WO2010088816A1 - 一种实现基站间同步的方法及系统 - Google Patents

一种实现基站间同步的方法及系统 Download PDF

Info

Publication number
WO2010088816A1
WO2010088816A1 PCT/CN2009/073335 CN2009073335W WO2010088816A1 WO 2010088816 A1 WO2010088816 A1 WO 2010088816A1 CN 2009073335 W CN2009073335 W CN 2009073335W WO 2010088816 A1 WO2010088816 A1 WO 2010088816A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
synchronization
time information
synchronized
bit difference
Prior art date
Application number
PCT/CN2009/073335
Other languages
English (en)
French (fr)
Inventor
朱清华
黄凌云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010088816A1 publication Critical patent/WO2010088816A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization

Definitions

  • the present invention relates to a synchronization technology in the field of wireless communication, and more particularly to a wireless access network (GSM/EDGN) of a Global System for Mobile Communication (GSM)
  • GSM/EDGN Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • a GERAN system A method and system for realizing synchronization between base stations in a Radio Access Network, called a GERAN system.
  • TDMA Time Division Multiple Access
  • technologies such as dynamic frequency planning of the whole network will be increasingly used, and the above technical requirements system
  • the base stations in the medium can maintain good synchronization. Otherwise, due to the slot deviation between different base stations, interference will occur between them, which in turn affects the communication quality.
  • an existing method is: adding a Global Positioning System (GPS) receiver to each base station, and the GPS receiver obtains a stable global clock signal from the GPS.
  • GPS Global Positioning System
  • Each base station then distributes the global clock signal to the respective covered cells, and then all cells extract the frame clock from the global clock signal as a reference for synchronization according to the same rule, so that all base stations can have the same absolute frame number (Frame Number The barrel is called FN), and the phase can be kept strictly synchronized.
  • GPS Global Positioning System
  • the above methods have the following disadvantages: On the one hand, it is necessary to add a GPS receiver in each base station, and the input cost is high, and many existing base stations may not support the above GPS receiver; on the other hand, in some Where the terrain is special, GPS signals may not be available, so synchronization between all base stations is not possible.
  • SUMMARY OF THE INVENTION In view of the above, the present invention provides a low-cost method and system for implementing inter-base station synchronization to solve at least one of the above problems. According to an aspect of the present invention, a method of implementing synchronization between base stations is provided.
  • a method for implementing inter-base station synchronization includes: The base station controller sends a broadcast control channel BCCH frequency point of the synchronization source base station and a base station identification code of the synchronization source base station to the to-be-synchronized base station having the overlay overlap with the synchronization source base station; the synchronization source base station and the to-be-synchronized base station receive the mobile station in the Channel application message sent on the BCCH frequency, and processing the received channel application message to obtain the reference time information of the synchronization source base station and the information to be adjusted of the base station to be synchronized, and the above reference time information and desire Adjusting time information is sent to the processor; the processor calculates a bit difference between the base stations according to the received reference time information and the time information to be adjusted, and sends the bit difference to the base station to be synchronized; the base station to be synchronized according to the received bit The difference is synchronized.
  • the processor is a base station controller.
  • the processing of the received channel request message includes: demodulating and decoding the access burst carrying the channel request message.
  • the processor calculates the bit difference between the base stations according to the following formula:
  • BitOffset ( FNy x 1250+BOy ) - ( FNx ⁇ 1250+TA )
  • FNx and TA are the reference time information of the synchronization source base station
  • FNx is the current absolute frame number
  • TA is the time advance amount
  • FNy and BOy For the time information to be synchronized of the base station to be synchronized, FNy is the current absolute frame number, and BOy is the phase offset value.
