WO2010082361A1 - Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel - Google Patents

Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel Download PDF

Info

Publication number
WO2010082361A1
WO2010082361A1 PCT/JP2009/050906 JP2009050906W WO2010082361A1 WO 2010082361 A1 WO2010082361 A1 WO 2010082361A1 JP 2009050906 W JP2009050906 W JP 2009050906W WO 2010082361 A1 WO2010082361 A1 WO 2010082361A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
temperature
less
strength
low
Prior art date
Application number
PCT/JP2009/050906
Other languages
French (fr)
Japanese (ja)
Inventor
渡部義之
植森龍治
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to EP09707108.8A priority Critical patent/EP2380997B1/en
Priority to CN2009800000583A priority patent/CN101849026B/en
Priority to BRPI0901011A priority patent/BRPI0901011B1/en
Priority to JP2009509204A priority patent/JP4834149B2/en
Priority to KR1020097012504A priority patent/KR101189263B1/en
Priority to US12/449,512 priority patent/US20110262298A1/en
Priority to PCT/JP2009/050906 priority patent/WO2010082361A1/en
Publication of WO2010082361A1 publication Critical patent/WO2010082361A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention is mainly intended for building construction refractory steel for the purpose of maintaining proof stress at high temperatures such as fires, but is not limited to architectural use, and is widely used for marine structures, ships, bridges, various storage tanks, etc. Applicable to welded structural steel.
  • the strength level of the steel plate as a target is a class generally called as 40 kg or 50 kg steel, which has a yield strength of 235 to 475 MPa and a tensile strength of 400 to 640 MPa.
  • Refractory steel with increased resistance is being used.
  • Mo is added to refractory steel for the purpose of maintaining high-temperature strength.
  • Mo has a large change in market conditions, and depending on the amount added, it is often more expensive than the fireproof coating cost. For this reason, development and practical use of an inexpensive refractory steel not containing Mo have been awaited.
  • An object of this invention is to obtain the steel for welded structures which is excellent also in the low temperature toughness which is one of the basic performances of steel materials with the outstanding high temperature strength, without adding expensive Mo.
  • refractory steel that has excellent high-temperature strength, suppressed weld cracking susceptibility, and secured low-temperature toughness is industrially stable and low-cost. It provides a method that can be supplied by According to the present invention, a large amount of welded structural steel having sufficient proof strength can be supplied even in an environment exposed to a high temperature such as a fire, and this contributes to improving the safety of a wide range of welded steel structures for various applications. Is possible.
  • the point of the present invention is to secure a high-temperature strength at 600 ° C.
  • the inventors have found that it is very finely precipitated in the matrix, and that high-temperature strength can be secured and maintained at a high level, resulting in the present invention.
  • the refractory steel not containing Mo is very innovative in itself, and at the same time, the basic performance (strength and toughness) as a welded structural steel is low by not containing Mo with high hardenability. Of course, it also leads to improved weldability and gas cutting performance.
  • the present invention Cr, not Nb only defines C, Si, individual element content and weld crack susceptibility composition P CM, including Mn, by further limiting the manufacturing conditions, the use of costly Mo Not only has excellent high-temperature strength and low-temperature toughness compatible, but also ensures various use performances as welded structural steel.
  • the summary is as follows.
  • a method for producing a welded structural steel having excellent high temperature strength and low temperature toughness (2) After finishing the hot rolling, accelerated cooling is started from a temperature of 750 ° C. or higher, and accelerated cooling is stopped at a temperature of 550 ° C. or lower. A method for producing welded structural steel with excellent low temperature toughness. (3) Furthermore, in mass%, V: 0.01 to 0.10% Ti: 0.005 to 0.025% (1) or (2), the method for producing a welded structural steel having excellent high-temperature strength and low-temperature toughness.
  • C 0.003 to 0.05%
  • C is limited to a very low level as a high strength steel. This is closely related to the production method along with other components. Among steel components, C has the greatest influence on the properties of steel materials.
  • the lower limit of 0.003% is a minimum value for preventing the heat-affected zone such as securing strength and welding from being softened more than necessary. If the amount of C is too large, the hardenability is increased more than necessary, which adversely affects the balance between strength and toughness of the steel material and weldability.
  • the upper limit was made 0.05%.
  • the lower limit is preferably 0.005%, more preferably 0.01%, in order to avoid strength reduction from the balance with operational fluctuations and other components.
  • the upper limit is preferably 0.04%, and more preferably 0.03%.
  • Si 0.60% or less Si is an element contained in steel for deoxidation, but if added in large amounts, weldability and HAZ toughness deteriorate, so the upper limit was made 0.60%.
  • the content may be determined by balance with these elements. However, it is preferably as low as possible from the viewpoints of HAZ toughness, hardenability, etc., and may be free of additives. For this reason, the upper limit may be limited to 0.40%, 0.20%, and 0.10%.
  • Mn 0.6 to 2.0% Mn is an indispensable element for securing the strength and toughness at room temperature, and its lower limit is 0.6%. Preferably it is 0.8% or more or 1.0% or more.
  • the upper limit was made 2.0%. Preferably it is 1.8% or less, More preferably, it is 1.6% or less or 1.4% or less. P: 0.020% or less Since the amount of P tends to decrease the grain boundary fracture in HAZ when the amount is small, the smaller the amount, the better. If the content is large, the low temperature toughness of the base metal and the weld zone is deteriorated, so the upper limit is made 0.020%. More preferably, the content is 0.015% or less, 0.010% or less, or 0.008% or less.
  • S 0.010% or less S is more preferable from the viewpoint of low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit is made 0.010%. 0.008% or less, 0.006%, and 0.004% are more preferable. Of course, no additives may be added.
  • Cr 0.20 to 1.5% Cr is one of the most important elements in the present invention. It is essential to add Cr together with Nb to ensure high temperature strength.
  • the Cr content should be at least 0.20%. Preferably it is 0.35% or more, more preferably 0.50% or more, 0.8% or 1.0% or more. However, if the addition amount is too large, the base material, the toughness of the welded portion and the weldability are deteriorated and the economical efficiency is also lost, so the upper limit was made 1.5%. Preferably it is 1.3% or less.
  • Nb 0.005 to 0.05%
  • Nb is the most important element in the present invention together with Cr. This is because, like Cr, precipitation strengthening by Nb precipitates (carbonitrides) is used to ensure high temperature strength. For this reason, at least 0.005% or more is necessary. Preferably it is 0.010% or more. However, if the addition amount is too large, the toughness of the weld zone is deteriorated, so the upper limit was made 0.05%. Preferably it is 0.045% or less, Furthermore, it is good in it being 0.030% or less.
  • Nb addition raises the non-recrystallization temperature of austenite and contributes also to exhibiting the effect of the controlled rolling at the time of hot rolling to the maximum.
  • Al 0.060% or less
  • Al is an element generally contained in steel for deoxidation. Since deoxidation is also performed with Si or Ti, the amount may be determined in balance with these elements. However, when the amount of Al increases, not only the cleanliness of steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit is made 0.060%. Preferably it is 0.040% or less. The smaller the amount, the better.
  • N 0.001 to 0.006% N is contained in the steel as an unavoidable impurity, but combines with Nb to form carbonitride to increase the strength, and TiN to increase the properties of the steel as described above. .
  • the N amount is required to be at least 0.001%. Preferably it is 0.0015% or more.
  • an increase in the amount of N is detrimental to the weld heat affected zone toughness and weldability, and the upper limit of the steel of the present invention is 0.006%. More preferably, it is 0.0045% or less.
  • V 0.01 to 0.10%
  • the lower limit was set to 0.01% as the minimum amount that can surely enjoy the effect of V addition. Preferably, it is 0.025% or more.
  • the upper limit is set to 0.10% in consideration the influence on the weld crack susceptibility composition P CM which will be described later. Preferably, it is 0.08% or less, further 0.05% or less.
  • Ti 0.005 to 0.025%
  • Ti is preferably added to improve the toughness of the base material and the weld heat affected zone. This is because when Ti has a small amount of Al (for example, 0.003% or less), it combines with O to form precipitates mainly composed of Ti2O3, which becomes the nucleus of intragranular transformation ferrite formation and has a weld heat affected zone toughness. Improve. Further, Ti is combined with N and finely precipitated in the steel as TiN, which suppresses the coarsening of ⁇ grains during heating and is effective for making the rolled structure finer. Further, the fine TiN present in the steel material refines the weld heat affected zone structure during welding and improves toughness. In order to obtain these effects, Ti needs to be at least 0.005%.
  • the upper limit was made 0.025%.
  • it is 0.020% or less.
  • the main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should naturally be limited.
  • Ni 0.05 to 0.50% If Ni is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and weld heat affected zone toughness. In order to exert these effects, addition of at least 0.05% is essential.
  • the lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%.
  • the upper limit may be limited to 0.30%.
  • Mg 0.0002 to 0.005% Mg suppresses the growth of austenite grains in the weld heat-affected zone and has the effect of making the grains finer, so that the weld zone can be strengthened. In order to enjoy such an effect, Mg needs to be 0.0002% or more.
  • the upper limit is set to 0.005% because this is not a cost effective measure. Preferably it is 0.0035% or less.
  • Ca and REM control the morphology of MnS, improve the low temperature toughness of the base material, and reduce the susceptibility to hydrogen induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. In order to exert these effects, 0.0005% is necessary at least. However, too much addition adversely deteriorates the cleanliness of the steel, and increases the base metal toughness and susceptibility to hydrogen-induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. REM was limited to 0.004% and 0.008%, respectively. Preferably, they are 0.003% and 0.006% or less, respectively.
  • the value of the weld crack susceptibility composition P CM which is defined by the following expression below 0.22%.
  • P CM C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B PCM is an index representing weldability. The lower the CM, the better the weldability.
  • JIS G 3106 Rolled steel for welded structure
  • JIS G 3106 Rolled steel for welded structure
  • the most severe one is specified to be 0.24% or less.
  • those with limited P CM below 0.22% as a condition can prevent more severe constraints, reliably welded cold cracking even at ambient conditions is there.
  • the lower limit is not particularly limited, the lower limit is naturally limited by the limited range of each component. Subsequently, manufacturing conditions will be described.
  • the reason why the heating temperature prior to hot rolling is limited to 1000 to 1300 ° C. is to keep the austenite grains during heating small and to refine the rolled structure. 1300 ° C.
  • the austenite during heating is not extremely coarsened.
  • the heating temperature is exceeded, the austenite grains are coarsely mixed and the structure after transformation is also coarsened, so that the toughness of the steel is remarkably deteriorated.
  • the heating temperature is too low, depending on the plate thickness, it is difficult not only to secure the rolling end temperature, which will be described later, but also to increase the non-recrystallization temperature of austenite and to cause the solution of Nb to develop precipitation strengthening.
  • the lower limit was set to 1000 ° C.
  • the most preferable heating temperature range is 1050 to 1250 ° C.
  • the steel material heated on the above conditions is cooled after 800 degreeC or more complete
  • the cooling means is not particularly limited. Although it may be cooled by leaving it in the atmosphere, the properties of the steel material can be further improved by performing accelerated cooling from a temperature of 750 ° C. or higher to a temperature of 550 ° C. or lower.
  • the rolling end temperature is lower than 800 ° C., in the steel of the present invention having a relatively small amount of C, ferrite is likely to undergo transformation transformation and the ferrite may be processed (rolled), which is not preferable in terms of ensuring low temperature toughness.
  • the rolling end temperature is limited to 800 ° C. or higher. Preferably it is 820 degreeC or more. After hot rolling at 800 ° C.
  • 40 kg class steel for example, JIS standard SM400, SN400 steel
  • 50kg steel for example, JIS standard SM490, SN490 steel
  • 40kg steel if the plate thickness is too thick, it will be difficult to ensure stable strength when left in the atmosphere.
  • the accelerated cooling after rolling is intended to enhance the properties of the steel material, and does not impair the excellent features of the present invention. In the first place, accelerated cooling is intended to refine the structure by increasing the cooling speed in the transformation region and simultaneously improve strength and toughness.
  • the accelerated cooling start temperature is limited to 750 ° C. or higher.
  • This accelerated cooling requires cooling to a temperature of 550 ° C. or lower in order to enjoy the effect. This is because when the temperature exceeds 550 ° C., the transformation during accelerated cooling does not proceed sufficiently, and the structure is not sufficiently refined.
  • the preferred accelerated cooling start temperature is 760 ° C. or higher, and the preferred accelerated cooling stop temperature range is 520 or lower and 300 ° C. or higher.
  • the cooling rate during accelerated cooling depends on the steel composition, the intended strength, and the low temperature toughness level, but from the accelerated cooling start temperature to 550 ° C.
  • the average cooling rate is desirably 3 ° C./second or more. Moreover, even if the tempering process below Ac1 temperature is added with respect to the rolled material after cooling, the outstanding characteristic of this invention is not impaired. It is rather preferable in order to cancel the non-uniformity of cooling and increase the in-plate uniformity of the material.
  • the comparative steel 12 is not added with Nb, and the comparative steel 13 has a low Cr content, the high temperature strength is low. Since the comparative steel 14 has a low C content, the high temperature strength is low. Since the comparative steel 15 has a high Cr content, both the base material and the reproduced HAZ are inferior in toughness. Since comparative steel 16 has high Nb, it is inferior in HAZ toughness.
  • the components of the comparative steels 17-1 to 17-3 are the same as those of the present invention steel 5. However, the comparative steel 17-1 has a low rolling end temperature, and as a result, the accelerated cooling start temperature cannot be ensured and has become low, so both the room temperature and the high temperature strength are low.
  • comparative cooling steel 17-2 has a low accelerated cooling start temperature, both the room temperature and the high temperature strength are low. Since comparative steel 17-3 has a high accelerated cooling stop temperature, both normal temperature and high temperature strength are low. Comparative Steel 18, the individual elements and production methods are within the present invention range, normal temperature, although such temperature strength and toughness satisfies the required properties as 490MPa class, because of the high P CM, weldability (oblique Cracks occurred in the y-type weld crack test).
  • the present invention has made it possible to provide a large amount and a low cost of welded structural steel having excellent high temperature strength and low temperature toughness. As a result, it has become possible to reduce or omit the fireproof coating for building structures. In addition to the basic properties such as strength and toughness in applications other than construction, it also has high-temperature strength. Can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed is a steel for weld construction that has excellent high-temperature strength and low-temperature toughness and can be produced at low cost. The steel for weld construction is produced by heating a steel product comprising C: 0.003 to 0.05%, Si: not more than 0.60%, Mn: 0.6 to 2.0%, P: not more than 0.020%, S: not more than 0.010%, Cr: 0.20 to 1.5%, Nb: 0.005 to 0.05%, Al: not more than 0.060%, N: 0.001 to 0.006%, and Mo as an impurity limited to not more than 0.03% with the balance consisting of iron and unavoidable impurities, the steel product having a weld cracking susceptibility composition (PCM) value, defined by PCM = C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B, of not more than 0.22%, to 1000 to 1300°C, terminating the hot rolling at a temperature of 800°C or above, and then cooling the steel product.

