reduced by the thin plate support 7.
図1~図3を参照して、ディーゼル酸化触媒2の取付け構造を説明する。図1~図3に示す如く、後述するディーゼルエンジン70が排出した排気ガスを浄化するガス浄化フィルタとしてのディーゼル酸化触媒2は、耐熱金属材料製で略筒型の触媒内側ケース4内に設けられている。触媒内側ケース4は、耐熱金属材料製で略筒型の触媒外側ケース5内に設けられている。即ち、ディーゼル酸化触媒2の外側にマット状のセラミックファイバー製触媒断熱材6を介して触媒内側ケース4を被嵌させている。また、触媒内側ケース4の外側に端面I字状の薄板製支持体7を介して触媒外側ケース5を被嵌させている。なお、触媒断熱材6によってディーゼル酸化触媒2が保護される。触媒内側ケース4に伝わる触媒外側ケース5の応力(変形力)を薄板製支持体7にて低減させる。 (2). Diesel Oxidation Catalyst Mounting Structure With reference to FIGS. 1 to 3, the
図1~図3に示す如く、触媒内側ケース4及び触媒外側ケース5の左側端部に円板状の左側蓋体8を溶接にて固着している。左側蓋体8に座板体9を介してセンサ接続プラグ10を固着している。ディーゼル酸化触媒2の左側端面2aと左側蓋体8とをガス流入空間用一定距離L1だけ離間させて対向させる。ディーゼル酸化触媒2の左側端面2aと左側蓋体8との間に排気ガス流入空間11を形成している。触媒内側ケース4及び触媒外側ケース5における排気ガス流入空間11の部位には、センサ接続プラグ10が固着されている。センサ接続プラグ10には、排気ガス流入空間11内における排気ガスの圧力を検出する排気圧検出手段としての差圧センサ60の入口側感知体64が差し込み装着される(図4、図6及び図7参照)。
As shown in FIGS. 1 to 3, a disc-shaped left lid 8 is fixed to the left end of the catalyst inner case 4 and the catalyst outer case 5 by welding. A sensor connection plug 10 is fixed to the left lid body 8 through a seat plate body 9. The left end face 2a of the diesel oxidation catalyst 2 and the left lid 8 are opposed to each other with a predetermined distance L1 for gas inflow space. An exhaust gas inflow space 11 is formed between the left end face 2 a of the diesel oxidation catalyst 2 and the left lid 8. A sensor connection plug 10 is fixed to a portion of the exhaust gas inflow space 11 in the catalyst inner case 4 and the catalyst outer case 5. An inlet side sensing body 64 of a differential pressure sensor 60 as exhaust pressure detecting means for detecting the pressure of exhaust gas in the exhaust gas inflow space 11 is inserted into the sensor connection plug 10 (see FIGS. 4, 6 and 6). 7).
図1及び図3に示す如く、排気ガス流入空間11が形成された触媒内側ケース4及び触媒外側ケース5の左側端部に楕円形状の排気ガス流入口12を開口させている。楕円形状の排気ガス流入口12は、排気ガス移動方向(前記ケース4,5の中心線方向)を短尺直径とし、排気ガス移動方向(前記ケース4,5の円周方向)に直交する方向を長尺直径に形成している。触媒内側ケース4の開口縁13と触媒外側ケース5の開口縁14の間に閉塞リング体15を挟持状に固着している。触媒内側ケース4の開口縁13と触媒外側ケース5の開口縁14の間の隙間が閉塞リング体15によって閉鎖される。触媒内側ケース4と触媒外側ケース5の間に排気ガスが流入するのを、閉塞リング体15によって防止している。
1 and 3, an elliptical exhaust gas inlet 12 is opened at the left end of the catalyst inner case 4 and the catalyst outer case 5 in which the exhaust gas inflow space 11 is formed. The elliptical exhaust gas inlet 12 has a short diameter in the exhaust gas movement direction (center line direction of the cases 4 and 5) and a direction orthogonal to the exhaust gas movement direction (circumferential direction of the cases 4 and 5). It has a long diameter. A closing ring body 15 is fixed between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 in a sandwiched manner. A gap between the opening edge 13 of the catalyst inner case 4 and the opening edge 14 of the catalyst outer case 5 is closed by the closing ring body 15. An exhaust ring 15 prevents the exhaust gas from flowing between the catalyst inner case 4 and the catalyst outer case 5.
図1及び図3に示す如く、排気ガス流入口12が形成された触媒外側ケース5の外側面に排気ガス入口管16を配置している。排気ガス入口管16の小径側の真円形の開口端部16aに排気接続フランジ体17を溶接している。詳細は後述するが、排気接続フランジ体17は、ボルト18を介して、ディーゼルエンジン70の排気絞り装置86につながる第1中継管84に接続されている。排気ガス入口管16の大径側の真円形の開口端部16bは、触媒外側ケース5の外側面に溶接されている。排気ガス入口管16は、小径側の真円形の開口端部16aから大径側の真円形の開口端部16bに向けて末広がり形状(ラッパ状)に形成されている。
As shown in FIGS. 1 and 3, an exhaust gas inlet pipe 16 is disposed on the outer surface of the catalyst outer case 5 in which the exhaust gas inlet 12 is formed. An exhaust connection flange body 17 is welded to a true circular opening end portion 16 a on the small diameter side of the exhaust gas inlet pipe 16. Although details will be described later, the exhaust connection flange body 17 is connected to a first relay pipe 84 connected to an exhaust throttle device 86 of the diesel engine 70 via a bolt 18. A large circular opening end 16 b on the large diameter side of the exhaust gas inlet pipe 16 is welded to the outer surface of the catalyst outer case 5. The exhaust gas inlet pipe 16 is formed in a divergent shape (a trumpet shape) from the small-diameter-side perfect circular opening end 16a toward the large-diameter-side perfect circular opening end 16b.
図1及び図3に示す如く、触媒外側ケース5における外側面の左側端部には、真円形に形成された大径側の開口端部16bが、排気ガス入口管16にて開口縁14を覆うように溶接されている。この場合、楕円形状の排気ガス流入口12に対して、排気ガス入口管16(大径側の開口端部16b)は、排気ガス移動下流側(触媒外側ケース5の右側)にオフセットして配置されている。すなわち、楕円形状の排気ガス流入口12は、排気ガス入口管16(大径側の開口端部16b)に対して、排気ガス移動上流側(触媒外側ケース5の左側)にオフセットされている。
As shown in FIGS. 1 and 3, a large-diameter open end 16 b formed in a true circle is formed at the left end of the outer surface of the catalyst outer case 5, and an open edge 14 is formed by the exhaust gas inlet pipe 16. It is welded to cover it. In this case, the exhaust gas inlet pipe 16 (large-diameter-side opening end portion 16b) is offset with respect to the elliptical exhaust gas inlet 12, and is arranged offset to the exhaust gas movement downstream side (right side of the catalyst outer case 5). Has been. That is, the elliptical exhaust gas inlet 12 is offset to the exhaust gas movement upstream side (the left side of the catalyst outer case 5) with respect to the exhaust gas inlet pipe 16 (large-diameter side opening end portion 16b).
上記の構成により、ディーゼルエンジン70の排気ガスが、排気マニホールド71から排気ガス入口管16に入り込み、排気ガス入口管16から排気ガス流入口12を介して排気ガス流入空間11に入り込み、ディーゼル酸化触媒2にこの左側端面2aから供給される。ディーゼル酸化触媒2の酸化作用によって、二酸化窒素(NO2)が生成される。なお、ディーゼルエンジン70にDPF1を組付ける場合は、ディーゼルエンジン70のフライホイールハウジング78に、支持脚体19を介して触媒外側ケース5を固着させる。
With the above configuration, the exhaust gas of the diesel engine 70 enters the exhaust gas inlet pipe 16 from the exhaust manifold 71, enters the exhaust gas inflow space 11 from the exhaust gas inlet pipe 16 through the exhaust gas inlet 12, and the diesel oxidation catalyst. 2 is supplied from the left end face 2a. Nitrogen dioxide (NO 2 ) is generated by the oxidation action of the diesel oxidation catalyst 2. When the DPF 1 is assembled to the diesel engine 70, the catalyst outer case 5 is fixed to the flywheel housing 78 of the diesel engine 70 via the support leg 19.
(3).スートフィルタの取付け構造
図1及び図3を参照して、スートフィルタ3の取付け構造を説明する。図1及び図3に示す如く、ディーゼルエンジン70が排出した排気ガスを浄化するガス浄化フィルタとしてのスートフィルタ3は、耐熱金属材料製で略筒型のフィルタ内側ケース20内に設けられている。内側ケース4は、耐熱金属材料製で略筒型のフィルタ外側ケース21内に設けられている。即ち、スートフィルタ3の外側にマット状のセラミックファイバー製フィルタ断熱材22を介してフィルタ内側ケース20を被嵌させている。なお、フィルタ断熱材22によってスートフィルタ3が保護される。 (3). Soot Filter Mounting Structure Thesoot filter 3 mounting structure will be described with reference to FIGS. 1 and 3. As shown in FIGS. 1 and 3, the soot filter 3 as a gas purification filter for purifying exhaust gas discharged from the diesel engine 70 is provided in a substantially cylindrical filter inner case 20 made of a heat-resistant metal material. The inner case 4 is made of a heat-resistant metal material and is provided in a substantially cylindrical filter outer case 21. That is, the filter inner case 20 is fitted on the outside of the soot filter 3 via the mat-shaped ceramic fiber filter heat insulating material 22. The soot filter 3 is protected by the filter heat insulating material 22.
図1及び図3を参照して、スートフィルタ3の取付け構造を説明する。図1及び図3に示す如く、ディーゼルエンジン70が排出した排気ガスを浄化するガス浄化フィルタとしてのスートフィルタ3は、耐熱金属材料製で略筒型のフィルタ内側ケース20内に設けられている。内側ケース4は、耐熱金属材料製で略筒型のフィルタ外側ケース21内に設けられている。即ち、スートフィルタ3の外側にマット状のセラミックファイバー製フィルタ断熱材22を介してフィルタ内側ケース20を被嵌させている。なお、フィルタ断熱材22によってスートフィルタ3が保護される。 (3). Soot Filter Mounting Structure The
図1及び図3に示す如く、触媒外側ケース5の排気ガス移動下流側(右側)の端部に触媒側フランジ25を溶接する。フィルタ内側ケース20の排気ガス移動方向の中間と、フィルタ外側ケース21の排気ガス移動上流側(左側)の端部にフィルタ側フランジ26を溶接する。触媒側フランジ25と、フィルタ側フランジ26とを、ボルト27及びナット28によって着脱可能に締結している。なお、円筒形の触媒内側ケース4の直径寸法と、円筒形のフィルタ内側ケース20の直径寸法とが略同一寸法である。また、円筒形の触媒外側ケース5の直径寸法と、円筒形のフィルタ外側ケース21の直径寸法とが略同一寸法である。
1 and 3, the catalyst side flange 25 is welded to the end of the catalyst outer case 5 on the downstream side (right side) of the exhaust gas movement. The filter-side flange 26 is welded to the middle of the filter inner case 20 in the exhaust gas movement direction and the end of the filter outer case 21 on the upstream side (left side) of the exhaust gas movement. The catalyst side flange 25 and the filter side flange 26 are detachably fastened by bolts 27 and nuts 28. The diameter of the cylindrical catalyst inner case 4 and the diameter of the cylindrical filter inner case 20 are substantially the same. Further, the diameter of the cylindrical catalyst outer case 5 and the diameter of the cylindrical filter outer case 21 are substantially the same.
図1に示す如く、触媒側フランジ25とフィルタ側フランジ26を介して、触媒外側ケース5にフィルタ外側ケース21が連結された状態では、触媒内側ケース4の排気ガス移動下流側(右側)の端部に、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部が、センサ取付け用一定間隔L2だけ離間して対峙する。即ち、触媒内側ケース4の排気ガス移動下流側(右側)の端部と、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部との間に、センサ取付け空間29が形成される。センサ取付け空間29位置の触媒外側ケース5に、センサ接続プラグ50を固着している。センサ接続プラグ50には、例えば入口側排気ガス温度センサ(サーミスタ、図示省略)等が接続される。
As shown in FIG. 1, in a state where the filter outer case 21 is connected to the catalyst outer case 5 via the catalyst side flange 25 and the filter side flange 26, the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 is shown. The end portion on the upstream side (left side) of the exhaust gas movement of the filter inner case 20 faces the portion spaced apart by a fixed interval L2 for sensor attachment. In other words, the sensor mounting space 29 is formed between the exhaust gas movement downstream side (right side) end of the catalyst inner case 4 and the exhaust gas movement upstream side (left side) end of the filter inner case 20. A sensor connection plug 50 is fixed to the catalyst outer case 5 at the sensor mounting space 29 position. For example, an inlet side exhaust gas temperature sensor (thermistor, not shown) is connected to the sensor connection plug 50.
