WO2010079731A1 - 蛍光検出装置及び蛍光検出方法 - Google Patents
蛍光検出装置及び蛍光検出方法 Download PDFInfo
- Publication number
- WO2010079731A1 WO2010079731A1 PCT/JP2010/000002 JP2010000002W WO2010079731A1 WO 2010079731 A1 WO2010079731 A1 WO 2010079731A1 JP 2010000002 W JP2010000002 W JP 2010000002W WO 2010079731 A1 WO2010079731 A1 WO 2010079731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorescence
- emitted
- signal
- wavelength band
- data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6408—Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0691—Modulated (not pulsed supply)
Definitions
- the present invention relates to a fluorescence detection apparatus and a fluorescence detection method for processing a fluorescence fluorescence signal emitted when a measurement object having a fluorescent dye attached to an analysis object is irradiated with laser light.
- This flow cytometer uses a photoelectric converter such as a photomultiplier or an avalanche photodiode to receive fluorescence emitted from a measurement object by irradiating a laser beam, and the types of measurement objects such as cells and genes Analyze frequency and characteristics.
- a photoelectric converter such as a photomultiplier or an avalanche photodiode to receive fluorescence emitted from a measurement object by irradiating a laser beam
- the types of measurement objects such as cells and genes Analyze frequency and characteristics.
- the flow cytometer creates a measurement object by labeling an analysis object such as a biological substance such as a cell, DNA, RNA, enzyme, protein or the like with a fluorescent reagent, and applies a pressure within approximately 10 m per second.
- a laminar sheath flow is formed by flowing an object to be measured into a sheath liquid flowing in a pipe line at a speed.
- the flow cytometer irradiates the measurement object in the flow with laser light
- the flow cytometer receives the fluorescence emitted by the fluorescent dye attached to the analysis target portion, and identifies this fluorescence as a label for analysis. Identify the object.
- This flow cytometer can measure, for example, the relative amounts of intracellular DNA, RNA, enzymes, proteins, and the like, and can analyze their functions in a short time. Further, the flow cytometer discriminates a predetermined type of cell or chromosome by fluorescence, and selects and collects only the identified cell or chromosome in a living state in a short time using a cell sorter or the like. In the use of such a flow cytometer, it is required to specify more measurement objects accurately from fluorescent information in a short time.
- Japanese Patent Application Laid-Open No. 2006-226698 discloses that many measurement objects are short by calculating the fluorescence lifetime (fluorescence relaxation time) of fluorescence emitted from a fluorescent dye bonded to the measurement object by laser light irradiation. Fluorescence detection devices and methods are described that can be accurately specified in time. According to the publication, the fluorescence detection device irradiates a measurement object with laser light intensity modulated, and obtains the phase delay of the fluorescence signal of the fluorescence from the measurement object relative to the modulation signal used for laser light intensity modulation. From this phase delay, it is described that the fluorescence relaxation time is calculated.
- the fluorescence emitted from the measurement object includes autofluorescence emitted from the analysis object itself such as cells, in addition to the fluorescence emitted from the fluorescent dye bound to the analysis object such as cells.
- the fluorescence intensity of such autofluorescence is often smaller than the fluorescence intensity of the fluorescent dye, but there are also cases where the fluorescence intensity of the fluorescence emitted by the fluorescent dye that receives the light is small. In such a case, the influence of the received autofluorescence cannot be ignored, and there is a problem that the calculation of the phase delay and the calculation of the fluorescence relaxation time cannot be performed accurately.
- the present invention provides accurate measurement when a fluorescent fluorescent signal emitted when a measurement target with a fluorescent dye attached to the analysis target is irradiated with laser light.
- An object is to provide a fluorescence detection apparatus and a fluorescence detection method capable of calculating a high fluorescence relaxation time.
- One embodiment of the present invention is a fluorescence detection device that performs signal processing on a fluorescence fluorescence signal emitted when a measurement object having at least one fluorescent dye attached to an analysis object is irradiated with laser light.