Description

高温強度と低温靭性に優れる溶接構造用鋼とその製造方法Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
 本発明は、火災など高温時の耐力維持を目的とした建築構造用耐火鋼を主たるターゲットとするものであるが、建築用途に限らず、海洋構造物、船舶、橋梁、各種貯槽タンク用など幅広い用途の溶接構造用鋼に適用できる。なお、主に対象とする鋼板の強度レベルは、降伏強さで235~475MPa、引張強さで400~640MPaの、いわゆる一般に40キロ、50キロ鋼と呼ばれるクラスである。 The present invention is mainly intended for building construction refractory steel for the purpose of maintaining proof stress at high temperatures such as fires, but is not limited to architectural use, and is widely used for marine structures, ships, bridges, various storage tanks, etc. Applicable to welded structural steel. In addition, the strength level of the steel plate as a target is a class generally called as 40 kg or 50 kg steel, which has a yield strength of 235 to 475 MPa and a tensile strength of 400 to 640 MPa.
 高温耐力の確保を目的とした建築用途でのいわゆる耐火鋼は、特開平2−77523号公報などをはじめとして多くの技術が開示されている。しかし、そのほとんどはMoを含有するものである。確かに、Moは、鋼の高温耐力を確保する上で極めて有効な元素であるが、同時に高価な元素でもある。
 ところで、日本工業規格(JIS)等で規格化されている一般の構造用鋼は、約350℃から強度低下するため、その許容温度は約350℃となっている。すなわち、ビルや事務所、住居、立体駐車場などの建築物に前記の鋼材を用いた場合は、火災時における安全性を確保するため、十分な耐火被覆を施すことが義務付けられており、日本の建築関連諸法令では、火災時に鋼材温度が350℃以上にならないように規定されている。これは、前記鋼材では、350℃程度で耐力が常温の2/3程度になり、必要な強度を下回るためである。このため、一般鋼材を建造物に利用する場合、火災時において鋼材の温度が350℃に達しないように耐火被覆を施す必要がある。
 この耐火被覆を省略または軽減するために、600℃などでの高温引張試験時の高温耐力(以下、特に明記がない場合は、高温とは600℃を指し、高温強度とは高温耐力を指す。)を高めた耐火鋼が、使われるようになってきている。
 一般的に耐火鋼には、高温強度維持を目的としてMoが添加される。しかし、Moは市況変化が大きく、添加量にもよるが、耐火被覆コストに比べ高価になる場合が多い。このため、Moを添加しない安価な耐火鋼の開発・実用化が待たれていた。
 本発明は、高価なMoを添加せずに優れた高温強度とともに、鋼材の基本性能の一つである低温靭性にも優れる溶接構造用鋼を得ることを目的とする。そのため、鋼成分を特定範囲に限定し、さらに製造方法を限定することで、高温強度に優れ、溶接割れ感受性を抑えて低温靭性を確保した耐火鋼を、工業的に安定して、しかも低コストで供給可能な方法を提供するものである。
 本発明によれば、火災時など高温にさらされる環境でも十分な耐力を有する溶接構造用鋼が大量かつ安価に供給できるため、種々の用途の広範な溶接鋼構造物の安全性向上に資することが可能となる。
 本発明のポイントは、600℃での高温強度を安定して確保するため、高価なMoに代わり比較的微量のC量とCrとNbの複合添加により、変態組織強化とCrやNbの析出物(炭窒化物)による析出強化を利用することである。
 つまり、Moフリー下で、適正量のCrを添加含有させることで、鋼の焼入性が向上して変態温度が低下し、セメンタイトを含む硬質組織がベイニティックとなることを見出した。
 それにより常温および高温強度が上がるとともに、マトリックスが比較的低温で変態した微細なベイニティック組織であるがゆえに、高温時にはCrとNbの複合添加によるCrおよびNbの単独または複合した炭窒化物が、そのマトリックス中にきわめて微細に析出し、高温強度を高いレベルで確保、維持できることを見出し、本願発明に至ったものである。
 上記したように、Moを含有しない耐火鋼は、それ自体きわめて画期的であると同時に、焼入性の高いMoを含有しないことで、溶接構造用鋼としての基本性能(強度、靭性)はもちろん、溶接性やガス切断性をもかえって向上させることにもつながる。
 本願発明は、Cr、Nbのみならず、C、Si、Mnをはじめとする個々の元素量および溶接割れ感受性組成PCMを規定し、さらに製造条件を限定することで、高価なMoを使用せず優れた高温強度と低温靭性を両立させただけでなく、溶接構造用鋼としての各種使用性能を確保したものである。その要旨は、以下の通りである。
(1)成分が質量%で、
 C :0.003~0.05%
 Si:0.60%以下
 Mn:0.6~2.0%
 P :0.020%以下
 S :0.010%以下
 Cr:0.20~1.5%
 Nb:0.005~0.05%
 Al:0.060%以下
 N :0.001~0.006%であって、
さらに、不純物としてMoを0.03%以下に制限し、残部が鉄および不可避的不純物からなり、
CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
で定義される溶接割れ感受性組成PCM値が0.22%以下である鋼材を、1000~1300℃の温度に加熱し、800℃以上の温度で熱間圧延を終了し、その後冷却することを特徴とする高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(2)前記熱間圧延を終了した後、750℃以上の温度から加速冷却を開始し、550℃以下の温度で加速冷却を停止することを特徴とする請求の範囲1に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(3)さらに、質量%で、
 V :0.01~0.10%
 Ti:0.005~0.025%
のいずれか1種または2種を含有することを特徴とする(1)または(2)に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(4)さらに、質量%で
 Ni:0.05~0.50%
 Cu:0.05~0.50%
 B :0.0002~0.003%
 Mg:0.0002~0.005%
のいずれか1種または2種以上を含有することを特徴とする(1)~(3)のいずれか1項に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(5)さらに、質量%で
 Ca :0.0005~0.004%
 REM:0.0005~0.008%
のいずれか1種を含有することを特徴とする(1)~(4)のいずれか1項に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(6)成分が質量%で、
 C :0.003~0.05%
 Si:0.60%以下
 Mn:0.6~2.0%
 P :0.020%以下
 S :0.010%以下
 Cr:0.20~1.5%
 Nb:0.005~0.05%
 Al:0.060%以下
 N :0.001~0.006%であって、
さらに、不純物としてMoを0.03%以下に制限し、残部が鉄および不可避的不純物からなり、
CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
で定義される溶接割れ感受性組成PCM値が0.22%以下である鋼材を、1000~1300℃の温度に加熱し、800℃以上の温度で熱間圧延を終了し、その後冷却して得られることを特徴とする高温強度と低温靭性に優れる溶接構造用鋼。
A number of techniques have been disclosed for so-called fire-resistant steel in architectural applications aimed at securing high-temperature proof stress, including Japanese Patent Application Laid-Open No. 2-77523. However, most of them contain Mo. Certainly, Mo is an element that is extremely effective in securing the high-temperature proof stress of steel, but is also an expensive element.
By the way, since the strength of general structural steel standardized by Japanese Industrial Standards (JIS) or the like decreases from about 350 ° C., the allowable temperature is about 350 ° C. In other words, when using the steel materials described above for buildings such as buildings, offices, residences, and multistory parking lots, it is obliged to apply sufficient fireproof coating to ensure safety in the event of a fire. The various building-related laws and regulations stipulate that the temperature of steel materials should not exceed 350 ° C in the event of a fire. This is because the steel material has a yield strength of about 2/3 of room temperature at about 350 ° C., which is lower than the required strength. For this reason, when using a general steel material for a building, it is necessary to apply a fireproof coating so that the temperature of the steel material does not reach 350 ° C. during a fire.
In order to omit or reduce this fireproof coating, the high-temperature strength at the time of a high-temperature tensile test at 600 ° C. or the like (hereinafter, unless otherwise specified, high temperature refers to 600 ° C., and high-temperature strength refers to high-temperature strength). ) Refractory steel with increased resistance is being used.
In general, Mo is added to refractory steel for the purpose of maintaining high-temperature strength. However, Mo has a large change in market conditions, and depending on the amount added, it is often more expensive than the fireproof coating cost. For this reason, development and practical use of an inexpensive refractory steel not containing Mo have been awaited.
An object of this invention is to obtain the steel for welded structures which is excellent also in the low temperature toughness which is one of the basic performances of steel materials with the outstanding high temperature strength, without adding expensive Mo. Therefore, by limiting the steel components to a specific range and further limiting the production method, refractory steel that has excellent high-temperature strength, suppressed weld cracking susceptibility, and secured low-temperature toughness is industrially stable and low-cost. It provides a method that can be supplied by
According to the present invention, a large amount of welded structural steel having sufficient proof strength can be supplied even in an environment exposed to a high temperature such as a fire, and this contributes to improving the safety of a wide range of welded steel structures for various applications. Is possible.
The point of the present invention is to secure a high-temperature strength at 600 ° C. In order to stably secure a high temperature strength, a relatively small amount of C instead of expensive Mo and combined addition of Cr and Nb, transformation structure strengthening and Cr and Nb precipitates It is to use precipitation strengthening by (carbonitride).
That is, it has been found that by adding an appropriate amount of Cr under the Mo-free condition, the hardenability of the steel is improved, the transformation temperature is lowered, and the hard structure containing cementite becomes bainitic.
As a result, the strength at room temperature and high temperature is increased, and the matrix is a fine bainitic structure transformed at a relatively low temperature. Therefore, at high temperatures, Cr and Nb combined with Cr and Nb alone or combined with carbonitride are combined. The inventors have found that it is very finely precipitated in the matrix, and that high-temperature strength can be secured and maintained at a high level, resulting in the present invention.
