WO2011075887A1 - 基站间同步方法及装置 - Google Patents

基站间同步方法及装置 Download PDF

Info

Publication number
WO2011075887A1
WO2011075887A1 PCT/CN2009/075851 CN2009075851W WO2011075887A1 WO 2011075887 A1 WO2011075887 A1 WO 2011075887A1 CN 2009075851 W CN2009075851 W CN 2009075851W WO 2011075887 A1 WO2011075887 A1 WO 2011075887A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
synchronized
propagation delay
spatial propagation
Prior art date
Application number
PCT/CN2009/075851
Other languages
English (en)
French (fr)
Inventor
朱清华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2009/075851 priority Critical patent/WO2011075887A1/zh
Publication of WO2011075887A1 publication Critical patent/WO2011075887A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a method and apparatus for synchronizing between base stations.
  • BACKGROUND OF THE INVENTION Global System for Mobile communication (referred to as
  • the most basic time unit of the air interface is a Time Division Multiple Access (TDMA) frame with 8 time slots.
  • TDMA Time Division Multiple Access
  • the location of the logical channel in the time slot and the selection of the current frequency in the frequency hopping series are determined by the absolute frame number (FN).
  • FN absolute frame number
  • the FN of each logical cell under the site can be ensured.
  • the synchronous switching mode can be used to reduce the switching delay and improve user experience.
  • the frame clock initialization of the base station is independent of other base stations, which results in a random frame series and technology, and the switching between different base stations can only use the asynchronous switching mode.
  • Dynamic Frequency and Channel Allocation is a very useful technique in the subsequent network optimization process. It dynamically allocates mobile allocation indexes across the network through a series of complex algorithms.
  • the Mobile Allocation Index Offset (MAIO) is used to minimize the interference of the entire network.
  • An important prerequisite for DFCA is to ensure that the entire network is synchronized. Synchronization between different sites is difficult to implement because the master clock must be provided to all Base Transceiver Station (BTS) cells, which may be several kilometers away.
  • BTS Base Transceiver Station
  • a common method is to obtain a stable global clock signal from the Global Position System (GPS). The GPS receiver in each BTS location provides a frame clock signal and then distributes the signal to all BTSs located in this area.
  • GPS Global Position System
  • a primary object of the present invention is to provide a method and apparatus for synchronizing between base stations to at least solve the above problems.
  • an inter-base station synchronization method is provided.
  • the inter-base station synchronization method includes: the base station to be synchronized acquires an actual measurement value, wherein the actual measurement value is a sum of a time difference measured by the terminal and a spatial propagation delay of the terminal to the synchronization source base station; Synchronizing the spatial propagation delay of the base station; the base station to be synchronized determines whether the actual measured value is equal to the spatial propagation delay of the terminal to the base station to be synchronized. If not, the base station to be synchronized according to the time difference measured by the terminal, the terminal to the synchronization source base station The spatial propagation delay and the spatial propagation delay of the terminal to the base station to be synchronized adjust the absolute frame number and phase.
  • the method further includes: receiving, by the terminal, a handover command message sent by the base station controller by using the synchronization source base station, where the handover command message is used to instruct the terminal to report the actual measurement value;
  • the handover completion message reports the actual measurement value to the base station to be synchronized.
  • the handover command message carries a synchronization indication attribute item, and the mobility time difference attribute item instructs the terminal to report the actual measurement;
  • the handover completion message carries the mobile time difference attribute item, and the mobile time difference attribute item carries the actual measurement value.
  • the base station to be synchronized to obtain the spatial propagation delay of the terminal to the to-be-synchronized base station includes: the base station to be synchronized acquires the spatial propagation delay of the terminal to the base station to be synchronized by detecting the handover detection process.
  • the method further includes: the base station controller notifying the base station to be synchronized to start synchronization by using a synchronization start message.
  • the method further includes: The base station replies to the base station controller with a synchronization end message.
  • the method before the acquiring the actual measurement value by the base station to be synchronized, the method further includes: the base station to be synchronized acquires the current absolute time from the base station controller, and calculates the current absolute frame number by using an absolute time according to a predetermined algorithm.
  • the base station to be synchronized adjusts the absolute frame number according to the time difference measured by the terminal, the spatial propagation delay of the terminal to the synchronization source base station, and the spatial propagation delay of the terminal to the base station to be synchronized, including: the base station to be synchronized is at any absolute frame number FNy' The starting moment adjusts the current absolute frame number FNy to: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), where OTD is the time difference measured by the terminal, and t0 is the space of the terminal to the synchronization source base station. Propagation delay, tl is the spatial propagation delay of the terminal to the base station to be synchronized.
  • the base station to be synchronized adjusts the phase according to the time difference measured by the terminal, the spatial propagation delay of the terminal to the synchronization source base station, and the spatial propagation delay of the terminal to the base station to be synchronized, including: the base station to be synchronized will be currently 1 with respect to the time slot zero.
  • the /2-bit offset is adjusted to ((OTD + tO ) - t1 ) mod 2500, where OTD is the time difference measured by the terminal, tO is the spatial propagation delay of the terminal to the synchronization source base station, and t1 is the terminal to the base station to be synchronized.
  • Space propagation delay is adjusted to ((OTD + tO ) - t1 ) mod 2500, where OTD is the time difference measured by the terminal, tO is the spatial propagation delay of the terminal to the synchronization source base station, and t1 is the terminal to the base station to be synchronized.