図3に示す如く、触媒内側ケース4の排気ガス移動方向の円筒長さL3よりも、触媒外側ケース5の排気ガス移動方向の円筒長さL4を長く形成している。フィルタ内側ケース20の排気ガス移動方向の円筒長さL5よりも、フィルタ外側ケース21の排気ガス移動方向の円筒長さL6を短く形成している。センサ取付け空間29の一定間隔L2と、触媒内側ケース4の円筒長さL3と、フィルタ内側ケース20の円筒長さL5とを加算した長さ(L2+L3+L5)が、触媒外側ケース5の円筒長さL4と、フィルタ外側ケース21の円筒長さL6とを加算した長さ(L4+L6)に略等しくなるように構成している。
As shown in FIG. 3, the cylindrical length L4 of the catalyst outer case 5 in the exhaust gas movement direction is longer than the cylindrical length L3 of the catalyst inner case 4 in the exhaust gas movement direction. The cylindrical length L6 of the filter outer case 21 in the exhaust gas movement direction is shorter than the cylindrical length L5 of the filter inner case 20 in the exhaust gas movement direction. A length (L2 + L3 + L5) obtained by adding the constant interval L2 of the sensor mounting space 29, the cylindrical length L3 of the catalyst inner case 4 and the cylindrical length L5 of the filter inner case 20 is the cylindrical length L4 of the catalyst outer case 5. And a length (L4 + L6) obtained by adding the cylindrical length L6 of the filter outer case 21 to be substantially equal to each other.
フィルタ外側ケース21の排気ガス移動上流側(左側)の端部から、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部が、それらの長さの差(L7=L5-L6)だけ突出する。即ち、触媒外側ケース5にフィルタ外側ケース21を連結した場合、フィルタ内側ケース20の排気ガス移動上流側(左側)の端部が、オーバーラップ寸法L7だけ、触媒外側ケース5の排気ガス移動下流側(右側)に内挿される。
The exhaust gas movement upstream side (left side) end of the filter outer case 21 is connected to the exhaust gas movement upstream side (left side) end of the filter inner case 20 by a difference in length (L7 = L5-L6). Protruding. That is, when the filter outer case 21 is connected to the catalyst outer case 5, the exhaust gas movement upstream side (left side) end of the filter inner case 20 is the overlap dimension L7, and the exhaust gas movement downstream side of the catalyst outer case 5 (Right side) is interpolated.
上記の構成により、ディーゼル酸化触媒2の酸化作用によって生成された二酸化窒素(NO2)が、スートフィルタ3にこの左側端面3aから供給される。スートフィルタ3に捕集されたディーゼルエンジン70の排気ガス中の捕集粒状物質(PM)が、二酸化窒素(NO2)によって、比較的低温で連続的に酸化除去される。ディーゼルエンジン70の排気ガス中の粒状物質(PM)の除去に加え、ディーゼルエンジン70の排気ガス中の一酸化炭素(CO)や炭化水素(HC)が低減される。
With the above configuration, nitrogen dioxide (NO 2 ) generated by the oxidation action of the diesel oxidation catalyst 2 is supplied to the soot filter 3 from the left end face 3a. The collected particulate matter (PM) in the exhaust gas of the diesel engine 70 collected by the soot filter 3 is continuously oxidized and removed at a relatively low temperature by nitrogen dioxide (NO 2 ). In addition to the removal of particulate matter (PM) in the exhaust gas of the diesel engine 70, carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas of the diesel engine 70 are reduced.
なお、上記のように、エンジンが排出した排気ガスを浄化するガス浄化フィルタとして、ディーゼル酸化触媒2及びスートフィルタ3を設けたが、ディーゼル酸化触媒2及びスートフィルタ3に代えて、尿素(還元剤)の添加にて発生したアンモニア(NH3)によってエンジン70の排気ガス中の窒素酸化物(NOx)を還元するNOx選択還元触媒(NOx除去触媒)と、NOx選択還元触媒から排出される残留アンモニアを取り除くアンモニア除去触媒とを設けてもよい。
As described above, the diesel oxidation catalyst 2 and the soot filter 3 are provided as gas purification filters for purifying the exhaust gas discharged from the engine. However, instead of the diesel oxidation catalyst 2 and the soot filter 3, urea (reducing agent) is used. NOx selective reduction catalyst (NOx removal catalyst) for reducing nitrogen oxides (NOx) in the exhaust gas of the engine 70 by ammonia (NH 3 ) generated by the addition of ( 3 )), and residual ammonia discharged from the NOx selective reduction catalyst An ammonia removal catalyst that removes water may be provided.
上記のように、ガス浄化フィルタとして、触媒内側ケース4にNOx選択還元触媒(NOx除去触媒)を設け、フィルタ内側ケース20にアンモニア除去触媒を設けた場合、エンジンが排出した排気ガス中の窒素酸化物(NOx)が還元され、無害な窒素ガス(N2)として排出できる。
As described above, when the NOx selective reduction catalyst (NOx removal catalyst) is provided in the catalyst inner case 4 and the ammonia removal catalyst is provided in the filter inner case 20 as the gas purification filter, the oxidation of nitrogen in the exhaust gas exhausted by the engine is performed. The substance (NOx) is reduced and can be discharged as harmless nitrogen gas (N 2 ).
(4).消音器の取付け構造
図1~図3を参照して、消音器30の取付け構造を説明する。図1~図3に示す如く、ディーゼルエンジン70が排出した排気ガス音を減衰させる消音器30は、耐熱金属材料製で略筒型の消音内側ケース31と、耐熱金属材料製で略筒型の消音外側ケース32と、消音内側ケース31及び消音外側ケース32の右側端部に溶接にて固着した円板状の右側蓋体33とを有する。消音外側ケース32内に消音内側ケース31を設けている。なお、円筒形の触媒内側ケース4の直径寸法と、円筒形のフィルタ内側ケース20の直径寸法と、円筒形の消音内側ケース31とが略同一寸法である。また、円筒形の触媒外側ケース5の直径寸法と、円筒形のフィルタ外側ケース21の直径寸法と、円筒形の消音外側ケース32とが略同一寸法である。 (4). Silencer Mounting Structure With reference to FIGS. 1 to 3, the silencer mounting structure will be described. As shown in FIGS. 1 to 3, thesilencer 30 for attenuating the exhaust gas sound discharged from the diesel engine 70 includes a substantially cylindrical silencer inner case 31 made of a heat resistant metal material and a substantially cylindrical shape made of a heat resistant metal material. The sound-absorbing outer case 32, and the sound-absorbing inner case 31 and the disc-shaped right-side cover 33 fixed to the right end of the sound-absorbing outer case 32 by welding are provided. A silencer inner case 31 is provided in the silencer outer case 32. The diameter of the cylindrical catalyst inner case 4, the diameter of the cylindrical filter inner case 20, and the cylindrical muffler inner case 31 are substantially the same. Further, the diameter size of the cylindrical catalyst outer case 5, the diameter size of the cylindrical filter outer case 21, and the cylindrical silencing outer case 32 are substantially the same size.
図1~図3を参照して、消音器30の取付け構造を説明する。図1~図3に示す如く、ディーゼルエンジン70が排出した排気ガス音を減衰させる消音器30は、耐熱金属材料製で略筒型の消音内側ケース31と、耐熱金属材料製で略筒型の消音外側ケース32と、消音内側ケース31及び消音外側ケース32の右側端部に溶接にて固着した円板状の右側蓋体33とを有する。消音外側ケース32内に消音内側ケース31を設けている。なお、円筒形の触媒内側ケース4の直径寸法と、円筒形のフィルタ内側ケース20の直径寸法と、円筒形の消音内側ケース31とが略同一寸法である。また、円筒形の触媒外側ケース5の直径寸法と、円筒形のフィルタ外側ケース21の直径寸法と、円筒形の消音外側ケース32とが略同一寸法である。 (4). Silencer Mounting Structure With reference to FIGS. 1 to 3, the silencer mounting structure will be described. As shown in FIGS. 1 to 3, the
消音内側ケース31及び消音外側ケース32には、排気ガス出口管34を貫通させている。排気ガス出口管34の一端側が出口蓋体35によって閉塞されている。消音内側ケース31の内部における排気ガス出口管34の全体に多数の排気孔(図示省略)が開設されている。消音内側ケース31の内部が、前述した多数の排気孔を介して、排気ガス出口管34に連通されている。後述するテールパイプ135や既設の消音部材(図示省略)が排気ガス出口管34の他端側に接続される。
An exhaust gas outlet pipe 34 is passed through the silencer inner case 31 and the silencer outer case 32. One end side of the exhaust gas outlet pipe 34 is closed by an outlet lid 35. A number of exhaust holes (not shown) are formed in the entire exhaust gas outlet pipe 34 inside the silencer inner case 31. The interior of the muffler inner case 31 communicates with the exhaust gas outlet pipe 34 through the numerous exhaust holes described above. A tail pipe 135 and an existing silencing member (not shown) to be described later are connected to the other end side of the exhaust gas outlet pipe 34.
なお、消音内側ケース31の内部は、多数の消音孔(図示省略)を介して、消音内側ケース31と消音外側ケース32との間に連通されている。消音内側ケース31と消音外側ケース32との間の空間は、右側蓋体33等によって閉塞されている。消音内側ケース31と消音外側ケース32との間にセラミックファイバー製消音材(図示省略)が充填されている。消音内側ケース31の排気ガス移動上流側(左側)の端部が、薄板製支持体(図示省略)を介して、消音外側ケース32の排気ガス移動上流側(左側)の端部に連結されている。
In addition, the inside of the muffling inner case 31 is communicated between the muffling inner case 31 and the muffling outer case 32 through a number of muffler holes (not shown). The space between the silencer inner case 31 and the silencer outer case 32 is closed by the right lid 33 or the like. A ceramic fiber silencer (not shown) is filled between the silencer inner case 31 and the silencer outer case 32. The end of the silencing inner case 31 on the upstream side (left side) of the exhaust gas movement is connected to the end of the silencing outer case 32 on the upstream side (left side) of the exhaust gas movement via a thin plate support (not shown). Yes.
上記の構成により、消音内側ケース31内から排気ガス出口管34を介して排気ガスが排出される。また、消音内側ケース31の内部において、多数の消音孔から消音材に排気ガス音(主に高周波帯の音)が吸音される。従って、排気ガス出口管34の出口側から排出される排気ガスの騒音が減衰される。
With the above configuration, exhaust gas is discharged from the muffler inner case 31 through the exhaust gas outlet pipe 34. Further, in the silencer inner case 31, exhaust gas sound (mainly high frequency band sound) is absorbed by the silencer material from a large number of silencer holes. Therefore, the noise of the exhaust gas discharged from the outlet side of the exhaust gas outlet pipe 34 is attenuated.
図1及び図3に示す如く、フィルタ内側ケース20とフィルタ外側ケース21の排気ガス移動下流側(右側)の端部にフィルタ側出口フランジ40を溶接する。消音外側ケース32の排気ガス移動上流側(左側)の端部に、消音側フランジ41を溶接する。フィルタ側出口フランジ40と、消音側フランジ41とを、ボルト42及びナット43によって着脱可能に締結している。なお、フィルタ内側ケース20とフィルタ外側ケース21とにセンサ接続プラグ44を固着している。センサ接続プラグ44には、消音内側ケース31内における排気ガスの圧力を検出する排気圧検出手段としての差圧センサ60の出口側感知体65が差し込み装着される(図4、図6及び図7参照)。
1 and 3, the filter side outlet flange 40 is welded to the exhaust gas movement downstream side (right side) ends of the filter inner case 20 and the filter outer case 21. The silencer flange 41 is welded to the exhaust gas movement upstream side (left side) of the silencer outer case 32. The filter side outlet flange 40 and the silencer side flange 41 are detachably fastened by bolts 42 and nuts 43. A sensor connection plug 44 is fixed to the filter inner case 20 and the filter outer case 21. An outlet-side sensing body 65 of a differential pressure sensor 60 as exhaust pressure detecting means for detecting the pressure of exhaust gas in the muffler inner case 31 is inserted into the sensor connection plug 44 (see FIGS. 4, 6, and 7). reference).
(5).ディーゼルエンジンにDPF及びEGR装置を設けた構造 次に、図4~図12を参照しながら、ディーゼルエンジン70にDPF1及びEGR装置91を設けた構造を説明する。図4~図7に示す如く、ディーゼルエンジン70のシリンダヘッド72の左側面に排気マニホールド71が配置されている。シリンダヘッド72の右側面には吸気マニホールド73が配置されている。シリンダヘッド72は、エンジン出力軸74(クランク軸、図7参照)とピストン(図示省略)を有するシリンダブロック75に上載されている。シリンダブロック75の前後両側面からエンジン出力軸74の前後先端部をそれぞれ突出させている。シリンダブロック75の前側面には冷却ファン76が設けられている。エンジン出力軸74の前端側からVベルト77を介して冷却ファン76に回転力を伝達するように構成している。
(5). Structure in which DPF and EGR device are provided in diesel engine Next, a structure in which the DPF 1 and EGR device 91 are provided in the diesel engine 70 will be described with reference to FIGS. As shown in FIGS. 4 to 7, an exhaust manifold 71 is disposed on the left side surface of the cylinder head 72 of the diesel engine 70. An intake manifold 73 is disposed on the right side surface of the cylinder head 72. The cylinder head 72 is mounted on a cylinder block 75 having an engine output shaft 74 (crank shaft, see FIG. 7) and a piston (not shown). Front and rear front ends of the engine output shaft 74 are projected from both front and rear side surfaces of the cylinder block 75, respectively. A cooling fan 76 is provided on the front side surface of the cylinder block 75. The rotational force is transmitted from the front end side of the engine output shaft 74 to the cooling fan 76 via the V belt 77.