  • the synchronization adjustment operation performed by the to-be-synchronized base station according to the received bit difference comprises: capturing the current absolute frame number FNy at the start time of any absolute frame number FNy, and adjusting to FNy, - int ( BitOffset/1250) , adjust the current bit offset number relative to slot zero to ( -BitOffset ) mod 1250.
  • the bit difference is an average of a plurality of pairs of corresponding reference time information calculated by the processor and a bit difference of the time information to be adjusted.
  • the base station to be synchronized is n base stations; or after the synchronization adjustment operation of the base station to be synchronized, the synchronization operation between the base stations is also performed as the synchronization source base station.
  • a system for achieving inter-base station synchronization includes: a synchronization start message sending module, a channel application message receiving module, a channel request message processing module, a time information transmitting module, a bit difference calculating module, a bit difference transmitting module, and a synchronization adjusting module. .
  • the synchronization start message sending module is configured to send a broadcast control channel (Broadcast Control Channel, BCCH) frequency point of the synchronization source base station and base station identification of the synchronization source base station to the to-be-synchronized base station that has overlapping coverage with the synchronization source base station.
  • BCCH Broadcast Control Channel
  • a channel request message receiving module configured to: the synchronization source base station and the to-be-synchronized base station respectively receive the channel application message sent by the mobile station on the BCCH frequency point;
  • the channel application message processing module is configured to synchronize the source base station and the to-be-synchronized base station to receive The channel application message processing is respectively performed to obtain the reference time information and the time information to be adjusted;
  • the time information sending module is configured to: the synchronization source base station and the to-be-synchronized base station respectively send the reference time information and the to-be-adjusted time information to the bit difference calculation module; a calculation module, configured to calculate a bit difference between the base stations according to the received reference time information and the time information to be adjusted; a bit difference sending module, configured to send the bit difference to the base station to be synchronized; and a synchronization adjustment module, configured to be used
  • the synchronous base station performs a synchronization adjustment operation based on the received bit difference.
  • the bit difference calculation module calculates a bit
  • BitOffset ( FNy x 1250+BOy ) - ( FNx ⁇ 1250+TA )
  • FNx and TA are the reference time information of the synchronization source base station
  • FNx is the current absolute frame number
  • TA is the time advance amount
  • FNy and BOy are the time information to be adjusted of the base station to be synchronized, FNy is the current absolute frame number, and BOy is the phase offset value.
  • the synchronization adjustment module performs the synchronization adjustment operation according to the received bit difference, including: capturing the current absolute frame number FNy at the start time of any absolute frame number FNy, and adjusting to FNy, -int (bitOffset/1250), The current number of bit offsets relative to slot zero is adjusted to ( -BitOffset ) Mod 1250.
  • the synchronization of the entire network base station is realized by means of the upgrading of the existing equipment, and therefore the method is to increase the GPS receiver in each base station to obtain the global clock signal as a common reference for base station synchronization. , can save costs.
  • the present invention is particularly applicable to the following application scenarios:
  • the synchronization source base station SITEx is closely adjacent to the base station SITEy to be synchronized, and there is an intersection on the overlay.
  • the difference in distance between the mobile station and SITEx and SITEy can be ignored, so that the distance between the mobile station and the two base stations can be considered to be the same, thereby improving the measurement accuracy of the present invention.
