WO2010087497A1 - 医薬組成物、および、腫瘍の治療用医薬剤 - Google Patents

医薬組成物、および、腫瘍の治療用医薬剤 Download PDF

Info

Publication number
WO2010087497A1
WO2010087497A1 PCT/JP2010/051428 JP2010051428W WO2010087497A1 WO 2010087497 A1 WO2010087497 A1 WO 2010087497A1 JP 2010051428 W JP2010051428 W JP 2010051428W WO 2010087497 A1 WO2010087497 A1 WO 2010087497A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
protein
phlda3
cells
gene
Prior art date
Application number
PCT/JP2010/051428
Other languages
English (en)
French (fr)
Inventor
理恵子 大木
竜也 川瀬
龍弘 柴田
洋一 田矢
油谷 浩幸
稲澤 譲治
文夫 田代
Original Assignee
財団法人ヒューマンサイエンス振興財団
国立大学法人 東京医科歯科大学
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人ヒューマンサイエンス振興財団, 国立大学法人 東京医科歯科大学, 学校法人東京理科大学 filed Critical 財団法人ヒューマンサイエンス振興財団
Priority to JP2010548588A priority Critical patent/JPWO2010087497A1/ja
Publication of WO2010087497A1 publication Critical patent/WO2010087497A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a pharmaceutical composition containing a polypeptide having a PH domain of a PHLDA family protein, a pharmaceutical composition containing DNA encoding a polypeptide having a PH domain of a PHLDA family protein, and these pharmaceutical compositions.
  • the present invention relates to a pharmaceutical agent for treating tumor contained therein.
  • Tumors are a major cause of death worldwide, and are still one of the diseases for which the development of effective treatments is awaited.
  • cytoplasmic protein Akt is involved in malignant transformation in breast cancer, lung cancer, prostate cancer, ovarian cancer, or blood cancer such as leukemia and lymphoid tumor.
  • Akt is a serine / threonine kinase in the PI3K-Akt pathway.
  • the PI3K-Akt pathway is activated by an extracellular signal such as a growth factor, the PH domain of Akt binds to inositol phospholipids on the cell membrane. It is known that Akt is phosphorylated and activated to transmit various signals to the downstream signal transduction system. In the above malignant tumor cells, abnormal activation of Akt and abundant localization in the membrane were detected, and it is considered that the activation of Akt is responsible for the tumorigenesis and malignancy of normal cells Yes.
  • p53 was originally discovered as a p53 protein that binds to a protein produced by the viral gene in cells tumoriated by the DNA tumor virus SV40 (eg, Linzer DJ and Levine AJ, Cell 17, 43-52 (See 1979)). Later, it was found that mutations in the p53 gene were found in various tumor cells, and the p53 gene was called a tumor suppressor gene (see, for example, Finlay CA et al., Cell 30, 1083-1093 (2004)) ).
  • the p53 protein suppresses the PI3K-Akt pathway by activating transcription of the tumor suppressor gene PTEN, which is a negative regulator of the PI3K-Akt pathway. Therefore, in tumor cells with mutations in the p53 gene, suppression of the PI3K-Akt pathway is released and the Akt protein is activated, resulting in abnormal growth of the tumor cells.
  • An object of the present invention is to provide a pharmaceutical composition containing a polypeptide having a PH domain of a PHLDA family protein, and a pharmaceutical agent for treating a tumor containing the pharmaceutical composition.
  • PHLDA family proteins have been discovered in humans as PHLDA1-3.
  • PHLDA1-3 is known to have 51% to 76% of the peptide sequence in the PH domain (see, for example, Frank D. et al. Mammalian Genome 10, 1150-1159 (1999)). The specific function of was unknown.
  • This PH domain is found in various proteins other than PHLDA family proteins, but the homology of amino acid sequences in different proteins is not high (for example, Frank D. et al., Mammalian Genome 10, 1150-1159 (1999) reference).
  • the present inventors have found that the PHLDA family protein is a target of p53, and the expression of PHLDA3 gene and protein is promoted by this p53 gene. Furthermore, it was clarified that this PHLDA3 binds to inositol phospholipids in the cell membrane to inhibit activation by phosphorylation of Akt protein that promotes the growth of tumor cells, and the present invention has been completed.
  • the pharmaceutical composition according to the present invention is characterized by containing a polypeptide having a PH domain of a PHLDA family protein.
  • polypeptide having a PH domain is preferably a part or all of a PHLDA family protein.
  • the pharmaceutical composition according to the present invention is a DNA encoding the above-mentioned “polypeptide having a PH domain of a PHLDA family protein” or “a part or all of a PHLDA family protein containing a PH domain”. May contain an expression vector into which is inserted.
  • the “PHLDA family protein” is preferably any one of PHLDA1 to PHLDA1-3.
  • the pharmaceutical agent for treating tumor according to the present invention is characterized by containing any one of the above pharmaceutical compositions according to the present invention.
  • the growth of the tumor cell is preferably a tumor that requires the activation of the Akt protein.
  • the tumor cell is preferably a cell in which p53 protein dysfunction occurs.
  • the tumor cell is preferably a tumor having a mutation in the p53 gene.
  • the tumor to be treated by the therapeutic pharmaceutical agent according to the present invention is any of lung cancer, pancreatic cancer, liver cancer, breast cancer, uterine cancer, and brain tumor.
  • FIG. 4 shows the results of Northern blotting showing expression of PHLDA3 mRNA and expression of various p53 proteins in Saos2 cells introduced with various gene insertion recombinant vectors, which are one embodiment of the present invention.
  • FIG. 2 is a diagram showing the PHLDA3 gene arrangement and the arrangement of each marker, which is an embodiment of the present invention.
  • PHLDA family protein is a protein belonging to Pleckstrin homology-like domain, family A, and is preferably any of PHLDA1 to 3 proteins (GeneBank accession number, BC126425, BC005034, BC068273 in this order). It is not limited to.
  • the “PHLDA family protein” may be derived from any vertebrate having the family protein. For example, it may be derived from mammals such as mice, rats, chimpanzees, pigs, and dogs including humans. Or from amphibians such as Xenopus laevis.
  • PH domain of PHLDA family protein means a domain having the following amino acid sequence in human PHLDA1 to 3 protein, or a few amino acid residues in the following amino acid sequences 1 to 3 are deleted, inserted or substituted: It is defined as a domain having an amino acid sequence and having the ability to bind to phospholipids.
  • several amino acid residues are 10 or less amino acid residues, preferably 8 or less amino acid residues, more preferably 6 or less amino acid residues, still more preferably 4 or less amino acid residues, further preferably 2 or less. The following amino acid residues.
  • the PH domain of other animals is a homologous sequence of the PH domain of human PHLDA1-3 protein (SEQ ID NOs: 1 to 3), or an amino acid in which several amino acid residues have been deleted, inserted, or substituted in the homologous sequence. It is defined as a domain having a sequence and having the ability to bind to phospholipids.
  • PHLDA family protein having a PH domain refers to a polypeptide having only a PHLDA family protein PH domain, or a polypeptide that is part or all of a PHLDA family protein containing a PH domain, or PH It may be any of polypeptides in which an arbitrary polypeptide is added to the N-terminal side, C-terminal side, or both of the domain.
  • this polypeptide is a polypeptide having a naturally occurring polypeptide sequence of the PHLDA family protein on the N-terminal side, C-terminal side, or both sides. It may be a peptide.
  • the amino acid sequence of the arbitrary polypeptide is within a range that does not prevent binding of the PH domain to phospholipids.
  • the sequence may be a naturally occurring amino acid sequence or an artificially designed amino acid sequence.
  • polypeptides include tag peptides such as myc-tag, flag-tag, HA-tag, and His-tag, fluorescent proteins such as GFP and RFP, enzymes such as ⁇ -galactosidase, horseradish peroxidase, and alkaline phosphatase.
  • this arbitrary polypeptide is not limited as long as it does not interfere with the binding of the PH domain to the phospholipid, and may be 1000 amino acid residues or less, but 600 amino acid residues or less. It is preferably 300 amino acid residues or less, more preferably 100 amino acid residues or less, further preferably 50 amino acid residues or less, and further preferably 10 amino acid residues or less. .
  • the N-terminus is preferably methionine, and a shortest example is a polypeptide in which methionine is added to the N-terminus of the PH domain polypeptide.
  • the phospholipid to be bound to the PH domain is not limited as long as it is a phospholipid that is bound to Akt in the cell and is involved in the activation of Akt.
  • polypeptides described herein may be modified such as sugar chain modification.
  • the method for obtaining and preparing any polypeptide contained in the pharmaceutical composition according to the present invention is not particularly limited, and even a natural peptide obtained by purifying a naturally-occurring peptide can be obtained using a gene recombination technique. It may be a produced recombinant peptide, a peptide chemically synthesized by a known method such as Fmoc method or tBoc method, or a peptide produced by various commercially available peptide synthesizers.
  • Naturally-derived polypeptides can be used as part or all of PHLDA family proteins containing PH domains from animal tissues or cells expressing PHLDA proteins by appropriately combining protein isolation and purification methods. Can be acquired.
  • a synthetic polypeptide having a naturally derived amino acid sequence or a synthetic polypeptide having an arbitrary amino acid sequence including a PH domain can be prepared by using a genetic recombination technique or a chemical synthesis method. .
  • the pharmaceutical composition according to the present invention may contain an expression vector having a DNA encoding any of the polypeptides described in “Polypeptides contained in the pharmaceutical composition”.
  • the “expression vector” is well known to those skilled in the art, and is particularly limited as long as it has an appropriate promoter for expressing the polypeptide from the DNA incorporated in the cells of the animal to be administered.
  • Non-limiting examples include pcDNA3 expression vectors and pMX expression vectors.
  • the type of “DNA” is not particularly limited as long as it can express the above polypeptide when inserted into an expression vector downstream of an appropriate promoter known to those skilled in the art so that it can be expressed. Or it may be DNA derived from a gene containing an intron.
  • the pharmaceutical composition according to the present invention has any one of the above-described DNAs inserted therein even if it contains one or more of any of the polypeptides described in “Polypeptides contained in the pharmaceutical composition”.
  • One or a plurality of expression vectors may be contained, or a vector in which one or a plurality of kinds of polypeptides and one or a plurality of kinds of DNAs are inserted may be contained.
  • the pharmaceutical agent for treating tumor according to the present invention comprises any one of the above pharmaceutical compositions.
  • tumor means a cell mass showing autonomous hyperproliferation.
  • the tumor cells contained in the tumor are generated from the cells themselves constituting the living body, but the origin is not limited.
  • the tumor may be a malignant tumor or a benign tumor, and its malignancy is not limited.