図4~図8に示す如く、シリンダブロック75の後側面にフライホイールハウジング78を固着している。フライホイールハウジング78内にフライホイール79を設ける。エンジン出力軸74の後端側にフライホイール79を軸支させている。作業車両(バックホウ100やフォークリフトカー120等)の作動部に、フライホイール79を介してディーゼルエンジン70の動力を取り出すように構成している。
4 to 8, a flywheel housing 78 is fixed to the rear side of the cylinder block 75. A flywheel 79 is provided in the flywheel housing 78. A flywheel 79 is pivotally supported on the rear end side of the engine output shaft 74. The power of the diesel engine 70 is taken out via the flywheel 79 to the working part of the work vehicle (backhoe 100, forklift car 120, etc.).
また、シリンダブロック75の下面にはオイルパン95が配置されている。オイルパン95内には潤滑油が貯留されている。オイルパン95内の潤滑油は、シリンダブロック75内における右側面寄りの部位に配置されたオイルポンプ156にて吸引され、シリンダブロック75の右側面に配置されたオイルフィルタ157を介して、ディーゼルエンジン70の各潤滑部に供給される。各潤滑部に供給された潤滑油はその後オイルパン95に戻される。オイルポンプ156はエンジン出力軸74の回転にて駆動するように構成されている。
Further, an oil pan 95 is disposed on the lower surface of the cylinder block 75. Lubricating oil is stored in the oil pan 95. Lubricating oil in the oil pan 95 is sucked by an oil pump 156 disposed in a portion near the right side surface in the cylinder block 75 and is passed through an oil filter 157 disposed on the right side surface of the cylinder block 75, and the diesel engine. 70 is supplied to each lubrication section. The lubricating oil supplied to each lubricating part is then returned to the oil pan 95. The oil pump 156 is configured to be driven by rotation of the engine output shaft 74.
シリンダブロック75の右側面のうちオイルフィルタ157の上方(吸気マニホールド73の下方)には、シリンダブロック75内の燃焼室内に燃料を供給するための燃料噴射ポンプ158が取り付けられている。燃料噴射ポンプ158は、燃料噴射量を調整するための電子ガバナと燃料フィードポンプとを備えている。燃料フィードポンプの駆動にて、燃料タンク内の燃料が燃料フィルタを介して燃料噴射ポンプ158に送り込まれる。
A fuel injection pump 158 for supplying fuel to the combustion chamber in the cylinder block 75 is attached above the oil filter 157 on the right side surface of the cylinder block 75 (below the intake manifold 73). The fuel injection pump 158 includes an electronic governor and a fuel feed pump for adjusting the fuel injection amount. By driving the fuel feed pump, the fuel in the fuel tank is sent to the fuel injection pump 158 via the fuel filter.
シリンダブロック75の前面左寄りの部位には、冷却水潤滑用の冷却水ポンプ159が冷却ファン76のファン軸80と同軸状に配置されている。冷却水ポンプ159はエンジン出力軸74の回転にて冷却ファン76と共に駆動するように構成されている。作業車両に搭載されたラジエータ134(詳細は後述する)内の冷却水が、冷却水ポンプ159の上部に設けられたサーモスタットケース160を介して、冷却水ポンプ159に供給される。そして、冷却水ポンプ159の駆動にて、冷却水がシリンダヘッド72及びシリンダブロック75に形成された水冷ジャケット(図示省略)に供給され、ディーゼルエンジン70を冷却する。ディーゼルエンジン70の冷却に寄与した冷却水はラジエータ134に戻される。
A cooling water pump 159 for lubricating lubricating water is disposed coaxially with the fan shaft 80 of the cooling fan 76 at a portion on the left side of the front surface of the cylinder block 75. The cooling water pump 159 is configured to be driven together with the cooling fan 76 by the rotation of the engine output shaft 74. Cooling water in a radiator 134 (described in detail later) mounted on the work vehicle is supplied to the cooling water pump 159 via a thermostat case 160 provided on the upper part of the cooling water pump 159. Then, by driving the cooling water pump 159, cooling water is supplied to a water cooling jacket (not shown) formed in the cylinder head 72 and the cylinder block 75 to cool the diesel engine 70. Cooling water that has contributed to cooling the diesel engine 70 is returned to the radiator 134.
実施形態では、エンジン出力軸74と冷却ファン76のファン軸80とが上下に並んで平行状に延びている。そして、図6に示すように、平面視でエンジン出力軸74(ファン軸80)を挟んで排気マニホールド71側に冷却水ポンプ159が、吸気マニホールド73側にオイルポンプ156が配置されている。位置関係上、冷却水ポンプ159は冷却ファン76に対峙していて、冷却ファン76からの冷却風が冷却水ポンプ159に当たることになる。なお、冷却水ポンプ159の左側方にはオルタネータ161が設けられている。
In the embodiment, the engine output shaft 74 and the fan shaft 80 of the cooling fan 76 extend in parallel in the vertical direction. As shown in FIG. 6, a cooling water pump 159 is disposed on the exhaust manifold 71 side and an oil pump 156 is disposed on the intake manifold 73 side with the engine output shaft 74 (fan shaft 80) interposed therebetween in plan view. In view of the positional relationship, the cooling water pump 159 faces the cooling fan 76, and the cooling air from the cooling fan 76 hits the cooling water pump 159. An alternator 161 is provided on the left side of the cooling water pump 159.
シリンダブロック75の左右側面とフライホイールハウジング78の左右側面とには、機関脚取付け部96がそれぞれ設けられている。各機関脚取付け部96には、防振ゴムを有する機関脚体97がボルト締結されている。ディーゼルエンジン70は、各機関脚体97を介して、作業車両(バックホウ100、フォークリフトカー120)等のエンジン取付けシャーシ81に防振支持されている。
Engine leg mounting portions 96 are provided on the left and right side surfaces of the cylinder block 75 and the left and right side surfaces of the flywheel housing 78, respectively. Each engine leg mounting portion 96 is bolted to an engine leg body 97 having vibration-proof rubber. The diesel engine 70 is supported in an anti-vibration manner on an engine mounting chassis 81 such as a work vehicle (backhoe 100, forklift car 120) via each engine leg 97.
図5に示すように、吸気マニホールド73の入口部は、当該吸気マニホールド73の略中央部から上向きに突出している。そして、吸気マニホールド73の入口部は、EGR装置91(排気ガス再循環装置)を介してエアクリーナ(図示省略)に連結されている。エアクリーナに吸い込まれた新気(外部空気)は、当該エアクリーナにて除塵・浄化されたのち、EGR装置91を介して吸気マニホールド73に送られ、そして、ディーゼルエンジン70の各気筒に供給される。
As shown in FIG. 5, the inlet portion of the intake manifold 73 protrudes upward from the substantially central portion of the intake manifold 73. The inlet portion of the intake manifold 73 is connected to an air cleaner (not shown) via an EGR device 91 (exhaust gas recirculation device). The fresh air (external air) sucked into the air cleaner is dust-removed and purified by the air cleaner, is sent to the intake manifold 73 via the EGR device 91, and is supplied to each cylinder of the diesel engine 70.
図5及び図6に示すように、EGR装置91は、ディーゼルエンジン70の排気ガスの一部(排気マニホールド71からのEGRガス)と新気(エアクリーナ88からの外部空気)とを混合させて吸気マニホールド73に供給するEGR本体ケース(コレクタ)145と、エアクリーナにEGR本体ケース145を連通させる吸気スロットル部材146と、排気マニホールド71にEGRクーラ147を介して接続される還流管路としての再循環排気ガス管148と、再循環排気ガス管148にEGR本体ケース145を連通させるEGRバルブ部材149とを備えている。
As shown in FIGS. 5 and 6, the EGR device 91 mixes a part of exhaust gas of the diesel engine 70 (EGR gas from the exhaust manifold 71) and fresh air (external air from the air cleaner 88) to intake air. An EGR main body case (collector) 145 to be supplied to the manifold 73, an intake throttle member 146 for communicating the EGR main body case 145 with an air cleaner, and a recirculation exhaust as a return line connected to the exhaust manifold 71 via an EGR cooler 147 A gas pipe 148 and an EGR valve member 149 that allows the EGR main body case 145 to communicate with the recirculated exhaust gas pipe 148 are provided.
すなわち、吸気マニホールド73と新気導入用の吸気スロットル部材146とがEGR本体ケース145を介して接続されている。そして、EGR本体ケース145には、排気マニホールド71から延びる再循環排気ガス管148の出口側が連通している。図6に示すように、EGR本体ケース145は長筒状に形成されている。吸気スロットル部材146は、EGR本体ケース145の長手方向の一端部にボルト締結されている。EGR本体ケース145のうち吸気スロットル部材146と反対側の部位に形成された下向きの開口端部が、吸気マニホールド73の入口部に着脱可能にボルト締結されている。
That is, the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145. The EGR main body case 145 communicates with the outlet side of the recirculated exhaust gas pipe 148 extending from the exhaust manifold 71. As shown in FIG. 6, the EGR main body case 145 is formed in a long cylindrical shape. The intake throttle member 146 is bolted to one end of the EGR main body case 145 in the longitudinal direction. A downward opening end formed in a portion of the EGR main body case 145 opposite to the intake throttle member 146 is detachably bolted to the inlet portion of the intake manifold 73.
図4~図6に示すように、EGR本体ケース145には、温度検出手段としての2つの温度センサ151,153が取り付けられている。EGR本体ケース145のうち吸気スロットル部材146寄りの部位に、エアクリーナからの新気の温度を検出する新気温度センサ151が配置されている。吸気マニホールド73の入口部73a寄りの部位には、混合ガスの温度を検出する混合ガス温度センサ153が配置されている。また、EGRバルブ部材149(再循環排気ガス管148)には、排気マニホールド71からのEGRガスの温度を検出する温度検出手段としてのEGRガス温度センサ152が取り付けられている。温度センサ151~153群は、混合ガスのEGR率を求めるのに用いられるものである。ここで、EGR率とは、EGRガス量と新気量との和で、EGRガス量を割った値(=EGRガス量/(EGRガス量+新気量))のことを言う。
As shown in FIGS. 4 to 6, the EGR main body case 145 is provided with two temperature sensors 151 and 153 as temperature detecting means. A fresh air temperature sensor 151 that detects the temperature of fresh air from the air cleaner is disposed in a portion of the EGR main body case 145 near the intake throttle member 146. A mixed gas temperature sensor 153 that detects the temperature of the mixed gas is disposed at a portion of the intake manifold 73 near the inlet 73a. In addition, an EGR gas temperature sensor 152 as temperature detecting means for detecting the temperature of the EGR gas from the exhaust manifold 71 is attached to the EGR valve member 149 (recirculation exhaust gas pipe 148). The temperature sensors 151 to 153 are used for obtaining the EGR rate of the mixed gas. Here, the EGR rate means a value obtained by dividing the EGR gas amount by the sum of the EGR gas amount and the fresh air amount (= EGR gas amount / (EGR gas amount + new air amount)).
実施形態では、再循環排気ガス管148の出口側が、EGRバルブ部材149を介してEGR本体ケース145に連結されている。EGRバルブ部材149は、その内部にあるEGRバルブ(図示省略)の開度を調節することにより、EGR本体ケース145へのEGRガスの供給量を調節するものである。EGRバルブ部材149の外周面から斜め下向きに突出した開口端部がEGR本体ケース145の長手中途部に連結されている。再循環排気ガス管148の入口側は、EGRクーラ147を介して排気マニホールド71の下面側に連結されている。
In the embodiment, the outlet side of the recirculation exhaust gas pipe 148 is connected to the EGR main body case 145 via the EGR valve member 149. The EGR valve member 149 adjusts the supply amount of EGR gas to the EGR main body case 145 by adjusting the opening degree of an EGR valve (not shown) in the EGR valve member 149. An opening end projecting obliquely downward from the outer peripheral surface of the EGR valve member 149 is connected to a longitudinal midway portion of the EGR main body case 145. The inlet side of the recirculated exhaust gas pipe 148 is connected to the lower surface side of the exhaust manifold 71 via an EGR cooler 147.
図5及び図6に示すように、吸気スロットル部材146とEGRバルブ部材149とは、共通のEGR本体ケース145に組み付けられている。換言すると、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、1つの部材としてユニット化されている。また、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、吸気マニホールド73上に位置(露出)していて、冷却ファン76からの冷却風がこれらの部材145,146,149に当たるように構成されている。
As shown in FIGS. 5 and 6, the intake throttle member 146 and the EGR valve member 149 are assembled in a common EGR main body case 145. In other words, the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member. The intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. It is configured.
上記の構成により、エアクリーナから吸気スロットル部材146を介してEGR本体ケース145内に新気(外部空気)を供給する一方、排気マニホールド71からEGRバルブ149を介してEGR本体ケース145内にEGRガス(排気マニホールド71から排出される排気ガスの一部)を供給する。エアクリーナからの新気と、排気マニホールド71からのEGRガスとが、EGR本体ケース145内で混合された後、EGR本体ケース145内の混合ガスが吸気マニホールド73に供給される。すなわち、ディーゼルエンジン70から排気マニホールド71に排出された排気ガスの一部が、吸気マニホールド73からディーゼルエンジン70に還流されることによって、高負荷運転時の最高燃焼温度が低下し、ディーゼルエンジン70からのNOx(窒素酸化物)の排出量が低減される。
With the above configuration, fresh air (external air) is supplied from the air cleaner through the intake throttle member 146 into the EGR main body case 145, while EGR gas (from the exhaust manifold 71 to the EGR main body case 145 through the EGR valve 149 is A part of the exhaust gas discharged from the exhaust manifold 71 is supplied. After fresh air from the air cleaner and EGR gas from the exhaust manifold 71 are mixed in the EGR main body case 145, the mixed gas in the EGR main body case 145 is supplied to the intake manifold 73. That is, a part of the exhaust gas discharged from the diesel engine 70 to the exhaust manifold 71 is recirculated from the intake manifold 73 to the diesel engine 70, so that the maximum combustion temperature at the time of high load operation is lowered. NOx (nitrogen oxide) emissions are reduced.