As described above, the refractory steel not containing Mo is very innovative in itself, and at the same time, the basic performance (strength and toughness) as a welded structural steel is low by not containing Mo with high hardenability. Of course, it also leads to improved weldability and gas cutting performance.
The present invention, Cr, not Nb only defines C, Si, individual element content and weld crack susceptibility composition P CM, including Mn, by further limiting the manufacturing conditions, the use of costly Mo Not only has excellent high-temperature strength and low-temperature toughness compatible, but also ensures various use performances as welded structural steel. The summary is as follows.
(1) The component is mass%,
C: 0.003 to 0.05%
Si: 0.60% or less Mn: 0.6 to 2.0%
P: 0.020% or less S: 0.010% or less Cr: 0.20 to 1.5%
Nb: 0.005 to 0.05%
Al: 0.060% or less N: 0.001 to 0.006%,
Furthermore, Mo is limited to 0.03% or less as an impurity, and the balance consists of iron and inevitable impurities,
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
Steel in defined weld crack susceptibility composition P CM value is is less than 0.22%, was heated to a temperature of 1000 ~ 1300 ° C., to exit the hot rolling at 800 ° C. or higher, that then cooled A method for producing a welded structural steel having excellent high temperature strength and low temperature toughness.
(2) After finishing the hot rolling, accelerated cooling is started from a temperature of 750 ° C. or higher, and accelerated cooling is stopped at a temperature of 550 ° C. or lower. A method for producing welded structural steel with excellent low temperature toughness.
(3) Furthermore, in mass%,
V: 0.01 to 0.10%
Ti: 0.005 to 0.025%
(1) or (2), the method for producing a welded structural steel having excellent high-temperature strength and low-temperature toughness.
(4) Further, by mass% Ni: 0.05 to 0.50%
Cu: 0.05 to 0.50%
B: 0.0002 to 0.003%
Mg: 0.0002 to 0.005%
The method for producing a steel for welded structure having excellent high-temperature strength and low-temperature toughness according to any one of (1) to (3), characterized by containing any one or more of the above.
(5) Further, in mass% Ca: 0.0005 to 0.004%
REM: 0.0005 to 0.008%
The method for producing a steel for welded structure having excellent high-temperature strength and low-temperature toughness according to any one of (1) to (4), characterized by containing any one of the following.
(6) The component is mass%,
C: 0.003 to 0.05%
Si: 0.60% or less Mn: 0.6 to 2.0%
P: 0.020% or less S: 0.010% or less Cr: 0.20 to 1.5%
Nb: 0.005 to 0.05%
Al: 0.060% or less N: 0.001 to 0.006%,
Furthermore, Mo is limited to 0.03% or less as an impurity, and the balance consists of iron and inevitable impurities,
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
Resulting in a steel weld crack susceptibility composition P CM value is less than 0.22%, which is defined, by heating to a temperature of 1000 ~ 1300 ° C., to exit the hot rolling at 800 ° C. or higher, and then cooled Steel for welded structures with excellent high-temperature strength and low-temperature toughness.
 本発明で規定した各合金元素の添加範囲について説明する。
 C :0.003~0.05%
 Cは、高張力鋼としてはきわめて低いレベルに限定している。これは、他の成分とともに製造方法と密接に関係している。鋼成分の中でもCは鋼材の特性に最も大きな影響を及ぼすものである。下限0.003%は強度確保や溶接などの熱影響部が必要以上に軟化することのないようにするための最小値である。
 C量が多すぎると焼入性が必要以上に上がり、鋼材の強度と靱性のバランス、溶接性などに悪影響を及ぼす。また、後述するように、目的とする板厚や強度によっては加速冷却を比較的低温で停止するケースがあり、その際に鋼材表裏面近傍の極端な硬化や板厚方向の材質変動を抑えるため、上限を0.05%とした。
 操業変動や他成分とのバランスから強度低下を避けるため下限は0.005%にするのが好まく、さらに0.01%とすることがより好ましい。また、過度な焼入れ硬化や材質変動を避けるため、上限は0.04%が好ましく、さらに0.03%とすることがなお好ましい。
 Si:0.60%以下
 Siは、脱酸のため鋼に含まれる元素であるが、多く添加すると溶接性、HAZ靭性が劣化するため、上限を0.60%とした。鋼の脱酸はTi、Alでも可能であるので、それら元素とのバランスにて含有量を決定すればよい。しかし、HAZ靱性、焼入性などの観点から低いほど好ましく、無添加でもよい。このため、上限を0.40%、0.20%、0.10%に制限しても差し支えない。なお、製鋼工場で鋼を製造する場合、Si無添加でTi、Alにより脱酸された場合でも、0.01%以上のSiが含まれることが一般的である。
 Mn:0.6~2.0%
 Mnは、常温の強度、靭性を確保する上で不可欠な元素であり、その下限は0.6%である。好ましくは0.8%以上または1.0%以上である。しかし、Mn量が多すぎると焼入性が上昇して溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造スラブの中心偏析を助長するので上限を2.0%とした。好ましくは1.8%以下、より好ましくは1.6%以下または1.4%以下である。
 P :0.020%以下
 Pは、その量が少ないとHAZにおける粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.020%とする。0.015%以下、0.010%以下または0.008%以下とする方がより好ましい。もちろん無添加でもよい。
 S :0.010%以下
 Sは、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.010%とする。0.008%以下、0.006%、0.004%とする方がより好ましい。もちろん無添加でもよい。
 Cr:0.20~1.5%
 Crは、本願発明における最も重要な元素の一つである。高温強度確保のためNbとともにCr添加が必須である。これは、Crの焼入性向上効果により変態温度が低下し、セメンタイトを含む硬質組織がベイニティックとなるため、常温および高温時の強度を上げ、さらに高温時にはCrの析出物(炭窒化物)による析出強化を利用するためである。
 これらの効果を享受するため、Crの含有量は、最低0.20%が必要である。好ましくは0.35%以上であり、は0.50%以上、0.8%または1.0%以上とすることがより好ましい。しかし、添加量が多過ぎると、母材、溶接部の靭性および溶接性の劣化を招き、経済性も失するため上限を1.5%とした。好ましくは1.3%以下であるとよい。
 Nb:0.005~0.05%
 Nbは、Crとともに本願発明における最も重要な元素である。Crと同様に、高温強度確保のためNbの析出物(炭窒化物)による析出強化を利用しているからである。
 このため、少なくとも0.005%以上は必要である。好ましくは0.010%以上であるとよい。しかし、添加量が多過ぎると、溶接部の靭性劣化を招くため、上限を0.05%とした。好ましくは0.045%以下、さらには0.030%以下であるとよい。なお、Nb添加は、オーステナイトの未再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮することにも寄与する。
 上記のCrとNbの複合添加により、Moフリーでも高温強度を確保できるものである。従って、本願発明では、Moの意図的添加を行わない。また、不純物としてMoが意図せず混入した場合でもの0.03%以下に制限する。
 Al:0.060%以下
 Alは、一般に脱酸のために鋼に含まれる元素である。脱酸はSiまたはTiでもなされるため、それら元素とのバランスにて量を決めればよい。しかし、Al量が多くなると鋼の清浄度が悪くなるだけでなく、溶接金属の靭性が劣化するので上限を0.060%とする。好ましくは0.040%以下であるとよい。その量は少ないほどよく、無添加でもよい。なお、製鋼工場で鋼を製造する場合、Alによる脱酸を行なわなかった場合でも、0.001%以上のAlが含まれることが一般的である。
 N :0.001~0.006%
 Nは、不可避的不純物として鋼中に含まれるものであるが、Nbと結合して炭窒化物を形成して強度を増加させ、また、TiNを形成して前述のように鋼の性質を高める。このため、N量として最低0.001%必要である。好ましくは0.0015%以上であるとよい。しかしながら、N量の増加は溶接熱影響部靭性、溶接性に有害であり、本発明鋼においてはその上限は0.006%である。より好ましくは0.0045%以下であるとよい。
 次に必要に応じて含有することができるV、Tiの添加理由について説明する。
 V :0.01~0.10%
 Vは、Nbとほぼ同様の効果を有し、本願発明におけるVの役割は、Nbを補完するものである。ただし、Vは、Nbに比べて効果は小さく、焼入れ性にも影響を及ぼすため、上下限を限定した。下限はV添加の効果を確実に享受できる最少量として0.01%とした。好ましくは、0.025%以上であるとよい。上限は後述する溶接割れ感受性組成PCMへの影響も勘案し0.10%とした。好ましくは、0.08%以下、さらには0.05%以下であるとよい。
 Ti:0.005~0.025%
 Tiは母材および溶接熱影響部靭性向上のために添加することが望ましい。なぜならばTiは、Al量が少ないとき(例えば0.003%以下)、Oと結合してTi2O3を主成分とする析出物を形成し、粒内変態フェライト生成の核となり溶接熱影響部靭性を向上させる。
 また、TiはNと結合してTiNとして鋼材中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効である。さらに鋼材中に存在する微細TiNは、溶接時に溶接熱影響部組織を細粒化し、靭性を向上させる。これらの効果を得るためには、Tiは最低0.005%必要である。しかし多過ぎるとTiCを形成し、低温靭性や溶接性を劣化させるので、その上限は0.025%とした。好ましくは、0.020%以下である。
 次に、Ni、Cu、B、Mgの添加理由について説明する。
 基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度、靭性などの特性を向上させるためである。したがってその添加量は自ずと制限されるべき性質のものである。
 Ni:0.05~0.50%
 Niは、過剰に添加しなければ、溶接性、溶接熱影響部靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。
 一方、過剰な添加は高価なだけでなく、溶接性に好ましくない。また、Niを多く添加すると液体アンモニア中で応力腐食割れ(SCC)を誘起する可能性が指摘されている。発明者らの実験によれば、1.0%までの添加は溶接性や液体アンモニア中でのSCCを大きく劣化させず、強度、靭性向上効果の方が大きいが、経済性を優先し、上限を0.50%とした。更に経済性を優先する場合、0.35%に制限してもよい。
 Cu:0.05~0.50%
 Cuは、Niとほぼ同様の効果、現象を示し、上限の0.50%は溶接性劣化に加え、過剰な添加は熱間圧延時にCu−クラックが発生し製造困難となるため規制される。下限は実質的な効果が得られるための最小量とすべきで0.05%である。経済性を優先する場合、上限を0.30%に制限してもよい。
 B :0.0002~0.003%
 Bは、オーステナイト粒界に偏析し、フェライトの生成を抑制することを介して、焼入性を向上させ、強度向上に寄与する。この効果を享受するため、最低0.0002%以上必要である。
 しかし、多すぎる添加は焼入性向上効果が飽和するだけでなく、靭性上有害となるB析出物を形成する可能性もあるため、上限を0.003%とする。好ましくは0.002%以下であるとよい。なお、タンク用鋼などとして、応力腐食割れが懸念されるケースでは、母材および溶接熱影響部の硬さの低減がポイントとなることが多く(例えば、硫化物応力腐食割れ(SCC)防止のためにはロックウェル硬さでHRC≦22(HV≦248)が必須とされる)、そのようなケースでは焼入性を増大させるB添加は好ましくない。なお、Bには上記のような強度向上効果があるが、B添加による熱影響部靭性等の材質劣化の問題があるため、これらの問題を回避するためには、Bを0.0003%以下に制限または無添加とすることがより望ましい。
 Mg:0.0002~0.005%