  • the tumor to be treated with the therapeutic pharmaceutical agent according to the present invention is not limited as long as the growth of tumor cells is suppressed by the formulation of the therapeutic pharmaceutical agent.
  • it is a dependent tumor, for example, any of lung cancer, pancreatic cancer, liver cancer, breast cancer, uterine cancer, and brain tumor.
  • proliferation is dependent on Akt protein means that Akt protein is activated at a higher level in tumor cells than in normal cells from which the tumor cells are derived.
  • the cause of activation of Akt protein in tumor cells is not particularly limited, and a tumor in which p53 protein dysfunction occurs in the tumor cells may be used.
  • p53 protein suppresses the PI3K-Akt pathway by activating transcription of PTEN and PHLDA, which are negative regulators of the PI3K-Akt pathway. This is because Akt protein is ectopically activated in cells. p53 protein dysfunction often results from the tumor cell having a mutation in the p53 gene.
  • Akt protein is a major serine / threonine kinase in the PI3K-Akt pathway of intracellular signal transduction system.
  • Akt1 GeneBank accession number, AH011307
  • Akt2 GeneBank Examples include isoforms such as accession number (M9536) and Akt3 (GeneBank accession number, AF135794).
  • the “p53 protein” is a nuclear protein encoded by the p53 gene, and examples thereof include human p53 protein of GeneBank accession number U94788. This dysfunction of p53 protein means that the transcriptional activation function that p53 protein should normally have for its target protein in the nucleus is lost or reduced.
  • the cause is not particularly limited, for example, the p53 gene is mutated, the protein is not expressed due to a failure in the p53 protein expression process, or the translated protein is normal
  • the protein may not be functioning normally due to modification to a structure that cannot function, or due to an obstacle such as modification.
  • pharmaceutical additives such as pharmaceutically acceptable carriers, diluents, and vaginal formulations well known to those skilled in the art are used.
  • the form is not particularly specified as long as it is an appropriate dosage form for delivering the pharmaceutical agent to an affected area in a patient.
  • an oral agent tablet, capsule, granule, powder, syrup, enteric solvent, sustained release It may be formulated into capsules, cashews, chewable tablets, drops, pills, liquids for internal use, confectionery tablets, sustained release tablets, sustained release granules and the like. Alternatively, it may be formulated into an injection.
  • different pharmaceutical compositions can be added to the therapeutic pharmaceutical agent.
  • the polypeptide contained in the pharmaceutical composition is preferably derived from the same animal species as the administration target of the pharmaceutical agent containing the pharmaceutical composition.
  • a pharmaceutical agent when administered to a human, it is preferably derived from a human tissue-derived PHLDA family protein.
  • the therapeutic pharmaceutical agent of the present invention can be administered in a suitable manner to humans or non-human vertebrates within a safe dosage range.
  • the dosage of the therapeutic pharmaceutical agent of the present invention is finally determined by the doctor or veterinarian in consideration of the type of dosage form, the administration method, the age and weight of the administration subject such as a patient, the symptom of the administration subject such as a patient, etc. It can be appropriately determined by judgment.
  • shRNA1 Lentivirus expressing shRNA1 (PH3-sh1RNA: TTGGCCATTAGCATTTCATGTCT, SEQ ID NO: 4) or shRNA2 (PH3-sh2RNA: AGGCGCTGGAGCTGAAGGAATGG, SEQ ID NO: 5) against PHLDA3, and shRNA (p53-shRNA: GACTCCAGT
  • shRNAs of PHLDA3 and p53 were associated with the following oligonucleotides to form double-stranded DNA, and then cloned into the Bgl II-Sal I site of pSuper vector (OligoEngine).
  • the Sma I-Xho I region was excised from this pSuper vector and cloned into the blunted Cla I-Xho I site of the pLenti6 / V5-DEST vector (Invitrogen) to prepare a recombinant pLenti6 / V5-DEST vector.
  • Akt Akt PCR was performed using an activated Akt expression vector (Higuchi M et al., Current Biology, Volume 11 (24), 958-1962, 2001) as a template and the following primers.
  • the PCR product was digested with Xba I and cloned into the Xba I site of pLenti6 / V5-DEST (Invitrogen).
  • Each of these recombinant pLenti6 / V5-DEST vectors was introduced into the attached 293FT cells in the same manner as the ViraPowder packaging Mix attached to the ViraPower Lentiviral Gateway Expression kit, and the PH3-sh1RNA expression lentivirus, PH3-sh2RNA expression lentivirus, p53- shRNA expressing lentivirus and Myr-Akt expressing lentivirus were prepared.
  • PH3-sh1-sense GATCCCCTTGGCCATTAGCATTTCATGTCTTTCAAGAGAAGACATGAAATGCTAATGGCCAATTTTTGGAAAAG (SEQ ID NO: 7)
  • PH3-sh1-antisense TCGACTTTTCCAAAAATTGGCCATTAGCATTTCATGTCTTCTCTTGAAAGACATGAAATGCTAATGGCCAAGGG (SEQ ID NO: 8)
  • PH3-sh2-sense GATCCCCAGGCGCTGGAGCTGAAGGAATGGTTCAAGAGACCATTCCTTCAGCTCCAGCGCCTTTTTTTTGGAAAAG (SEQ ID NO: 9)
  • PH3-sh2-antisense TCGACTTTTCCAAAAAAGGCGCTGGAGCTGAAGGAATGGTCTCTTGAACCATTCCTTCAGCTCCAGCGCCTGGG (SEQ ID NO: 10)
  • p53-sh-sense GATCCCCGACTCCAGTGGTAATCTACTTCAAGAGAGTAGATTACC
  • the PHLDA3 knockdown cell line (Ph3-Sh1-MM-468 cell line, Ph3-Sh2-MM-468 cell line), and p53 knockdown cell line (P53-sh-MRC5 cell line) was established.
  • a lentivirus was prepared in the same manner as described above using non-recombinant pLenti6 / BLOCK-iT®Expression®Construct vector, and control cell lines (Ctrl-sh-MM468 and Ctrl-sh-MRC5 cell lines) were established.
  • PCR was performed using PHLDA3 EST (EST IMAGE ID 3547186, Open Biosystems) as a template and the following primers.
  • the amplified DNA fragment obtained here was inserted into the BamH I-Xho I site of pcDNA3.1 vector (Invitrogen) into which an HA tag had been inserted, and cloned.
  • the vector thus obtained was digested with Kpn I and Xho I, and then the DNA fragment was purified and further subjected to blunting using a DNA Blunting kit (Takara).
  • Ad-PHLDA3-sense TTAGGATCCATGACGGCGGCGGCGACGGCTAC (SEQ ID NO: 15)
  • Ad-PHLDA3-antisense TTACTCGAGTTAGGACACGAGGGTCCCGGT (SEQ ID NO: 16)
  • each recombinant vector was transfected into 293 cells, p53 recombinant adenovirus, and A PHLDA3 recombinant adenovirus was produced.
  • Each recombinant adenovirus thus obtained was purified using Virakit Adeno 4 (Virapur), and titer was measured.
  • MOI multiplicity of infection
  • Control Cosmid pAxCAiLacZit (LacZ recombinant adenovirus) attached to the Adenovirus Expression Vector Vector kit (Dual Version) was used.
  • RNA Total RNA was extracted from the collected tissues using RNeasy Midi Kit (Qiagen). This RNA (0.2-5 ⁇ g) was reverse-transcribed using SuperScript First-Strain Synthesis System for RT-PCR (Invitrogen) to prepare cDNA.
  • anti-PHLDA3 goat polyclonal antibody (catalog number: ab22822, Abcam), anti-p53 goat polyclonal antibody (catalog number: 9282G, Cell signaling Technology), anti-p53-phospho-Ser15 specific rabbit polyclonal antibody (catalog number) : 9284, Cell signaling Technology), anti-Akt rabbit polyclonal antibody (catalog number: 9272, Cell signaling Technology), anti-phospho-Akt (S473) rabbit polyclonal antibody (catalog number: 9271, Cell signaling Technology), anti-phospho -Akt (T308) rabbit polyclonal antibody (catalog number: 9275, Cell signaling Technology) was appropriately used.
  • the above primary antibodies were reacted at 1000 to 3000 times overnight at room temperature.
  • secondary antibodies anti-rabbit IgG HRP-labeled goat IgG (catalog number: 7074, Cell signaling Technology), ECL anti-mouse IgG HRP-labeled sheep antibody (catalog number: NA931, Amersham Bioscience), anti-goat IgG HRP-labeled bovine antibody (Catalog number: co306, Santa cruz biotechnology) was used.
  • the above secondary antibody was reacted at a dilution of 2000 to 4000 times at room temperature for 3 hours.
  • Western Lightning for signal visualization Chemiluminescence Reagent Plus PerkinElmer Life sciences). Note that ⁇ -actin was used to correct the amount of protein migrated to the internal standard and gel.
  • Example 1 This example shows that PHLDA3 gene expression is promoted by introducing the p53 gene into cells, and that PHLDA3 gene expression is suppressed by knocking down the p53 gene in the cells.
  • pcDNA3-p53 recombinant expression vector or pcDNA3 vector as a control group was transiently introduced into Saos2 cells and cultured for 24 hours .
  • the expression level of PHLDA3 gene in the transfected cells was detected by Northern blot analysis.
  • FIG. 1A the expression level of the PHLDA3 gene was increased in the Saos2 cells into which the p53 gene was introduced, as compared with the control group.
  • the p53-sh-MRC5 cell line and the Ctrl-sh-MRC5 cell line were irradiated with 30 gray radiation for 6 hours or 10 hours. Cells were later collected. This irradiation is known to increase the expression of p53 protein. Subsequently, PHLDA3 gene expression in these cells was detected by analysis on a Northern blot.
  • the PHLDA3 gene expression level increased after irradiation.
  • expression of the PHLDA3 gene was suppressed in cells knocked down from the p53 gene regardless of irradiation or non-irradiation.
  • the p53 gene positively controls the expression of the PHLDA3 gene.
  • Example 2 This example shows that the expression level of PHLDA3 protein is increased by introduction of the p53 gene.
  • MDA-MB-468 cells were infected with p53 recombinant adenovirus or as a control group, LacZ recombinant adenovirus (MOI: 15). After further culturing for 18 hours, the cells were analyzed by Western blotting in order to detect the expression levels of PHLDA3 protein and p53 protein.
  • the expression level of PHLDA3 protein increased and the amount of p53 protein increased compared to the control group.
  • the p53 gene enhances PHLDA3 expression at the protein level.
  • Example 3 This example shows that an increase in the expression level of PHLDA3 protein is suppressed by introducing a mutation into the p53 gene introduced into cells.
  • PCR was performed using the following primer pairs (Table 1).
  • Table 1 For TAD-S / A, after performing PCR with p53-N-terS / A-primer-sense and p53-primer-antisense-AvaII, p53-S / A-primer-sense PCR amplification with p53-primer-antisense-AvaII.
  • a fragment obtained by treating the obtained PCR product with BamHI and AvaII and a fragment obtained by treating the wild-type p53 PCR fragment with AvaII and EcoRI were cloned into the following vectors.
  • the wild-type p53 obtained here is BamHI-EcoRI site of pcDNA3 expression vector (Invitrogen) BamHI-XhoI and pMX expression vector (Onishi M et al., Mol. Cell. Biol. 18, 3871-3879, 1998).
  • pcDNA3-p53 recombinant vector and pMX-p53 recombinant vector were inserted into the BamHI-EcoRI site of the pMX expression vector to prepare p53pMX-S15A, pMX-S15D, p53pMX-S46A, and pMX-TAD-S / A expression vectors.
  • p53-primer-sense TTAGGATCCATGGAGGAGCCGCAGTCAGATCCTAGCGTC (SEQ ID NO: 17)
  • p53-primer-antisense TTAGAATTCTCAGTCTGAGTCAGGCCCTTC
  • p53-primer-antisense-2 TTACTCGAGTCAGTCTGAGTCAGGCCCTTC
  • p53S15A-primer-sense TTAGGATCCATGGAGGAGCCGCAGTCAGATCCTAGCGTCGAGCCCCCTCTGGCTCAGGAAACATTTTCAG
  • p53S15D-primer-antisense TTAGGATCCATGGAGGAGCCGCAGTCAGATCCTAGCGTCGAGCCCCCTCTGGATCAGGAAACATTTTCAG
  • p53-N-terS / A-primer-sense GCAGGCAGATCCTGCCGTCGAGCCCCCTCTG,
  • Each of the above recombinant expression vectors was transiently introduced into Saos2 cells, and the culture was continued for 24 hours.