以上の構成から明らかなように、実施形態のEGR装置91によると、吸気マニホールド73と新気導入用の吸気スロットル部材146とがEGR本体ケース145を介して接続されており、EGR本体ケース145には、排気マニホールド71から延びる再循環排気ガス管148の出口側が連通しているから、新気とEGRガスとは、吸気マニホールド73に送り込まれる前に混合されることになる。このため、混合ガス中においてEGRガスを広く分散でき、吸気マニホールド73に送り込まれる前段階で、混合ガスにおける混合状態のバラツキ(ムラ)が少なくなる。従って、ディーゼルエンジン70の各気筒にムラの少ない混合ガスを分配でき、各気筒間のEGR率のバラツキを抑制できる。その結果、黒煙の発生を抑制して、ディーゼルエンジン70の燃焼状態を良好に保ちながら、NOx量を効率よく低減できる。
As is clear from the above configuration, according to the EGR device 91 of the embodiment, the intake manifold 73 and the intake air intake throttle member 146 are connected via the EGR main body case 145, and are connected to the EGR main body case 145. Since the outlet side of the recirculation exhaust gas pipe 148 extending from the exhaust manifold 71 communicates, the fresh air and the EGR gas are mixed before being sent to the intake manifold 73. For this reason, the EGR gas can be widely dispersed in the mixed gas, and the variation (unevenness) in the mixed state in the mixed gas is reduced before being sent to the intake manifold 73. Therefore, a mixed gas with little unevenness can be distributed to each cylinder of the diesel engine 70, and variations in the EGR rate between the cylinders can be suppressed. As a result, the amount of NOx can be efficiently reduced while suppressing the generation of black smoke and keeping the combustion state of the diesel engine 70 in good condition.
また、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、1つの部材としてユニット化されているから、各種作業車両(例えばバックホウ100やフォークリフトカー120等)の異なる機種間であっても、これらの部材145,146,149をガス混合用ユニットとして共用化できる。従って、同型のディーゼルエンジン70を搭載した各機種に対して、1種類のガス混合用ユニットの構成で対処できるから、同型のディーゼルエンジン70を搭載した機種毎のEGR率がばらつくことを抑制して、これら機種毎に試験確認したり出荷申請したりする手間等を省略できる。その結果、製造コストを抑制できる。EGR装置91とディーゼルエンジン70との性能マッチングのための組付け調整工数を低減することも可能になる。
In addition, since the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are unitized as one member, they are different models of various work vehicles (for example, the backhoe 100 and the forklift car 120). However, these members 145, 146 and 149 can be shared as a gas mixing unit. Therefore, each model equipped with the same type of diesel engine 70 can be dealt with by a single gas mixing unit configuration, so that the EGR rate for each model equipped with the same type of diesel engine 70 is suppressed from varying. Therefore, it is possible to omit the trouble of confirming the test and applying for shipping for each model. As a result, the manufacturing cost can be suppressed. It is also possible to reduce the assembly adjustment man-hours for performance matching between the EGR device 91 and the diesel engine 70.
更に、吸気スロットル部材146とEGR本体ケース145とEGRバルブ部材149とは、吸気マニホールド73上に位置(露出)していて、冷却ファン76からの冷却風がこれらの部材145,146,149に当たるように構成されているから、冷却風によるガス混合用ユニット、ひいてはその内部の混合ガス温度の上昇を抑制でき、混合ガスによるNOx量低減効果を適正な状態に維持し易い。その上、冷却ファン76からの冷却風にて、ガス混合用ユニットひいてはその内部の混合ガス温度の上昇を抑制できる分だけ、EGRクーラの冷却性能を落とせるから、EGRクーラ147の小型化が可能になる。
Further, the intake throttle member 146, the EGR main body case 145, and the EGR valve member 149 are positioned (exposed) on the intake manifold 73 so that the cooling air from the cooling fan 76 strikes these members 145, 146, and 149. Therefore, it is possible to suppress an increase in the temperature of the gas mixing unit due to the cooling air, and hence the mixed gas temperature therein, and to easily maintain the NOx reduction effect by the mixed gas in an appropriate state. In addition, the cooling performance of the EGR cooler 147 can be reduced by the amount by which the cooling air from the cooling fan 76 can suppress the rise of the gas mixing unit and thus the temperature of the mixed gas inside the unit. Become.
図4~図6に示す如く、触媒外側ケース5には、フィルタ支持体としての板状の支持脚体19の一端側が溶接固定されている。支持脚体19の他端側は、フライホイールハウジング78の上面に形成されたDPF取付け部82にボルト83にて着脱可能に締結されている。このため、上記したDPF1は、両支持脚体19を介して、高剛性のフライホイールハウジング78に支持されることになる。
As shown in FIGS. 4 to 6, one end side of a plate-like support leg 19 as a filter support is welded and fixed to the catalyst outer case 5. The other end side of the support leg 19 is fastened to a DPF attachment portion 82 formed on the upper surface of the flywheel housing 78 by a bolt 83 so as to be detachable. For this reason, the above-described DPF 1 is supported by the high-rigidity flywheel housing 78 via both support legs 19.
図4~図7に示すように、実施形態のDPF1は、エンジン出力軸74と直交する方向に長い形態になっていて、フライホイールハウジング78より上方において、排気ガス移動方向がエンジン出力軸74と直交する方向になるように、ディーゼルエンジン70の上面から離して配置されている。従って、シリンダヘッド72、排気マニホールド72及び吸気マニホールド73の上面は露出していて、メンテナンス作業をし易い状態になっている。この場合のDPF1はシリンダヘッド72の近傍に位置している。具体的には、シリンダヘッド72におけるフライホイールハウジング78寄りの後側面に相対向して配置されている。
As shown in FIGS. 4 to 7, the DPF 1 of the embodiment has a shape that is long in a direction orthogonal to the engine output shaft 74, and the exhaust gas movement direction is higher than that of the engine output shaft 74 above the flywheel housing 78. It arrange | positions away from the upper surface of the diesel engine 70 so that it may become a direction orthogonal. Therefore, the upper surfaces of the cylinder head 72, the exhaust manifold 72, and the intake manifold 73 are exposed, and the maintenance work is easily performed. In this case, the DPF 1 is located in the vicinity of the cylinder head 72. Specifically, the cylinder head 72 is disposed opposite to the rear side surface near the flywheel housing 78.
また、図4に示すように、DPF1の上端はディーゼルエンジン70(シリンダヘッド72)の上端より低い位置になっている。ディーゼルエンジン70を冷却ファン76側から見ると(図8参照)、DPF1のほとんどがディーゼルエンジン70にて隠れることになる。また、DPF1における長手方向一端側と長手方向他端側とには、排気ガス入口管16と排気ガス出口管34とが左右振り分けて配置されている。
Further, as shown in FIG. 4, the upper end of the DPF 1 is lower than the upper end of the diesel engine 70 (cylinder head 72). When the diesel engine 70 is viewed from the cooling fan 76 side (see FIG. 8), most of the DPF 1 is hidden by the diesel engine 70. Further, the exhaust gas inlet pipe 16 and the exhaust gas outlet pipe 34 are arranged on the left and right sides of the DPF 1 at one end in the longitudinal direction and the other end in the longitudinal direction.
図4~図7に示すように、DPF1の外面側には、DPF1の長手方向に沿って延びるプレート部材53が取り付けられている。プレート部材53は、差圧センサ60のハーネス62,63群(詳細は後述する)を支持するためのものであり、長板状の長尺本体54と、当該長尺本体54の両端から同じ向きに突出する連結アーム部55,56とにより構成されている。左連結アーム部55は、DPF1の左側蓋体8に座板体9を固定するボルト及びナットにて、座板体9と共に締結されている。右連結アーム部56は、ボルト27及びナット28にて、触媒側フランジ25及びフィルタ側フランジ26と共に締結されている。
4 to 7, a plate member 53 extending along the longitudinal direction of the DPF 1 is attached to the outer surface side of the DPF 1. The plate member 53 is for supporting the harnesses 62 and 63 group (details will be described later) of the differential pressure sensor 60, and the long plate-like long main body 54 and the same direction from both ends of the long main body 54. It is comprised by the connection arm part 55 and 56 which protrudes. The left connecting arm portion 55 is fastened together with the seat plate body 9 by bolts and nuts that fix the seat plate body 9 to the left side lid body 8 of the DPF 1. The right connecting arm portion 56 is fastened together with the catalyst side flange 25 and the filter side flange 26 by bolts 27 and nuts 28.
実施形態では、DPF1の外面側にプレート部材53を取り付けた状態で、DPF1(触媒外側ケース5)の外面とプレート部材53の基部(長尺本体54)との間の間隔が空くように設定されている。この場合、プレート部材53を、DPF1の座板体9と、触媒側フランジ25及びフィルタ側フランジ26とに跨るような姿勢で配置することにより、DPF1(触媒外側ケース5)の外面とプレート部材53の基部(長尺本体54)との間の間隔を空けている。
In the embodiment, in a state where the plate member 53 is attached to the outer surface side of the DPF 1, the distance between the outer surface of the DPF 1 (catalyst outer case 5) and the base (long body 54) of the plate member 53 is set. ing. In this case, the plate member 53 is arranged in such a posture as to straddle the seat plate body 9 of the DPF 1, the catalyst side flange 25 and the filter side flange 26, so that the outer surface of the DPF 1 (catalyst outer case 5) and the plate member 53 are disposed. Is spaced from the base (the long main body 54).
図4に示すように、排気マニホールド71の出口部は、当該排気マニホールド71の左端部側から上向きに突出している。排気マニホールド71の出口部は、ディーゼルエンジン70の排気圧を調節するための排気絞り装置86を介して、排気ガス入口管16に着脱可能に連結されている。実施形態では、排気マニホールド71の出口部に、第1中継管84の入口側がボルト締結されており、第1中継管84の出口側が排気絞り装置86の入口側にボルト締結されている。排気絞り装置86の出口側は第2中継管85の入口側にボルト締結されており、第2中継管85の出口側が排気ガス入口管16の排気接続フランジ体17にボルト18締結されている。従って、上記したDPF1は、第1及び第2中継管84,85及び排気絞り装置86を介して高剛性の排気マニホールド71に支持される。
As shown in FIG. 4, the outlet of the exhaust manifold 71 protrudes upward from the left end side of the exhaust manifold 71. An outlet portion of the exhaust manifold 71 is detachably connected to the exhaust gas inlet pipe 16 via an exhaust throttle device 86 for adjusting the exhaust pressure of the diesel engine 70. In the embodiment, the inlet side of the first relay pipe 84 is bolted to the outlet portion of the exhaust manifold 71, and the outlet side of the first relay pipe 84 is bolted to the inlet side of the exhaust throttle device 86. The outlet side of the exhaust throttle device 86 is bolted to the inlet side of the second relay pipe 85, and the outlet side of the second relay pipe 85 is bolted to the exhaust connection flange body 17 of the exhaust gas inlet pipe 16. Therefore, the above-described DPF 1 is supported by the highly rigid exhaust manifold 71 via the first and second relay pipes 84 and 85 and the exhaust throttle device 86.
排気絞り装置86は前述の通り、ディーゼルエンジン70の排気圧を高めるためのものである。すなわち、スート(すす)がスートフィルタ3に堆積したときは、排気絞り装置86の作動制御にてディーゼルエンジン70の排気圧を高くすることにより、ディーゼルエンジン70からの排気ガス温度を高温にして、スートフィルタ3に堆積したスート(すす)が燃焼する。その結果、スートが消失し、スートフィルタ3が再生することになる。
The exhaust throttle device 86 is for increasing the exhaust pressure of the diesel engine 70 as described above. That is, when soot accumulates on the soot filter 3, the exhaust gas temperature from the diesel engine 70 is increased by increasing the exhaust pressure of the diesel engine 70 by controlling the operation of the exhaust throttle device 86. The soot accumulated on the soot filter 3 burns. As a result, the soot disappears and the soot filter 3 is regenerated.
このため、負荷が小さく排気ガスの温度が低くなり易い作業(スートが堆積し易い作業)を継続して行っても、排気絞り装置86による排気圧の強制上昇にてスートフィルタ3を再生でき、DPF1の排気ガス浄化能力を適正に維持できる。また、スートフィルタ3に堆積したスートを燃やすためのバーナー等も不要になる。
For this reason, the soot filter 3 can be regenerated by forcibly increasing the exhaust pressure by the exhaust throttle device 86 even if the work with a small load and the temperature of the exhaust gas is easily reduced (the work in which soot is likely to accumulate) is continuously performed. The exhaust gas purification capacity of the DPF 1 can be properly maintained. Further, a burner or the like for burning the soot deposited on the soot filter 3 becomes unnecessary.