  • an inter-base station synchronization apparatus includes: a first acquisition module, configured to acquire an actual measurement value, where the actual measurement value is a sum of a time difference measured by the terminal and a spatial propagation delay of the terminal to the synchronization source base station; a module, configured to obtain a spatial propagation delay of the terminal to the base station to be synchronized; a determining module, configured to determine whether the actual measured value is equal to a spatial propagation delay of the terminal to the base station to be synchronized; and an adjustment module, configured to determine a result of the module
  • the absolute frame number and phase are adjusted according to the time difference measured by the terminal, the spatial propagation delay of the terminal to the synchronization source base station, and the spatial propagation delay of the terminal to the base station to be synchronized.
  • the first obtaining module is further configured to obtain an actual measurement value by using a handover completion message on the terminal, where the handover completion message carries a mobile time difference attribute item, and the mobile time difference attribute item carries an actual measurement value.
  • the second obtaining module is further configured to acquire a spatial propagation delay of the terminal to the base station to be synchronized by detecting the handover detection process.
  • the adjustment module comprises: a first adjustment submodule, configured to adjust the current absolute frame number FNy at the start time of any absolute frame number FNy, to: FNy' + int ( ( OTD + t0 ) - tll ) / 2500), wherein the OTD is a time difference measured by the terminal, t0 is a spatial propagation delay of the terminal to the synchronization source base station, t1 is a spatial propagation delay of the terminal to the base station to be synchronized; and a second adjustment submodule is configured to compare the current relative The 1/2 bit offset of the slot zero is adjusted to ((OTD + t0 ) - t1 ) mod 2500, where OTD is the time difference measured by the terminal, and tO is the spatial propagation delay of the terminal to the synchronization source base station, tl Terminal The spatial propagation delay to the base station to be synchronized.
  • a first adjustment submodule configured to adjust the current absolute frame number FNy at the start time of any
  • the present invention determines whether the mobile device violates the mobility restriction requirement by using the location information of the mobile device and the comparison result of the mobility restriction information of the mobile device, and performs mobility restriction processing according to the determination result, thereby solving the introduction of the new GPS device.
  • higher input costs many existing network may not support the original base station, as well as some special local terrain, GPS signals may not get the question, without additional hardware, to achieve a full grid base stations by software method Synchronization on the air interface (including FN synchronization and phase synchronization) and cost savings.
  • FIG. 1 is a flowchart of a method for synchronizing between base stations according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a description of a handover relationship according to an embodiment of the present invention
  • FIG. 3 is a detailed diagram of a method for synchronizing between base stations according to an embodiment of the present invention.
  • 4 is a schematic diagram of a method for synchronizing between base stations according to an example of the present invention
  • FIG. 5 is a block diagram showing the structure of an inter-base station synchronization apparatus according to an embodiment of the present invention.
  • the object of the present invention is to realize synchronization (including FN synchronization and phase synchronization) on an air interface between base stations of a whole network by a software method without adding hardware devices.
  • an inter-base station synchronization method is provided. 1 is a flowchart of a method for synchronizing between base stations according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps: step S102 to step 4: S102: Step S102, the base station to be synchronized acquires actual measurement The value, where the actual measured value is the sum of the time difference measured by the terminal and the spatial propagation delay of the terminal to the synchronization source base station.
  • the base station to be synchronized acquires the current absolute time from the base station controller in advance, And using the absolute time to calculate the current absolute frame number according to the pre-defined algorithm; the terminal receives the handover command message sent by the base station controller by the synchronization source base station, where the handover command message can be used to instruct the terminal to report the actual measurement value;
  • the completion message reports the actual measured value to the base station to be synchronized.
  • the handover command message carries the synchronization indication attribute item, and the mobile time difference attribute item indicates the actual measurement on the terminal; the handover completion message carries the mobile time difference attribute item, and the mobile time difference attribute item carries the actual measurement value.
  • Step S104 The base station to be synchronized acquires a spatial propagation delay of the terminal to the base station to be synchronized. Specifically, the to-be-synchronized base station acquires a spatial propagation delay of the terminal to the base station to be synchronized by detecting a handover detection process. Step S 106, the base station is determined to be synchronized with the actually measured value of the space to be synchronized to the base terminal of the propagation delay is equal, if not equal, then the base station to be synchronized to the time difference measurement according to the terminal, the terminal to a source base station synchronization spatial propagation delay The absolute frame number and phase are adjusted by the spatial propagation delay of the terminal to the base station to be synchronized.
  • the base station to be synchronized returns a synchronization end message to the base station controller.
  • the base station to be synchronized adjusts the current absolute frame number FNy to: FNy' + int ( ( OTD + t0 ) - t1 ) /2500 ) at the start time of any absolute frame number FNy, and the base station to be synchronized will be current relative
  • the 1/2 bit offset of the slot zero is adjusted to (( OTD + t0 ) - t1 ) mod 2500, where OTD is the time difference measured by the terminal, and to is the spatial propagation delay of the terminal to the synchronization source base station, tl
  • the space propagation delay for the terminal to the base station to be synchronized is adjusted to (( OTD + t0 ) - t1 ) mod 2500, where OTD is the time difference measured by the terminal, and to is the spatial propagation delay of the terminal to the synchronization source base station, tl
  • FIG. 2 is a schematic diagram of a handover relationship according to an embodiment of the present invention. As shown in FIG. 2, the handover process in the embodiment of the present invention has the following relationship:
  • the parameters represent the following meanings: t0, tl: indicates the spatial propagation delay of the terminal to the two base stations.