  • a non-recombinant pcDNA3 vector into which no DNA sequence was inserted was introduced.
  • the expression level of PHLDA3 gene in the cells was measured by Northern blotting.
  • the expression level of p53 protein in this cell was analyzed by Western blotting.
  • the expression level of PHLDA3 protein in Saos2 cells is as follows: p53S15D recombinant vector (28S ratio: 9.3), wild-type p53 recombinant vector (28S ratio: 4.0), p53S46A recombinant vector ( 28S ratio: 3.9), TAD-S / A recombinant vector (28S ratio: 2.4), p53S15A recombinant vector (28S ratio: 1.7), non-recombinant pcDNA3 vector in order of introduction. .
  • Example 4 This example demonstrates binding of PHLDA3 to phospholipids.
  • GST-PHLDA3-sense TTAGGATCCATGACGGCGGCGGCGACGGCTAC (SEQ ID NO: 25)
  • GST-PHLDA3-antisense TTACTCGAGTTAGGACACGAGGGTCCCGGT (SEQ ID NO: 26)
  • Akt PH domain GST fusion protein GST-PHLDA3-sense: TTAGGATCCATGACGGCGGCGGCGACGGCTAC (SEQ ID NO: 25
  • GST-PHLDA3-antisense TTACTCGAGTTAGGACACGAGGGTCCCGGT (SEQ ID NO: 26)
  • Akt PH domain GST fusion protein GST-PHLDA3-sense: TTAGGATCCATGACGGCGGCGGCGACGGCTAC (SEQ ID NO: 25)
  • GST-PHLDA3-antisense TTACTCGAGTTAGGACACGAGGGTCCCGGT (SEQ ID NO: 26)
  • cDNA prepared using total RNA of HCT116 cells (American Type Culture Collection)
  • GST-PH-Akt-sense TTAGGATCCATGAGCGACGTGGCTATTGTGAAGGAG (SEQ ID NO: 27)
  • GST-PH-Akt-antisense TTACTCGAGTTACTCGTTCATGGTCACGCGGTGC (SEQ ID NO: 28)
  • Both ends of each PCR product obtained as described above were digested with BamH I and Xho I and then inserted into BamH I-Xho I of pGEX-6P-1 vector (Amersham Pharmacia), and this vector was inserted into BL21- It was introduced into Gold (DE3) competent cells (Stratagene). After further lysis of the cells, the GST fusion protein in the lysate was purified using glutathione-spharose 4B beads (Amersham Pharmasia).
  • this membrane was rinsed 6 times with TBST buffer for 10 minutes, and then reacted with anti-GST mouse monoclonal antibody (diluted 5000 times, clone GST-2 (G 1160), Sigma) for 1 hour at room temperature. Rinse again. Further, this membrane was reacted with an ECL HRP-labeled anti-mouse IgG sheep antibody (diluted 20000 times, Amersham Biosciences) for 1 hour at room temperature. The membrane is again rinsed with TBST buffer in the same manner, and the binding of the GST fusion protein to each phospholipid is determined by chemiluminescence analysis (Western Lightning Chemiluminescence Reagent Plus, PerkinElmer). Life sciences). As a control group, unfused GST protein was reacted with each phospholipid blotted on the membrane.
  • GST-PH-Akt bound to PI (3,4) P2 and PI (3,4,5) P3.
  • GST-PHLDA3 is PI (3,4) P2, PI (4,5) P2, PI (3,5) P2, PI (3,4,5) P3, PI (3) P, PI (4) Bound to P and PI (5) P.
  • PHLDA3 protein binds widely to phospholipids.
  • Example 5 This example shows that p53 and PHLDA3 inhibit Akt phosphorylation.
  • MDA-MB-468 cells and WI-38 cells were infected with p53 recombinant adenovirus, PHLDA3 recombinant adenovirus, or LacZ recombinant adenovirus as a control group (MOI: 35). After 18 hours of infection, no apoptosis of the cells was observed, and in order to detect phosphorylation of serine at position 473 and threonine at position 308 of the Akt protein in these cultured cells, Western blot analysis was performed on each cultured cell. went.
  • hyperphosphorylation of Akt protein occurred in MDA-MB-468 cells and WI-38 cells (see Ad-LacZ lane in the control experiment).
  • MDA-MB-468 Since cells have mutations in p53, this results in hyperphosphorylation of the Akt protein.
  • Ad-p53 When p53 was introduced into these cells (Ad-p53), the expression of endogenous PHLDA3 was increased, and thus PHLDA3 inhibited phosphorylation of serine at position 473 and threonine at position 308 of the Akt protein.
  • Ad-PHLDA3 phosphorylation at serine at position 473 and threonine at position 308 of the Akt protein was similarly inhibited.
  • PHLDA3 forced expression of PHLDA3 inhibits Akt activation in cells in which Akt protein is hyperphosphorylated. Therefore, when PHLDA3 is introduced into tumor cells whose cell growth is dependent on Akt activation or tumor cells in which p53 is mutated, Akt activation is inhibited and cell growth is suppressed.
  • Example 6 This example shows that apoptosis is reduced in tumor cells mutated in PHLDA3.
  • the PH3-Sh1-MM468 cell line, the PH3-Sh2-MM468 cell line, and the Ctrl-Sh-MM468 cell line were infected with p53 recombinant adenovirus or LacZ recombinant adenovirus (MOI: 3).
  • the cell cycle assay was performed according to Ohki et al. (Cancer Sci. 96, 551-667, 2000) using each of the above cells.
  • the cultured cells were collected and fixed overnight with 70% ethanol.
  • the fixed cultured cells were washed with phosphate buffered saline (PBS), incubated with 10 ⁇ g / ml propidium iodide and 100 ⁇ g / ml RNaseA, and detected using Vantage instrument (Becton Dickinson).
  • propidium iodide is known as a cell death stain.
  • Example 7 This example shows that cell growth is promoted in tumor cells having mutations in PHLDA3.
  • the experimental and control cell lines were seeded at a density of 1 ⁇ 10 4 cells per 6 cm culture dish. At this time, a two-layer medium (soft agar medium) in which 0.8% methylcellulose / DMEM was superimposed on 0.5% agarose / DMEM was used, and a new upper layer medium was added every 7 days. The culture was continued for 4 weeks, and the number of colonies formed was analyzed using Image J software (NIH). At this time, three culture dishes were analyzed in each group. Results were expressed as mean ⁇ standard deviation.
  • the Ctrl-sh-MM468 cell line, the PH3-sh1-MM468 cell line, and the PH3-sh2-MM468 cell line were respectively treated with soft agar.
  • the culture was inoculated for 4 weeks, and colonies were counted.
  • the number of colonies formed in the Myr-Akt expressing cells was significantly larger than that in the control group (P ⁇ 0.001). This indicates that Akt promotes cell proliferation.
  • the number of colonies formed in the PH3-sh1-MM468 cell line and the PH3-sh2-MM468 cell line was significantly larger than that in the Ctrl-sh-MM468 cell line (P ⁇ 0.001). ).
  • the cells in which PHLDA3 was knocked down correspond to tumor cells in which PHLDA3 was mutated. In these cells, cell proliferation is significantly promoted compared to cells expressing PHLDA3. Therefore, by introducing PHLDA3 into tumor cells having a mutation in PHLDA3, it is possible not only to enhance apoptosis of the tumor cells as shown in Example 6, but also to suppress cell proliferation.
  • Example 8 This example shows that PHLDA3 gene expression is suppressed in lung tumors (large cell neuroendocrine cancer (LCNEC)).
  • lung tumors large cell neuroendocrine cancer (LCNEC)
  • Hs00385313_ml was used as a primer for detecting PHLDA3
  • VIC-MGB 4326317-E-0508009 both TaqMan probe, Applied Biosystems
  • Each mRNA expression level thus obtained was corrected by the expression level of the internal standard GAPDH. All RNA samples were analyzed in triplicate, and the results obtained from each sample were expressed as mean ⁇ standard deviation.
  • an adapter 5′-side adapter: AATTCGGCGGCCGCGGATCC, SEQ ID NO: 29, 3′-side adapter: GCCGCCGGCGCCTAGG, SEQ ID NO: 30
  • Primer-array-method GGAATTCGGCGGCCGCGGATCC (SEQ ID NO: 31)
  • the DNA thus obtained was labeled with Cy-3-dCTP and the reference DNA with Cy-5-dCTP (both from Amersham Biosciences), purified by the random prime method, purified by ethanol precipitation, and then hybridized. It was dissolved in a mixed solution (50% formamide, 10% dextran sulfate, 2X SSC, 4% SDS, pH 7.0) and denatured at 75 ° C. for 10 minutes.
  • This labeled DNA solution was dropped onto the above MGC cancer array-800 array slide and hybridized with shaking at 42 ° C. for 48 to 72 hours.
  • the amount of PHLDA3 mRNA was lower in the lung tissue of patients suffering from lung tumors than in healthy individuals.
  • FIG. 9 shows the position of the PHLDA3 gene and marker on the chromosome.
  • Table 2 below shows the results of analysis by MCG-cancer-array-800CGH. According to this, deletions were frequently detected in the vicinity of PHLDA3 in the genes of lung tissues of lung tumor patients.
  • Example 9 This example shows that mutations have occurred in the vicinity of PHLDA3 in lung tissue of lung tumor (LCNEC) patients and pancreatic tissue of insulinoma patients.
  • pancreatic tissues of 16 patients suffering from insulinoma and 5 healthy subjects were collected at the National Cancer Center Central Hospital.
  • DNA was extracted according to the above genomic DNA preparation method.
  • this DNA was subjected to the above-mentioned "microsatellite analysis" using the following primers.
  • D1S2622-F CTGCAACATAAGAACCTAGTGTAAC (SEQ ID NO: 32)
  • D1S2622-R AAACTGGTAGGCCATTGATAGA (SEQ ID NO: 33)
  • D1S249-F TGGCATGTCTTTGAAGGAAT (SEQ ID NO: 34)
  • D1S249-R TGGTTGTAGATGAGACTGGC (SEQ ID NO: 35)
  • D1S306-F CTGGGACTGGAAACACTTTTGAT (SEQ ID NO: 36)
  • D1S510-F TTCCTGCTCCTGTCTGAATA (SEQ ID NO: 38)
  • D1S510-R TGTATATAAGGTGTAGGGGAGG (SEQ ID NO: 39)
  • FIG. 10A shows the PHLDA3 gene on the chromosome and the position of each marker analyzed in this example.
  • LOH heterozygous deletion
  • Example 10 This example shows that a mutation has occurred in the PHLDA3 gene in pancreatic tumors (insulinoma, gastrinoma) and medulloblastoma.
  • FIG. 11 shows the PHLDA3 gene arrangement on the chromosome and the position of each marker analyzed in this example.
  • GATA135F02 marker site, F13B marker site, and D1S2796 marker site for which high frequency heterozygous deletion (LOH) was reported in tissues of insulinoma (B), gastrinoma (C), and medulloblastoma (D) are PHLDA3 Close to the gene.
  • Example 11 This example shows that a mutation has occurred in the PHLDA1 gene in biliary tract cancer.
  • biliary tract tissues of 30 biliary tract cancer patients were collected at the National Cancer Center Central Hospital. Genomic DNA was extracted from this cancer tissue and adjacent normal tissue according to the above genomic DNA preparation method. Each DNA sample obtained here was labeled and purified according to the attached protocol using Aglient Genomic DNA ULS labeling kit (Aglient Technology), and then dissolved and denatured in the attached Hybridization Master Master Mix. This sample was dropped onto an array slide and hybridized at 65 ° C. for 40 hours. The slides were washed with Agilent Oligo aCGH washing buffers 1 and 2, then scanned using a microarray scanner (Agilent), and the images were analyzed with CGH Analytics (Agilent).
  • Agilent Oligo aCGH washing buffers 1 and 2 then scanned using a microarray scanner (Agilent), and the images were analyzed with CGH Analytics (Agilent).
  • Example 12 This example shows that the expression of PHLDA1 gene is decreased in breast cancer and uterine cancer.
  • the expression of PHLDA1 was significantly decreased in breast cancer patients (A) and uterine cancer patients (B) compared to healthy subjects (*, P ⁇ 0.001). This result indicates that the decreased expression of PHLDA1 is involved in the development and growth of tumors including breast cancer and uterine cancer.
  • the present invention can provide a pharmaceutical composition comprising a polypeptide having a PH domain of a PHLDA family protein, or an expression vector into which a DNA encoding the polypeptide is inserted. Furthermore, the pharmaceutical agent for the treatment of the tumor containing this pharmaceutical composition can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、PHLDAファミリータンパク質のPHドメインを有するポリペプチドを含有する医薬組成物、および、その医薬組成物を含有する腫瘍の治療用医薬剤を提供することを目的とする。本発明の医薬組成物はPHLDAファミリータンパク質のPHドメインを有するポリペプチド、あるいはそのポリペプチドをコードするDNAが挿入された発現ベクターを含有する。さらに、上記いずれかの医薬組成物を含有する医薬剤は、腫瘍の治療用に使用することができる。