また、エンジン始動時も、排気絞り装置86の制御にてディーゼルエンジン70の排気圧を高くすることにより、ディーゼルエンジン70からの排気ガスの温度を高温にして、ディーゼルエンジン70の暖機を促進できる。
Further, even when the engine is started, by increasing the exhaust pressure of the diesel engine 70 by the control of the exhaust throttle device 86, the temperature of the exhaust gas from the diesel engine 70 can be raised to promote the warm-up of the diesel engine 70. .
排気マニホールド71の出口部から、排気ガス入口管16を介してDPF1内に移動した排気ガスは、DPF1にて浄化されたのち、排気ガス出口管34からテールパイプ(図示省略)に移動して、最終的に機外に排出されることになる。
The exhaust gas that has moved from the outlet of the exhaust manifold 71 into the DPF 1 via the exhaust gas inlet pipe 16 is purified by the DPF 1 and then moved from the exhaust gas outlet pipe 34 to the tail pipe (not shown). Eventually it will be discharged out of the machine.
以上の構成から明らかなように、実施形態のDPF1は、エンジン70の排気マニホールド71に連結されると共に、複数のフィルタ支持体(支持脚体19)を介してフライホイールハウジング78に連結されている。このため、ディーゼルエンジン70の構成部品の一つとして、ディーゼルエンジン70にDPF1を高剛性に配置でき、作業車両等の機器毎の排気ガス対策を不用にし、ディーゼルエンジン70の汎用性を向上できるという効果を奏する。
As is clear from the above configuration, the DPF 1 of the embodiment is connected to the exhaust manifold 71 of the engine 70 and is connected to the flywheel housing 78 via a plurality of filter supports (support legs 19). . For this reason, as one of the components of the diesel engine 70, the DPF 1 can be disposed with high rigidity in the diesel engine 70, the exhaust gas countermeasures for each equipment such as a work vehicle can be dispensed with, and the versatility of the diesel engine 70 can be improved. There is an effect.
すなわち、ディーゼルエンジン70の高剛性部品であるフライホイールハウジング78の利用にてDPF1を高剛性に支持して、振動等によるDPF1の損傷を防止できる。また、ディーゼルエンジン70の製造場所でディーゼルエンジン70にDPF1を組み込んで出荷することが可能になり、ディーゼルエンジン70とDPF1をまとめてコンパクトに構成できるという利点もある。
That is, the use of the flywheel housing 78, which is a highly rigid part of the diesel engine 70, supports the DPF 1 with high rigidity and prevents damage to the DPF 1 due to vibration or the like. Further, it is possible to ship the DPF 1 incorporated in the diesel engine 70 at the manufacturing site of the diesel engine 70, and there is an advantage that the diesel engine 70 and the DPF 1 can be configured in a compact manner.
また、排気マニホールド71にDPF1を至近距離で連通できるから、DPF1を適正温度に維持し易く、高い排気ガス浄化性能が維持できる。その上、DPF1の小型化にも寄与できる。
Further, since the DPF 1 can be communicated with the exhaust manifold 71 at a close distance, the DPF 1 can be easily maintained at an appropriate temperature, and high exhaust gas purification performance can be maintained. In addition, the DPF 1 can be reduced in size.
図4~図7に示す如く、DPF1は、エンジン出力軸74と直交する方向に長い形態になっていて、ディーゼルエンジン70の上面から離して配置されているから、シリンダヘッド72、排気マニホールド72及び吸気マニホールド73の上面側を露出でき、ディーゼルエンジン70関連のメンテナンス作業がし易い。
4-7, the DPF 1 is long in the direction orthogonal to the engine output shaft 74, and is disposed away from the upper surface of the diesel engine 70. Therefore, the cylinder head 72, the exhaust manifold 72, and The upper surface side of the intake manifold 73 can be exposed, and maintenance work related to the diesel engine 70 is easy.
図4~図7に示す如く、DPF1は、ディーゼルエンジン70の上部に位置するシリンダヘッド72の近傍に配置されているから、DPF1は、ディーゼルエンジン70の冷却ファン76の風下において、シリンダヘッド72の陰に隠れることになる。従って、冷却ファン76からの風がDPF1に直接当たるのを抑制して、冷却ファン76からの風によるDPF1ひいてはDPF1内部の排気ガス温度の低下を抑制でき、排気ガス温度の維持を図れることになる。
As shown in FIGS. 4 to 7, since the DPF 1 is disposed in the vicinity of the cylinder head 72 located at the upper part of the diesel engine 70, the DPF 1 is located in the lee of the cooling fan 76 of the diesel engine 70. It will be hidden behind. Therefore, the wind from the cooling fan 76 can be prevented from directly hitting the DPF 1, and the decrease of the DPF 1 and the exhaust gas temperature inside the DPF 1 due to the wind from the cooling fan 76 can be suppressed, so that the exhaust gas temperature can be maintained. .
さて、ディーゼルエンジン70の外面には、排気圧検出手段である差圧センサ60の検出本体61が支持ブラケット59を介して取り付けられている。実施形態では、シリンダヘッド72のうちフライホイールハウジング78寄りの後側面に、断面く字状の支持ブラケット59がボルト締結されている(図6及び図7参照)。支持ブラケット59の上部は、平面視でシリンダヘッド72の上面を覆うヘッドカバー90の上面に被さるように延びている。支持ブラケット59の上部表面側に検出本体61がねじ止めされている。従って、検出本体61はヘッドカバー90の上面から離れた位置にあることになる。
Now, on the outer surface of the diesel engine 70, a detection main body 61 of a differential pressure sensor 60, which is an exhaust pressure detection means, is attached via a support bracket 59. In the embodiment, a support bracket 59 having a square cross section is bolted to the rear side of the cylinder head 72 near the flywheel housing 78 (see FIGS. 6 and 7). The upper portion of the support bracket 59 extends so as to cover the upper surface of the head cover 90 that covers the upper surface of the cylinder head 72 in plan view. The detection main body 61 is screwed to the upper surface side of the support bracket 59. Therefore, the detection main body 61 is located away from the upper surface of the head cover 90.
排気圧検出手段である差圧センサ60は、DPF1内におけるスートフィルタ3を挟んだ上流側及び下流側間の圧力差を検出するためのものである。差圧センサ60にて検出された圧力差に基づいて排気絞り装置86を作動させることにより、スートフィルタ3の再生制御が実行される。
The differential pressure sensor 60 which is an exhaust pressure detecting means is for detecting a pressure difference between the upstream side and the downstream side across the soot filter 3 in the DPF 1. By operating the exhaust throttle device 86 based on the pressure difference detected by the differential pressure sensor 60, regeneration control of the soot filter 3 is executed.
実施形態の差圧センサ60は、前述の検出本体61と、検出本体61からDPFに向けて延びる2本のハーネス62,63と、左ハーネス62の先端部に設けられた入口側感知体64と、右ハーネス63の先端部に設けられた出口側感知体65とを備えている。左ハーネス62側の入口側感知体64は、DPF1の入口側(触媒内側ケース4及び触媒外側ケース5における排気ガス流入空間11の部位)にあるセンサ接続プラグ10に差し込み装着されている。右ハーネス63側の出口側感知体65は、DPF1の出口側(フィルタ内側ケース20及びフィルタ外側ケース21)にあるセンサ接続プラグ44に差し込み装着されている。
The differential pressure sensor 60 according to the embodiment includes the above-described detection main body 61, two harnesses 62 and 63 extending from the detection main body 61 toward the DPF, and an inlet-side sensor 64 provided at the distal end of the left harness 62. And an outlet-side sensing body 65 provided at the tip of the right harness 63. The inlet side sensing body 64 on the left harness 62 side is inserted and attached to the sensor connection plug 10 on the inlet side of the DPF 1 (the part of the exhaust gas inflow space 11 in the catalyst inner case 4 and the catalyst outer case 5). The outlet side sensing element 65 on the right harness 63 side is inserted and attached to the sensor connection plug 44 on the outlet side of the DPF 1 (the filter inner case 20 and the filter outer case 21).
図6及び図7に示すように、各ハーネス62,63の長手中途部はプレート部材53に支持されている。実施形態では、各ハーネス62,63の長手中途部は、クランプ体66にて挟持された状態で長尺本体54上に載置されていて、クランプ体66を長尺本体54にボルト67締結することにより、長尺本体54に強固に固定されている。このように、DPF1(触媒外側ケース5等)の外面から適宜離れた位置にあるプレート部材53の基部(長尺本体54)に、両ハーネス62,63の長手中途部を支持させることにより、両ハーネス62,63とDPF1(触媒外側ケース5等)の外面との間の間隔が空くように設定されている。換言すると、両ハーネス62,63がDPF1(触媒外側ケース5等)の外面に接触しないように設定されている。
As shown in FIGS. 6 and 7, the longitudinal intermediate portions of the harnesses 62 and 63 are supported by the plate member 53. In the embodiment, the midway portions of the harnesses 62 and 63 are placed on the long main body 54 while being clamped by the clamp body 66, and the clamp body 66 is fastened to the long main body 54 with bolts 67. Thus, it is firmly fixed to the long main body 54. In this way, by supporting the midway portions of the two harnesses 62 and 63 on the base (long body 54) of the plate member 53 at a position appropriately separated from the outer surface of the DPF 1 (catalyst outer case 5 or the like), both The distance between the harnesses 62 and 63 and the outer surface of the DPF 1 (catalyst outer case 5 or the like) is set to be large. In other words, both the harnesses 62 and 63 are set so as not to contact the outer surface of the DPF 1 (catalyst outer case 5 or the like).
なお、排気圧検出手段は、差圧センサ60に限らず、DPF1内におけるスートフィルタ3上流側の圧力を検出する排気圧センサでもよい。この場合、感知体付きのハーネスは1本だけになり、当該1本のハーネスの長手中途部をプレート部材にて支持するようにすればよい。排気圧センサを採用した場合は、スートフィルタ3にスートが堆積していないときのスートフィルタ3上流側の圧力(基準圧力)と、排気圧センサにて検出された現在の圧力とを比較することによって、スートフィルタ3の詰まり状態を判断することになる。
The exhaust pressure detection means is not limited to the differential pressure sensor 60, and may be an exhaust pressure sensor that detects the pressure on the upstream side of the soot filter 3 in the DPF 1. In this case, there is only one harness with a sensing body, and the midway portion of the single harness may be supported by the plate member. When the exhaust pressure sensor is employed, the pressure (reference pressure) on the upstream side of the soot filter 3 when no soot is deposited on the soot filter 3 is compared with the current pressure detected by the exhaust pressure sensor. Thus, the clogged state of the soot filter 3 is determined.
以上の構成から明らかなように、差圧センサ60の検出本体61が支持ブラケット59を介してディーゼルエンジン70(ヘッドカバー90)の外面に取り付けられているから、差圧センサ60の検出本体61がディーゼルエンジン70自体からは離れて配置されることになる。このため、ディーゼルエンジン70の発する熱は検出本体61に伝わり難く、ディーゼルエンジン70に検出本体61を組み付けたものでありながら、過熱による検出本体61の故障を抑制できる。
As apparent from the above configuration, since the detection main body 61 of the differential pressure sensor 60 is attached to the outer surface of the diesel engine 70 (head cover 90) via the support bracket 59, the detection main body 61 of the differential pressure sensor 60 is the diesel engine. It will be located away from the engine 70 itself. For this reason, the heat generated by the diesel engine 70 is difficult to be transmitted to the detection main body 61, and the detection main body 61 can be prevented from malfunctioning due to overheating while the detection main body 61 is assembled to the diesel engine 70.
また、検出本体61から延びる両ハーネス62,63の先端部に設けられた感知体64,65はDPF1に取り付けられており、DPF1の外面と両ハーネス62,63との間の間隔が空くようにして、DPF1の外面側に設けられたプレート部材53に両ハーネス62,63の長手中途部を支持しているから、ディーゼルエンジン70の振動に起因する両ハーネス62,63の振れを抑制できる。このため、両ハーネス62,63及び感知体64,65の緩みや外れを防止でき、差圧センサ60での検出を正常に行える。しかも、プレート部材53の存在により、DPF1の外面と両ハーネス62,63との間の間隔が空くことになるから、DPF1の発する熱の悪影響は両ハーネス62,63に及び難くなる。従って、過熱による両ハーネス62,63の損傷を抑制する効果もある。
The sensing bodies 64 and 65 provided at the distal ends of both the harnesses 62 and 63 extending from the detection main body 61 are attached to the DPF 1 so that the distance between the outer surface of the DPF 1 and the harnesses 62 and 63 is increased. In addition, since the longitudinally midway portions of the harnesses 62 and 63 are supported by the plate member 53 provided on the outer surface side of the DPF 1, the vibrations of the harnesses 62 and 63 due to the vibration of the diesel engine 70 can be suppressed. For this reason, the looseness and detachment of both the harnesses 62 and 63 and the sensing bodies 64 and 65 can be prevented, and the detection by the differential pressure sensor 60 can be performed normally. In addition, since the space between the outer surface of the DPF 1 and the two harnesses 62 and 63 is increased due to the presence of the plate member 53, the adverse effect of the heat generated by the DPF 1 hardly reaches both the harnesses 62 and 63. Therefore, there is an effect of suppressing damage to both harnesses 62 and 63 due to overheating.