  • RTD Real Time Difference
  • OTD Observed Time Difference
  • FIG. 3 is a detailed flowchart of the inter-base station synchronization method according to the embodiment of the present invention. As shown in FIG. 3, the specific process of completing inter-base station synchronization is as follows: A synchronization source base station, the branch is set to SITEx, and other neighboring base stations are prepared to
  • FN pre-synchronization step S302
  • FN start-up + phase synchronization step S304 to step S3012
  • FN pre-synchronization step S302 when the system is ready to synchronize the SITEy station with the SITEx station as a reference BSC first needs to complete SITEy's initial FN settings.
  • the current absolute time T is obtained from the BSC, and the current FN frame number (called initial FN) is calculated from T according to a predetermined algorithm.
  • initial FN the current FN frame number
  • a normal call can be made. Among them, before starting the tune, they are called the initial FN. This initial FN is going to increase over time. That is, the title is static and the specific value is dynamic.
  • Step S304 when a terminal needs to complete the handover from SITEx to SITEy, the BSC is
  • Step S306 the terminal will perform 4 ⁇ Mobile Time Difference IE on the Handover Comlpete message on SITEy, including (ODD + t0) actual measured value.
  • Step S308, SITEy calculates a timing advance (Tinging Advanced, or TA), that is, tl, by detecting a Handover Detect process.
  • Tinging Advanced, or TA timing advance
  • Step S310 when it is necessary to start SITEy to synchronize with SITEx, the BSC sends a synchronization start (SYNC START) message to inform SITEy that synchronization can be started in step S312, and SITEy starts synchronization calculation after receiving the SYNC START command, SITEy comparison (ODD + t0) and The difference of tl, if ( OTD +t0 ) is not equal to tl, SITEy adjusts the current absolute frame number FNy to FNy' + int ( ( OTD + t0 ) -tl ) at the beginning of any absolute frame number FNy ' /2500), adjust the current 1/2 bit offset with respect to slot zero to (( OTD + t0 ) - t1 ) mod 2500, SITEy replies to the BSC with a synchronization end ( SYNC END ) message, and finally completes with SITEx Synchronize.
  • SYNC START synchronization start
  • GSM EDGE GSM EDGE radio access network
  • GSM Global System for Mobile communications
  • EDGE is an enhanced data rate GSM evolution technology Enhanced. Data Rate for GSM Evolution
  • the following is a specific example to further explain SITEy and SITEx.
  • FIG. 4 is a schematic diagram of a method for synchronizing between base stations according to an example of the present invention.
  • Calculate the FN adjustment amount to int ( ( OTD +tO ) -tl ) /2500 ) 1 , that is, the current FN should be adjusted to 1.
  • FIG. 5 is a structural block diagram of an inter-base station synchronization apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes: a first acquisition module 2, a second acquisition module 4, a determination module 6, and an adjustment module 8, The above structure is described.
  • the first obtaining module 2 is configured to obtain an actual measured value, where the actual measured value is a sum of a time difference measured by the terminal and a spatial propagation delay of the terminal to the synchronization source base station; and a second acquiring module 4 is configured to acquire the terminal to wait for Synchronizing the spatial propagation delay of the base station;
  • the determining module 6 is connected to the first obtaining module 2 and the second obtaining module 4, and is configured to determine whether the actual measured value is equal to the spatial propagation delay of the terminal to the base station to be synchronized;
  • And connected to the judging module 6 configured to: when the judgment result of the judging module 6 is unequal, the time difference measured by the terminal, the spatial propagation delay of the terminal to the synchronization source base station, and the spatial propagation of the terminal to the base station to be synchronized
  • the delay adjusts the absolute frame number and phase.
  • the first obtaining module 2 obtains the actual measurement values by switching complete message on the terminal ⁇ ⁇ Burgundy, in particular, the terminal receives a base station controller via the source base station synchronization delivered by the handover command message, wherein the handover command message instructs the terminal
  • the actual measurement value is reported by the terminal; the terminal reports the actual measurement value to the first acquisition module 2 of the base station to be synchronized through the handover completion message.
  • Carries a synchronization instruction attribute item Specifically, the handover command message, and the traveling time difference between the attribute item indicating the terminal ⁇ ⁇ gen actually measured; Handover Complete message carries the moving time difference attribute item, and the traveling time difference between the property item carries the actual measurement value.
  • the second acquiring module 4 of the base station to be synchronized acquires the spatial propagation delay of the terminal to the base station to be synchronized by detecting the handover detection process.
  • the adjustment module 8 in the base station to be synchronized includes: a first adjustment submodule, configured to adjust the current absolute frame number FNy ' at the start time of any absolute frame number FNy' to: FNy' + int ( ( OTD + T0 ) -tl ) /2500 ); a second adjustment submodule for biasing the current 1/2 bit relative to the slot zero
  • the shift number is adjusted to ( ( OTD + t0 ) - t1 ) mod 2500, where OTD is the time difference measured by the terminal, to is the spatial propagation delay of the terminal to the synchronization source base station, and tl is the space propagation of the terminal to the base station to be synchronized.
  • the embodiment of the present invention realizes synchronization of the entire network base station only by means of the upgrade of the existing device software, and therefore, the GPS receiver is added to each base station to obtain the global clock signal as the base station synchronization.
  • This method of public benchmarking can save costs.