Description

医薬組成物、および、腫瘍の治療用医薬剤
 本発明は、PHLDAファミリータンパク質のPHドメインを有するポリペプチドを含有する医薬組成物、PHLDAファミリータンパク質のPHドメインを有するポリペプチドをコードするDNAを含有する医薬組成物、および、これらの医薬組成物を含有する腫瘍の治療用医薬剤に関する。
 腫瘍は全世界において主な死亡原因であり、今なおその有効的な治療法の開発が待ち望まれている疾病の一つである。近年、細胞質内タンパク質Aktの活性化が、乳癌、肺癌、前立腺癌、卵巣癌、或いは、白血病及びリンパ系腫瘍のような血液系癌等において、その悪性化に関与することが報告されている(例えば、Chan TO et al., Annual Review of Biochemistry 68, 965-1014 (1999)参照)。
 AktはPI3K-Akt経路にあるセリン/スレオニンキナーゼであり、成長因子など細胞外からのシグナルによってPI3K-Akt経路が活性化されると、AktのPHドメインが細胞膜上のイノシトールリン脂質に結合することによって、Aktがリン酸化されて活性化し、さらに下流のシグナル伝達系に様々なシグナルを伝えることが知られている。上記のような悪性腫瘍細胞では、Aktの異常な活性化と膜への多量の局在が検出され、Aktの活性化が正常細胞の腫瘍化および悪性化の原因になっていると考えられている。
 一方、p53は、当初、DNA腫瘍ウイルスSV40により腫瘍化した細胞内でそのウイルス遺伝子により生産されるタンパク質に結合するp53タンパク質として発見された(例えば、Linzer DJ and Levine AJ, Cell 17, 43-52 (1979)参照)。その後、p53遺伝子の変異が様々な腫瘍細胞にみられることが判明し、p53遺伝子は腫瘍抑制遺伝子と呼ばれるようになった(例えば、Finlay CA et al., Cell 30, 1083-1093 (2004)参照)。
 正常細胞では、p53タンパク質は、PI3K-Akt経路の負の調節因子であるがん抑制遺伝子PTENの転写を活性化することによりPI3K-Akt経路を抑制する。従って、p53遺伝子に変異が生じた腫瘍細胞では、PI3K-Akt経路の抑制が解除され、Aktタンパク質が活性化し、結果として腫瘍細胞の異常な増殖が引き起こされる。
 このように、Aktの活性化に依存して腫瘍化または悪性化した腫瘍細胞に対し、Aktタンパク質の活性化を阻害することによる腫瘍治療方法の開発が試みられている(例えば、Wang YA et al., Oncology Reports 21(2), 437-442 (2009)参照)。
 本発明は、PHLDAファミリータンパク質のPHドメインを有するポリペプチドを含有する医薬組成物、および、その医薬組成物を含有する腫瘍の治療用医薬剤を提供することを目的とする。
 PHLDAファミリータンパク質は、ヒトにおいてPHLDA1~3が発見されている。PHLDA1~3は、ペプチド配列の51%~76%をPHドメインが占めることが知られていたが(例えば、Frank D. et al. Mammalian Genome 10, 1150-1159 (1999)参照)、腫瘍細胞増殖における具体的な機能は不明であった。このPHドメインは、PHLDAファミリータンパク質以外にも様々なタンパク質に認められるが、異なるタンパク質におけるアミノ酸配列の相同性は高くない(例えば、Frank D. et al., Mammalian Genome 10, 1150-1159 (1999)参照)。
 本発明者らは、PHLDAファミリータンパク質がp53の標的であり、このp53遺伝子によってPHLDA3遺伝子およびタンパク質の発現が促進されることを突き止めた。さらに、このPHLDA3が細胞膜のイノシトールリン脂質に結合することにより、腫瘍細胞の増殖を促進するAktタンパク質のリン酸化による活性化を阻害することを明らかにし、本発明の完成に至った。
 すなわち、本発明に係る医薬組成物は、PHLDAファミリータンパク質のPHドメインを有するポリペプチドを含有することを特徴とする。
 ここで、上記「PHドメインを有するポリペプチド」が、PHLDAファミリータンパク質の一部または全部であることが好ましい。
 さらに、本発明に係る医薬組成物は、上記の「PHLDAファミリータンパク質のPHドメインを有するポリペプチド」、あるいは、「PHLDAファミリータンパク質の、PHドメインを含む一部あるいは全部のポリペプチド」をコードするDNAが挿入された発現ベクターを含有していてもよい。
 ここで、本発明に係る上記いずれの医薬組成物においても、「PHLDAファミリータンパク質」が、PHLDA1~3のいずれかであることが好ましい。
 さらに、本発明に係る腫瘍の治療用医薬剤は、本発明に係る上記いずれかの医薬組成物を含有することを特徴とする。
 ここで、本発明に係る治療用医薬剤の治療対象となる腫瘍について、その腫瘍細胞の増殖がAktタンパク質の活性化を必要とする腫瘍であることが好ましい。あるいは、その腫瘍細胞において、p53タンパク質の機能不全が生じている細胞であることが好ましい。あるいは、その腫瘍細胞において、p53遺伝子に変異を有している腫瘍であることが好ましい。
 本発明に係る治療用医薬剤の治療対象となる腫瘍が、肺癌、膵癌、肝癌、乳癌、子宮癌、脳腫瘍のいずれかであることがより好ましい。
==関連出願へのクロスリファレンス==
 本出願は、平成21年2月2日付で出願した日本国特許出願第2009-22048に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
本発明の一実施形態である、p53遺伝子導入細胞あるいは非導入細胞における、PHLDA3タンパク質の発現(A)、および、p53ノックダウン細胞、対照細胞における、PHLDA3タンパク質の発現(B)を示したウエスタンブロットの結果である。 本発明の一実施形態である、LacZ、あるいはp53遺伝子を導入したMDA-MB-468細胞における、PHLDA3タンパク質およびp53タンパク質の発現を示したウエスタンブロットの結果である。 本発明の一実施形態である、各種遺伝子挿入組換えベクターを導入したSaos2細胞におけるPHLDA3mRNAの発現誘導を示したノーザンブロットおよび各種p53タンパク質の発現を示したウエスタンブロットの結果である。 本発明の一実施形態である、GST-PH-AktおよびGST-PHLDA3の各リン脂質への結合を示した、タンパク質-脂質オーバーレイアッセイの結果である。 本発明の一実施形態である、各遺伝子が導入されたMDA-MB-468細胞およびWI38細胞における、Aktタンパク質のリン酸化を示したウエスタンブロットの結果である。 本発明の一実施形態である、p53遺伝子導入あるいは非導入細胞におけるPHLDA3のノックダウンがアポトーシス細胞数に与える影響を示したグラフである。 本発明の一実施形態である、Akt遺伝子導入MDA-MB-468細胞の増殖促進(A、B)、および、PHLDA3ノックダウンMDA-MB-468細胞の増殖促進(C、D)を示した顕微鏡写真(A、C)とグラフ(B、D)である。 本発明の一実施形態である、肺腫瘍患者および健常者のPHLDA3遺伝子発現を示したグラフである(A、B) 本発明の一実施形態である、PHLDA3をはじめとする遺伝子配置を示した図である。 本発明の一実施形態である、PHLDA3遺伝子配置および各マーカーの配置を示した図である。 本発明の一実施形態である、PHLDA3遺伝子および各マーカーの配置を示した図である。 本発明の一実施形態である、PHLDA1遺伝子のホモ欠失を示すグラフである。 本発明の一実施形態である、乳癌患者(A)および子宮癌患者(B)におけるPHLDA1遺伝子の発現を示すグラフである。
 以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。ただし、本発明は下記実施例に限定されない。
 実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.等の標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。
 なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例等は、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
==医薬組成物に含まれるポリペプチド==
 本発明に係る医薬組成物は、PHLDAファミリータンパク質のPHドメインを有するポリペプチドを含有する。
 「PHLDAファミリータンパク質」とは、Pleckstrin homology-like domain, family Aに属するタンパク質であって、PHLDA1~3タンパク質(GeneBank accession number, 順にBC126425、BC005034、BC068273)のいずれかであることが好ましいが、これらに限定されない。
 「PHLDAファミリータンパク質」は、このファミリータンパク質を有しているいずれの脊椎動物に由来してもよく、例えば、ヒトを含むマウス、ラット、チンパンジー、ブタ、イヌ等の哺乳類に由来しても、ニワトリ等の鳥類に由来しても、アフリカツメガエル等の両生類に由来してもよい。
 「PHLDAファミリータンパク質のPHドメイン」とは、ヒトのPHLDA1~3タンパク質における以下のアミノ酸配列を有するドメイン、または以下のアミノ酸配列1~3において、数アミノ酸残基が欠失、挿入、または置換されたアミノ酸配列を有し、リン脂質への結合能を有するドメインと定義される。ここで、数アミノ酸残基とは、10以下のアミノ酸残基、好ましくは8以下のアミノ酸残基、より好ましくは6以下のアミノ酸残基、さらに好ましくは4以下のアミノ酸残基、さらに好ましくは2以下のアミノ酸残基のことである。
ALKEGVLEKRSDGLLQLWKKKCCILTEEGLLLIPPKQLQHQQQQQQQQQQQQQQPGQGPAEPSQPSGPAVASLEPPVKLKELHFSNMKTVDCVERKGKYMYFTVVMAEGKEIDFRCPQDQGWNAEITLQMVQY (ヒトPHLDA1のPHドメイン、配列番号1)、
VLREGELEKRSDSLFQLWKKKRGVLTSDRLSLFPASPRARPKELRFHSILKVDCVERTGKYVYFTIVTTDHKEIDFRCAGESCWNAAIALALIDFQ (ヒトPHLDA2のPHドメイン、配列番号2)、VLKEGVLEKRSGGLLQLWKRKRCVLTERGLQLFEAKGTGGRPKELSFARIKAVECVESTGRHIYFTLVTEGGGEI DFRCPLEDPGWNAQITLGLVKF(ヒトPHLDA3のPHドメイン、配列番号3)
 また、他の動物のPHドメインは、ヒトPHLDA1~3タンパク質のPHドメイン(配列番号1~3)の相同配列、または当該相同配列において、数アミノ酸残基が欠失、挿入、または置換されたアミノ酸配列を有し、リン脂質への結合能を有するドメインと定義される。
 「PHLDAファミリータンパク質のPHドメインを有するポリペプチド」とは、PHLDAファミリータンパク質のPHドメインのみを有するポリペプチド、あるいは、PHドメインを含んだPHLDAファミリータンパク質の一部または全部であるポリペプチド、あるいは、PHドメインのN末端側、C末端側、あるいはその両方に任意のポリペプチドが付加されたポリペプチドのいずれであってもよい。
 PHドメインを含んだPHLDAファミリータンパク質の一部または全部であるポリペプチドの場合、このポリペプチドは、N末端側、C末端側、あるいは、両側にPHLDAファミリータンパク質の天然由来のポリペプチド配列を有するポリペプチドであってもよい。
 PHドメインのN末端側、C末端側、あるいはその両方に任意のポリペプチドが付加されたポリペプチドの場合、この任意のポリペプチドのアミノ酸配列は、PHドメインのリン脂質への結合を妨げない範囲で制限はなく、その配列が天然由来のアミノ酸配列であっても、人為的に設計されたアミノ酸配列であってもであってもよい。このようなポリペプチドとして、例えば、myc-tag、flag-tag、HA-tag、His-tagなどのタグペプチド、GFPやRFPなどの蛍光タンパク質、βガラクトシダーゼ、ホースラディッシュ・ペルオキシダーゼ、アルカリホスファターゼなどの酵素、グルタチオン-S-トランスフェラーゼ等、一般にレポーターや融合タンパク質として周知のタンパク質を例示することができるが、これらに限定されない。また、この任意のポリペプチドの長さについても、PHドメインのリン脂質への結合を妨げない範囲で制限はなく、1000アミノ酸残基以下であってもよいが、600アミノ酸残基以下であることが好ましく、300アミノ酸残基以下であることがより好ましく、100アミノ酸残基以下であることがさらに好ましく、50アミノ酸残基以下であることがさらに好ましく、10アミノ酸残基以下であることがさらに好ましい。例えば、219アミノ酸残基(GFP, GeneBank accession number, AB185173)であっても、327アミノ酸残基 (ホースラディッシュ・ペルオキシダーゼ, GenBank accession number, X57564)であっても、667アミノ酸残基(LacZ, GenBank accession number, EU590652)であってもよい。いずれのタンパク質においても、N末端はメチオニンであることが好ましく、最短の一例として、PHドメインのポリペプチドのN末端にメチオニンが付加されたポリペプチドが挙げられる。
 PHドメインの結合対象とするリン脂質は、細胞内でAktの結合対象となってAktの活性化に関与するリン脂質であれば限定されず、PI(3,4)P2、PI(4,5)P2、PI(3,5)P2、PI(3,4,5)P3、PI(3)P、PI(4)P、PI(5)P等を例示できる。
 ここに記載した何れのポリペプチドも、糖鎖修飾などの修飾がなされていてもよい。
==医薬組成物の製法== 
 本発明に係る医薬組成物は、「医薬組成物に含まれるポリペプチド」に記載のいずれかのポリペプチドを含有していてもよい。
 本発明に係る医薬組成物に含まれる、何れのポリペプチドについても、その取得方法や調製方法は特に限定されず、天然由来のペプチドを精製した天然ペプチドであっても、遺伝子組み換え技術を用いて製造された組換えペプチドであっても、またはFmoc法やtBoc法等の周知の方法で化学合成したペプチドであっても、各種市販のペプチド合成機で製造したペプチドであってもよい。
 天然由来のポリペプチドは、タンパク質の単離法及び精製法を適宜組み合わせることにより、PHLDAタンパク質を発現している動物組織や細胞から、PHドメインを含んだPHLDAファミリータンパク質の一部、または、全部として取得することができる。