更に、ディーゼルエンジン70の一側部に設けられたフライホイールハウジング78上には、DPF1がディーゼルエンジン70の上部にあるシリンダヘッド72の近傍に位置するように設けられており、シリンダヘッド72に支持ブラケット59が上向きに突出するように取り付けられており、支持ブラケット59の上部に検出本体61を取り付けることによって、検出本体61を、シリンダヘッド72の上面を覆うヘッドカバー90の上面から離しているから、過熱による検出本体61の損傷を抑制する効果が高い。その上、DPF1と差圧センサ60とが近接することになるから、DPF1と検出本体61とをつなぐ両ハーネス62,63の長さを短く設定でき、組み付け作業性の改善やコストダウンを実現できるのである。
Further, on the flywheel housing 78 provided on one side of the diesel engine 70, the DPF 1 is provided in the vicinity of the cylinder head 72 at the top of the diesel engine 70, and is supported by the cylinder head 72. Since the bracket 59 is attached so as to protrude upward, and the detection main body 61 is attached to the upper part of the support bracket 59, the detection main body 61 is separated from the upper surface of the head cover 90 that covers the upper surface of the cylinder head 72. The effect of suppressing damage to the detection main body 61 due to overheating is high. In addition, since the DPF 1 and the differential pressure sensor 60 are close to each other, the lengths of the two harnesses 62 and 63 that connect the DPF 1 and the detection main body 61 can be set short, so that the assembly workability can be improved and the cost can be reduced. It is.
次に、図4、図6及び図8~図12を参照しながら、EGRクーラ147の詳細構造及びEGRクーラ147周辺の冷却水流通系統について説明する。
Next, the detailed structure of the EGR cooler 147 and the cooling water distribution system around the EGR cooler 147 will be described with reference to FIGS. 4, 6 and 8 to 12.
図4及び図9~図12に示すように、シリンダブロック75の左側面には、排気マニホールド71の下方に、ディーゼルエンジン70の冷却水を冷媒としてEGRガスを冷却するEGRクーラ147が配置されている。EGRクーラ147は、円筒形の外ケース165と、当該外ケース165内に設けられた熱交換チューブ166の複数個(図12参照)とからなる周知の構造である。外ケース165内部の両端寄りの部位は目抜き板167にて仕切られている。両目抜き板167の間に各熱交換チューブ166がそれぞれのパンチ穴を介して連通するように配置されている。従って、各熱交換チューブ166の内部空間は、EGRクーラ147(外ケース165)のEGRガス入口部168及び出口部169に連通している。
As shown in FIGS. 4 and 9 to 12, an EGR cooler 147 that cools EGR gas using the cooling water of the diesel engine 70 as a refrigerant is disposed below the exhaust manifold 71 on the left side surface of the cylinder block 75. Yes. The EGR cooler 147 has a known structure including a cylindrical outer case 165 and a plurality of heat exchange tubes 166 (see FIG. 12) provided in the outer case 165. Sites near both ends inside the outer case 165 are partitioned by a cutout plate 167. Each heat exchange tube 166 is disposed between both the punched plates 167 so as to communicate with each other through respective punch holes. Accordingly, the internal space of each heat exchange tube 166 communicates with the EGR gas inlet 168 and outlet 169 of the EGR cooler 147 (outer case 165).
外ケース165内部における両目抜き板167の間の領域は密閉空間となっている。外ケース165のうち両目抜き板167の間の部位には、冷却水入口部170と冷却水出口部171とが設けられている。冷却水入口部170から外ケース165の密閉空間内に供給された冷却水にて、各熱交換チューブ166の周囲を満たすことによって、各熱交換チューブ166内を流通するEGRガスが熱交換され、EGRガス温度が低下する。その結果、燃焼時の黒煙(スモーク)の発生を抑制しながら燃焼温度が低く抑えられ、排気ガス中のNOx量低減効果を高めることになる。外ケース165の密閉空間に供給された冷却水は、冷却水出口部171から排出される。
The area between both the cutout plates 167 inside the outer case 165 is a sealed space. A cooling water inlet portion 170 and a cooling water outlet portion 171 are provided in a portion of the outer case 165 between both the cutout plates 167. By filling the periphery of each heat exchange tube 166 with the cooling water supplied from the cooling water inlet 170 to the sealed space of the outer case 165, the EGR gas flowing through each heat exchange tube 166 is heat-exchanged, The EGR gas temperature decreases. As a result, the combustion temperature is kept low while suppressing the generation of black smoke (smoke) during combustion, and the effect of reducing the amount of NOx in the exhaust gas is enhanced. The cooling water supplied to the sealed space of the outer case 165 is discharged from the cooling water outlet 171.
図9に詳細に示すように、ディーゼルエンジン70の左側方(排気マニホールド側)には、冷却水ポンプ159からEGRクーラ147及び排気絞り装置86に向かう冷却水流通経路172が設けられている。冷却水ポンプ159からの冷却水はディーゼルエンジン70の水冷ジャケットに供給されるだけでなく、一部を冷却水流通経路172に送るように構成されている。すなわち、冷却水流通経路172は、ディーゼルエンジン70自体への冷却水系統(水冷ジャケットに向かう経路)とは別系統に構成されている。
As shown in detail in FIG. 9, a cooling water flow path 172 from the cooling water pump 159 to the EGR cooler 147 and the exhaust throttle device 86 is provided on the left side of the diesel engine 70 (exhaust manifold side). The cooling water from the cooling water pump 159 is configured not only to be supplied to the water cooling jacket of the diesel engine 70 but also to send a part thereof to the cooling water flow path 172. That is, the cooling water flow path 172 is configured as a separate system from the cooling water system (path toward the water cooling jacket) to the diesel engine 70 itself.
この場合、冷却水流通経路172中においては、EGRクーラ147及び排気絞り装置86が直列に接続されている。そして、冷却水流通経路172中では、EGRクーラ147は排気絞り装置86より冷却水ポンプ159に近い上流側に位置している。すなわち、冷却水ポンプ159からオルタネータ161に向けて突出する冷却水吐出部173が送りパイプ174を介してEGRクーラ147の冷却水入口部170に連通接続されている。EGRクーラ147の冷却水出口部171は、中継パイプ175を介して排気絞り装置86の冷却水入口部に連通接続されている。排気絞り装置86の冷却水出口部88は、戻しパイプ176を介してサーモスタットケース161に連通接続されている。従って、冷却水ポンプ159からの冷却水の一部は、EGRクーラ147→排気絞り装置86→サーモスタットケース160の順に供給され、循環することになる。
In this case, the EGR cooler 147 and the exhaust throttle device 86 are connected in series in the cooling water flow path 172. In the cooling water flow path 172, the EGR cooler 147 is positioned upstream of the exhaust throttle device 86 and closer to the cooling water pump 159. That is, the cooling water discharge part 173 protruding from the cooling water pump 159 toward the alternator 161 is connected to the cooling water inlet part 170 of the EGR cooler 147 through the feed pipe 174. The cooling water outlet 171 of the EGR cooler 147 is connected to the cooling water inlet of the exhaust throttle device 86 via a relay pipe 175. The cooling water outlet 88 of the exhaust throttle device 86 is connected to the thermostat case 161 through a return pipe 176. Accordingly, a part of the cooling water from the cooling water pump 159 is supplied and circulated in the order of the EGR cooler 147 → the exhaust throttle device 86 → the thermostat case 160.
図10~図12に示すように、EGRクーラ147における外ケース165のEGRガス入口部168は、筒状のEGRガス取出し管177を介して、排気マニホールド71の下面側に連通接続されている。実施形態では、外ケース165のEGRガス入口部168がEGRガス取出し管177の下フランジ部にボルト締結されている。EGRガス取出し管177の上フランジ部が排気マニホールド71の下面側に形成された下向き開口部にボルト締結されている。
As shown in FIGS. 10 to 12, the EGR gas inlet 168 of the outer case 165 in the EGR cooler 147 is connected to the lower surface side of the exhaust manifold 71 via a cylindrical EGR gas take-out pipe 177. In the embodiment, the EGR gas inlet portion 168 of the outer case 165 is bolted to the lower flange portion of the EGR gas extraction pipe 177. The upper flange portion of the EGR gas take-out pipe 177 is bolted to a downward opening formed on the lower surface side of the exhaust manifold 71.
EGRクーラ147における外ケース165のEGRガス出口部169は、シリンダブロック75に取り付けられた支持部材180に連結されている。このように、EGRクーラ147の長手両端部(EGRガス入口部168及び出口部169)をEGRガス取出し管177及び支持部材180にて支持することにより、EGRクーラ147はシリンダブロック75(具体的には左側面)から適宜離して配置されている(図10及び図12参照)。
The EGR gas outlet 169 of the outer case 165 in the EGR cooler 147 is connected to a support member 180 attached to the cylinder block 75. In this way, the EGR cooler 147 is supported by the EGR gas take-out pipe 177 and the support member 180 by supporting the longitudinal end portions (EGR gas inlet portion 168 and outlet portion 169) of the EGR cooler 147 so that the cylinder block 75 (specifically Is appropriately separated from the left side surface (see FIGS. 10 and 12).
図8及び図17に示すように、ディーゼルエンジン70の前側面視(正面視)において、シリンダブロック75とオルタネータ161との間には隙間SPが空いている。当該隙間SPの向こうにEGRクーラ147が位置している(隙間SPにEGRクーラ147を臨ませている)。従って、冷却ファン76からの冷却風は、隙間SPを通って、シリンダブロック75の左側面とEGRクーラ147との間を吹き抜けることになる(図9、図18及び図19参照)。このため、シリンダブロック75からEGRクーラ147への熱の伝達が抑制され、冷却風によるEGRクーラ147の冷却効率も高くなる。
As shown in FIGS. 8 and 17, a gap SP is provided between the cylinder block 75 and the alternator 161 in the front side view (front view) of the diesel engine 70. The EGR cooler 147 is located beyond the gap SP (the EGR cooler 147 faces the gap SP). Therefore, the cooling air from the cooling fan 76 blows through the gap SP between the left side surface of the cylinder block 75 and the EGR cooler 147 (see FIGS. 9, 18 and 19). For this reason, the transfer of heat from the cylinder block 75 to the EGR cooler 147 is suppressed, and the cooling efficiency of the EGR cooler 147 by the cooling air is also increased.
支持部材180は、取付けボルト184が挿入されるナット部181と、EGRクーラ147と再循環排気ガス管148とを連通させる排気ガス出口管路183を有する筒状部182とを一体に設けてなるものである。実施形態の支持部材180は、さびや腐食に強いアルミニウム等の素材製である。ナット部181に差し込まれた取付けボルト184にて、支持部材180がシリンダブロック75の左側面に着脱可能に締結されている。
The support member 180 is integrally provided with a nut portion 181 into which the mounting bolt 184 is inserted, and a cylindrical portion 182 having an exhaust gas outlet pipe line 183 that allows the EGR cooler 147 and the recirculated exhaust gas pipe 148 to communicate with each other. Is. The support member 180 of the embodiment is made of a material such as aluminum that is resistant to rust and corrosion. A support member 180 is detachably fastened to the left side surface of the cylinder block 75 with a mounting bolt 184 inserted into the nut portion 181.
支持部材180における筒状部182の根元側は、EGRクーラ147における外ケース165のEGRガス出口部169に横側方から連通接続されている。筒状部183の上部側は、再循環排気ガス管148の出口側に連通接続されている。従って、外ケース165のEGRガス出口部169は、筒状部182内のEGRガス排出管路183を介して再循環排気ガス管148に連通している。EGRクーラ147を通過して適宜冷却されたEGRガスは、EGRガス出口部169から筒状部182内のEGRガス排出管路183を経て再循環排気ガス管148に送り込まれ、吸気マニホールド73側に供給される。
The base side of the cylindrical portion 182 in the support member 180 is connected to the EGR gas outlet 169 of the outer case 165 in the EGR cooler 147 from the lateral side. The upper side of the cylindrical portion 183 is connected in communication with the outlet side of the recirculation exhaust gas pipe 148. Therefore, the EGR gas outlet 169 of the outer case 165 communicates with the recirculated exhaust gas pipe 148 via the EGR gas discharge pipe 183 in the cylindrical part 182. The EGR gas appropriately cooled after passing through the EGR cooler 147 is sent from the EGR gas outlet 169 to the recirculation exhaust gas pipe 148 via the EGR gas discharge pipe 183 in the cylindrical part 182, and to the intake manifold 73 side. Supplied.
実施形態では、筒状部182における根元寄りの中途部に、EGRガス出口部169とEGRガス排出管路183とをつなぐ連通穴185が形成されている(図12参照)。すなわち、EGRガス排出管路183は連通穴185の箇所より更に奥側にまで延びている。EGRガス排出管路183における奥側の底部の高さ位置は、連通穴185の底より低くなっている。換言すると、EGRガス排出管路183における奥側の底部と連通穴185の底との間は段差が形成されている。EGRガス排出管路183における奥側の部位は、EGRガス冷却に伴い発生する凝縮水を貯留するための凝縮水受け部186として機能している。このため、EGRガス冷却に伴い発生した凝縮水は、凝縮水受け部186に流れ込み、再循環排気ガス管148に排出され難くなっている。
In the embodiment, a communication hole 185 that connects the EGR gas outlet 169 and the EGR gas discharge pipe 183 is formed in the middle of the cylindrical portion 182 near the root (see FIG. 12). That is, the EGR gas discharge pipe 183 extends further to the far side than the position of the communication hole 185. The height position of the bottom portion on the back side in the EGR gas discharge pipe 183 is lower than the bottom of the communication hole 185. In other words, a step is formed between the bottom portion on the back side in the EGR gas discharge pipe 183 and the bottom of the communication hole 185. The back portion of the EGR gas discharge pipe 183 functions as a condensed water receiving portion 186 for storing condensed water generated along with EGR gas cooling. For this reason, the condensed water generated along with the EGR gas cooling flows into the condensed water receiving portion 186 and is difficult to be discharged to the recirculation exhaust gas pipe 148.