  • Another advantage of the present invention is that it is not affected by the geographical location of the terminal, as long as the terminal initiates the handover, which has no impact on the user service, and the accuracy error is within 1/2 bit. It should be noted that the embodiment of the present invention is applicable to a scenario where the absolute time error of two base stations is less than 3.8 s, and SITEx is earlier than SITEy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基站间同步方法及装置 技术领域 本发明涉及移动通讯领域, 具体地, 涉及一种基站间同步方法及装置。 背景技术 全求移动通信系统 ( Global System for Mobile communication, 简称为
GSM ) 空中接口最基本的时间单元就是一个时分多址接入 (Time Division Multiple Access , 简称为 TDMA ) 帧中有 8个时隙。 时隙中逻辑信道的位置 和跳频系列中当前频率的选择由绝对帧号 (Frame Number, 简称为 FN ) 决 定。 在同站点下, 因为共享一个时钟源, 能够确保站点下各逻辑小区的 FN 一致。 终端在这些小区间故切换时就可以釆用同步切换方式, 以减少切换时 延, 提高用户感受度。 传统的不同步网络, 基站的帧时钟初始化与其他基站 独立, 这样导致了随机的帧系列和技术, 不同基站间的切换也只能釆用异步 切换方式。 在后续的网络优化过程中, 动态频率和信道分配 ( Dynamic Frequency and Channel Allocation , 简称为 DFC A )是一种非常有用的技术, 它通过一系 列复杂的算法在全网范围内动态分配移动分配索引偏移 ( Mobile Allocation Index Offset, 简称为 MAIO ), 而达到全网的千扰最小化目的。 DFCA的一个 重要前提是要保证全网空口同步。 不同的站点间同步实现起来比较困难, 因为必须向所有基站控制器 ( Base Transceiver Station, 简称为 BTS ) 小区提供主控时钟, 而这些 BTS 可能相距几公里远。 一个普通的方法就是从全球定位系统 (Global Position System, 简称为 GPS )获取稳定的全局时钟信号。 每一个 BTS位置中的 GPS 接收器提供帧时钟信号, 然后将信号分发给位于在这个区域的所有 BTS。 所 有小区根据相同的规则从 GPS时钟信号中提取帧时钟,这样所有同步基站就 有相同的 FN了, 而且相位也可以保持严格的同步。 但是 GPS获取时钟的方案存在一些限制条件,一方面需要引入新的 GPS 设备, 投入成本较高, 很多现网原有基站可能也不支持, 另一方面, 在某些 地形特殊的地方, GPS信号也可能无法获取。 发明内容 本发明的主要目的在于提供一种基站间同步方法及装置,以至少解决上 述问题。 为了实现上述目的, 才艮据本发明的一个方面, 提供了一种基站间同步方 法。 根据本发明的基站间同步方法包括:待同步基站获取实际测量值,其中, 实际测量值为终端测量到的时间差和终端到同步源基站的空间传播时延之 和; 待同步基站获取终端到待同步基站的空间传播时延; 待同步基站判断实 际测量值与终端到待同步基站的空间传播时延是否相等, 如果不相等, 则待 同步基站根据终端测量到的时间差、 终端到同步源基站的空间传播时延和终 端到待同步基站的空间传播时延调整绝对帧号和相位。 优选地, 在待同步基站获取实际测量值之前, 上述方法还包括: 终端接 收基站控制器通过同步源基站下发的切换命令消息, 其中, 切换命令消息用 于指示终端上报实际测量值; 终端通过切换完成消息向待同步基站上报实际 测量值。 优选地, 切换命令消息中携带有同步指示属性项, 且移动时间差属性项 指示终端上报实际测量; 切换完成消息携带有移动时间差属性项, 且移动时 间差属性项携带有实际测量值。 优选地, 待同步基站获取终端到待同步基站的空间传播时延包括: 待同 步基站通过检测切换探测过程获取终端到待同步基站的空间传播时延。 优选地,在待同步基站判断实际测量值与终端到待同步基站的空间传播 时延是否相等之前, 上述方法还包括: 基站控制器通过同步开始消息通知待 同步基站开始同步。 优选地, 在待同步基站根据终端测量到的时间差、 终端到同步源基站的 空间传播时延和终端到待同步基站的空间传播时延调整绝对帧号和相位之 后, 上述方法还包括: 待同步基站向基站控制器回复同步结束消息。 优选地, 在待同步基站获取实际测量值之前, 上述方法还包括: 待同步 基站从基站控制器获取当前的绝对时间, 并按照预先规定的算法使用绝对时 间计算出当前的绝对帧号。 优选地, 待同步基站根据终端测量到的时间差、 终端到同步源基站的空 间传播时延和终端到待同步基站的空间传播时延调整绝对帧号包括: 待同步 基站在任一绝对帧号 FNy'的起始时刻将当前绝对帧号 FNy,调整为: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), 其中, OTD为终端测量到的时间差, t0为终端 到同步源基站的空间传播时延, tl为终端到待同步基站的空间传播时延。 优选地, 待同步基站根据终端测量到的时间差、 终端到同步源基站的空 间传播时延和终端到待同步基站的空间传播时延调整相位包括: 待同步基站 将当前相对于时隙零的 1/2比特偏移数调整为 ((OTD +tO ) -tl ) mod 2500, 其中, OTD为终端测量到的时间差, tO为终端到同步源基站的空间传播时延, tl为终端到待同步基站的空间传播时延。 为了实现上述目的, 根据本发明的另一方面, 提供了一种基站间同步装 置。 根据本发明的基站间同步装置包括: 第一获取模块, 用于获取实际测量 值, 其中, 实际测量值为终端测量到的时间差和终端到同步源基站的空间传 播时延之和; 第二获取模块, 用于获取终端到待同步基站的空间传播时延; 判断模块, 用于判断实际测量值与终端到待同步基站的空间传播时延是否相 等; 调整模块, 用于在判断模块的判断结果为不相等的情况下, 根据终端测 量到的时间差、 终端到同步源基站的空间传播时延和终端到待同步基站的空 间传播时延调整绝对帧号和相位。 