 あるいは、上記のように、遺伝子組み換え技術や化学合成法を用いて、天然由来のアミノ酸配列を有する合成ポリペプチド、あるいは、PHドメインを含む任意のアミノ酸配列を有する合成ポリペプチドを調製することができる。
 あるいは、本発明に係る医薬組成物は、「医薬組成物に含まれるポリペプチド」に記載のいずれかのポリペプチドをコードするDNAを有する発現ベクターを含有していてもよい。
 ここで、「発現ベクター」は、当業者に周知であって、投与対象となる動物の細胞内で組み込まれたDNAから、ポリペプチドを発現するように適切なプロモーターを有していれば特に制限されず、pcDNA3発現ベクターやpMX発現ベクターを例示できる。ここで「DNA」の種類は、発現ベクターにおいて当業者に周知の適切なプロモーターの下流に、発現できるように挿入された際に、上記ポリペプチドを発現することができれば、特に限定されず、cDNAであっても、イントロンを含む遺伝子由来のDNAであってもよい。
 なお、本発明に係る医薬組成物は、上記「医薬組成物に含まれるポリペプチド」に記載のいずれかのポリペプチドを一種または複数種含有していても、上記いずれかのDNAが挿入された発現ベクターを一種または複数含有していても、あるいは、一種または複数種のポリペプチドと一種または複数種DNAが挿入されたベクターを含有していてもよい。
==医薬組成物の用途==
 本発明に係る医薬組成物の用途に関して、特に制限されず、例えば、腫瘍をはじめとする疾病の治療用医薬剤の製造に用いても、あるいは、PHLDAファミリー遺伝子やタンパク質の関与する細胞内伝達系解析用試薬の製造に用いてもよい。
==腫瘍の治療用医薬剤の製法と使用方法==
 本発明に係る腫瘍の治療用医薬剤は、上記いずれかの医薬組成物を含有することを特徴とする。
 ここで、「腫瘍」とは、自律的な過剰増殖を示す細胞塊のことを意味する。腫瘍に含まれる腫瘍細胞は生体を構成する細胞自体から生ずるが、その由来に制限は無い。腫瘍は悪性腫瘍であっても良性腫瘍であってもよく、その悪性度に制限はない。
 本発明にかかる治療用医薬剤を用いた治療の対象となる腫瘍は、治療用医薬剤の処方により腫瘍細胞増殖が抑制されれば制限がないが、その腫瘍細胞において、その増殖がAktタンパク質に依存している腫瘍であることが好ましく、例えば、肺癌、膵癌、肝癌、乳癌、子宮癌、脳腫瘍のいずれかであることが好ましい。ここで、「増殖がAktタンパク質に依存している」とは、腫瘍細胞では、その腫瘍細胞が由来する正常細胞より高レベルにAktタンパク質が活性化し、そのために正常細胞が腫瘍化または悪性化していることを意味する。
 また、Aktタンパク質の腫瘍細胞における活性化の原因は特に限定されず、その腫瘍細胞でp53タンパク質の機能不全が生じている腫瘍であってもよい。p53タンパク質は、正常細胞では、PI3K-Akt経路の負の調節因子であるPTENやPHLDAの転写を活性化することによりPI3K-Akt経路を抑制しているため、p53タンパク質の機能不全が生じた腫瘍細胞では、Aktタンパク質が異所的に活性化するからである。p53タンパク質の機能不全は、多くの場合、その腫瘍細胞がp53遺伝子に変異を有していることに起因する。
 なお、「Aktタンパク質」とは、細胞内シグナル伝達系のPI3K-Akt経路における主要なセリン/スレオニン リン酸化酵素であって、哺乳類においては、例えば、Akt1(GeneBank accession number, AH011307)、Akt2(GeneBank accession number, M9536)、Akt3(GeneBank accession number, AF135794)等のアイソフォームを挙げることができる。
 また、「p53タンパク質」とはp53遺伝子によりコードされる核タンパク質であって、例えば、GeneBank accession number U94788のヒトp53タンパク質等が挙げられる。このp53タンパク質の機能不全とは、p53タンパク質が核内でその標的タンパク質に対して通常持つべき転写活性化機能が失われている、または低下していることを意味する。p53タンパク質が機能不全であるとき、その原因は特に制限されず、例えば、p53遺伝子に変異が生じたり、p53タンパク質発現過程の障害によってタンパク質が発現しなかったり、または、翻訳後のタンパク質が正常に機能できない構造に変性したりしても、あるいは、修飾等の障害によってタンパク質が正常に機能していなくてもよい。
 本発明に係る治療用医薬剤の剤形化には、当業者に周知の薬学的に許容される担体、希釈剤、腑形剤等の製剤用添加物が用いられる。その形態は本医薬剤を患者体内の患部に送達するために適切な剤形であれば特に特定されず、例えば、経口剤として、錠剤、カプセル、顆粒、散剤、シロップ、腸溶剤、徐放性カプセル、カシュー、咀嚼錠、ドロップ、丸剤、内用液剤、菓子錠剤、徐放錠、徐放性顆粒等に剤形化してもよい。また、注射剤に剤形化してもよい。本治療用医薬剤には、上記製剤用添加物の他、異なる医薬組成物を配合することもできる。
 なお、本治療用医薬剤の有効成分の処方として、上発明に係る上記医薬組成物の一種を含有していても、あるいは、複数種を含有していても制限はなく、当業者が適宜選択することができる。医薬組成物が含有するポリペプチドは、その医薬組成物を含む医薬剤の投与対象と同じ動物種に由来することが好ましい。例えば、医薬剤をヒトに投与する場合には、ヒト組織由来のPHLDAファミリータンパク質に由来することが好ましい。
 また、本発明の治療用医薬剤は、安全とされている投与量の範囲内において、ヒトまたはヒト以外の脊椎動物に対し、必要量を、適した方法で投与することができる。本発明の治療用医薬剤の投与量は、剤形の種類、投与方法、患者等投与対象の年齢や体重、患者等投与対象の症状等を考慮して、最終的には医師または獣医師の判断により適宜決定することができる。
 本治療用医薬剤の投与対象となる動物に制限はないが、ヒトまたはヒト以外の脊椎動物であることが好ましい。
[実験方法]
==細胞株==
 以下の各実施例において、ヒト骨肉腫由来細胞株のSaos2、ヒト乳癌由来p53変異細胞株MDA-MB-468(MM-468)、ヒト繊維芽細胞由来細胞株WI-38、ヒト繊維芽細胞由来MRC5細胞株、ヒト胎児腎臓由来293細胞株(すべてAmerican Type Culture Collectionより購入)を用いた。
 以下の実施例で用いる培養細胞株は、特記しない限り、10%ウシ胎児血清添加DMEMで培養した。 
==レンチウイルスの作製==
 下記PHLDA3に対するshRNA1(PH3-sh1RNA :TTGGCCATTAGCATTTCATGTCT、配列番号4)あるいはshRNA2(PH3-sh2RNA :AGGCGCTGGAGCTGAAGGAATGG、配列番号5)を発現するレンチウイルス、p53に対するshRNA(p53-shRNA :GACTCCAGTGGTAATCTAC、配列番号6)を発現するレンチウイルス、および、活性化Akt(Myr-Akt)を発現するレンチウイルスをViraPower Lentiviral Gateway Expression kit(Invitrogen社)を用いて添付プロトコールに従い作製した。
 まず、PHLDA3およびp53のshRNAについては、下記のオリゴヌクレオチドを会合させて2本鎖DNAとしたのちに、pSuperベクター(OligoEngine社)のBgl II-Sal I サイトにクローニングした。このpSuperベクターよりSma I-Xho I領域を切り出して、pLenti6/V5-DESTベクター(Invitrogen社)の平滑化したCla I-Xho Iサイトにクローニングし、組み換えpLenti6/V5-DESTベクターを作製した。また、Aktについては、活性化Akt発現ベクター(Higuchi M et al., Current Biology, Volume 11 (24), 958-1962, 2001)を鋳型とし、下記プライマーを用いてPCRを行った。PCR産物をXba Iで消化し、pLenti6/V5-DEST(Invitrogen社)のXba Iサイトにクローニングした。これらの各組換えpLenti6/V5-DESTベクターを、上記ViraPower Lentiviral Gateway Expression kitに添付のViraPowder packaging Mixと同じく添付293FT細胞に導入し、PH3-sh1RNA発現レンチウイルス、PH3-sh2RNA発現レンチウイルス、p53-shRNA発現レンチウイルス、Myr-Akt発現レンチウイルスを作製した。
PH3-sh1-sense: GATCCCCTTGGCCATTAGCATTTCATGTCTTTCAAGAGAAGACATGAAATGCTAATGGCCAATTTTTGGAAAAG(配列番号7)
PH3-sh1-antisense: TCGACTTTTCCAAAAATTGGCCATTAGCATTTCATGTCTTCTCTTGAAAGACATGAAATGCTAATGGCCAAGGG(配列番号8)
PH3-sh2-sense: GATCCCCAGGCGCTGGAGCTGAAGGAATGGTTCAAGAGACCATTCCTTCAGCTCCAGCGCCTTTTTTGGAAAAG(配列番号9)
PH3-sh2-antisense: TCGACTTTTCCAAAAAAGGCGCTGGAGCTGAAGGAATGGTCTCTTGAACCATTCCTTCAGCTCCAGCGCCTGGG(配列番号10)
p53-sh-sense: GATCCCCGACTCCAGTGGTAATCTACTTCAAGAGAGTAGATTACCACTGGAGTCTTTTTGGAAAAG(配列番号11)
p53-sh-antisense: TCGACTTTTCCAAAAAGACTCCAGTGGTAATCTACTCTCTTGAAGTAGATTACCACTGGAGTCGGG(配列番号12)
Myr-Akt-sense: CGGGCCCTCTAGACTCGAGCGGCCGCC(配列番号13)
Myr-Akt-antisense: TTATCTAGATTACAGATCCTCTTCTGAGATGAG(配列番号14)
==遺伝子ノックダウン細胞株の樹立==
 上記のように作製した各PH3-shRNA発現レンチウイルスをMDA-MB-468細胞に感染させた。また、p53ノックダウン細胞株確立のため、上記p53-shRNA発現レンチウイルスをMRC5細胞に感染させた。
 以上の細胞を0.6 mg/mlハイグロマイシンによって選択することにより、PHLDA3ノックダウン細胞株(Ph3-Sh1-MM-468細胞株、Ph3-Sh2-MM-468細胞株)、および、p53ノックダウン細胞株(p53-sh-MRC5細胞株)を樹立した。また、非組換えpLenti6/BLOCK-iT Expression Construct vectorを用いて、上記と同様にレンチウイルスを作製し、対照細胞株(Ctrl-sh-MM468およびCtrl-sh-MRC5細胞株)を確立した。
==組換えアデノウイルスの調製==
 組換えアデノウイルスは、Adenovirus Expression Vector kit (Dual Version)、およびadenovirus genome DNA-TPC(共にTakara社)を用いて作製した。具体的には、pC53-SN3 (Baker SJ et al., Science, 249, 912-915, 1990)をBamH Iで消化してp53遺伝子の翻訳領域全長を切りだし、さらにDNA Blunting kit (Takara社)を用いて末端平滑化を行った。また、N末端をHAタグで標識したPHLDA3断片を得るため、PHLDA3 EST (EST IMAGE ID 3547186、 Open Biosystems社)を鋳型とし、下記プライマーを用いてPCRを行った。ここで得られたDNA増幅断片を、HA タグを挿入したpcDNA3.1ベクター(Invitrogen社)のBamH I-Xho Iサイトに挿入し、クローニングした。このようにして得られたベクターをKpn I およびXho Iを用いた消化した後、このDNA断片を精製し、さらにDNA Blunting kit (Takara社)を用いて末端平滑化を行った。
Ad-PHLDA3-sense: TTAGGATCCATGACGGCGGCGGCGACGGCTAC(配列番号15)
Ad-PHLDA3-antisense: TTACTCGAGTTAGGACACGAGGGTCCCGGT(配列番号16)
 以上のようにして得られた各DNA断片を、コスミドベクター(pAxCAwtit)のSmi I 制限酵素部位に挿入した後、各組換えベクターをそれぞれ293細胞にトランスフェクトし、p53組換えアデノウイルス、および、PHLDA3組換えアデノウイルスを作製した。こうして得られた各組換えアデノウイルスをVirakit Adeno 4 (Virapur社)を用いて精製し、タイターを測定した。MOI(multiplicity of infection、重複感染度)を添付マニュアルに従って293細胞を用いた時の50%組織培養感染用量(TCID50)から決定した。
 対照群として、上記Adenovirus Expression Vector kit (Dual Version)に付属のControl Cosmid pAxCAiLacZit(LacZ組換えアデノウイルス)を用いた。
==組織からのcDNAの調製法==
 採取された組織から、RNeasy Midi Kit(Qiagen社)を用いて全RNAを抽出した。このRNA(0.2~5μg)をSuperScript First-Strain Synthesis System for RT-PCR(Invitrogen社)を用いて逆転写し、cDNAを作製した。
==ノーザンブロット解析==
 全RNAをRNeasy Midi Kit(Qiagen社)を用いて抽出した。ノーザンブロットはOhki et al. (Cancer Sci. 98, 189-200, 2007)の記載に従って行った。PHLDA3mRNAの検出用ハイブリダイズ用プローブとして、ESTクローン(IMAGE ID 3547186、 Open Biosystems社)から得られるSma I-Apa I DNA断片を使用した。この断片はPHLDA3の翻訳領域の全長を含む。このハイブリダイズ用プローブを、BcaBEST labeling kit (Takara社)を用いて標識した後、Probe Quant G-50 Micro ColumnとNICK Column (共にAmersham社)で精製した。なお、内部標準として28SRNAを用いた。
==ウエスタンブロット解析==