 Mgは、溶接熱影響部においてオーステナイト粒の成長を抑制し、細粒化する作用があり、溶接部の強靭化が図れる。このような効果を享受するためには、Mgは0.0002%以上必要である。一方、添加量が増えると添加量に対する効果代が小さくなるため、コスト上得策ではないので上限は0.005%とした。好ましくは0.0035%以下であるとよい。
 次に、CaまたはREMの添加理由について説明する。
 Ca :0.0005~0.004%
 REM:0.0005~0.008%
 CaおよびREMは、MnSの形態を制御し、母材の低温靭性を向上させるほか、湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を低減させる。これらの効果を発揮するためには、最低0.0005%必要である。
 しかし、多すぎる添加は、鋼の清浄度を逆に悪化させ、母材靭性や湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を高めるため、添加量の上限はCa、REMそれぞれ0.004%、0.008%に限定した。好ましくは、それぞれ0.003%、0.006%以下であるとよい。なお、CaとREMは、ほぼ同等の効果を有するため、いずれか1種を上記範囲で添加すればよく、両者を添加してもよい。
 鋼の個々の成分を限定しても、成分系全体が適切でないと優れた特性は得られない。本願発明では、各元素の含有量(質量%)から、以下の式で定義される溶接割れ感受性組成PCMの値を0.22%以下に限定する。
 PCM=C+Si/30+Mn/20+Cu/20+Ni/60
    +Cr/20+Mo/15+V/10+5B
 PCMは溶接性を表す指標で、低いほど溶接性は良好である。JIS G 3106「溶接構造用圧延鋼材」では、強度レベルや板厚によっても異なるが、最も厳しいもので0.24%以下に規定している。
 本発明者らの幅広い鋼種での各種の溶接割れ試験によれば、より厳しい拘束条件、環境条件でも確実に溶接冷間割れを防止できる条件としてPCMを0.22%以下に限定したものである。なお、下限は特に限定しないが、各成分の限定範囲から自ずと制約されるものである。
 続いて、製造条件について説明する。
 熱間圧延に先立つ加熱温度を1000~1300℃に限定した理由は、加熱時のオーステナイト粒を小さく保ち、圧延組織の微細化を図るためである。1300℃は加熱時のオーステナイトが極端に粗大化しない上限温度であり、加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、変態後の組織も粗大化するため鋼の靭性が著しく劣化する。
 一方、加熱温度が低すぎると、板厚によっては後述する圧延終了温度の確保が困難となるばかりでなく、オーステナイトの未再結晶温度を上昇させ、析出強化を発現させるためのNbの溶体化の観点から下限を1000℃とした。最も好ましい加熱温度範囲は、1050~1250℃である。
 上述のような条件で加熱した鋼材を、800℃以上で熱間圧延を終了した後冷却する。冷却手段は特に問わない。大気中に放置して冷却してもよいが、750℃以上の温度から550℃以下の温度まで加速冷却をすることにより、より鋼材の特性を高めることができる。
 圧延終了温度が800℃を下回ると、C量が比較的少ない本願発明鋼においては、フェライトが変態析出し、フェライトを加工(圧延)する恐れがあり、低温靭性確保の点で好ましくない。このため、圧延終了温度は、800℃以上に限定する。好ましくは820℃以上であるとよい。
 800℃以上で熱間圧延を終了した後、比較的強度の低い、いわゆる40キロ級鋼(例えばJIS規格のSM400、SN400鋼)は、大気中に放置して冷却しても所定の強度を満足できる。
 しかし、50キロ級鋼(例えばJIS規格のSM490、SN490鋼)や40キロ鋼でも板厚が厚くなると大気中に放置しての冷却ままでは強度の安定確保が困難となるため、800℃以上で熱間圧延を終了した後、750℃以上の温度から加速冷却することが望ましい。圧延後の加速冷却は、鋼材の特性をより高めるためであって、本願発明の優れた特徴を損なうものではない。
 加速冷却は、そもそも変態域の冷速を早めることで組織を微細化し、強度と靭性を同時に向上させるためのものである。したがって、変態開始前あるいは少なくとも変態終了前に開始しなければ実質的に意味を持たない。このため、加速冷却開始温度は750℃以上に限定したものである。この加速冷却は、その効果を享受する上で550℃以下の温度まで冷却する必要がある。550℃を超える温度では、加速冷却時の変態が十分に進行せず、組織の微細化が不十分となるためである。好ましい加速冷却の開始温度は760℃以上であり、好ましい加速冷却の停止温度の範囲は、520以下300℃以上である。
 なお、加速冷却時の冷却速度は、鋼成分や意図する強度や低温靭性レベルにもよるが、板厚方向に表面から板厚の1/4の位置で、加速冷却開始温度から550℃までの平均冷却速度が3℃/秒以上とすることが望ましい。
 また、冷却後の圧延材に対し、Ac1温度以下の焼き戻し処理を付加しても本願発明の優れた特徴を損ねることはない。冷却の不均一性をキャンセルし、材質の板内均一性を高めるためにはむしろ好ましい。
The range of addition of each alloy element defined in the present invention will be described.
C: 0.003 to 0.05%
C is limited to a very low level as a high strength steel. This is closely related to the production method along with other components. Among steel components, C has the greatest influence on the properties of steel materials. The lower limit of 0.003% is a minimum value for preventing the heat-affected zone such as securing strength and welding from being softened more than necessary.
If the amount of C is too large, the hardenability is increased more than necessary, which adversely affects the balance between strength and toughness of the steel material and weldability. In addition, as will be described later, depending on the target plate thickness and strength, there are cases where accelerated cooling is stopped at a relatively low temperature, in order to suppress extreme hardening near the front and back surfaces of the steel material and material variation in the plate thickness direction. The upper limit was made 0.05%.
The lower limit is preferably 0.005%, more preferably 0.01%, in order to avoid strength reduction from the balance with operational fluctuations and other components. In order to avoid excessive quench hardening and material fluctuation, the upper limit is preferably 0.04%, and more preferably 0.03%.
Si: 0.60% or less Si is an element contained in steel for deoxidation, but if added in large amounts, weldability and HAZ toughness deteriorate, so the upper limit was made 0.60%. Since deoxidation of steel is possible with Ti and Al, the content may be determined by balance with these elements. However, it is preferably as low as possible from the viewpoints of HAZ toughness, hardenability, etc., and may be free of additives. For this reason, the upper limit may be limited to 0.40%, 0.20%, and 0.10%. In addition, when manufacturing steel in a steelmaking factory, it is common that 0.01% or more of Si is contained even when it is deoxidized by Ti and Al without adding Si.
Mn: 0.6 to 2.0%
Mn is an indispensable element for securing the strength and toughness at room temperature, and its lower limit is 0.6%. Preferably it is 0.8% or more or 1.0% or more. However, if the amount of Mn is too large, not only the hardenability is increased and the weldability and HAZ toughness are deteriorated, but also the center segregation of the continuously cast slab is promoted, so the upper limit was made 2.0%. Preferably it is 1.8% or less, More preferably, it is 1.6% or less or 1.4% or less.
P: 0.020% or less Since the amount of P tends to decrease the grain boundary fracture in HAZ when the amount is small, the smaller the amount, the better. If the content is large, the low temperature toughness of the base metal and the weld zone is deteriorated, so the upper limit is made 0.020%. More preferably, the content is 0.015% or less, 0.010% or less, or 0.008% or less. Of course, no additives may be added.
S: 0.010% or less S is more preferable from the viewpoint of low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit is made 0.010%. 0.008% or less, 0.006%, and 0.004% are more preferable. Of course, no additives may be added.
Cr: 0.20 to 1.5%
Cr is one of the most important elements in the present invention. It is essential to add Cr together with Nb to ensure high temperature strength. This is because the transformation temperature is lowered due to the effect of improving the hardenability of Cr, and the hard structure containing cementite becomes bainitic, so the strength at room temperature and high temperature is increased, and further, Cr precipitates (carbonitrides at high temperatures). This is because the precipitation strengthening due to the above is utilized.
In order to enjoy these effects, the Cr content should be at least 0.20%. Preferably it is 0.35% or more, more preferably 0.50% or more, 0.8% or 1.0% or more. However, if the addition amount is too large, the base material, the toughness of the welded portion and the weldability are deteriorated and the economical efficiency is also lost, so the upper limit was made 1.5%. Preferably it is 1.3% or less.
Nb: 0.005 to 0.05%
Nb is the most important element in the present invention together with Cr. This is because, like Cr, precipitation strengthening by Nb precipitates (carbonitrides) is used to ensure high temperature strength.
For this reason, at least 0.005% or more is necessary. Preferably it is 0.010% or more. However, if the addition amount is too large, the toughness of the weld zone is deteriorated, so the upper limit was made 0.05%. Preferably it is 0.045% or less, Furthermore, it is good in it being 0.030% or less. In addition, Nb addition raises the non-recrystallization temperature of austenite and contributes also to exhibiting the effect of the controlled rolling at the time of hot rolling to the maximum.
By the combined addition of Cr and Nb described above, high temperature strength can be secured even without Mo. Therefore, intentional addition of Mo is not performed in the present invention. Moreover, even if Mo is not intentionally mixed as an impurity, it is limited to 0.03% or less.