优选地,第一获取模块还用于通过终端上 4艮的切换完成消息获取实际测 量值, 其中, 切换完成消息携带有移动时间差属性项, 且移动时间差属性项 携带有实际测量值。 优选地,第二获取模块还用于通过检测切换探测过程获取终端到待同步 基站的空间传播时延。 优选地, 调整模块包括: 第一调整子模块, 用于在任一绝对帧号 FNy, 的起始时刻将当前绝对帧号 FNy,调整为: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), 其中, OTD为终端测量到的时间差, tO为终端到同步源基站的空间传播时延, tl为终端到待同步基站的空间传播时延; 第二调整子模块, 用于将当前相对 于时隙零的 1/2比特偏移数调整为 ((OTD +t0 ) -tl ) mod 2500, 其中, OTD 为终端测量到的时间差, tO为终端到同步源基站的空间传播时延, tl为终端 到待同步基站的空间传播时延。 通过本发明,使用移动设备的位置信息和对移动设备的移动性限制信息 的比较结果判断移动设备是否违反移动性限制要求, 并根据判断结果进行移 动性限制处理, 解决了引入新的 GPS设备, 投入成本较高, 很多现网原有基 站可能也不支持, 以及在某些地形特殊的地方, GPS信号也可能无法获取的 问题, 在不增加硬件设备情况下, 通过软件方法实现了全网基站间空口上的 同步 (包括 FN同步和相位同步), 并且节省了成本。 附图说明 图 1是根据本发明实施例的基站间同步方法的流程图; 图 2是根据本发明实施例的切换关系说明的示意图; 图 3是根据本发明实施例的基站间同步方法的详细流程图; 图 4是根据本发明实例的基站间同步方法的示意图; 图 5是根据本发明实施例的基站间同步装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 方法实施例 本发明的目的就在于不增加硬件设备情况下,通过软件方法实现全网基 站间空口上的同步 (包括 FN同步和相位同步)。 根据本发明的实施例, 提供了一种基站间同步方法。 图 1是根据本发明 实施例的基站间同步方法的流程图,如图 1所示,该方法包括如下的步 4聚 S 102 至步 4聚 S 106: 步骤 S 102, 待同步基站获取实际测量值, 其中, 实际测量值为终端测 量到的时间差和终端到同步源基站的空间传播时延之和。 在步骤 S 102之前,待同步基站预先从基站控制器获取当前的绝对时间, 并按照预先规定的算法使用绝对时间计算出当前的绝对帧号; 终端接收基站 控制器通过同步源基站下发的切换命令消息, 其中, 切换命令消息可用于指 示终端上报实际测量值; 终端通过切换完成消息向待同步基站上报实际测量 值。 具体地, 切换命令消息中携带有同步指示属性项, 且移动时间差属性项 指示终端上 ·ί艮实际测量; 切换完成消息携带有移动时间差属性项, 且移动时 间差属性项携带有实际测量值。 步骤 S 104, 待同步基站获取终端到待同步基站的空间传播时延。 具体地,待同步基站通过检测切换探测过程获取终端到待同步基站的空 间传播时延。 步骤 S 106, 待同步基站判断实际测量值与终端到待同步基站的空间传 播时延是否相等, 如果不相等, 则待同步基站根据终端测量到的时间差、 终 端到同步源基站的空间传播时延和终端到待同步基站的空间传播时延调整绝 对帧号和相位。 然后, 待同步基站向基站控制器回复同步结束消息。 具体地, 待同步基站在任一绝对帧号 FNy,的起始时刻将当前绝对帧号 FNy,调整为: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), 待同步基站将当前相对于 时隙零的 1/2比特偏移数调整为 (( OTD +t0 ) -tl ) mod 2500, 其中, OTD为 终端测量到的时间差, to为终端到同步源基站的空间传播时延, tl为终端到 待同步基站的空间传播时延。 在步骤 S 106之前, 基站控制器通过同步开始消息通知待同步基站开始 同步。 下面对该实施例的具体实现过程进行详细描述。 图 2是才艮据本发明实施例的切换关系说明的示意图, 如图 2所示, 本发 明实施例的切换过程中有如下关系:
OTD = RTD + ( tl- t0 ), 即, RTD = ( OTD + t0 ) - tl。 其中, 各参数分别代表如下含义: t0、 tl : 表示终端到两基站的空间传播时延
RTD ( Real Time Difference ): 表示两基站间的时间差, 如果两站同步, 理论上应该 RTD=0
OTD ( Observed Time Difference ): 终端观测测量到的时间差, 这个值 必须在切换命令 ( Handover Command ) 消息中的同步指示属性项 ( Synchronization Indication IE ) 有效, 并且 ROT=l时 MS才上艮 ROT ( Report Observed Time Difference ): OTD上 4艮指示位
0: Mobile Time Difference IE不在 Handover Comlpete消息中上艮
1: Mobile Time Difference IE必须在 Handover Comlpete消息中上艮 图 3是根据本发明实施例的基站间同步方法的详细流程图,如图 3所示, 完成基站间同步的具体流程如下: 首先需要定义一个同步源基站, 支设为 SITEx, 其他相邻基站都准备以
SITEx为基准进行同步。 某个区域范围内, 支设站点 SITEy, 与 SITEx存在 覆盖交叠, 并且需要与 SITEx同步。 整个过程可分为两部分: FN预同步 (步骤 S302 )、 FN 啟调 +相位同步 (步骤 S304至步骤 S3012 ) ( 1 ) FN预同步 步骤 S302 , 当系统准备以 SITEx站为基准同步 SITEy站时, BSC首先 需要完成 SITEy的初始 FN设置。 SITEy上电后, 从 BSC获取当前的绝对时 间 T, 并按照事先规定算法从 T计算出当前 FN帧号 (称为初始 FN ), 系统 初始化完成后可进行正常的呼叫。 其中, 没啟调之前, 都称为初始 FN。 这 个初始 FN是要随着时间的进展往上增加的。 也就是说, 称谓是静态的, 具 体值是动态。
( 2 ) FN 啟调 +相位同步 在正常运行过程中, 如果存在某个终端需要完成从 SITEx到 SITEy的 切换, SITEy则可以启动第二阶段的同步流程。 步骤 S304, 当某个终端需要完成从 SITEx到 SITEy的切换时, BSC在