以上の構成から明らかなように、ディーゼルエンジン70の排気マニホールド71側に、EGRクーラ147と排気絞り装置86とが配置されており、冷却水ポンプ159から延びる冷却水流通経路172中に、EGRクーラ147と排気絞り装置86とが直列に接続されているから、EGRクーラ147に供給される冷却水を利用して排気絞り装置86を冷却でき、EGRクーラ147と排気絞り装置86とのヒートバランスを良好な状態に維持できる。また、EGRクーラ147と排気絞り装置86とが近接配置されることになるから、冷却水流通経路172をコンパクトに構成できる。
As is apparent from the above configuration, the EGR cooler 147 and the exhaust throttle device 86 are disposed on the exhaust manifold 71 side of the diesel engine 70, and the EGR cooler is disposed in the cooling water flow path 172 extending from the cooling water pump 159. 147 and the exhaust throttle device 86 are connected in series, the cooling water supplied to the EGR cooler 147 can be used to cool the exhaust throttle device 86, and the heat balance between the EGR cooler 147 and the exhaust throttle device 86 can be improved. It can be maintained in a good state. In addition, since the EGR cooler 147 and the exhaust throttle device 86 are disposed close to each other, the cooling water flow path 172 can be configured compactly.
しかも、EGRクーラ147は、冷却水流通経路172のうち排気絞り装置86より上流側に位置しているから、冷却水ポンプ159から直接送られてくる冷たい冷却水が、排気絞り装置86より先にEGRクーラ147に供給されるから、効率よくEGRガスを冷却でき、ディーゼルエンジン70からのNOx排出量低減効果をより一層向上できる。
Moreover, since the EGR cooler 147 is located upstream of the exhaust throttle device 86 in the cooling water flow path 172, the cold cooling water directly sent from the cooling water pump 159 is ahead of the exhaust throttle device 86. Since it is supplied to the EGR cooler 147, the EGR gas can be efficiently cooled, and the NOx emission reduction effect from the diesel engine 70 can be further improved.
更に、ディーゼルエンジン70の排気マニホールド71側に冷却水ポンプ159が配置されていて、EGRクーラ147及び排気絞り装置86に対する冷却水流通経路172は、ディーゼルエンジン70自体への冷却水系統(水冷ジャケットに向かう経路)とは別系統に構成されているから、ディーゼルエンジン70の冷却に寄与した(温度が上昇した)後の高温になった冷却水がEGRクーラ147及び排気絞り装置86側に供給されることがない。従って、冷却水の温度上昇に伴う不具合を防止でき、特にEGRクーラ147の冷却性能の向上を図れる。
Further, a cooling water pump 159 is disposed on the exhaust manifold 71 side of the diesel engine 70, and a cooling water flow path 172 to the EGR cooler 147 and the exhaust throttle device 86 is connected to a cooling water system (water cooling jacket) to the diesel engine 70 itself. Since it is configured in a separate system from the route to which the air travels, the cooling water that has reached a high temperature after contributing to the cooling of the diesel engine 70 (the temperature has increased) is supplied to the EGR cooler 147 and the exhaust throttle device 86 side. There is nothing. Therefore, the trouble accompanying the temperature rise of the cooling water can be prevented, and in particular, the cooling performance of the EGR cooler 147 can be improved.
その上、冷却水流通経路172がディーゼルエンジン70の排気マニホールド71側に設けられているから、EGRクーラ147及び排気絞り装置86に対する冷却水流通経路172がこれら147,86のある排気マニホールド71側にまとまることになる。従って、冷却水流通経路172の取り回しが容易になり、組み立て作業性の向上に寄与できる。
In addition, since the cooling water flow path 172 is provided on the exhaust manifold 71 side of the diesel engine 70, the cooling water flow path 172 for the EGR cooler 147 and the exhaust throttle device 86 is on the exhaust manifold 71 side where these 147 and 86 are located. I will come together. Accordingly, the cooling water flow path 172 can be easily routed, which can contribute to an improvement in assembly workability.
実施形態では、排気マニホールド71と吸気マニホールド73とをつなぐ再循環排気ガス管148中に、EGRガスを冷却するためのEGRクーラ147が配置されており、EGRクーラ147のガス入口側は、EGRガス取出し管177を介して排気マニホールド71に連通接続されている一方、EGRクーラ147のガス出口側は、ディーゼルエンジン70に取り付けられた支持部材180に連結されており、EGRクーラ147は、EGRガス取出し管177及び支持部材180にて、ディーゼルエンジン70の外面から適宜離して配置されている。このため、ディーゼルエンジン70の発する熱がEGRクーラ147に伝わり難くなる。従って、過熱によるEGRクーラ147の損傷を抑制できる。
In the embodiment, an EGR cooler 147 for cooling the EGR gas is disposed in the recirculation exhaust gas pipe 148 that connects the exhaust manifold 71 and the intake manifold 73, and the EGR gas inlet side of the EGR cooler 147 has an EGR gas. While being connected to the exhaust manifold 71 through an extraction pipe 177, the gas outlet side of the EGR cooler 147 is connected to a support member 180 attached to the diesel engine 70, and the EGR cooler 147 is connected to the EGR gas extraction. The pipe 177 and the support member 180 are appropriately separated from the outer surface of the diesel engine 70. For this reason, the heat generated by the diesel engine 70 is difficult to be transmitted to the EGR cooler 147. Therefore, damage to the EGR cooler 147 due to overheating can be suppressed.
特に実施形態では、ディーゼルエンジン70の前側面視(正面視)において、シリンダブロック75とオルタネータ161との間には隙間SPが空いていて、当該隙間SPの向こうにEGRクーラ147が位置しているから、冷却ファン76からの冷却風が、隙間SPを通って、シリンダブロック75の左側面とEGRクーラ147との間を吹き抜けることになる。このため、シリンダブロック75からEGRクーラ147への熱の伝達がより一層抑制され、冷却風によるEGRクーラ147の冷却効率も高いのである。
In particular, in the embodiment, in the front side view (front view) of the diesel engine 70, a gap SP is provided between the cylinder block 75 and the alternator 161, and the EGR cooler 147 is located beyond the gap SP. Therefore, the cooling air from the cooling fan 76 passes through the gap SP and blows between the left side surface of the cylinder block 75 and the EGR cooler 147. For this reason, the transfer of heat from the cylinder block 75 to the EGR cooler 147 is further suppressed, and the cooling efficiency of the EGR cooler 147 by the cooling air is high.
また、支持部材180には、EGRクーラ147と再循環排気ガス管148とを連通させるEGRガス排出管路183が形成されているから、EGRクーラ147を支持する支持部材180をEGRガスの流通経路の一部として流用でき、EGR装置91関連の部品点数の削減に寄与できる。
The support member 180 is formed with an EGR gas discharge pipe 183 that allows the EGR cooler 147 and the recirculation exhaust gas pipe 148 to communicate with each other. Therefore, the support member 180 that supports the EGR cooler 147 is connected to the EGR gas flow path. This can be used as a part of the EGR device 91 and can contribute to a reduction in the number of parts related to the EGR device 91.
更に、支持部材180のEGRガス排出管路183内には、EGRガス冷却に伴い発生する凝縮水を貯留するための凝縮水受け部186が形成されているから、さびや腐食等の原因になる凝縮水をEGRガス排出管路183内の凝縮水受け部186に溜めることによって、凝縮水が吸気マニホールド73に排出されたりEGRクーラ147に溜まったりするのを抑制でき、これらの部材73,147がさび付いたり腐食したりするのを防止できるのである。また、これに併せて、EGRクーラ147と支持部材180との合わせ面から凝縮水がにじみ出るおそれも回避できる。
Furthermore, a condensate receiving portion 186 for storing condensate generated with the cooling of the EGR gas is formed in the EGR gas discharge pipe 183 of the support member 180, which causes rust, corrosion, and the like. By condensing the condensed water in the condensed water receiving portion 186 in the EGR gas discharge pipe 183, it is possible to suppress the condensed water from being discharged to the intake manifold 73 or the EGR cooler 147, and these members 73, 147 It can prevent rusting and corrosion. In addition to this, it is also possible to avoid the possibility that condensed water oozes from the mating surface between the EGR cooler 147 and the support member 180.
(6).ディーゼルエンジンのバックホウへの搭載構造
図13及び図14を参照して、図4~図12に示すディーゼルエンジン70をバックホウ100に搭載した構造を説明する。図13及び図14に示す如く、バックホウ100は、左右一対の走行クローラ103を有する履帯式の走行装置102と、走行装置102上に設けられた旋回機体104とを備えている。旋回機体104は、旋回用油圧モータ(図示省略)によって、360°の全方位にわたって水平旋回可能に構成されている。走行装置102の後部には、対地作業用の土工板105が昇降動可能に装着されている。旋回機体104の左側部には、操縦部106とディーゼルエンジン70とが搭載されている。旋回機体104の右側部には、掘削作業のためのブーム111及びバケット113を有する作業部110が設けられている。 (6). Diesel Engine Mounting Structure on Backhoe A structure in which thediesel engine 70 shown in FIGS. 4 to 12 is mounted on the backhoe 100 will be described with reference to FIGS. 13 and 14. As shown in FIGS. 13 and 14, the backhoe 100 includes a crawler-type traveling device 102 having a pair of left and right traveling crawlers 103, and a revolving machine body 104 provided on the traveling device 102. The revolving machine body 104 is configured to be horizontally revolved over 360 ° in all directions by a revolving hydraulic motor (not shown). An earthwork plate 105 for ground work is mounted on the rear part of the traveling device 102 so as to be movable up and down. A steering unit 106 and a diesel engine 70 are mounted on the left side of the revolving machine body 104. A working unit 110 having a boom 111 and a bucket 113 for excavation work is provided on the right side of the revolving machine body 104.
図13及び図14を参照して、図4~図12に示すディーゼルエンジン70をバックホウ100に搭載した構造を説明する。図13及び図14に示す如く、バックホウ100は、左右一対の走行クローラ103を有する履帯式の走行装置102と、走行装置102上に設けられた旋回機体104とを備えている。旋回機体104は、旋回用油圧モータ(図示省略)によって、360°の全方位にわたって水平旋回可能に構成されている。走行装置102の後部には、対地作業用の土工板105が昇降動可能に装着されている。旋回機体104の左側部には、操縦部106とディーゼルエンジン70とが搭載されている。旋回機体104の右側部には、掘削作業のためのブーム111及びバケット113を有する作業部110が設けられている。 (6). Diesel Engine Mounting Structure on Backhoe A structure in which the
操縦部106には、オペレータが着座する操縦座席108と、ディーゼルエンジン70等を出力操作する操作手段や、作業部110用の操作手段としてのレバー又はスイッチ等が配置されている。作業部110の構成要素であるブーム111には、ブームシリンダ112とバケットシリンダ114とが配置されている。ブーム111の先端部には、掘削用アタッチメントとしてのバケット113が、掬い込み回動可能に枢着されている。ブームシリンダ112又はバケットシリンダ114を作動させて、バケット113によって土工作業(作溝等の対地作業)を実行するように構成している。
The control unit 106 is provided with a control seat 108 on which an operator is seated, an operation means for operating the diesel engine 70 and the like, and a lever or switch as an operation means for the working unit 110. A boom cylinder 112 and a bucket cylinder 114 are arranged on a boom 111 which is a component of the working unit 110. A bucket 113 as an attachment for excavation is pivotally attached to the tip end portion of the boom 111 so as to be inserted and rotated. The boom cylinder 112 or the bucket cylinder 114 is operated to perform earthwork work (ground work such as grooving) by the bucket 113.
(7).ディーゼルエンジンのフォークリフトカーへの搭載構造
図15及び図16を参照して、図4~図12に示すディーゼルエンジン70をフォークリフトカー120に搭載した構造を説明する。図15及び図16に示す如く、フォークリフトカー120は、左右一対の前輪122及び後輪123を有する走行機体124を備えている。走行機体124には、操縦部125とディーゼルエンジン70とが搭載されている。ディーゼルエンジン70はカバー体133にて上方から覆われており、カバー体133上に操縦部125が設けられることになる。 (7). Structure for Mounting Diesel Engine to Forklift Car A structure for mounting thediesel engine 70 shown in FIGS. 4 to 12 to the forklift car 120 will be described with reference to FIGS. 15 and 16. As shown in FIGS. 15 and 16, the forklift car 120 includes a traveling machine body 124 having a pair of left and right front wheels 122 and a rear wheel 123. The traveling body 124 is equipped with a control unit 125 and a diesel engine 70. The diesel engine 70 is covered from above with a cover body 133, and the control unit 125 is provided on the cover body 133.