Al: 0.060% or less Al is an element generally contained in steel for deoxidation. Since deoxidation is also performed with Si or Ti, the amount may be determined in balance with these elements. However, when the amount of Al increases, not only the cleanliness of steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit is made 0.060%. Preferably it is 0.040% or less. The smaller the amount, the better. In addition, when manufacturing steel in a steelmaking factory, even when it does not deoxidize by Al, it is common that 0.001% or more of Al is contained.
N: 0.001 to 0.006%
N is contained in the steel as an unavoidable impurity, but combines with Nb to form carbonitride to increase the strength, and TiN to increase the properties of the steel as described above. . For this reason, the N amount is required to be at least 0.001%. Preferably it is 0.0015% or more. However, an increase in the amount of N is detrimental to the weld heat affected zone toughness and weldability, and the upper limit of the steel of the present invention is 0.006%. More preferably, it is 0.0045% or less.
Next, the reason for the addition of V and Ti that can be contained as required will be described.
V: 0.01 to 0.10%
V has substantially the same effect as Nb, and the role of V in the present invention complements Nb. However, since V is less effective than Nb and affects hardenability, the upper and lower limits are limited. The lower limit was set to 0.01% as the minimum amount that can surely enjoy the effect of V addition. Preferably, it is 0.025% or more. The upper limit is set to 0.10% in consideration the influence on the weld crack susceptibility composition P CM which will be described later. Preferably, it is 0.08% or less, further 0.05% or less.
Ti: 0.005 to 0.025%
Ti is preferably added to improve the toughness of the base material and the weld heat affected zone. This is because when Ti has a small amount of Al (for example, 0.003% or less), it combines with O to form precipitates mainly composed of Ti2O3, which becomes the nucleus of intragranular transformation ferrite formation and has a weld heat affected zone toughness. Improve.
Further, Ti is combined with N and finely precipitated in the steel as TiN, which suppresses the coarsening of γ grains during heating and is effective for making the rolled structure finer. Further, the fine TiN present in the steel material refines the weld heat affected zone structure during welding and improves toughness. In order to obtain these effects, Ti needs to be at least 0.005%. However, if it is too much, TiC is formed and low temperature toughness and weldability are deteriorated, so the upper limit was made 0.025%. Preferably, it is 0.020% or less.
Next, the reason for adding Ni, Cu, B, and Mg will be described.
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should naturally be limited.
Ni: 0.05 to 0.50%
If Ni is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and weld heat affected zone toughness. In order to exert these effects, addition of at least 0.05% is essential.
On the other hand, excessive addition is not only expensive, but is not preferable for weldability. Further, it has been pointed out that the addition of a large amount of Ni may induce stress corrosion cracking (SCC) in liquid ammonia. According to the experiments by the inventors, addition up to 1.0% does not significantly deteriorate the weldability and SCC in liquid ammonia, and the effect of improving strength and toughness is greater. Was 0.50%. Furthermore, when priority is given to economy, it may be limited to 0.35%.
Cu: 0.05 to 0.50%
Cu exhibits substantially the same effects and phenomena as Ni, with the upper limit of 0.50% being restricted in terms of weldability deterioration and excessive addition because Cu-cracks are generated during hot rolling, making it difficult to manufacture. The lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%. When giving priority to economy, the upper limit may be limited to 0.30%.
B: 0.0002 to 0.003%
B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. In order to enjoy this effect, at least 0.0002% is necessary.
However, too much addition not only saturates the effect of improving hardenability but also may form B precipitates that are harmful to toughness, so the upper limit is made 0.003%. Preferably it is 0.002% or less. In cases where stress corrosion cracking is a concern, such as for tank steel, reduction of the hardness of the base metal and the weld heat affected zone is often the point (for example, prevention of sulfide stress corrosion cracking (SCC)). Therefore, HRC ≦ 22 (HV ≦ 248) is essential in Rockwell hardness). In such a case, addition of B which increases hardenability is not preferable. In addition, although B has the above-mentioned strength improvement effect, since there is a problem of material deterioration such as heat-affected zone toughness due to addition of B, in order to avoid these problems, B is 0.0003% or less. It is more desirable to limit or not add.
Mg: 0.0002 to 0.005%
Mg suppresses the growth of austenite grains in the weld heat-affected zone and has the effect of making the grains finer, so that the weld zone can be strengthened. In order to enjoy such an effect, Mg needs to be 0.0002% or more. On the other hand, since the effect cost for the added amount decreases as the added amount increases, the upper limit is set to 0.005% because this is not a cost effective measure. Preferably it is 0.0035% or less.
Next, the reason for adding Ca or REM will be described.
Ca: 0.0005 to 0.004%
REM: 0.0005 to 0.008%
Ca and REM control the morphology of MnS, improve the low temperature toughness of the base material, and reduce the susceptibility to hydrogen induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. In order to exert these effects, 0.0005% is necessary at least.
However, too much addition adversely deteriorates the cleanliness of the steel, and increases the base metal toughness and susceptibility to hydrogen-induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. REM was limited to 0.004% and 0.008%, respectively. Preferably, they are 0.003% and 0.006% or less, respectively. In addition, since Ca and REM have a substantially equivalent effect, any one should just be added in the said range, and you may add both.
Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. In the present invention, to limit the content of each element (mass%), the value of the weld crack susceptibility composition P CM, which is defined by the following expression below 0.22%.
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60
+ Cr / 20 + Mo / 15 + V / 10 + 5B
PCM is an index representing weldability. The lower the CM, the better the weldability. In JIS G 3106 “Rolled steel for welded structure”, it varies depending on the strength level and thickness, but the most severe one is specified to be 0.24% or less.
According to various weld cracking test in a wide range of steels of the present inventors, those with limited P CM below 0.22% as a condition can prevent more severe constraints, reliably welded cold cracking even at ambient conditions is there. Although the lower limit is not particularly limited, the lower limit is naturally limited by the limited range of each component.
Subsequently, manufacturing conditions will be described.