SITEx 下发 Handover Command 消息给终端时带上同步指示属性项 ( Synchronization Indication IE ), 并且置 ROT=l , 通知终端上 4艮移动时间差 属性项 ( Mobile Time Difference IE )信息。 步骤 S306, 终端将在 SITEy上的切换完成 ( Handover Comlpete ) 消息 上 4艮 Mobile Time Difference IE, 其中包括 ( OTD +t0 ) 实际测量值。 步骤 S308, SITEy通过检测切换探测 ( Handover Detect )过程计算出终 端切换当时的时间提前量 ( Timing Advanced, 简称为 TA ), 即 tl。 步骤 S310, 当需要启动 SITEy向 SITEx 同步时, BSC发送同步开始 ( SYNC START ) 消息通知 SITEy可以开始进行同步 步骤 S312, SITEy收到 SYNC START指令后开始进行同步计算, SITEy 比较 ( OTD +t0 ) 与 tl的差值, 如果 ( OTD +t0 ) 与 tl不相等, SITEy在任 一绝对帧号 FNy'的起始时刻将当前绝对帧号 FNy,调整为 FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), 将当前相对于时隙零的 1/2比特偏移数调整为(( OTD +t0 ) -tl ) mod 2500, SITEy向 BSC回复同步结束( SYNC END )消息, 最终完成 与 SITEx的同步。 其中, 公式中 2500的推算过程如下: 一个 TDMA帧分为 8个时隙, 每 个时隙包含 156.25比特, 因此, 一个 TDMA帧的比特数为 156.25 χ 8=1250, 1/2比特数为 2500。 通过该实施例, 提供了一种 GSM EDGE无线接入网( GSM EDGE radio access network, 简称为 GERAN, 其中, GSM为全球移动通信系统 Global System for Mobile communications , EDGE为增强型数据速率 GSM演进技术 Enhanced Data Rate for GSM Evolution )移动通讯系统中各基站间时钟进行软 同步的方法, 不用新增硬件设备, 只通过软件方法即可达到同步目的。 下面举个具体实例对 SITEy与 SITEx进行同步作进一步说明。 图 4是^ f艮据本发明实例的基站间同步方法的示意图, 如图 4所示, 设 SITEx在 FN x=l , offset x=50时, SITEy的 FNy=0, of sety=0, 对 SITEx来 说, 即, RTD= ( FNx-FNy ) *2500+ ( offsetx- offsety ) =2550。 对于某个 MS , 假设其离两基站距离分别为 t0=20, tl=5。 从图上可以看出: MS在) 到 SITEx BCCH消息后 2535半比特时间, 方可) 到 SITEy的 BCCH消息, 即 OTD=2535 ,此时 MS ( OTD+t0 ) =2555 值上报给 SITEy。 SITEy通过 Handover Detect计算出 tl=5 , 发现与 ( OTD+tO ) 不相等, 计算 FN调整量为 int ( ( OTD +tO ) -tl ) /2500 ) =1 , 即当前 FN应调整为 1。 同时, 计算 1/2比特偏移数调整量为 ((OTD +t0 ) -tl ) mod 2500=50, 即将 相位往后调整 50个 1/2比特偏移数。 调整后的 SITEy, 即保持与 SITEx完全 同步。 通过上述实施例 ,使得不同基站间能够通过现有设备软件升级方式实现 全网同步 (包括 FN同步和相位同步)。 装置实施例 根据本发明的实施例, 提供了一种基站间同步装置, 用于实现上述的基 站间同步方法。 图 5是根据本发明实施例的基站间同步装置的结构框图, 如 图 5所示, 该装置包括: 第一获取模块 2 , 第二获取模块 4 , 判断模块 6 , 调 整模块 8 , 下面对上述结构进行描述。 第一获取模块 2 , 用于获取实际测量值, 其中, 实际测量值为终端测量 到的时间差和终端到同步源基站的空间传播时延之和; 第二获取模块 4 , 用 于获取终端到待同步基站的空间传播时延; 判断模块 6 , 连接至第一获取模 块 2和第二获取模块 4 , 用于判断实际测量值与终端到待同步基站的空间传 播时延是否相等; 调整模块 8 , 连接至判断模块 6 , 用于在判断模块 6的判 断结果为不相等的情况下, 才艮据终端测量到的时间差、 终端到同步源基站的 空间传播时延和终端到待同步基站的空间传播时延调整绝对帧号和相位。 其中, 第一获取模块 2通过终端上 ·ί艮的切换完成消息获取实际测量值, 具体地, 终端接收基站控制器通过同步源基站下发的切换命令消息, 其中, 切换命令消息用于指示终端上报实际测量值; 终端通过切换完成消息向待同 步基站的第一获取模块 2上报实际测量值。 具体地, 切换命令消息中携带有 同步指示属性项, 且移动时间差属性项指示终端上 ·^艮实际测量; 切换完成消 息携带有移动时间差属性项, 且移动时间差属性项携带有实际测量值。 待同步基站的第二获取模块 4 通过检测切换探测过程获取终端到待同 步基站的空间传播时延。 具体地, 待同步基站中的调整模块 8包括: 第一调整子模块, 用于在任 一绝对帧号 FNy'的起始时刻将当前绝对帧号 FNy '调整为: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ); 第二调整子模块, 用于将当前相对于时隙零的 1/2比特偏 移数调整为 ( ( OTD +t0 ) -tl ) mod 2500, 其中, OTD为终端测量到的时间 差, to为终端到同步源基站的空间传播时延, tl为终端到待同步基站的空间 传播时延。 由以上技术方案可以看出:本发明实施例仅通过现有设备软件升级的方 式即实现了全网基站的同步, 因此相对于在每个基站中增加 GPS接收器以获 取全局时钟信号作为基站同步的公共基准这种方法, 能节省成本。 本发明的 另外一个优点是不受终端地理位置的影响, 只要终端发起了切换即可实现, 对用户业务没有影响, 并且精度误差在 1/2比特以内。 需要说明的是, 本发 明实施例适用于两基站绝对时间误差小于 3.8s 的场景, 并且 SITEx要比 SITEy早。 对于 SITEx比 SITEy绝对时间晚的场景, 只需要进行反方向进行 类似处理即可。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种基站间同步方法, 其特征在于, 包括: 待同步基站获取实际测量值, 其中, 所述实际测量值为终端测量 到的时间差和终端到同步源基站的空间传播时延之和;