図15及び図16を参照して、図4~図12に示すディーゼルエンジン70をフォークリフトカー120に搭載した構造を説明する。図15及び図16に示す如く、フォークリフトカー120は、左右一対の前輪122及び後輪123を有する走行機体124を備えている。走行機体124には、操縦部125とディーゼルエンジン70とが搭載されている。ディーゼルエンジン70はカバー体133にて上方から覆われており、カバー体133上に操縦部125が設けられることになる。 (7). Structure for Mounting Diesel Engine to Forklift Car A structure for mounting the
走行機体124の前部側には、荷役作業のためのフォーク126を有する作業部127が設けられている。走行機体124の後部側には、作業部127との重量バランスを取るためのカウンタウェイト131が設けられている。操縦部125には、オペレータが着座する操縦座席128と、操縦ハンドル129と、ディーゼルエンジン70や作業部127用の操作手段としてのレバー及びスイッチ等が配置されている。
A working part 127 having a fork 126 for cargo handling work is provided on the front side of the traveling machine body 124. A counterweight 131 is provided on the rear side of the traveling machine body 124 to balance the weight with the working unit 127. The control unit 125 is provided with a control seat 128 on which an operator is seated, a control handle 129, levers and switches as operation means for the diesel engine 70 and the working unit 127, and the like.
作業部127の構成要素であるマスト130には、フォーク126が昇降可能に装着されている。フォーク126を昇降動させて、荷物を積んだパレット(図示省略)をフォーク126に上載させ、走行機体124を前後進移動させて、前記パレットの運搬等の荷役作業を実行するように構成している。
A fork 126 is mounted on the mast 130, which is a component of the working unit 127, so as to be movable up and down. The fork 126 is moved up and down, a pallet (not shown) loaded with a load is placed on the fork 126, the traveling machine body 124 is moved forward and backward, and a cargo handling operation such as transportation of the pallet is performed. Yes.
ディーゼルエンジン70は、フライホイールハウジング78が走行機体124の前部側に、冷却ファン76が走行機体124の後部側に位置するように配置されている。すなわち、エンジン出力軸74の向きが作業部127とカウンタウェイト131とが並ぶ前後方向に沿うように、ディーゼルエンジン70が配置されている。走行機体124を構成するエンジン取付けシャーシ81に、機関脚体97を介してディーゼルエンジン70が防振支持されている。フライホイールハウジング78の前面側にはミッションケース132が連結されている。ディーゼルエンジン70からフライホイール79を経由した動力は、ミッションケース132にて適宜変速され、前輪122及び後輪123やフォーク126の油圧駆動源に伝達されることになる。
The diesel engine 70 is arranged such that the flywheel housing 78 is located on the front side of the traveling machine body 124 and the cooling fan 76 is located on the rear side of the traveling machine body 124. That is, the diesel engine 70 is arranged so that the direction of the engine output shaft 74 is along the front-rear direction in which the working unit 127 and the counterweight 131 are arranged. The diesel engine 70 is supported in an anti-vibration manner via an engine leg 97 on an engine mounting chassis 81 constituting the traveling machine body 124. A mission case 132 is connected to the front side of the flywheel housing 78. The power from the diesel engine 70 via the flywheel 79 is appropriately changed in the transmission case 132 and transmitted to the hydraulic drive sources of the front wheels 122, the rear wheels 123, and the forks 126.
カバー体133内であって操縦座席128とこれより後方に配置されたカウンタウェイト131との間には、カウンタウェイト131寄りの高位置に、エンジン冷却用のラジエータ134が冷却ファン76に相対向するように配置されている。冷却ファン76の回転駆動にてラジエータ134に冷却風を吹き付けることにより、ラジエータ134が空冷されることになる。
A radiator 134 for cooling the engine opposes the cooling fan 76 at a high position near the counterweight 131 between the control seat 128 and the counterweight 131 disposed behind the control seat 128 in the cover body 133. Are arranged as follows. By blowing cooling air to the radiator 134 by the rotation drive of the cooling fan 76, the radiator 134 is air-cooled.
なお、本願発明は、前述の実施形態に限定されるものではなく、様々な態様に具体化できる。例えば本願発明に係る作業車両搭載用のエンジン装置は、前述のようなバックホウ100及びフォークリフトカー120に限らず、コンバイン、トラクタ等の農作業機やクレーン車等の特殊作業用車両のような各種作業車両に対して広く適用できる。また、本願発明における各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。
In addition, this invention is not limited to the above-mentioned embodiment, It can be embodied in various aspects. For example, the engine device for mounting a work vehicle according to the present invention is not limited to the backhoe 100 and the forklift car 120 as described above, but various work vehicles such as agricultural machines such as a combine and a tractor, and special work vehicles such as a crane truck. Widely applicable to. Moreover, the structure of each part in this invention is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.
1 DPF(ガス浄化フィルタ)
53 プレート部材
59 支持ブラケット
60 排気圧検出手段としての差圧センサ
61 検出本体
62,63 ハーネス
64,65 感知体
70 ディーゼルエンジン
71 排気マニホールド
73 吸気マニホールド
76 冷却ファン
86 排気絞り装置
91 EGR装置
148 還流管路としての再循環排気ガス管
159 冷却水ポンプ
172 冷却水流通経路
177 EGRガス取出し管
180 支持部材
183 EGRガス排出管路
186 凝縮水受け部 1 DPF (gas purification filter)
53Plate member 59 Support bracket 60 Differential pressure sensor 61 as exhaust pressure detection means Detection main body 62, 63 Harness 64, 65 Sensor 70 Diesel engine 71 Exhaust manifold 73 Intake manifold 76 Cooling fan 86 Exhaust throttle device 91 EGR device 148 Reflux pipe Recirculation exhaust gas pipe 159 as a path Cooling water pump 172 Cooling water flow path 177 EGR gas take-out pipe 180 Support member 183 EGR gas discharge pipe 186 Condensate receiving part
53 プレート部材
59 支持ブラケット
60 排気圧検出手段としての差圧センサ
61 検出本体
62,63 ハーネス
64,65 感知体
70 ディーゼルエンジン
71 排気マニホールド
73 吸気マニホールド
76 冷却ファン
86 排気絞り装置
91 EGR装置
148 還流管路としての再循環排気ガス管
159 冷却水ポンプ
172 冷却水流通経路
177 EGRガス取出し管
180 支持部材
183 EGRガス排出管路
186 凝縮水受け部 1 DPF (gas purification filter)
53
Claims (4)
- 吸気マニホールド及び排気マニホールドを有するディーゼルエンジンと、前記排気マニホールドから排出される排気ガスの一部をEGRガスとして前記吸気マニホールドに還流させるEGR装置とを備えているエンジン装置において、
前記排気マニホールドと前記吸気マニホールドとをつなぐ還流管路中に、EGRガスを冷却するためのEGRクーラが配置され、前記排気マニホールドにEGRガス取出し管を介して前記EGRクーラのガス入口側を連通接続させる一方、前記ディーゼルエンジンに支持部材を介して前記EGRクーラのガス出口側を取付け、前記EGRガス取出し管及び前記支持部材によって、前記ディーゼルエンジンの外面から離間させて前記EGRクーラを支持するように構成したことを特徴とするエンジン装置。 An engine apparatus comprising: a diesel engine having an intake manifold and an exhaust manifold; and an EGR device that recirculates a part of exhaust gas discharged from the exhaust manifold as EGR gas to the intake manifold.
An EGR cooler for cooling EGR gas is disposed in a reflux line connecting the exhaust manifold and the intake manifold, and a gas inlet side of the EGR cooler is connected to the exhaust manifold via an EGR gas take-out pipe. On the other hand, the gas outlet side of the EGR cooler is attached to the diesel engine via a support member, and the EGR cooler is supported by being separated from the outer surface of the diesel engine by the EGR gas take-out pipe and the support member. An engine device characterized by comprising. - 前記EGRクーラと前記還流管路とを連通させるEGRガス排出管路が、前記支持部材に形成されていることを特徴とする請求項1に記載したエンジン装置。 2. The engine apparatus according to claim 1, wherein an EGR gas discharge pipe for communicating the EGR cooler and the reflux pipe is formed in the support member.
- 前記ディーゼルエンジンからの排気ガスを浄化するための排気ガス浄化装置と、前記排気ガス浄化装置の入口側排気圧と出口側排気圧との圧力差を検出する排気圧検出手段とを備えた構造であって、前記ディーゼルエンジンの外面に、支持ブラケットを介して、前記排気圧検出手段の検出本体を取付けたことを特徴とする請求項1に記載したエンジン装置。 An exhaust gas purification device for purifying exhaust gas from the diesel engine, and an exhaust pressure detection means for detecting a pressure difference between the inlet side exhaust pressure and the outlet side exhaust pressure of the exhaust gas purification device. The engine device according to claim 1, wherein a detection body of the exhaust pressure detection means is attached to an outer surface of the diesel engine via a support bracket.
- 前記検出本体から延びるハーネスの先端部に設けた感知体が、前記排気ガス浄化装置に取付けられ、前記排気ガス浄化装置の外面と前記ハーネスとが離間可能に、前記排気ガス浄化装置の外面側に設けたプレート部材に、前記ハーネスの長手中途部を支持するように構成したことを特徴とする請求項3に記載したエンジン装置。 A sensing body provided at a distal end of a harness extending from the detection body is attached to the exhaust gas purification device, and the outer surface of the exhaust gas purification device and the harness can be separated from each other on the outer surface side of the exhaust gas purification device. The engine device according to claim 3, wherein the plate member provided is configured to support a longitudinal midway portion of the harness.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009028133A JP5324952B2 (en) | 2009-02-10 | 2009-02-10 | Engine equipment |
JP2009-028133 | 2009-02-10 | ||
JP2009029416A JP5328023B2 (en) | 2009-02-12 | 2009-02-12 | engine |
JP2009029417A JP5328024B2 (en) | 2009-02-12 | 2009-02-12 | engine |
JP2009-029416 | 2009-02-12 | ||
JP2009-029417 | 2009-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092857A1 true WO2010092857A1 (en) | 2010-08-19 |
Family
ID=42561704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050593 WO2010092857A1 (en) | 2009-02-10 | 2010-01-20 | Engine device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010092857A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104279037A (en) * | 2013-07-08 | 2015-01-14 | 铃木株式会社 | Exhaust device of engine |
EP2610473A4 (en) * | 2010-08-24 | 2015-12-02 | Mitsubishi Heavy Ind Ltd | Engine exhaust-gas purification device |
WO2022196722A1 (en) * | 2021-03-18 | 2022-09-22 | ヤンマーホールディングス株式会社 | Engine device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285917A (en) * | 2001-03-27 | 2002-10-03 | Hino Motors Ltd | Apparatus for mounting egr cooler |
JP2003020931A (en) * | 2001-07-05 | 2003-01-24 | Nissan Diesel Motor Co Ltd | Mounting structure for regenerative diesel particulate filter |
JP2004204828A (en) * | 2002-12-26 | 2004-07-22 | Sakura Shokai:Kk | Apparatus for reducing nox in engine exhaust gas |
WO2008136203A1 (en) * | 2007-05-01 | 2008-11-13 | Hitachi Construction Machinery Co., Ltd. | Construction machine |
-
2010
- 2010-01-20 WO PCT/JP2010/050593 patent/WO2010092857A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285917A (en) * | 2001-03-27 | 2002-10-03 | Hino Motors Ltd | Apparatus for mounting egr cooler |
JP2003020931A (en) * | 2001-07-05 | 2003-01-24 | Nissan Diesel Motor Co Ltd | Mounting structure for regenerative diesel particulate filter |
JP2004204828A (en) * | 2002-12-26 | 2004-07-22 | Sakura Shokai:Kk | Apparatus for reducing nox in engine exhaust gas |
WO2008136203A1 (en) * | 2007-05-01 | 2008-11-13 | Hitachi Construction Machinery Co., Ltd. | Construction machine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2610473A4 (en) * | 2010-08-24 | 2015-12-02 | Mitsubishi Heavy Ind Ltd | Engine exhaust-gas purification device |
CN104279037A (en) * | 2013-07-08 | 2015-01-14 | 铃木株式会社 | Exhaust device of engine |
WO2022196722A1 (en) * | 2021-03-18 | 2022-09-22 | ヤンマーホールディングス株式会社 | Engine device |
JP2022143951A (en) * | 2021-03-18 | 2022-10-03 | ヤンマーホールディングス株式会社 | engine device |
JP7448501B2 (en) | 2021-03-18 | 2024-03-12 | ヤンマーホールディングス株式会社 | engine equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5324952B2 (en) | Engine equipment | |
JP5328023B2 (en) | engine | |
US10487711B2 (en) | Work vehicle | |
JP5653585B2 (en) | Engine equipment | |
US9683348B2 (en) | Engine device | |
US9624814B2 (en) | Engine device | |
JP5243224B2 (en) | Engine device for work vehicle | |
JP2015178813A (en) | Engine device | |
JP5658310B2 (en) | Engine device for work vehicle | |
JP5243223B2 (en) | Engine device for work vehicle | |
WO2010101018A1 (en) | Engine device | |
JP2013189980A (en) | Engine device | |
JP5328024B2 (en) | engine | |
WO2010092857A1 (en) | Engine device | |
JP5782219B2 (en) | Engine equipment | |
JP6411411B2 (en) | Work vehicle | |
WO2010071082A1 (en) | Engine device | |
JP6124693B2 (en) | Engine equipment | |
JP5989155B2 (en) | Engine equipment | |
JP6181631B2 (en) | Engine device for work vehicle | |
JP5328022B2 (en) | Engine device for work vehicle | |
WO2010090069A1 (en) | Egr device and engine device with same | |
JP5636358B2 (en) | Engine equipment | |
JP2014088878A (en) | Engine device loaded in work vehicle | |
JP5450865B2 (en) | Engine device for work vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10741137 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10741137 Country of ref document: EP Kind code of ref document: A1 |