 培養細胞を50 mM 細胞溶解バッファー(Tris-HCl(pH 8.0)、1% NP40、250 mM NaCl、50 mM NaF、1 mM NaVO4、1 mM プロテアーゼ阻害剤 (PMSF、aprotinin、leupeptin)、1 mM DDT)中で溶解し、遠心分離した。ここで得られた上清を変性SDS-ポリアクリルアミドゲルで電気泳動し、PVDF膜にブロットした後、膜上のタンパク質を各タンパク質に特異的な抗体を用いて検出した。泳動時、PHLDA3タンパク質の検出のため、ゲルの1レーンにつき20μgのタンパク質を電気泳動し、その他のタンパク質の検出のため、1レーンにつき5μgのタンパク質を電気泳動した。一次抗体として、抗PHLDA3 ヤギポリクローナル抗体(カタログ番号:ab22822、Abcam社)、抗p53ヤギポリクローナル抗体(カタログ番号:9282G、Cell signaling Technology社)、抗p53-phospho-Ser15特異的ウサギポリクローナル抗体(カタログ番号:9284、Cell signaling Technology社)、抗Aktウサギポリクローナル抗体(カタログ番号:9272、Cell signaling Technology社)、抗phospho-Akt(S473)ウサギポリクローナル抗体(カタログ番号:9271、Cell signaling Technology社)、抗phospho-Akt(T308)ウサギポリクローナル抗体(カタログ番号:9275、Cell signaling Technology社)を適宜用いた。以上の一次抗体は、室温で一晩、1000~3000倍希釈で反応させた。二次抗体として、抗ウサギIgG HRP標識ヤギIgG(カタログ番号:7074、Cell signaling Technology社)、ECL 抗マウスIgG HRP標識ヒツジ抗体(カタログ番号:NA931、Amersham Bioscience社)、抗ヤギIgG HRP標識ウシ抗体(カタログ番号:co306、santa cruz biotechnology社)を用いた。以上の二次抗体は、室温で3時間、2000~4000倍希釈で反応させた。シグナルの可視化には、Western Lightning Chemiluminescence Reagent Plus (PerkinElmer Life sciences社)を用いた。なお、内部標準およびゲルに泳動したタンパク質量補正のため、βアクチンを用いた。
==組織試料からのゲノムDNAの調製==
 組織をメタノールあるいはホルマリンで固定し、5μmのパラフィン切片を作製した。この切片から、lazer captured microdissection法(Emmert-Buck MR et al., Science 274, 998-1001, 1996)により腫瘍細胞を単離した。この単離腫瘍細胞あるいは正常組織を、200μl溶解バッファー(10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.5% SDS)で溶解し、proteinaseKで消化した後、phenol-chloroform抽出法でゲノムDNAを精製した。
==マイクロサテライト解析==
 本解析法は、Takahashi et al. (Clin. Cancer Res. 2007, 13(1), 111-120, 2007)の記載に従って行った。まず、上記ゲノムDNAの調製法に従い、組織からゲノムDNAを抽出した。このDNAを鋳型とし、FAMで蛍光標識したプライマーを用いて40サイクルのPCRを行った。PCR産物は、ABI Prism 3100 DNA Sequencer (Applied Biosystems社)を用いて配列を決定し、GeneScanおよびGenotyper software(Applied Biosystems社)を用いてシークエンスデータを解析した。正常組織の2つのアレルのシグナルの比と比較し、腫瘍組織の2つのシグナルの比が0.65以下であった場合にアレル不均衡があると判断した。
[実施例1]
 本実施例は、細胞にp53遺伝子を導入することによりPHLDA3遺伝子発現が促進されること、および、細胞でp53遺伝子をノックダウンすることにより、PHLDA3遺伝子の発現が抑制されることを示す。
 細胞へp53遺伝子を導入することによるPHLDA3遺伝子発現への影響を調べるため、Saos2細胞に、pcDNA3-p53組換え発現ベクター、あるいは、対照群としてpcDNA3ベクターを一過的に導入し、24時間培養した。この遺伝子導入細胞におけるPHLDA3遺伝子発現量をノーザンブロット解析によって検出した。
 この結果、図1Aに示すように、対照群と比較し、p53遺伝子を導入したSaos2細胞ではPHLDA3遺伝子の発現量が増加した。
 さらに、p53遺伝子のノックダウンによるPHLDA3遺伝子発現への影響を調べるため、p53-sh-MRC5細胞株、および、Ctrl-sh-MRC5細胞株に、30グレイの放射線照射を行い、6時間または10時間後に細胞を回収した。この放射線照射は、p53タンパク質の発現を増加させることが知られている。その後、これらの細胞におけるPHLDA3遺伝子発現をノーザンブロットに解析により検出した。
 図1Bに示すように、対照群の細胞においては、放射線照射後にPHLDA3遺伝子発現量が増加した。一方、p53遺伝子をノックダウンした細胞では放射線の照射、未照射に関わらず、PHLDA3遺伝子の発現は抑制された。
 これらの実験から示されるように、p53遺伝子は、PHLDA3遺伝子の発現を正に制御している。
[実施例2]
 本実施例は、p53遺伝子の導入によってPHLDA3のタンパク質の発現量が増加することを示す。
 MDA-MB-468細胞に、p53組換えアデノウイルス、あるいは、対照群として、LacZ組換えアデノウイルスを感染させた(MOI:15)。さらに18時間培養を続けた後、PHLDA3タンパク質、p53タンパク質の発現量を検出するため、この細胞をウエスタンブロット法で解析した。
 図2に示すように、p53遺伝子が導入されたMDA-MB-468細胞では、対照群に比較してPHLDA3タンパク質の発現量が増加し、p53タンパク質量が増加していた。
 この実験から示されるように、p53遺伝子は、PHLDA3の発現を、タンパク質レベルで増強させる。
[実施例3]
 本実施例は、細胞に導入するp53遺伝子に変異を導入することによって、PHLDA3タンパク質の発現量の増加が抑制されることを示す。
==組換え発現ベクターの調製==
 野生型p53、p53-S15A(15位のセリンがアラニンに置換されたp53変異体遺伝子)、p53-S15D(15位のセリンがアスパラギン酸に置換されたp53変異体遺伝子)、p53-S46A(46位のセリンがアラニンに置換されたp53変異体遺伝子)、あるいはTAD-S/A(転写活性化ドメイン内のセリンが全てアラニンに置換されたp53変異体遺伝子)を有する発現ベクターを作製するため、Oda et al.(Cell 102 (6), 849-862, 2000)に記載の野生型p53発現ベクター(野生型、S15D、S15A、TAD-S/A)あるいはp53-S46A 発現ベクター(S46A)を鋳型とし、それぞれ下記プライマーペア(表1)を用いてPCRを行った。TAD-S/Aに関しては、p53-N-terS/A-primer-senseとp53-primer-antisense-AvaIIでPCRを行った後に、そのPCR産物を鋳型として、p53-S/A-primer-senseとp53-primer-antisense-AvaIIでさらにPCR増幅を行った。得られたPCR産物をBamHIとAvaIIで処理した断片と、野生型p53のPCR断片をAvaIIとEcoRIで処理した断片を以下のベクターにクローニングした。ここで得られた野生型p53をpcDNA3発現ベクター(Invitrogen社)のBamHI-XhoIおよびpMX発現ベクター(Onishi M et al., Mol. Cell. Biol. 18, 3871-3879, 1998)のBamHI-EcoRIサイトに挿入し、pcDNA3-p53組換えベクターおよびpMX-p53組換えベクターを作製した。また、各変異型p53のPCR産物をpMX発現ベクターのBamHI-EcoRIサイトに挿入し、p53pMX-S15A、pMX-S15D、p53pMX-S46A、pMX-TAD-S/A発現ベクターを作製した。
Figure JPOXMLDOC01-appb-T000001
p53-primer-sense:TTAGGATCCATGGAGGAGCCGCAGTCAGATCCTAGCGTC(配列番号17)
p53-primer-antisense:TTAGAATTCTCAGTCTGAGTCAGGCCCTTC(配列番号18)
p53-primer-antisense-2:TTACTCGAGTCAGTCTGAGTCAGGCCCTTC(配列番号19)
p53S15A-primer-sense:TTAGGATCCATGGAGGAGCCGCAGTCAGATCCTAGCGTCGAGCCCCCTCTGGCTCAGGAAACATTTTCAG(配列番号20)
p53S15D-primer-antisense:TTAGGATCCATGGAGGAGCCGCAGTCAGATCCTAGCGTCGAGCCCCCTCTGGATCAGGAAACATTTTCAG(配列番号21)
p53-N-terS/A-primer-sense:GCAGGCAGATCCTGCCGTCGAGCCCCCTCTGGCTCAGGAAACATTTGCAGACCTATGGAAACTACTTCCTGAAAACAACGTTCTGGCCCCCTTGCCGGCCCAAGCAATGGATGATTTGATGCTGgCCCCGGACGATATTGAACAATGGTTCACT(配列番号22)
p53-S/A-primer-sense:TTAGGATCCATGGAGGAGCCGCAGGCAGATCCTAGCGTC(配列番号23)
p53-primer-antisense-AvaII:TCATCTGGACCTGGGTCTTCAGTGAAGCATTGTTC(配列番号24)
 Saos2細胞に、上記各組換え発現ベクターを一過的に導入し、24時間培養を続けた。対照群として、いずれのDNA配列も挿入されていない非組換えpcDNA3ベクターを導入した。その後、ノーザンブロット法によって、この細胞におけるPHLDA3遺伝子発現量を測定した。さらに、ウエスタンブロット法によってこの細胞におけるp53タンパク質の発現量を解析した。
 図3に示すように、Saos2細胞におけるPHLDA3タンパク質の発現量は、p53S15D組換えベクター(28S比:9.3)、野生型p53組換えベクター(28S比:4.0)、p53S46A組換えベクター(28S比:3.9)、TAD-S/A組換えベクター(28S比:2.4)、p53S15A組換えベクター(28S比:1.7)、非組換えpcDNA3ベクター、を導入した順に高かった。
 このように、細胞に導入するp53遺伝子に変異を導入することによって、PHLDA3タンパク質の発現量の増加が抑制される。即ち、p53によるPHLDA3の発現増加は、p53の転写活性化能に依存する。
[実施例4]
 本実施例は、PHLDA3のリン脂質への結合を示す。
==GST融合タンパク質の調製==
 PHLDA3のGST融合タンパク質(GST-PHLDA3)調製のため、PHLDA3cDNA(ESTクローン、IMAGE ID 3547186、 Open Biosystems社)を鋳型として用い、以下のプライマーを用いたPCRによってPHLDA3のコード領域を増幅させた。
GST-PHLDA3-sense:TTAGGATCCATGACGGCGGCGGCGACGGCTAC(配列番号25)
GST-PHLDA3-antisense:TTACTCGAGTTAGGACACGAGGGTCCCGGT(配列番号26)
 一方、AktのPHドメインのGST融合タンパク質(GST-PH-Akt)調製のため、HCT116細胞(American Type Culture Collection社)の全RNAを用いて作製したcDNAを鋳型として用い、以下のプライマーを用いたPCRによってAktのPHドメインのコード領域を増幅させた。
GST-PH-Akt-sense:TTAGGATCCATGAGCGACGTGGCTATTGTGAAGGAG(配列番号27)
GST-PH-Akt-antisense:TTACTCGAGTTACTCGTTCATGGTCACGCGGTGC(配列番号28)
 以上のようにして得られた各PCR産物の両末端をBamH IおよびXho Iで消化後、pGEX-6P-1ベクター(Amersham Pharmacia社)のBamH I-Xho I に挿入し、このベクターをBL21-Gold(DE3)コンピテント細胞(Stratagene社)に導入した。さらにこの細胞を溶解した後、溶解液中のGST融合タンパク質をグルタチオン-spharose 4Bビーズ(Amersham Pharmasia社)を用いて精製した。
==タンパク質-脂質オーバーレイアッセイ==
 各リン脂質(Echelon Bioscience 社)を0.1%HClを含むメタノール-クロロホルム(1:1)混合液に溶解した後、ニトロセルロース膜(NitroPure transfer membrane、Osmonics社)に滴下し、風乾させた。この膜を、4%スキムミルクを含むTBSTバッファー(50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween 20, pH 8.0)、および、3%脂肪酸非含有ウシ血清アルブミン(Sigma社)を含むTBSTによって室温で30分ずつブロッキングした。この膜を4℃で一晩、5μg/mlの各GST融合タンパク質と反応させた。続いてこの膜をTBSTバッファーで10分間、6回リンスした後、室温で1時間抗-GSTマウスモノクローナル抗体(5000倍希釈、clone GST-2(G 1160)、Sigma社)と反応させ、TBSTバッファーで再びリンスした。さらに、この膜をECL HRP標識抗マウスIgGヒツジ抗体(20000倍希釈、Amersham Biosciences社)と室温で1時間反応させた。再び膜をTBSTバッファーで同様にリンスし、GST融合タンパク質の各リン脂質への結合を化学発光分析法(Western Lightning Chemiluminescence Reagent Plus 、PerkinElmer Life sciences社)により解析した。なお、対照群として、膜にブロットした各リン脂質に非融合GSTタンパク質を反応させた。
 図4に示すように、GST-PH-AktはPI(3,4)P2およびPI(3,4,5)P3に結合した。一方、GST-PHLDA3はPI(3,4)P2、PI(4,5)P2、PI(3,5)P2、PI(3,4,5)P3、PI(3)P、PI(4)P、PI(5)Pに結合した。
 このように、PHLDA3タンパク質は、広くリン脂質に結合する。
[実施例5]
 本実施例は、p53及びPHLDA3がAktのリン酸化を阻害することを示す。