  • FIG. 1 is a flowchart of a method for implementing inter-base station synchronization according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of SITEy being synchronized with SITEx according to a first embodiment of the present invention
  • a schematic diagram of SITEy in accordance with the second embodiment of the invention is required to be synchronized with SITEx.
  • FIG. 1 is a flowchart of a method for implementing inter-base station synchronization according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of SITEy being synchronized with SITEx according to a first embodiment of the present invention
  • a schematic diagram of SITEy in accordance with the second embodiment of the invention is required to be synchronized with SITEx.
  • FIG. 1 is a flowchart of a method for implementing inter-base station synchronization according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of SITEy being synchronized with SITEx according to a first embodiment of the present invention
  • FIG. 4 is a structural block diagram of a system for implementing inter-base station synchronization according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Before describing the present invention in detail, first define a synchronization source base station and a base station to be synchronized: assuming that one base station SITEx exists, and other neighbor base stations are prepared to synchronize on the basis of SITEx, the base station SITEx is called a synchronization source base station, and the other The base station is called a base station to be synchronized. If other base stations want to use SITEx as the synchronization source base station, the user will notify the base station controller (BSC) of the message, and then the BSC will initiate the synchronization operation.
  • BSC base station controller
  • FIG. 1 is a flowchart of a method for implementing synchronization between base stations according to an embodiment of the present invention. As shown in Figure 1, the method includes the following steps Step S101: Step S101: The BSC sends a SITEX broadcast control channel (BCCH) frequency point and a SITEx base station identification code (BSIC) to the SITEy, where the BCCH frequency point ⁇ 1 is set to Cx;
  • BCCH broadcast control channel
  • BSIC base station identification code
  • SITEy After receiving the frequency point Cx, SITEy switches its own receiver to the frequency point Cx to receive the channel request (Channel Request) sent by the mobile station (Mobile Station, called MS) at the frequency point Cx. Called CHAN REQ) message. While transmitting the frequency point Cx, the BSC also sends the SITEx BSIC to SITEy for the purpose of: ensuring that the MS sends a channel request message to SITEx, SITEy can also correctly demodulate and receive, and other undesired channel application messages will not be demodulated. It is filtered, thus ensuring that SITEy is synchronized with SITEx. In addition, in order to avoid affecting other base stations, at this frequency Cx, SITEy only receives signals in the TDMA frame range without transmitting signals.
  • Channel Request Channel Request
  • MS Mobile Station
  • Called CHAN REQ Called CHAN REQ
  • Step S102 As the synchronization source base station, SITEx is always in the normal working state, and the MS can perform the normal call flow. Therefore, the MS can send the CHAN REQ message to the SITEx at the frequency point Cx.
  • the specific implementation process of the SITEx processing the CHAN REQ message includes: SITEx demodulates and decodes the access burst (Access Burst, the tube is called AB) pulse carrying the message, Obtaining a decoding result, including a timing advance (Timing Advance, a cylinder called TA) and a current absolute frame number FNx, and the above decoding result is the reference time information of SITEx;
  • the specific implementation process of SITEy processing the CHAN REQ message includes: SITEy demodulates and decodes the AB pulse carrying the message, and obtains a decoding result, including a phase offset value BOy and an absolute frame number FNy at this time, the above decoding The result is SITEy's desire to adjust the time information.
  • Step SI 04 The BSC calculates the bit difference between the two base stations according to the received reference time information of SITEx and the time information to be adjusted by SITEy; wherein, the bit between SITEy and SITEx is calculated according to formula (1) difference:
  • BitOffset ( FNy x 1250+BOy ) - ( FNx ⁇ 1250+TA ) ( 1 )
  • the bit difference is not limited to being processed on the BSC, and the reference time information may be sent by the BSC to SITEy to calculate the bit difference by SITEy, or the reference time information and the time to be adjusted may be sent to other processors, by other The processor calculates the bit difference and sends it to SITEy again.