The reason why the heating temperature prior to hot rolling is limited to 1000 to 1300 ° C. is to keep the austenite grains during heating small and to refine the rolled structure. 1300 ° C. is an upper limit temperature at which the austenite during heating is not extremely coarsened. When the heating temperature is exceeded, the austenite grains are coarsely mixed and the structure after transformation is also coarsened, so that the toughness of the steel is remarkably deteriorated.
On the other hand, if the heating temperature is too low, depending on the plate thickness, it is difficult not only to secure the rolling end temperature, which will be described later, but also to increase the non-recrystallization temperature of austenite and to cause the solution of Nb to develop precipitation strengthening. From the viewpoint, the lower limit was set to 1000 ° C. The most preferable heating temperature range is 1050 to 1250 ° C.
The steel material heated on the above conditions is cooled after 800 degreeC or more complete | finishes hot rolling. The cooling means is not particularly limited. Although it may be cooled by leaving it in the atmosphere, the properties of the steel material can be further improved by performing accelerated cooling from a temperature of 750 ° C. or higher to a temperature of 550 ° C. or lower.
When the rolling end temperature is lower than 800 ° C., in the steel of the present invention having a relatively small amount of C, ferrite is likely to undergo transformation transformation and the ferrite may be processed (rolled), which is not preferable in terms of ensuring low temperature toughness. For this reason, the rolling end temperature is limited to 800 ° C. or higher. Preferably it is 820 degreeC or more.
After hot rolling at 800 ° C. or higher, so-called 40 kg class steel (for example, JIS standard SM400, SN400 steel) with relatively low strength satisfies the specified strength even when cooled in the air. it can.
However, even with 50kg steel (for example, JIS standard SM490, SN490 steel) and 40kg steel, if the plate thickness is too thick, it will be difficult to ensure stable strength when left in the atmosphere. After the hot rolling is finished, it is desirable to accelerate cooling from a temperature of 750 ° C. or higher. The accelerated cooling after rolling is intended to enhance the properties of the steel material, and does not impair the excellent features of the present invention.
In the first place, accelerated cooling is intended to refine the structure by increasing the cooling speed in the transformation region and simultaneously improve strength and toughness. Therefore, it does not have any meaning unless it is started before the start of transformation or at least before the end of transformation. For this reason, the accelerated cooling start temperature is limited to 750 ° C. or higher. This accelerated cooling requires cooling to a temperature of 550 ° C. or lower in order to enjoy the effect. This is because when the temperature exceeds 550 ° C., the transformation during accelerated cooling does not proceed sufficiently, and the structure is not sufficiently refined. The preferred accelerated cooling start temperature is 760 ° C. or higher, and the preferred accelerated cooling stop temperature range is 520 or lower and 300 ° C. or higher.
The cooling rate during accelerated cooling depends on the steel composition, the intended strength, and the low temperature toughness level, but from the accelerated cooling start temperature to 550 ° C. at a position 1/4 of the plate thickness from the surface in the plate thickness direction. The average cooling rate is desirably 3 ° C./second or more.
Moreover, even if the tempering process below Ac1 temperature is added with respect to the rolled material after cooling, the outstanding characteristic of this invention is not impaired. It is rather preferable in order to cancel the non-uniformity of cooling and increase the in-plate uniformity of the material.
 転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ19~100mm)を製造し、その材質を調査した。
 表1に比較鋼とともに本願発明鋼の鋼成分を、表2に鋼板の製造条件と諸特性を示す。
 本願発明にしたがって製造した鋼板(本発明鋼)は、すべて良好な特性を有する。これに対し、本願発明によらずに製造した鋼板(比較鋼)は、いずれかの特性が劣ることが分かる。
 比較鋼11はC量が高いため、本願発明鋼に比較し母材、再現HAZとも低温靭性に劣る。
 比較鋼12はNbが添加されておらず、また、比較鋼13はCr量が低いため、いずれも高温強度が低い。
 比較鋼14は、C量が低いために高温強度が低い。
 比較鋼15はCr量が高いため、母材、再現HAZとも靭性に劣る。
 比較鋼16はNbが高いため、HAZ靭性に劣る。
 比較鋼17−1~3の成分は本願発明鋼5と同一である。しかし、比較鋼17−1は圧延終了温度が低く、結果として加速冷却開始温度が確保できずに低くなってしまったため、常温、高温強度ともに低い。比較鋼17−2は加速冷却開始温度が低いため、常温、高温強度ともに低い。比較鋼17−3は、加速冷却停止温度が高いため、常温、高温強度ともに低い。
 比較鋼18は、個々の元素や製造方法は本願発明範囲内であり、常温、高温強度や靭性などは490MPa級としての所要特性を満足しているものの、PCMが高いため、溶接性(斜めy形溶接割れ試験)において割れが発生した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Steel sheets of various steel components (thickness 19 to 100 mm) were manufactured in the converter-continuous casting-thick plate process, and the materials were investigated.
Table 1 shows the steel components of the present invention steel together with the comparative steel, and Table 2 shows the production conditions and various properties of the steel sheet.
All the steel plates manufactured according to the present invention (present invention steel) have good characteristics. On the other hand, it can be seen that a steel sheet (comparative steel) manufactured without using the present invention is inferior in any of the characteristics.
Since the comparative steel 11 has a high C content, both the base material and the reproduced HAZ are inferior in low-temperature toughness compared to the steel of the present invention.
Since the comparative steel 12 is not added with Nb, and the comparative steel 13 has a low Cr content, the high temperature strength is low.
Since the comparative steel 14 has a low C content, the high temperature strength is low.
Since the comparative steel 15 has a high Cr content, both the base material and the reproduced HAZ are inferior in toughness.
Since comparative steel 16 has high Nb, it is inferior in HAZ toughness.
The components of the comparative steels 17-1 to 17-3 are the same as those of the present invention steel 5. However, the comparative steel 17-1 has a low rolling end temperature, and as a result, the accelerated cooling start temperature cannot be ensured and has become low, so both the room temperature and the high temperature strength are low. Since the comparative cooling steel 17-2 has a low accelerated cooling start temperature, both the room temperature and the high temperature strength are low. Since comparative steel 17-3 has a high accelerated cooling stop temperature, both normal temperature and high temperature strength are low.
Comparative Steel 18, the individual elements and production methods are within the present invention range, normal temperature, although such temperature strength and toughness satisfies the required properties as 490MPa class, because of the high P CM, weldability (oblique Cracks occurred in the y-type weld crack test).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明により、高温強度と低温靭性に優れた溶接構造用鋼が大量かつ安価に提供できるようになった。その結果、建築構造用として、耐火被覆の軽減または省略が可能となった。また、建築以外の用途においても、強度、靭性などの基本性能を具備した上で、さらに高温強度をも具備したため、高温に晒される可能性のある溶接構造物用鋼として、構造物の安全性を一段と高めることができるようになった。 The present invention has made it possible to provide a large amount and a low cost of welded structural steel having excellent high temperature strength and low temperature toughness. As a result, it has become possible to reduce or omit the fireproof coating for building structures. In addition to the basic properties such as strength and toughness in applications other than construction, it also has high-temperature strength. Can be further improved.