所述待同步基站获取所述终端到所述待同步基站的空间传播时 延;
所述待同步基站判断所述实际测量值与所述终端到所述待同步 基站的空间传播时延是否相等, 如果不相等, 则所述待同步基站根据 所述终端测量到的时间差、 所述终端到所述同步源基站的空间传播时 延和所述终端到所述待同步基站的空间传播时延调整绝对帧号和相 位。
2. 根据权利要求 1所述的方法, 其特征在于, 在所述待同步基站获取所 述实际测量值之前, 所述方法还包括:
所述终端接收基站控制器通过同步源基站下发的切换命令消息, 其中, 所述切换命令消息用于指示所述终端上报所述实际测量值; 所述终端通过切换完成消息向所述待同步基站上 4艮所述实际测 量值。
3. 根据权利要求 2所述的方法, 其特征在于, 所述切换命令消息中携带 有同步指示属性项, 且移动时间差属性项指示所述终端上 ·^艮所述实际 测量; 所述切换完成消息携带有所述移动时间差属性项, 且所述移动 时间差属性项携带有所述实际测量值。
4. 根据权利要求 1所述的方法, 其特征在于, 所述待同步基站获取所述 终端到所述待同步基站的空间传播时延包括:
所述待同步基站通过检测切换探测过程获取所述终端到所述待 同步基站的空间传播时延。
5. 根据权利要求 1所述的方法, 其特征在于, 在所述待同步基站判断所 述实际测量值与所述终端到所述待同步基站的空间传播时延是否相等 之前, 所述方法还包括:
所述基站控制器通过同步开始消息通知所述待同步基站开始同 步。
6. 根据权利要求 1所述的方法, 其特征在于, 在所述待同步基站根据所 述终端测量到的时间差、 所述终端到所述同步源基站的空间传播时延 和所述终端到所述待同步基站的空间传播时延调整绝对帧号和相位之 后, 所述方法还包括:
所述待同步基站向所述基站控制器回复同步结束消息。
7. 根据权利要求 1所述的方法, 其特征在于, 在所述待同步基站获取所 述实际测量值之前, 所述方法还包括:
所述待同步基站从所述基站控制器获取当前的绝对时间, 并按照 预先规定的算法使用所述绝对时间计算出当前的绝对帧号。
8. 根据权利要求 1至 7任一所述的方法, 其特征在于, 所述待同步基站 才艮据所述终端测量到的时间差、 所述终端到所述同步源基站的空间传 播时延和所述终端到所述待同步基站的空间传播时延调整绝对帧号包 括:
所述待同步基站在任一绝对帧号 FNy,的起始时刻将当前绝对帧 号 FNy,调整为: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), 其中, OTD为 所述终端测量到的时间差, t0 为所述终端到所述同步源基站的空间传 播时延, tl为所述终端到所述待同步基站的空间传播时延。
9. 根据权利要求 1至 7任一所述的方法, 其特征在于, 所述待同步基站 才艮据所述终端测量到的时间差、 所述终端到所述同步源基站的空间传 播时延和所述终端到所述待同步基站的空间传播时延调整相位包括: 所述待同步基站将当前相对于时隙零的 1/2 比特偏移数调整为 ( ( OTD +t0 ) -tl ) mod 2500, 其中, OTD为所述终端测量到的时间差, to为所述终端到所述同步源基站的空间传播时延, tl为所述终端到所 述待同步基站的空间传播时延。
10. —种基站间同步装置, 其特征在于, 包括:
第一获取模块, 用于获取实际测量值, 其中, 所述实际测量值为 终端测量到的时间差和终端到同步源基站的空间传播时延之和;
第二获取模块, 用于获取所述终端到所述待同步基站的空间传播 时延;
判断模块, 用于判断所述实际测量值与所述终端到所述待同步基 站的空间传播时延是否相等;
调整模块, 用于在所述判断模块的判断结果为不相等的情况下, 才艮据所述终端测量到的时间差、 所述终端到所述同步源基站的空间传 播时延和所述终端到所述待同步基站的空间传播时延调整绝对帧号和 相位。
11. 根据权利要求 10所述的装置, 其特征在于, 所述第一获取模块还用于 通过所述终端上 ·ί艮的切换完成消息获取所述实际测量值, 其中, 所述 切换完成消息携带有所述移动时间差属性项, 且所述移动时间差属性 项携带有所述实际测量值。
12. 根据权利要求 10所述的装置, 其特征在于, 所述第二获取模块还用于 通过检测切换探测过程获取所述终端到所述待同步基站的空间传播时 延。
13. 根据权利要求 10至 12任一项所述的装置, 其特征在于, 所述调整模 块包括:
第一调整子模块, 用于在任一绝对帧号 FNy,的起始时刻将当前 绝对帧号 FNy,调整为: FNy' + int ( ( OTD +t0 ) -tl ) /2500 ), 其中, OTD为所述终端测量到的时间差, t0为所述终端到所述同步源基站的 空间传播时延, tl为所述终端到所述待同步基站的空间传播时延; 第二调整子模块, 用于将当前相对于时隙零的 1/2比特偏移数调 整为 (( OTD +t0 ) -tl ) mod 2500, 其中, OTD为所述终端测量到的时 间差, to为所述终端到所述同步源基站的空间传播时延, tl为所述终 端到所述待同步基站的空间传播时延。
PCT/CN2009/075851 2009-12-22 2009-12-22 基站间同步方法及装置 WO2011075887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075851 WO2011075887A1 (zh) 2009-12-22 2009-12-22 基站间同步方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075851 WO2011075887A1 (zh) 2009-12-22 2009-12-22 基站间同步方法及装置

Publications (1)

Publication Number Publication Date
WO2011075887A1 true WO2011075887A1 (zh) 2011-06-30

Family

ID=44194904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075851 WO2011075887A1 (zh) 2009-12-22 2009-12-22 基站间同步方法及装置

Country Status (1)

Country Link
WO (1) WO2011075887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568278B (zh) * 2013-03-05 2017-01-21 高通公司 減少在無線裝置中時脈漂移之衝擊