 MDA-MB-468細胞、およびWI-38細胞に、p53組換えアデノウイルス、PHLDA3組換えアデノウイルス、あるいは、対照群として、LacZ組換えアデノウイルスを感染させた(MOI: 35)。感染18時間後には、まだ細胞のアポトーシスは観察されず、これらの培養細胞におけるAktタンパク質の473位のセリン、および308位のスレオニンにおけるリン酸化を検出するため、各培養細胞に対しウエスタンブロット解析を行った。
 図5に示すように、MDA-MB-468細胞、およびWI-38細胞では、Aktタンパク質の過剰リン酸化が生じており(対照実験のAd-LacZのレーン参照)、特に、MDA-MB-468細胞は、p53に変異を有するため、その結果として、Aktタンパク質の過剰リン酸化が生じている。
 これらの細胞に、p53を導入すると(Ad-p53)、内在性のPHLDA3の発現が亢進するため、そのPHLDA3によって、Aktタンパク質の473位のセリンおよび308位のスレオニンにおけるリン酸化が阻害された。また、PHLDA3を導入しても(Ad-PHLDA3)、同様にAktタンパク質の473位のセリンおよび308位のスレオニンにおけるリン酸化が阻害された。
 このように、PHLDA3の強制発現は、Aktタンパク質の過剰リン酸化が生じている細胞において、Aktの活性化を阻害する。従って、細胞増殖がAktの活性化に依存している腫瘍細胞やp53に変異を生じた腫瘍細胞にPHLDA3を導入すると、Aktの活性化が阻害され、細胞増殖が抑制される。
[実施例6]
 本実施例は、PHLDA3に変異を生じた腫瘍細胞では、アポトーシスが減少することを示す。
 PH3-Sh1-MM468細胞株、PH3-Sh2-MM468細胞株、および、Ctrl-Sh-MM468細胞株に、p53組換えアデノウイルス、あるいは、LacZ組換えアデノウイルスを感染させた(MOI:3)。
 ウイルス感染43時間後、上記各細胞を用い、Ohki et al. (Cancer Sci. 96, 551-667, 2000) に従って、細胞周期アッセイを行った。まず、培養細胞を回収し、70%エタノールで一晩固定した。固定された培養細胞をリン酸緩衝生理食塩水(PBS)で洗浄後、10μg/ml propidium iodideと100μg/ml RNaseAと共にインキュベートし、Vantage instrument(Becton Dickinson社)を用いて検出した。なお、propidium iodideは細胞死染色剤として知られる。
 本実験で、p53を導入し、PHLDA3をノックダウンした細胞は、PHLDA3に変異を生じた腫瘍細胞に相当する。図6に示すように、これらの細胞では、PHLDA3を発現している細胞(Ad-p53-ctrl-shRNA)に比べ、有意にアポトーシスが抑制されている。従って、PHLDA3に変異を生じた腫瘍細胞に、PHLDA3を導入することによって、その腫瘍細胞のアポトーシスを増強することができる。
[実施例7]
 本実施例は、PHLDA3に変異を生じた腫瘍細胞では、細胞増殖が促進されることを示す。
==Myr-Akt細胞株の樹立==
 Myr-Akt発現レンチウイルスをMDA-MB-468細胞に導入し、続いてこの細胞を0.5 μg/ml Blasticidin S (Invitrogen社)で選択培養することによって、Myr-Akt発現MM-468細胞株を樹立した。対照群細胞株の樹立には、いずれの遺伝子も導入していないレンチウイルスを用いた。
 上記実験群と対照群の細胞株を、6 cmの培養皿あたり1x104細胞の密度で播種した。このとき、0.5%アガロース/DMEMの上に0.8%メチルセルロース/DMEMを重ねた二層の培地(ソフトアガー培地)を用い、7日毎に新しい上層培地を加えた。4週間培養を続け、形成されたコロニー数をImage J software(NIH)を用いて解析した。この際、各群において、3つの培養皿について解析した。結果を平均値±標準偏差として表した。
 さらに、PHLDA3遺伝子の抑制がコロニー形成に与える影響を調べるため、Ctrl-sh-MM468細胞株、PH3-sh1-MM468細胞株、および、PH3-sh2-MM468細胞株を、上記と同様にそれぞれソフトアガー培地に播種して4週間培養を続け、コロニーを計数した。
 図7A、Bに示すように、Myr-Akt発現細胞では、対照群と比較して形成されたコロニー数が有意に多かった(P<0.001)。これは、Aktが細胞増殖を促進することを示している。
 また、図7C、Dに示すように、Ctrl-sh-MM468細胞株に比較し、PH3-sh1-MM468細胞株およびPH3-sh2-MM468細胞株の形成コロニー数は有意に多かった(P<0.001)。本実施例で、PHLDA3をノックダウンした細胞は、PHLDA3に変異を生じた腫瘍細胞に相当する。これらの細胞では、PHLDA3を発現している細胞に比べ、有意に細胞増殖が促進されている。従って、PHLDA3に変異を生じた腫瘍細胞に、PHLDA3を導入することによって、実施例6で示したように腫瘍細胞のアポトーシスを増強することができるだけでなく、細胞増殖も抑制できる。
[実施例8]
 本実施例は、肺腫瘍(大細胞神経内分泌癌(LCNEC))においてPHLDA3遺伝子発現が抑制されていることを示す。
==試料==
 肺腫瘍(LCNEC)に罹患している患者12名(1T~12T、ただし患者3Tは本試料採取前に化学療法を受けている)および健常者5名(A~E)の肺組織を1993年から2000年の間に国立がんセンター中央病院にて採取した。
==定量RT‐PCR解析==
 定量RT-PCRはKaneshiro et al. (Genomics 89, 178-188, 2007)の記載に従い、下記の条件で行った。上記「組織からのcDNAの調製法」により、採取された肺組織からcDNAを作製した。このcDNAを鋳型として、Lightcycler 480 Instrument (Roche Diagnotics社)により定量PCRを行った。この時、PHLDA3検出用プライマーとしてHs00385313_ml、GAPDH検出用プライマーとしてVIC-MGB 4326317-E-0508009(共にTaqMan probe、 Applied Biosystems社)を用いた。
 このようにして得られた各mRNA発現量は内部標準のGAPDHの発現量によって補正した。すべてのRNA試料は、3回ずつ繰り返して解析し、各試料から得られた結果は平均値±標準偏差として表した。
==MCG cancer array 800-CGH解析法==
 本解析法には、800種類の腫瘍関連遺伝子の解析のためにカスタムメイドされたMCG cancer array 800を用い、Peng et al.(Cancer Sci. 96, 661-667, 2005)およびSonoda et al.(Cancer Res. 64, 3741-3747, 2004)の記載に従い行った。上記肺組織から、前述のゲノムDNA調製法に従いゲノムDNAを抽出した。このDNAを鋳型として、アダプター(5’側アダプター:AATTCGGCGGCCGCGGATCC、配列番号29、3’側アダプター:GCCGCCGGCGCCTAGG、配列番号30)を付加した後、下記プライマーを用いたPCRを行った。
Primer-array-method: GGAATTCGGCGGCCGCGGATCC(配列番号31)
 このようにして得たDNAをCy-3-dCTPで、また、リファレンスDNAをCy-5-dCTP(共にAmersham Biosciences社)で、ランダムプライム法によってそれぞれ標識しエタノール沈殿法により精製した後、ハイブリダイス用混合液(50% formamide, 10% dextran sulfate, 2X SSC, 4% SDS, pH 7.0)に溶解し、75℃で10分間変性させた。この標識DNA溶液を上記MGC cancer array-800のアレイスライドに滴下し、48~72時間、42℃で振盪しながらハイブリダイズさせた。ハイブリダイズ後、スライドを50% formamide-2X SSC(pH 7.0)(50℃、15分)、2X SSC-0.1% SDS (50℃、15分)、0.1% NP40添加0.1 M sodium phosphate buffer(pH 8.0)(室温、15分)で一回ずつリンスした。このスライドを、GenePix 4000B(Axon Instruments社)を用いてスキャンし、画像をGenePix Pro4.1 imaging software (Axon Instruments社)で解析した。シグナル/リファレンス比が0.8より低い場合に、染色体欠失が生じていると判断した。
 図8A、Bに示すように、化学療法を受けた患者(T3)を除き、肺腫瘍に罹患している患者の肺組織では、健常者に比較してPHLDA3 mRNA量が低かった。
 さらに、図9は染色体上のPHLDA3遺伝子およびマーカーの位置を示している。また、下記表2はMCG cancer array-800CGHによる解析結果を示し、これによると、肺腫瘍患者の肺組織の遺伝子において、高頻度でPHLDA3近傍に欠失が検出された。
Figure JPOXMLDOC01-appb-T000002
[実施例9]
 本実施例は、肺腫瘍(LCNEC)患者の肺組織およびインスリノーマ患者の膵臓組織において、PHLDA3近傍に変異が生じていることを示す。
 まず、インスリノーマに罹患している患者16名および健常者5名の膵臓組織を国立がんセンター中央病院にて採取した。上記ゲノムDNAの調製法に従ってDNAを抽出した。肺腫瘍患者組織およびインスリノーマ患者組織染色体1q31~32における各遺伝子座欠失と重複を検出するため、このDNAを下記のプライマーを用いた上記「マイクロサテライト解析」に供した。
D1S2622-F:CTGCAACATAAGAACCTAGTGTAAC(配列番号32)
D1S2622-R:AAACTGGTAGGCCATTGATAGA(配列番号33)
D1S249-F:TGGCATGTCTTTGAAGGAAT(配列番号34)
D1S249-R:TGGTTGTAGATGAGACTGGC(配列番号35)
D1S306-F:CTGGGACTGGAAACACTTTTGAT(配列番号36)
D1S306-R:CCAGAGGGAGCATTGGTG(配列番号37)
D1S510-F:TTCCTGCTCCTGTCTGAATA(配列番号38)
D1S510-R:TGTATATAAGGTGTAGGGGAGG(配列番号39)
 図10Aは染色体上のPHLDA3遺伝子および、本実施例で解析した各マーカーの位置を示している。Bに示すように、インスリノーマ患者の試料では、PHLDA3近傍のD1S306に高頻度にヘテロ接合性欠失(LOH)が認められる。また、表3に示すように、肺腫瘍患者においてもD1S306に高頻度でLOHが認められた。
Figure JPOXMLDOC01-appb-T000003
[実施例10]
 本実施例は、膵臓腫瘍(インスリノーマ、ガストリノーマ)および、髄芽腫においてPHLDA3遺伝子に変異が生じていることを示す。
 インスリノーマ患者とガストリノーマ患者の膵臓組織、および髄芽腫患者脳組織において、表4、5、6に示すような各マーカー領域に、LOHが頻繁に認められることが報告されている(Chen YJ et al., Cancer Res. 63, 817-823, 2003; Kraus JA et al., Int. J. Cancer 67, 11-15, 1996; Yang YM et al., J. Int. J. Cancer 117, 234-240, 2005)。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 ヒトゲノム解析による全ゲノムのDNA配列情報を用い、UCSC genome browser及びNCBI Map Viewer(http://genome.ucsc.edu/、http://www.ncbi.nlm.nih.gov/mapview/)を用いてPHLDA3遺伝子と各マーカーの位置を解析した。
 図11は本実施例で解析した、染色体上のPHLDA3遺伝子配置および各マーカーの位置を示している。インスリノーマ(B)、ガストリノーマ(C)、髄芽腫(D)の組織において、高頻度なヘテロ接合性欠失(LOH)が報告されていたGATA135F02マーカー部位、F13Bマーカー部位、およびD1S2796マーカー部位はPHLDA3遺伝子に近傍している。
[実施例11]
 本実施例は、胆道癌において、PHLDA1遺伝子に変異が生じていることを示す。
 本実施例では、Alient 44K oligonucleotide micro array CGH (Agilent Technologies社)を用いて、胆道癌患者における遺伝子欠失を解析した。まず、胆道癌患者30名の胆道組織を国立がんセンター中央病院にて採取した。この癌組織および隣接する正常組織から、上記ゲノムDNAの調製法に従いゲノムDNAを抽出した。ここで得られた各DNA試料をAglient Genomic DNA ULS labeling kit (Aglient Technology社)を用い、添付プロトコールに従って標識および精製した後、添付のHybridization Master Mixに溶解し、変性させた。この試料をアレイスライドに滴下し、65℃で40時間ハイブリダイズした。このスライドをAgilent Oligo aCGH 洗浄バッファー1および2で洗浄後、マイクロアレイスキャナー (Agilent社)を用いてスキャンし、画像をCGH Analytics (Agilent社)で解析した。
 図12に示すように、胆道癌組織から得た試料において、PHLDA1遺伝子のホモ欠失が高頻度で認められる。
 この結果は、胆道癌をはじめとする腫瘍の発生、増殖にPHLDA1の変異が関与することを示す。
[実施例12]
 本実施例は、乳癌、子宮癌においてPHLDA1遺伝子の発現が低下していることを示す。
 小葉発生性乳癌患者および乳管癌患者の乳房組織試料、明細胞子宮癌患者および子宮頸部癌の子宮組織、および健常者の乳房組織と子宮組織試料におけるPHLDA1の発現を遺伝子発現データベースSciantis System Pro (Filgen社)のe-Northern機能を用いて解析した。
 図13に示すように、乳癌患者(A)、子宮癌患者(B)において健常者と比較してPHLDA1の発現が有意に低下していた(*、P<0.001)。
 この結果は、PHLDA1の発現低下が乳癌、子宮癌をはじめとする腫瘍の発生、増殖に関与していることを示す。
 本発明により、PHLDAファミリータンパク質のPHドメインを有するポリペプチド、あるいは、そのポリペプチドをコードするDNAが挿入された発現ベクターを含有することを特徴とする医薬組成物を提供することができる。さらに、この医薬組成物を含有する腫瘍の治療用医薬剤を提供することができる。