Claims (6)

  1. 成分が質量%で、
     C :0.003~0.05%
     Si:0.60%以下
     Mn:0.6~2.0%
     P :0.020%以下
     S :0.010%以下
     Cr:0.20~1.5%
     Nb:0.005~0.05%
     Al:0.060%以下
     N :0.001~0.006%であって、
    さらに、不純物としてMoを0.03%以下に制限し、残部が鉄および不可避的不純物からなり、
    CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bで定義される溶接割れ感受性組成PCM値が0.22%以下である鋼材を、1000~1300℃の温度に加熱し、800℃以上の温度で熱間圧延を終了し、その後冷却することを特徴とする高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
    Ingredient is% by mass
    C: 0.003 to 0.05%
    Si: 0.60% or less Mn: 0.6 to 2.0%
    P: 0.020% or less S: 0.010% or less Cr: 0.20 to 1.5%
    Nb: 0.005 to 0.05%
    Al: 0.060% or less N: 0.001 to 0.006%,
    Furthermore, Mo is limited to 0.03% or less as an impurity, and the balance consists of iron and inevitable impurities,
    The P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + steel weld crack susceptibility composition P CM value defined by 5B is less than 0.22%, was heated to a temperature of 1000 ~ 1300 ° C., A method for producing a steel for welded structure excellent in high-temperature strength and low-temperature toughness, characterized in that hot rolling is finished at a temperature of 800 ° C. or higher, followed by cooling.
  2. 前記熱間圧延を終了した後、750℃以上の温度から加速冷却を開始し、550℃以下の温度で加速冷却を停止することを特徴とする請求の範囲1に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。 The high temperature strength and low temperature toughness according to claim 1, wherein after the hot rolling is finished, accelerated cooling is started from a temperature of 750 ° C. or higher, and accelerated cooling is stopped at a temperature of 550 ° C. or lower. Excellent method for producing welded structural steel.
  3. さらに、質量%で、
     V :0.01~0.10%
     Ti:0.005~0.025%
    のいずれか1種または2種を含有することを特徴とする請求の範囲1または2に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
    Furthermore, in mass%,
    V: 0.01 to 0.10%
    Ti: 0.005 to 0.025%
    Any one or two of these are contained, The manufacturing method of the steel for welded structures which is excellent in the high temperature strength and low temperature toughness of Claim 1 or 2 characterized by the above-mentioned.
  4. さらに、質量%で
     Ni:0.05~0.50%
     Cu:0.05~0.50%
     B :0.0002~0.003%
     Mg:0.0002~0.005%
    のいずれか1種または2種以上を含有することを特徴とする請求の範囲1~3のいずれか1項に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
    Furthermore, in mass% Ni: 0.05 to 0.50%
    Cu: 0.05 to 0.50%
    B: 0.0002 to 0.003%
    Mg: 0.0002 to 0.005%
    4. The method for producing a steel for welded structure having excellent high-temperature strength and low-temperature toughness according to any one of claims 1 to 3, wherein any one or more of these are contained.
  5. さらに、質量%で
     Ca :0.0005~0.004%
     REM:0.0005~0.008%
    のいずれか1種を含有することを特徴とする請求の範囲1~4のいずれか1項に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
    Furthermore, in mass% Ca: 0.0005 to 0.004%
    REM: 0.0005 to 0.008%
    The method for producing a steel for welded structure having excellent high-temperature strength and low-temperature toughness according to any one of claims 1 to 4, wherein any one of the above is contained.
  6. 成分が質量%で、
     C :0.003~0.05%
     Si:0.60%以下
     Mn:0.6~2.0%
     P :0.020%以下
     S :0.010%以下
     Cr:0.20~1.5%
     Nb:0.005~0.05%
     Al:0.060%以下
     N :0.001~0.006%であって、
    さらに、不純物としてMoを0.03%以下に制限し、残部が鉄および不可避的不純物からなり、
    CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bで定義される溶接割れ感受性組成PCM値が0.22%以下である鋼材を、1000~1300℃の温度に加熱し、800℃以上の温度で熱間圧延を終了し、その後冷却して得られることを特徴とする高温強度と低温靭性に優れる溶接構造用鋼。
    Ingredient is% by mass
    C: 0.003 to 0.05%
    Si: 0.60% or less Mn: 0.6 to 2.0%
    P: 0.020% or less S: 0.010% or less Cr: 0.20 to 1.5%
    Nb: 0.005 to 0.05%
    Al: 0.060% or less N: 0.001 to 0.006%,
    Furthermore, Mo is limited to 0.03% or less as an impurity, and the balance consists of iron and inevitable impurities,
    The P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + steel weld crack susceptibility composition P CM value defined by 5B is less than 0.22%, was heated to a temperature of 1000 ~ 1300 ° C., A welded structural steel excellent in high temperature strength and low temperature toughness, characterized by being obtained by finishing hot rolling at a temperature of 800 ° C. or higher and then cooling.
PCT/JP2009/050906 2009-01-15 2009-01-15 Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel WO2010082361A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09707108.8A EP2380997B1 (en) 2009-01-15 2009-01-15 Steel for welded structures excellent in high temperature strength and low temperature toughness and method of production of same
CN2009800000583A CN101849026B (en) 2009-01-15 2009-01-15 Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel
BRPI0901011A BRPI0901011B1 (en) 2009-01-15 2009-01-15 steel for welded structures and method of production thereof
JP2009509204A JP4834149B2 (en) 2009-01-15 2009-01-15 Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
KR1020097012504A KR101189263B1 (en) 2009-01-15 2009-01-15 Steel for welded structures excellent in high temperature strength and low temperature toughness and method of production of same
US12/449,512 US20110262298A1 (en) 2009-01-15 2009-01-15 Steel for welded structures excellent in high temperature strength and low temperature toughness and method of production of same
PCT/JP2009/050906 WO2010082361A1 (en) 2009-01-15 2009-01-15 Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050906 WO2010082361A1 (en) 2009-01-15 2009-01-15 Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel

Publications (1)

Publication Number Publication Date
WO2010082361A1 true WO2010082361A1 (en) 2010-07-22

Family

ID=42339627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050906 WO2010082361A1 (en) 2009-01-15 2009-01-15 Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel

Country Status (7)

Country Link
US (1) US20110262298A1 (en)
EP (1) EP2380997B1 (en)
JP (1) JP4834149B2 (en)
KR (1) KR101189263B1 (en)
CN (1) CN101849026B (en)
BR (1) BRPI0901011B1 (en)
WO (1) WO2010082361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400049A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 490-grade fireproof steel plate for building structure and manufacturing method thereof
WO2016068094A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073396B2 (en) * 2007-07-20 2012-11-14 新日本製鐵株式会社 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
CN102373387B (en) * 2011-11-02 2013-05-22 武汉钢铁(集团)公司 Steel plate for large-strain cold-bent tube and manufacturing method thereof
CN103114186B (en) * 2013-03-15 2015-04-08 济钢集团有限公司 Control cooling method of easy-welding high-performance steel plate
JP2017128795A (en) * 2016-01-18 2017-07-27 株式会社神戸製鋼所 Steel for forging and large sized forged steel article
EP3666911B1 (en) 2018-12-11 2021-08-18 SSAB Technology AB High-strength steel product and method of manufacturing the same
CN114763593B (en) * 2021-01-12 2023-03-14 宝山钢铁股份有限公司 Marine engineering steel with high humidity and heat atmosphere corrosion resistance and manufacturing method thereof
CN113667897A (en) * 2021-08-31 2021-11-19 重庆钢铁股份有限公司 Low-temperature toughness steel and P, As matching process thereof
CN115287530A (en) * 2022-06-22 2022-11-04 河钢股份有限公司 High-welding-performance 700 MPa-grade rare earth high-strength structural steel and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119861A (en) * 2005-10-28 2007-05-17 Nippon Steel Corp Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness
JP2007211278A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Fire-resistant thick steel plate and manufacturing method therefor
JP2007277679A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method for producing high tensile steel for welded structure excellent in high temperature strength and low temperature toughness
JP2008144216A (en) * 2006-12-08 2008-06-26 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP2009024228A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293915A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JPH08209241A (en) * 1995-02-02 1996-08-13 Nippon Steel Corp Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness
JPH08295929A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
JP3873540B2 (en) * 1999-09-07 2007-01-24 Jfeスチール株式会社 Manufacturing method of high productivity and high strength rolled H-section steel
CN1169991C (en) * 2001-10-19 2004-10-06 住友金属工业株式会社 Thin steel plate with good machining performance and formed precision and its mfg. method
KR20080090574A (en) * 2004-07-21 2008-10-08 신닛뽄세이테쯔 카부시키카이샤 Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP4555694B2 (en) * 2005-01-18 2010-10-06 新日本製鐵株式会社 Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119861A (en) * 2005-10-28 2007-05-17 Nippon Steel Corp Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness
JP2007211278A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Fire-resistant thick steel plate and manufacturing method therefor
JP2007277679A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method for producing high tensile steel for welded structure excellent in high temperature strength and low temperature toughness
JP2008144216A (en) * 2006-12-08 2008-06-26 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP2009024228A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2380997A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400049A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 490-grade fireproof steel plate for building structure and manufacturing method thereof
CN102400049B (en) * 2010-09-07 2014-03-12 鞍钢股份有限公司 490-grade fireproof steel plate for building structure and manufacturing method thereof
WO2016068094A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JPWO2016068094A1 (en) * 2014-10-28 2017-04-27 Jfeスチール株式会社 High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method

Also Published As

Publication number Publication date
EP2380997A1 (en) 2011-10-26
KR101189263B1 (en) 2012-10-09
EP2380997A4 (en) 2016-12-28
JP4834149B2 (en) 2011-12-14
CN101849026B (en) 2012-07-04
EP2380997B1 (en) 2020-01-08
KR20100105821A (en) 2010-09-30
CN101849026A (en) 2010-09-29
BRPI0901011B1 (en) 2019-09-10
JPWO2010082361A1 (en) 2012-06-28
US20110262298A1 (en) 2011-10-27
BRPI0901011A2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP4834149B2 (en) Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
JP5073396B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP4709632B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
JP5098317B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP5098207B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JP5194994B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength
JP2007277680A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP4031730B2 (en) Structural 490 MPa class high-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP4348102B2 (en) 490 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JPH08209239A (en) Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
WO2007015311A1 (en) 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JP4348103B2 (en) 590 MPa class high strength steel excellent in high temperature strength and method for producing the same
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JP5272878B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
TWI399444B (en) High strength and low temperature toughness, and a method for manufacturing the same
JP2002285238A (en) Method for producing high tensile strength steel having excellent toughness and weldability
JP2003221644A (en) High-tension steel showing excellent welding characteristic in high heat input welding and its manufacturing process
JP2002294393A (en) High tensile strength steel having excellent weldability and production method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000058.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009509204

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097012504

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2009707108

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12449512

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0901011

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090813