CN109429325A (zh) * 2017-08-24 2019-03-05 阿里巴巴集团控股有限公司 数据传输方法、装置、基站和服务器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065163A1 (en) * 1998-06-08 1999-12-16 Nokia Networks Oy A method for synchronization of a cellular radio network
WO2001095659A1 (en) * 2000-06-08 2001-12-13 Cellpoint Systems Ab Positioning of mobile station by determining synchronisation differences between base stations
CN1371559A (zh) * 1999-08-25 2002-09-25 艾利森电话股份有限公司 同步偏差检测
CN101400079A (zh) * 2007-09-26 2009-04-01 大唐移动通信设备有限公司 一种空口同步误差的检测方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065163A1 (en) * 1998-06-08 1999-12-16 Nokia Networks Oy A method for synchronization of a cellular radio network
CN1371559A (zh) * 1999-08-25 2002-09-25 艾利森电话股份有限公司 同步偏差检测
WO2001095659A1 (en) * 2000-06-08 2001-12-13 Cellpoint Systems Ab Positioning of mobile station by determining synchronisation differences between base stations
CN101400079A (zh) * 2007-09-26 2009-04-01 大唐移动通信设备有限公司 一种空口同步误差的检测方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568278B (zh) * 2013-03-05 2017-01-21 高通公司 減少在無線裝置中時脈漂移之衝擊
CN109429325A (zh) * 2017-08-24 2019-03-05 阿里巴巴集团控股有限公司 数据传输方法、装置、基站和服务器
US11212766B2 (en) 2017-08-24 2021-12-28 Alibaba Group Holding Limited Data transmission methods, apparatuses, base stations and servers

Similar Documents

Publication Publication Date Title
US9215679B2 (en) Air-interface timing synchronization sharing
US9801174B2 (en) Method and apparatus for obtaining identifier of small cell in wireless communication system having hierarchical cell structure
AU736793B2 (en) A method of determining timing advance information in a cellular radio system
US7024194B1 (en) Communication system
JP2013527722A (ja) マイクロ基地局間同期の実現方法及びシステム
EP2725857B1 (en) Air interface synchronization method and base station
CN105409289B (zh) 用于发现无线局域网的方法和装置
CN102948230A (zh) 无线通信系统中的方法和装置
EP1080555A1 (en) Method of synchronisation of a base station network
JP2003348643A (ja) 符号分割多重接続の移動通信システムでマルチキャストマルチメディア放送サービスのためのソフトハンドオーバ方法
JP2005517340A5 (zh)
JP2003531552A (ja) 無線通信方式における基地局同期化方式
US11134460B2 (en) Synchronizing a cloud radio access network to a network time protocol reference clock
CN109474938B (zh) 获取邻小区定时的方法、装置及用户设备
WO2010088816A1 (zh) 一种实现基站间同步的方法及系统
CN102149186A (zh) 时分系统空口同步方法及设备
CN104969633B (zh) 一种定时同步方法、装置、用户设备和通信系统
JPH11127107A (ja) 無線通信装置及び無線通信方法
JP6980805B2 (ja) 同期信号の測定方法及び関連デバイス
WO2017028043A1 (zh) 一种通信网络中的同步方法和设备
CN112738824B (zh) 定时测量方法、装置、设备和存储介质
WO2011075887A1 (zh) 基站间同步方法及装置
EP3094141B1 (en) Method for radio network synchronization of a mobile communication network with a local clock functionality providing a local timing reference for each base station entity, mobile communication network, base station entity, program and computer program product
JP7337779B2 (ja) 同期信号ブロックの位置指示方法、ネットワークデバイス及び端末デバイス
CN104768165B (zh) 信号覆盖的方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852437

Country of ref document: EP

Kind code of ref document: A1