  • Step S106 SITEy performs a synchronization adjustment operation according to the received bit difference.
  • the specific implementation process of performing the synchronization adjustment operation includes: SITEy wins the current absolute frame number FNy at the start time of any absolute frame number FNy, and adjusts For FNy, - int ( BitOffset/1250 ), the number of bit offsets currently relative to slot zero is adjusted to (-BitOffset) mod 1250.
  • BitOffset/1250 BitOffset
  • the method of the present invention can be extended to the base stations to be synchronized one by one, that is, the whole network cell can be realized. Synchronization between.
  • the so-called cell-like splitting method refers to: when the base station SITEy to be synchronized performs the synchronization adjustment operation, it is also used as the synchronization source base station, so that other base stations that overlap with the SITEy overlap with the SITEy, so that the patch is expanded one by one. It can realize the synchronization of all base stations, that is, realize the synchronization between cells in the whole network.
  • the BSC may first store the reference time information and the time to be adjusted obtained by demodulating and decoding the plurality of AB pulses from the SITEx and the SITEy at the frequency point Cx for a period of time, and then according to The random access reference value (RF, Random Reference) included in the decoding result pairs the reference time information of the same AB and the time information to be adjusted, and then calculates the bit difference corresponding to the different AB pulses according to the formula (1), and then The average of these bit differences is sent to SITEy as the final bit difference, so SITEy can use the average of the bit differences to perform the synchronization adjustment operation.
  • RF Random Reference
  • SITEy can set the absolute bit offset to FNy, 1250-BitOffset at any initial frame number FNy, according to the above absolute bit offset number, it can be calculated:
  • the current absolute frame number FNy should be Adjusted to (FNy, 1250-BitOffset) / 1250, which is FNy'- int ( BitOffset / 1250 ), because the absolute frame number is an integer, so you need to round off BitOffset / 1250; should be the current bit relative to the slot zero
  • the offset is adjusted to (FNy' x 1250-BitOffset ) mod 1250 , ? P is ( -BitOffset ) mod 1250.
  • FIG. 2 and FIG. 3 to further explain SITEy and SITEx.
  • SITEx and SITEy receive the CHAN REQ message from the MS at time T1, and then demodulate and decode the AB pulse carrying the message respectively:
  • the calculation results show that SITEy's current absolute number of bits is smaller than SITEx, so it needs to be adjusted to
  • SITEx - like you need to increase the force - BitOffset, which is 450.
  • SITEx and SITEy receive the CHAN REQ message from the MS at time T1, and then demodulate and decode the AB pulse carrying the message respectively:
  • the calculation results show that the current absolute number of bits in SITEy is larger than SITEx, so adjust to
  • a system for realizing synchronization between base stations includes: a synchronization start (SYNC START) message sending module, a CHAN REQ message receiving module, and a CHAN REQ message processing.
  • SYNC START synchronization start
  • the SYNC START message sending module is configured to send the BCCH frequency of the SITEx and the BSIC of the SITEx to the SITEy overlapping with the SITEx presence overlay;
  • the CHAN REQ message receiving module is configured to receive the CHAN REQ message sent by the MS on the BCCH frequency point by SITEx and SITEy respectively;
  • CHAN REQ message processing module for SITEx and SITEy to process the received CHAN REQ message to obtain the reference time information and the time information to be adjusted respectively; the time information sending module, for SITEx and SITEy respectively to set the reference time information and the time to be adjusted The information is sent to the bit difference calculation module; the bit difference calculation module is configured to calculate a bit difference between the base stations according to the received reference time information and the time information to be adjusted; and a bit difference sending module, configured to send the bit difference to the SITEy And a synchronization adjustment module for SITEy to perform synchronous adjustment operations based on the received bit difference.