Claims (11)

  1.  PHLDAファミリータンパク質のPHドメインを有するポリペプチドを含有することを特徴とする、医薬組成物。
  2.  前記PHドメインを有するポリペプチドが、前記ファミリータンパク質の一部または全部であることを特徴とする、請求項1に記載の医薬組成物。
  3.  請求項1または2に記載のポリペプチドをコードするDNAを有する発現ベクターを含有することを特徴とする、医薬組成物。
  4.  前記PHLDAファミリータンパク質がPHLDA1~3タンパク質のいずれかであることを特徴とする、請求項1~3のいずれか1項に記載の医薬組成物。
  5.  請求項1~4のいずれか1項に記載の医薬組成物を含有することを特徴とする、腫瘍の治療用医薬剤。
  6.  前記腫瘍において、腫瘍細胞の増殖がAktタンパク質の活性化に依存していることを特徴とする、請求項5に記載の腫瘍の治療用医薬剤。
  7.  前記腫瘍において、腫瘍細胞でp53タンパク質の機能不全が生じていることを特徴とする、請求項5または6に記載の腫瘍の治療用医薬剤。
  8.  前記腫瘍において、腫瘍細胞でp53遺伝子に腫瘍化を生じる変異を有していることを特徴とする、請求項7に記載の腫瘍の治療用医薬剤。
  9.  前記腫瘍において、腫瘍細胞でPHLDAファミリーのタンパク質の機能不全を生じていることを特徴とする、請求項5または6に記載の腫瘍の治療用医薬剤。
  10.  前記腫瘍において、腫瘍細胞でPHLDAファミリー遺伝子に腫瘍化を生じる変異を有していることを特徴とする、請求項7に記載の腫瘍の治療用医薬剤。
  11.  前記腫瘍が肺癌、膵癌、肝癌、乳癌、子宮癌、脳腫瘍のいずれかであることを特徴とする、請求項5~10のいずれかに記載の腫瘍の治療用医薬剤。
PCT/JP2010/051428 2009-02-02 2010-02-02 医薬組成物、および、腫瘍の治療用医薬剤 WO2010087497A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010548588A JPWO2010087497A1 (ja) 2009-02-02 2010-02-02 医薬組成物、および、腫瘍の治療用医薬剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-022048 2009-02-02
JP2009022048 2009-02-02

Publications (1)

Publication Number Publication Date
WO2010087497A1 true WO2010087497A1 (ja) 2010-08-05

Family

ID=42395749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051428 WO2010087497A1 (ja) 2009-02-02 2010-02-02 医薬組成物、および、腫瘍の治療用医薬剤

Country Status (2)

Country Link
JP (1) JPWO2010087497A1 (ja)
WO (1) WO2010087497A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203959A1 (ja) * 2013-06-20 2014-12-24 大鵬薬品工業株式会社 PHLDA1又はPIK3C2Bの発現に基づくPI3K/AKT/mTOR阻害剤の治療効果の予測方法
WO2015178490A1 (ja) * 2014-05-23 2015-11-26 国立大学法人京都大学 移植材料及びその調製方法
US10323044B2 (en) 2015-02-27 2019-06-18 Taiho Pharmaceutical Co., Ltd. Crystal of imidazo-oxazine, pharmaceutical composition containing said crystal, and method for producing said crystal
US11883404B2 (en) 2016-03-04 2024-01-30 Taiho Pharmaceuticals Co., Ltd. Preparation and composition for treatment of malignant tumors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAWASE TATSUYA ET AL.: "PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt", CELL, vol. 136, no. 3, 6 February 2009 (2009-02-06), pages 535 - 550 *
NAGAI MARIA APARECIDA ET AL.: "Down-regulation of PHLDA1 gene expression is associated with breastcancer progression", BREAST CANCER RESEARCH AND TREATMENT, vol. 106, no. 1, 2007, pages 49 - 56 *
RUDIGER NEEF ET AL.: "Identification of the Human PHLDA1/TDAG51 Gene: Down-Regulationin Metastatic Melanoma Contributes to Apoptosis Resistance andGrowth Deregulation", CANCER RESEARCH, vol. 62, no. 20, 2002, pages 5920 - 5929 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014282179B2 (en) * 2013-06-20 2017-09-14 Taiho Pharmaceutical Co., Ltd. Method for predicting therapeutic efficacy of PI3K/AKT/mTOR inhibitor on basis of PHLDA1 or PIK3C2B expression
RU2666921C2 (ru) * 2013-06-20 2018-09-13 Тайхо Фармасьютикал Ко., Лтд. СПОСОБ ПРЕДСКАЗАНИЯ ТЕРАПЕВТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ИНГИБИТОРА PI3K/AKT/mTOR НА ОСНОВАНИИ ЭКСПРЕССИИ PHLDA1 ИЛИ PIK3C2B
US20160102366A1 (en) * 2013-06-20 2016-04-14 Taiho Pharmaceitucal Co., Ltd. METHOD FOR PREDICTING THERAPEUTIC EFFICACY OF PI3K/AKT/mTOR INHIBITOR ON BASIS OF PHLDA1 OR PIK3C2B EXPRESSION
JPWO2014203959A1 (ja) * 2013-06-20 2017-02-23 大鵬薬品工業株式会社 PHLDA1又はPIK3C2Bの発現に基づくPI3K/AKT/mTOR阻害剤の治療効果の予測方法
EP3012327A4 (en) * 2013-06-20 2017-03-22 Taiho Pharmaceutical Co., Ltd. METHOD FOR PREDICTING THERAPEUTIC EFFICACY OF PI3K/AKT/mTOR INHIBITOR ON BASIS OF PHLDA1 OR PIK3C2B EXPRESSION
KR102279579B1 (ko) * 2013-06-20 2021-07-21 다이호야쿠힌고교 가부시키가이샤 PHLDA1 또는 PIK3C2B의 발현에 기초한 PI3K/AKT/mTOR 저해제의 치료 효과의 예측 방법
EP3543355A1 (en) * 2013-06-20 2019-09-25 Taiho Pharmaceutical Co., Ltd. Method for predicting therapeutic efficacy of p13k/akt/mtor inhibitor on basis of phlda1 or pik3c2b expression
KR20180069141A (ko) * 2013-06-20 2018-06-22 다이호야쿠힌고교 가부시키가이샤 PHLDA1 또는 PIK3C2B의 발현에 기초한 PI3K/AKT/mTOR 저해제의 치료 효과의 예측 방법
WO2014203959A1 (ja) * 2013-06-20 2014-12-24 大鵬薬品工業株式会社 PHLDA1又はPIK3C2Bの発現に基づくPI3K/AKT/mTOR阻害剤の治療効果の予測方法
US10155990B2 (en) 2013-06-20 2018-12-18 Taiho Pharmaceuticals, Inc. Method for predicting therapeutic efficacy of PI3K/AKT/mTOR inhibitor on basis of PHLDA1 or PIK3C2B expression
WO2015178490A1 (ja) * 2014-05-23 2015-11-26 国立大学法人京都大学 移植材料及びその調製方法
US11045425B2 (en) 2014-05-23 2021-06-29 Kyoto University Method of encapsulating pancreatic islet cells introduced to siRNA against PHLDA3
JPWO2015178490A1 (ja) * 2014-05-23 2017-04-20 国立大学法人京都大学 移植材料及びその調製方法
US10323044B2 (en) 2015-02-27 2019-06-18 Taiho Pharmaceutical Co., Ltd. Crystal of imidazo-oxazine, pharmaceutical composition containing said crystal, and method for producing said crystal
US11883404B2 (en) 2016-03-04 2024-01-30 Taiho Pharmaceuticals Co., Ltd. Preparation and composition for treatment of malignant tumors

Also Published As

Publication number Publication date
JPWO2010087497A1 (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
JP4351896B2 (ja) p38/JTV−1を有効成分とする癌治療用薬学的組成物及び癌治療用薬学的組成物のスクリーニング方法
KR101048316B1 (ko) 근육 및 심장 강화제의 타겟으로서 trim72의 용도
WO2006098074A1 (ja) 前立腺癌細胞のアポトーシス誘発剤
WO2005103288A1 (ja) スクリーニング方法
US20140342995A1 (en) Method for treating brain cancer using a novel tumor suppressor gene and secreted factor
WO2010087497A1 (ja) 医薬組成物、および、腫瘍の治療用医薬剤
WO2000023100A9 (en) Genes and proteins predictive and therapeutic for renal disease and associated disorders
WO2020168850A1 (zh) Ube3a泛素化PP2A激活因子PTPA在治疗天使综合症和孤独症中的应用
JP2003508011A (ja) ヒトfez1遺伝子である新規ガン抑制遺伝子に関する組成物、キットおよび方法
Lee et al. Induction of apoptosis in p53-deficient human hepatoma cell line by wild-type p53 gene transduction: inhibition by antioxidant
Chen et al. LRRC8A critically regulates myofibroblast phenotypes and fibrotic remodeling following myocardial infarction
KR101942946B1 (ko) Nherf1 저해제를 유효성분으로 포함하는 암세포의 위족 형성억제 또는 암전이 억제용 조성물
JP4733394B2 (ja) 大腸癌転移抑制剤
JP2004502444A (ja) 筋選択的カルシニューリン相互作用タンパク質(mcip)に関連する方法および組成物
EP1905780B1 (en) Cancer suppressing agent
HUT74413A (en) A novel tumor suppressor gene
JP2021520845A (ja) マイクロペプチドとその使用
Li et al. Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model
EP1503780B1 (en) Androgen-regulated pmepa1 gene and methods of using the same to inhibit cancer cell growth
US20040235769A1 (en) Anti-tumor effects of prostage Carcinoma Tumor Antigen-1
WO2001085775A1 (fr) Nouvelle proteine humaine associee aux tumeurs et sa sequence de codage
WO2009030087A1 (fr) Fonctions et utilisations de la protéine 4 se liant à la phosphatidyléthanolamine
WO2009030094A1 (fr) Fonction et utilisation d'une nouvelle protéine induisant une apoptose associée aux lysosomes contenant les domaines ph et fyve (lapf)
JPWO2002099110A1 (ja) 細胞周期調節因子
JP2008029293A (ja) 癌の治療薬のスクリーニング方法及び癌の治療薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548588

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735957

Country of ref document: EP

Kind code of ref document: A1