  • 4 is a structural block diagram of a system for implementing inter-base station synchronization according to an embodiment of the present invention. As shown in FIG. 4, the system includes: a synchronization source base station SITEx 100, which is used as a reference reference for a base station SITEy 300 to be synchronized;
  • the BSC 200 is configured to send, to the to-be-synchronized base station SITEy 300, a control command for synchronizing; and the base station to be synchronized, SITEy 300, is configured to perform a synchronization adjustment operation according to the received control command.
  • the SITEx 100 includes: a first CHAN REQ message receiving unit 101, configured to receive a CHAN REQ message sent by the MS to the SITEx 100 on the BCCH frequency point; and a first CHAN REQ message processing unit 102, configured to receive the CHAN REQ The message is processed to obtain the reference time information of the SITEx 100; and the reference time information transmitting unit 103 is configured to send the reference time information of the SITEx 100 to the BSC 200.
  • the BSC 200 includes: a SYNC START message sending unit 201 for transmitting the SITEx 100 to the SITEy 300
  • the BCCH frequency point and the BSIC of the SITEx configured to receive the reference time information of the SITEx 100 and the information to be adjusted of the SITEy 300; the bit difference calculation unit 203 is configured to adjust according to the received reference time information Time information, calculating a bit difference between two base stations; and a bit difference transmitting unit 204 for transmitting the bit difference to the SITEy 300.
  • SITEy 300 includes:
  • the SYNC START message receiving unit 301 is configured to receive the SYNC START message sent by the BSC 200.
  • the second CHAN REQ message receiving unit 302 is configured to receive the MS direction on the BCCH frequency point.
  • the CHAN REQ message sent by the SITEx 100; the second CHAN REQ message processing unit 303 is configured to process the received CHAN REQ to obtain the adjusted time information of the SITEy 300; the time information sending unit 304 to be adjusted, for using the SITEy 300
  • the information about the adjustment time is reported to the BSC 200;
  • the bit difference receiving unit 305 is configured to receive the bit difference sent by the BSC 200; and the synchronization adjusting unit 306 is configured to perform a synchronization adjustment operation according to the received bit difference.
  • synchronization of the entire network base station is implemented by means of upgrading the existing equipment, so that the GPS receiver is added to each base station to obtain the global clock signal as the base station synchronization.
  • This method of public benchmarking can save costs.
  • the present invention is particularly applicable to the following application scenarios:
  • the synchronization source base station SITEx is closely adjacent to the base station SITEy to be synchronized, and there is an intersection on the overlay.
  • the large difference between the mobile station and SITEx and SITEy can be neglected, so that the large separation between the mobile stations and the two base stations can be considered to be the same, thereby improving the measurement accuracy of the present invention.
  • the present invention can take the average of the bit difference as the final adjustment bit number by measuring the bit difference of the multiple access bursts of the mobile station at a plurality of different locations, which can further improve the measurement accuracy of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种实现基站间同步的方法及系统 技术领域 本发明涉及无线通信领域中的同步技术, 尤其涉及全球移动通信系统 ( Global system for Mobile Communication, 筒称为 GSM ) 的无线接入网络 ( GSM/EDGN Radio Access Network , 筒称为 GERAN )系统中实现基站间同 步的方法及系统。 背景技术 对于时分多址 ( Time Division Multiple Access , 筒称为 TDMA ) 方式的 全球移动通信系统, 为了进一步提高频谱利用率, 将越来越多地采用全网动 态频率规划等技术, 上述技术要求系统中各基站能保持良好的同步, 否则不 同基站之间由于时隙偏差, 相互之间会产生干扰, 进而影响通信质量。 为实现基站间的同步,一个现有的方法是: 在每一个基站中增加全球定 位系统( Global Positioning System, 筒称为 GPS )接收器 , 上述 GPS接收器 从 GPS中获取稳定的全局时钟信号,接着每个基站将该全局时钟信号分发给 各自覆盖的小区, 然后所有小区根据相同的规则从全局时钟信号中提取帧时 钟作为同步的基准, 因而所有基站就可以拥有相同的绝对帧号 (Frame Number, 筒称为 FN ), 而且相位也可以保持严格的同步。 但是上述方法存在以下一些缺点: 一方面, 需要在每个基站中都增加 GPS 接收器, 投入成本较高, 而且很多现网老基站可能也不支持上述 GPS 接收器; 另一方面, 在某些地形特殊的地方, 可能无法获取 GPS信号, 这样 就无法实现所有基站间的同步。 发明内容 有鉴于此 , 本发明提供了一种低成本的实现基站间同步的方法及系统 , 用以解决上述问题至少之一。 才艮据本发明的一个方面, 提供了一种实现基站间同步的方法。 根据本发明的实现基站间同步的方法包括: 基站控制器向与同步源基站存在覆盖交叠的待同步基站发送同步源基 站的广播控制信道 BCCH频点和同步源基站的基站识别码; 同步源基站和待同步基站接收到移动台在所述的 BCCH频点上发送的 信道申请消息, 并对接收到的信道申请消息进行处理, 以分别获取同步源基 站的基准时间信息和待同步基站的欲调整时间信息, 并将上述基准时间信息 和欲调整时间信息发送给处理器; 上述处理器根据接收到的基准时间信息和欲调整时间信息,计算基站之 间的比特差 , 并将比特差发送给待同步基站; 待同步基站根据接收到的比特差进行同步调整操作。 优选地, 上述处理器为基站控制器。 优选地, 上述对接收到的信道申请消息进行处理包括: 对携带信道申请 消息的接入突发脉冲进行解调译码。 优选地, 上述处理器才艮据以下公式计算基站之间的比特差:
BitOffset= ( FNy x 1250+BOy ) - ( FNx χ 1250+TA ) 其中, FNx与 TA为同步源基站的基准时间信息, FNx为目前的绝对帧 号, TA为时间提前量; 其中, FNy与 BOy为待同步基站的欲调整时间信息, FNy为目前的绝 对帧号, BOy为相位偏移值。 优选地, 上述待同步基站根据收到的比特差进行同步调整操作包括: 在 任一绝对帧号 FNy,的起始时刻 ^)夺当前绝对帧号 FNy,调整为 FNy, - int ( BitOffset/1250 ), 将当前相对于时隙零的比特偏移数调整为 ( -BitOffset ) mod 1250。 优选地,上述比特差为上述处理器计算的多对对应的基准时间信息和欲 调整时间信息的比特差的平均值。 优选地 , 上述待同步基站为 n个基站; 或者上述待同步基站同步调整操 作后, 同样作为同步源基站, 进行基站间同步操作。 根据本发明的另一方面, 提供了一种实现基站间同步的系统。 才艮据本发明的实现基站间同步的系统包括: 同步开始消息发送模块、信 道申请消息接收模块、 信道申请消息处理模块、 时间信息发送模块、 比特差 计算模块、 比特差发送模块、 同步调整模块。 其中, 同步开始消息发送模块, 用于向与同步源基站存在覆盖交叠的待 同步基站发送同步源基站的广播控制信道( Broadcast Control Channel , 筒称 为 BCCH ) 频点和同步源基站的基站识别码; 信道申请消息接收模块, 用于同步源基站和待同步基站在 BCCH频点 上分别接收移动台发送的信道申请消息; 信道申请消息处理模块,用于同步源基站和待同步基站对收到的信道申 请消息处理以分别获取基准时间信息和欲调整时间信息; 时间信息发送模块,用于同步源基站和待同步基站分别将基准时间信息 和欲调整时间信息发送给比特差计算模块; 比特差计算模块, 用于根据收到的基准时间信息和欲调整时间信息, 计 算基站之间的比特差; 比特差发送模块, 用于将比特差发送给待同步基站; 及 同步调整模块 , 用于待同步基站根据收到的比特差进行同步调整操作。 优选地, 上述比特差计算模块根据以下公式计算基站之间的比特差:
BitOffset= ( FNy x 1250+BOy ) - ( FNx χ 1250+TA ) 其中, FNx与 TA为同步源基站的基准时间信息, FNx为目前的绝对帧 号, TA为时间提前量;
FNy与 BOy为待同步基站的欲调整时间信息, FNy为目前的绝对帧号, BOy为相位偏移值。 优选地, 上述同步调整模块根据接收到的比特差进行同步调整操作包 括: 在任一绝对帧号 FNy,的起始时刻 夺当前绝对帧号 FNy,调整为 FNy, - int ( BitOffset/1250 ), 将当前相对于时隙零的比特偏移数调整为 ( -BitOffset ) mod 1250。 通过本发明的上述至少一个方案,通过现有设备升级的方式实现了全网 基站的同步, 因此相对于在每个基站中增加 GPS接收器以获取全局时钟信号 作为基站同步的公共基准这种方法, 能节省成本。 本发明特别适用于以下应 用场景: 同步源基站 SITEx与待同步基站 SITEy紧密相邻, 且覆盖上存在交 集。 在上述场景下, 可以忽略移动台到 SITEx和 SITEy之间的距离差别, 这 样就可以认为移动台到这两个基站之间的距离相同, 因而可提高本发明的测 量精度。 此外 , 本发明通过大量不同位置上对移动台的多个接入突发脉冲的 比特差的测量统计, 可以取比特差的平均值作为最终的调整比特数, 这样可 进一步提高本发明的测量精度。 附图说明 图 1为才艮据本发明实施例的实现基站间同步的方法的流程图; 图 2为根据本发明第一具体实施例的 SITEy需与 SITEx进行同步的示 意图; 图 3为根据本发明第二具体实施例的 SITEy需与 SITEx进行同步的示 意图; 图 4为根据本发明实施例的实现基站间同步的系统的结构框图。 具体实施方式 在详细介绍本发明之前, 首先定义一下同步源基站及待同步基站: 假设 存在一个基站 SITEx, 其他相邻基站都准备以 SITEx为基准进行同步, 则基 站 SITEx 称为同步源基站, 其他基站称为待同步基站。 如果其他基站要以 SITEx作为同步源基站, 则用户会通知基站控制器 (BSC ) 这一消息, 然后 由 BSC来启动同步操作。 以下对本发明的具体实现方式作详细说明。 在某个区域范围内 , 假设与 SITEx存在覆盖交叠的基站 SITEy准备与
SITEx进行同步, 则基站进行同步的方法可以参见图 1 , 图 1 为根据本发明 实施例的实现基站间同步的方法的流程图。 如图 1所示, 该方法包括以下步 骤 (步骤 S101-步骤 S106 ): 步骤 S101 : BSC向 SITEy发送 SITEx的广播控制信道( BCCH ) 频点 和 SITEx的基站识别码 ( BSIC ), 此处, BCCH频点^ 1设为 Cx;
SITEy接收到该频点 Cx后, 将自身的接收器切换至该频点 Cx, 以能接 收移动台 (Mobile Station, 筒称为 MS ) 在该频点 Cx 上发送的信道申请 ( Channel Request, 筒称为 CHAN REQ ) 消息。 在发送频点 Cx的同时, BSC也向 SITEy发送 SITEx的 BSIC的目的是: 确保 MS发送给 SITEx的信道申请消息, SITEy也能正确解调、 接收, 其他 非期望的信道申请消息将不能解调而被过滤 , 因而保证了 SITEy是与 SITEx 进行同步。 另外 ,为避免对其他基站产生影响 ,在这个频点 Cx上, SITEy在 TDMA 帧范围内仅接收信号而不发送信号。 步骤 S102: SITEx作为同步源基站, 一直处于正常工作^ 1犬态, 必然有 MS能进行正常的呼叫流程, 因此, 可以有 MS在频点 Cx上向 SITEx发送 CHAN REQ消息。 步骤 S103: SITEx在频点 Cx上接收 CHAN REQ消息 , 并对接收到的 CHAN REQ消息进行处理以获取自身的基准时间信息,之后将该基准时间信 息发送给 BSC; 由上面的分析可知 , 在 SITEx接收 CHAN REQ消息的同时, SITEy也 能在频点 Cx上收到 MS向 SITEx发送的 CHAN REQ消息 ,接着 SITEy对收 到的 CHAN REQ消息进行处理以获取自身的欲调整时间信息, 之后, 将该 欲调整时间信息发送给 BSC; 优选地, SITEx 对 CHAN REQ 消息进行处理的具体实现过程包括: SITEx对携带该消息的接入突发 ( Access Burst, 筒称为 AB ) 脉冲进行解调 译码, 得到译码结果, 包括时间提前量(Timing Advance, 筒称为 TA )及目 前的绝对帧号 FNx, 上述译码结果即为 SITEx的基准时间信息;
SITEy对 CHAN REQ消息进行处理的具体实现过程包括: SITEy对携 带该消息的 AB脉冲进行解调译码, 得到译码结果, 包括相位偏移值 BOy及 此时的绝对帧号 FNy, 上述译码结果即为 SITEy的欲调整时间信息。 步骤 SI 04: BSC根据接收到的 SITEx的基准时间信息及 SITEy的欲调 整时间信息, 计算这两个基站之间的比特差; 其中, 才艮据公式 ( 1 ) 计算 SITEy与 SITEx之间的比特差:
BitOffset= ( FNy x 1250+BOy ) - ( FNx χ 1250+TA ) ( 1 ) 公式 ( 1 ) 中 1250的推算过程如下: 一个 TDMA帧分为 8个时隙, 每 个时隙包含 156.25比特, 因此, 一个 TDMA帧的比特数为 156.25 8=1250。 步骤 S105: BSC将比特差发送给 SITEy。 其中, 比特差并不局限于在 BSC上进行处理, 也可以由 BSC将基准时 间信息发送给 SITEy由 SITEy计算比特差, 也可以将基准时间信息和欲调整 时间信息发送给其他处理器, 由其他处理器计算比特差后将其再发送给 SITEy。 步骤 S106: SITEy根据接收到的比特差进行同步调整操作; 此处, 进行同步调整操作的具体实现过程包括: SITEy在任一绝对帧号 FNy,的起始时刻 ^)夺当前绝对帧号 FNy,调整为 FNy, - int ( BitOffset/1250 ), 当前相对于时隙零的比特偏移数调整为 (-BitOffset ) mod 1250。 以上例子描述的是两个基站间的同步过程, 但明显的是, 待同步基站可 以有 n个, 可采用本发明所述的方法逐片扩展到这些待同步基站后, 即能实 现全网小区间的同步。 如采用类细胞分裂方式逐片扩展。 所谓类细胞分裂方 式是指: 当待同步基站 SITEy进行同步调整操作后 , 同样将其作为同步源基 站, 使与 SITEy存在覆盖交叠的其他基站与 SITEy进行同步操作 , 这样逐片 扩展下去 , 就能实现所有基站的同步, 也即实现全网小区间的同步。 为减小测量误差, 在步骤 S104 中 BSC首先可以存储一段时间内来自 SITEx与 SITEy在频点 Cx下对多个 AB脉冲进行解调译码分别得到的基准 时间信息和欲调整时间信息, 接着根据译码结果中包含的随机接入参考值 ( RF, Random Reference ) 对同一 AB 永冲的基准时间信息和欲调整时间信 息进行配对, 再根据公式( 1 )计算对应不同 AB脉冲的比特差, 然后取这些 比特差的平均值作为最终的比特差发送给 SITEy, 因而 SITEy就可以利用比 特差的平均值来进行同步调整操作。 下面详细介绍一下 SITEy调整绝对帧号及相对比特偏移数的过程: 才艮据公式 ( 1 ), 如果 BitOffset < 0, 则表示 SITEy当前的绝对比特数比 SITEx小, 要调整到与 SITEx—样, SITEy需增加绝对比特数 -BitOffset; 如果 BitOffset > 0, 则表示 SITEy当前的绝对比特数比 SITEx大, 要调 整到与 SITEx—样 , SITEy需减少绝对比特数 BitOffset; 总结上述两种情况, 可得出 SITEy需调整的绝对比特数为 -BitOffset。 据此, SITEy可在任一绝对帧号 FNy,起始时刻将绝对比特偏移数设置 为 FNy, 1250-BitOffset, 根据上述绝对比特偏移数, 可计算得出: 应将当前绝对帧号 FNy,调整为 (FNy, 1250-BitOffset ) /1250, 即为 FNy'- int ( BitOffset/1250 ), 因为绝对帧号为整数, 所以需要对 BitOffset/1250 取整; 应将当前相对于时隙零的比特偏移数调整为 (FNy' x 1250-BitOffset ) mod 1250 , ? P为 ( -BitOffset ) mod 1250。 下面结合图 2、图 3举两个具体实例对 SITEy与 SITEx进行同步作进一 步说明。 例一, 如图 2所示, 個设 SITEx、 SITEy在时刻 T1 同时收到来自 MS 的 CHAN REQ消息, 然后分别对承载该消息的 AB脉冲进行解调译码得到:
FNy=5 , BOy=805 , FNx=6 , TA=5;
BSC计算比特差 BitOffset = ( 5 x 1250+805 ) - ( 6 x 1250+5 ) = -450。 计算结果表明 SITEy当前的绝对比特数比 SITEx小, 因此要调整到与
SITEx—样, 需增力口 -BitOffset, 即 450。 取任一绝对帧号 FNy,为 5 , 在绝对帧号 5的起始时刻 T0, 将当前绝对 帧号 5调整为: 5- int ( -450/1250 ) =5; 将当前相对于时隙零的比特偏移数调整为: (- ( -450 ) ) mod 1250=450。 这样就可以确保 SITEy与 SITEx在空口上是同步的。 例二, 如图 3所示, 個设 SITEx、 SITEy在时刻 T1 同时收到来自 MS 的 CHAN REQ消息, 然后分别对承载该消息的 AB脉冲进行解调译码得到:
FNy=6 , BOy=805 , FNx=5 , TA=5;
BSC计算比特差 BitOffset = ( 6 χ 1250+805 ) - ( 5 x 1250+5 ) = 2050, 计算结果表明 SITEy当前的绝对比特数比 SITEx大, 因此要调整到与
SITEx—样, 需减少 BitOffset, 即 2050。 取任一绝对帧号 FNy,为 6, 在绝对帧号 6的起始时刻 TO, 将当前绝对 帧号 6调整为: 6- int ( 2050/1250 ) =5; 将当前相对于时隙零的比特偏移数调整为: (-2050 ) mod 1250=450。 因此可以确保 SITEy与 SITEx在空口上是同步的。 为实现上述基站间同步的方法, 根据本发明 , 还相应提供了一种实现基 站间同步的系统, 该系统包括: 同步开始 (SYNC START ) 消息发送模块、 CHAN REQ消息接收模块、 CHAN REQ消息处理模块、 时间信息发送模块、 比特差计算模块、 比特差发送模块、 同步调整模块。 其中, 同步开始( SYNC START )消息发送模块, 用于向与 SITEx存在 覆盖交叠的 SITEy发送 SITEx的 BCCH频点和 SITEx的 BSIC;
CHAN REQ消息接收模块, 用于 SITEx和 SITEy在 BCCH频点上分别 接收 MS发送的 CHAN REQ消息;
CHAN REQ消息处理模块,用于 SITEx和 SITEy对收到的 CHAN REQ 消息处理以分别获取基准时间信息和欲调整时间信息; 时间信息发送模块, 用于 SITEx和 SITEy分别将基准时间信息和欲调 整时间信息发送给比特差计算模块; 比特差计算模块, 用于根据收到的基准时间信息和欲调整时间信息, 计 算基站之间的比特差; 及 比特差发送模块, 用于将比特差发送给 SITEy; 及 同步调整模块 , 用于 SITEy根据收到的比特差进行同步调整操作。 图 4为根据本发明实施例的实现基站间同步的系统的结构框图, 如图 4 所示, 该系统包括: 同步源基站 SITEx 100, 用于作为待同步基站 SITEy 300的参照基准;
BSC 200, 用于向待同步基站 SITEy 300发送进行同步的控制命令; 以 及, 待同步基站 SITEy 300 , 用于根据收到的控制命令进行同步调整操作。 其中, SITEx 100包括: 第一 CHAN REQ消息接收单元 101 , 用于在 BCCH频点上接收 MS向 SITEx 100发送的 CHAN REQ消息; 第一 CHAN REQ消息处理单元 102 ,用于对收到的 CHAN REQ消息进 行处理以获取 SITEx 100的基准时间信息; 及 基准时间信息发送单元 103 , 用于将 SITEx 100的基准时间信息发送给 BSC 200。
BSC 200包括: SYNC START消息发送单元 201 , 用于向 SITEy 300发送 SITEx 100的
BCCH频点和 SITEx的 BSIC; 时间信息接收单元 202, 用于接收 SITEx 100的基准时间信息及 SITEy 300的欲调整时间信息; 比特差计算单元 203 , 用于根据收到的基准时间信息和欲调整时间信 息, 计算两个基站之间的比特差; 及 比特差发送单元 204, 用于将比特差发送给 SITEy 300。
SITEy 300包括:
SYNC START 消息接收单元 301 , 用于接收 BSC 200发送的 SYNC START消息; 第二 CHAN REQ消息接收单元 302, 用于在 BCCH频点上接收 MS向 SITEx 100发送的 CHAN REQ消息; 第二 CHAN REQ消息处理单元 303 ,用于对收到的 CHAN REQ进行处 理以获取 SITEy 300的欲调整时间信息; 欲调整时间信息发送单元 304, 用于将 SITEy 300的欲调整时间信息上 报给 BSC 200; 比特差接收单元 305 , 用于接收 BSC 200发送的比特差; 及 同步调整单元 306 , 用于根据接收到的比特差进行同步调整操作。 如上所述, 借助本发明实施例提供的技术方案, 通过现有设备升级的方 式实现了全网基站的同步, 因此相对于在每个基站中增加 GPS接收器以获取 全局时钟信号作为基站同步的公共基准这种方法, 能节省成本。 本发明特别 适用于以下应用场景: 同步源基站 SITEx与待同步基站 SITEy紧密相邻, 且 覆盖上存在交集。 在上述场景下, 可以忽略移动台到 SITEx和 SITEy之间的 巨离差别, 这样就可以认为移动台到这两个基站之间的 巨离相同, 因而可提 高本发明的测量精度。 此外, 本发明通过大量不同位置上对移动台的多个接 入突发脉冲的比特差的测量统计, 可以取比特差的平均值作为最终的调整比 特数 , 这样可进一步提高本发明的测量精度。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。 对于本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本 发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种实现基站间同步的方法, 其特征在于, 所述方法包括:
基站控制器向与同步源基站存在覆盖交叠的待同步基站发送所 述同步源基站的广播控制信道 BCCH 频点和同步源基站的基站识别 码;
所述同步源基站和所述待同步基站接收到移动台在所述 BCCH 频点上发送的信道申请消息, 并对接收到的信道申请消息进行处理, 以分别获取同步源基站的基准时间信息和待同步基站的欲调整时间信 息, 并将所述基准时间信息和欲调整时间信息发送给处理器;
所述处理器根据接收到的基准时间信息和欲调整时间信息, 计算 基站之间的比特差, 并将所述比特差发送给所述待同步基站;
所述待同步基站根据接收到的比特差进行同步调整操作。
2. 才艮据权利要求 1所述的实现基站间同步的方法, 其特征在于, 所述处 理器为基站控制器。
3. 才艮据权利要求 1所述的实现基站间同步的方法, 其特征在于, 所述对 接收到的信道申请消息进行处理包括: 对携带信道申请消息的接入突 发脉冲进行解调译码。
4. 根据权利要求 1或 2所述的实现基站间同步的方法, 其特征在于, 所 述处理器才艮据以下公式计算基站之间的比特差:
BitOffset= ( FNy x 1250+BOy ) - ( FNx χ 1250+TA ) 其中, FNx与 TA为所述同步源基站的所述基准时间信息, FNx 为目前的绝对帧号, TA为时间提前量;
FNy与 BOy为所述待同步基站的所述欲调整时间信息, FNy为 目前的绝对帧号, BOy为相位偏移值。
5. 根据权利要求 4所述的实现基站间同步的方法, 其特征在于 , 所述待 同步基站根据接收到的比特差进行同步调整操作包括: 在任一绝对帧 号 FNy,的起始时刻 ^)夺当前绝对帧号 FNy,调整为 FNy, - int
( BitOffset/1250 ) , 将当前相对于时隙零的比特偏移数调整为 ( -BitOffset ) mod 1250。
6. 根据权利要求 1或 2所述的实现基站间同步的方法, 其特征在于, 所 述比特差为所述处理器计算的多对对应的基准时间信息和欲调整时间 信息的比特差的平均值。
7. 根据权利要求 1所述的实现基站间同步的方法, 其特征在于, 所述待 同步基站为 n个基站; 或者所述待同步基站同步调整操作后, 同样作 为同步源基站 , 进行基站间同步操作。
8. 一种实现基站间同步的系统, 其特征在于, 所述系统包括:
同步开始消息发送模块, 用于向与同步源基站存在覆盖交叠的待 同步基站发送同步源基站的 BCCH频点和同步源基站的基站识别码; 信道申请消息接收模块, 用于同步源基站和待同步基站在 BCCH 频点上分别接收移动台发送的信道申请消息;
信道申请消息处理模块, 用于同步源基站和待同步基站对收到的 信道申请消息处理以分别获取基准时间信息和欲调整时间信息;
时间信息发送模块, 用于同步源基站和待同步基站分别将基准时 间信息和欲调整时间信息发送给比特差计算模块;
比特差计算模块, 用于根据收到的基准时间信息和欲调整时间信 息, 计算基站之间的比特差;
比特差发送模块, 用于将比特差发送给待同步基站; 及 同步调整模块, 用于待同步基站根据收到的比特差进行同步调整 操作。
9. 根据权利要求 8所述的实现基站间同步的系统, 其特征在于, 所述比 特差计算模块根据以下公式计算基站之间的比特差:
BitOffset= ( FNy x 1250+BOy ) - ( FNx χ 1250+TA ) 其中, FNx与 TA为所述同步源基站的所述基准时间信息, FNx 为目前的绝对帧号, TA为时间提前量;
FNy与 BOy为所述待同步基站的所述欲调整时间信息, FNy为 目前的绝对帧号, BOy为相位偏移值。 根据权利要求 9所述的实现基站间同步的系统 , 其特征在于, 所述同 步调整模块根据接收到的比特差进行同步调整操作包括: 在任一绝对 帧号 FNy'的起始时刻 ^)夺当前绝对帧号 FNy'调整为 FNy' - int
( BitOffset/1250 ) , 将当前相对于时隙零的比特偏移数调整为
( -BitOffset ) mod 1250。
PCT/CN2009/073335 2009-02-06 2009-08-18 一种实现基站间同步的方法及系统 WO2010088816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910077988.0 2009-02-06
CN200910077988A CN101801121A (zh) 2009-02-06 2009-02-06 一种实现基站间同步的方法及系统

Publications (1)

Publication Number Publication Date
WO2010088816A1 true WO2010088816A1 (zh) 2010-08-12

Family

ID=42541657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073335 WO2010088816A1 (zh) 2009-02-06 2009-08-18 一种实现基站间同步的方法及系统

Country Status (2)

Country Link
CN (1) CN101801121A (zh)
WO (1) WO2010088816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347221A (zh) * 2020-03-02 2021-09-03 海能达通信股份有限公司 一种数据同步方法、通讯站、集群系统和存储装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250451B (zh) * 2012-12-21 2016-12-21 华为技术有限公司 一种空口同步的方法、设备及系统
CN103889045B (zh) * 2012-12-21 2017-08-04 普天信息技术研究院有限公司 一种上行数据定时同步的方法
CN103797868B (zh) * 2013-07-01 2017-06-06 华为技术有限公司 空口同步的方法、基站、控制装置及无线通信系统
WO2015113286A1 (zh) * 2014-01-29 2015-08-06 华为技术有限公司 时钟同步方法和装置
EP3198955B1 (en) * 2014-09-28 2021-01-27 Telefonaktiebolaget LM Ericsson (publ) Method and network node for facilitating synchronization in network
CN110611942B (zh) * 2019-09-11 2020-09-11 南京中科晶上通信技术有限公司 卫星终端低功耗模式下的小区重选方法、装置和存储介质
CN116056200A (zh) * 2021-10-28 2023-05-02 上海华为技术有限公司 站间时间同步的方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815909A (zh) * 2005-01-31 2006-08-09 株式会社日立国际电气 基站间同步系统及方法
CN101056135A (zh) * 2006-06-15 2007-10-17 华为技术有限公司 无线区域网络系统及调整小区同步的方法
CN101183898A (zh) * 2007-12-27 2008-05-21 中兴通讯股份有限公司 一种实现微微蜂窝基站同步的系统、方法及其装置
KR20080114102A (ko) * 2007-06-26 2008-12-31 삼성전자주식회사 통신 시스템에서 기지국 동기 획득 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815909A (zh) * 2005-01-31 2006-08-09 株式会社日立国际电气 基站间同步系统及方法
CN101056135A (zh) * 2006-06-15 2007-10-17 华为技术有限公司 无线区域网络系统及调整小区同步的方法
KR20080114102A (ko) * 2007-06-26 2008-12-31 삼성전자주식회사 통신 시스템에서 기지국 동기 획득 시스템 및 방법
CN101183898A (zh) * 2007-12-27 2008-05-21 中兴通讯股份有限公司 一种实现微微蜂窝基站同步的系统、方法及其装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347221A (zh) * 2020-03-02 2021-09-03 海能达通信股份有限公司 一种数据同步方法、通讯站、集群系统和存储装置
CN113347221B (zh) * 2020-03-02 2023-05-12 海能达通信股份有限公司 一种数据同步方法、通讯站、集群系统和存储装置

Also Published As

Publication number Publication date
CN101801121A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2010088816A1 (zh) 一种实现基站间同步的方法及系统
CN112312451B (zh) 一种测量同步的方法、网络设备及终端设备
CN111278135B (zh) 信号传输方法和设备
KR101719461B1 (ko) 무선 근거리 통신망 장치에 사용되는 화이트 스페이스
JP5394377B2 (ja) ピアツーピア通信ネットワークの同期
JP5242682B2 (ja) ピアツーピア通信ネットワークの同期
US9801174B2 (en) Method and apparatus for obtaining identifier of small cell in wireless communication system having hierarchical cell structure
JP4384358B2 (ja) 通信システム
KR101893441B1 (ko) 동기화 방법, 동기화 장치, 및 기지국
US20110207453A1 (en) Methods for Coordinating Radio Activities in Different Radio Access Technologies and Apparatuses Utilizing the Same
JP2013527722A (ja) マイクロ基地局間同期の実現方法及びシステム
CN109891957A (zh) Ue补偿的定时提前
JPH07284141A (ja) ハンドオーバ方法
WO2016037571A1 (zh) 一种时钟同步方法及装置
EP2934046B1 (en) Wireless network scanning strategies
JP2005509332A (ja) Wcdmaシステムにおける基地局の同期
CN104969633B (zh) 一种定时同步方法、装置、用户设备和通信系统
JP4506282B2 (ja) 無線通信方法、無線通信装置及びコンピュータ可読形式プログラム
WO2014048227A1 (zh) 扫描方法、控制扫描的方法、用户设备、基站和系统
JP7400829B2 (ja) 方法及び端末デバイス
WO2019137293A1 (zh) 一种基站间的同步方法及装置
KR101490138B1 (ko) 듀얼―비콘 무선 네트워크들에서 동기화 방법 및 시스템
WO2015090056A1 (zh) 同步方法、传输节点、终端、通信系统和计算机存储介质
KR102037410B1 (ko) Rf 중계기 및 그 제어방법
WO2011075887A1 (zh) 基站间同步方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6827/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09839533

Country of ref document: EP

Kind code of ref document: A1