- the device is With the first laser light intensity modulated by the modulation signal of frequency f 1, the second laser light, and intensity modulated by the modulation signal of frequency f 1 and a different frequency f 2, the first laser beam modulated
- a light source unit for emitting the modulated second laser light
- a first light-receiving element that receives fluorescence in a first wavelength band emitted from the first laser light and the second laser light in a first wavelength band and outputs a first fluorescence signal
- a light receiving unit comprising: a second light receiving element that receives the fluorescence of the measurement object in a second wavelength band different from the first wavelength band and outputs a second fluorescence signal;
- a first processing unit that generates second fluorescence data P 2 including phase and intensity information by mixing with Using the fluorescence data obtained by subtracting the result obtained by multiplying the second fluorescence data P 2 by the second constant from the result obtained by multiplying the first fluorescence data P 1 by the first constant, the fluorescence is obtained.
- a second processing unit for calculating the fluorescence relaxation time of the dye.
- Another aspect of the present invention is a fluorescence detection method in which a measurement object with a fluorescent dye attached to an analysis object performs signal processing on a fluorescence signal of fluorescence emitted when irradiated with laser light.
- the method is A fluorescence detection method in which a measurement object having a fluorescent dye attached to an analysis object is subjected to signal processing of a fluorescence signal of fluorescence emitted by being irradiated with laser light, With the first laser light intensity modulated by the modulation signal of frequency f 1, the second laser light, and intensity modulated by the modulation signal of frequency f 1 and a different frequency f 2, the first laser beam modulated And emitting the modulated second laser light;
- the fluorescent light of the measurement object emitted by being irradiated with the first laser light and the second laser light is received in a first wavelength band, and a first fluorescence signal is output, and the measurement object Receiving fluorescence in a second wavelength band different from the first wavelength band and outputting a second
- the fluorescence detection device and the fluorescence detection method of the above aspect when the measurement object processes the fluorescence signal of the fluorescence emitted by being irradiated with the laser beam, the calculation of the fluorescence relaxation time with high accuracy is achieved.
- FIG. 1 is a schematic configuration diagram of a flow cytometer 10 using a fluorescence detection apparatus using intensity-modulated laser light according to the present invention.
- the flow cytometer 10 includes a signal processing device 20 and an analysis device (computer) 80.
- the signal processing device 20 irradiates the sample 12 to be measured with laser light, detects the fluorescence signal of the fluorescence emitted by the sample 12, and performs signal processing.
- the analyzer (computer) 80 calculates the fluorescence intensity and the fluorescence relaxation time from the processing result obtained by the signal processor 20.
- the sample 12 will be described in later by using the configured measurement object by fluorescent protein (fluorescent dye) cells with a X 1 (analyte) X 2.
- a fluorescent dye other than the fluorescent protein can be used.
- the analysis target may be a biological material such as DNA, RNA, enzyme, protein, or the like, or artificially produced microbeads that emit fluorescence.
- the sample 12 shown in FIG. 1, the fluorescent protein X 1 is a configuration attached to the cell X 2 by straps or the like, this is intended to schematically shown.
- Sample 12 for example, a fluorescent protein X 1 enters into the cell X 2, may be configured to fluorescent protein X 1 are dispersed is taken up into cells X 2. Further, the fluorescent protein X 1 attached to the cell X 2 is not limited to one and may be plural.
- the signal processing device 20 includes a laser light source unit 22, light receiving units 24 and 26, a control / processing unit 28, and a conduit 30.
- the control / processing unit 28 includes a control unit that modulates the intensity of the laser light from the laser light source unit 22 at a predetermined frequency, and a signal processing unit that processes the fluorescence signal of the fluorescence emitted from the sample 12.
- the pipe line 30 is included in a sheath liquid that forms a high-speed flow, and flows the sample 12 to form a flow.
- a recovery container 32 is provided at the outlet of the conduit 30.
- a cell sorter for separating a biological material such as a predetermined cell in the sample 12 is arranged in a short time by irradiation with laser light, and is configured to be separated into separate collection containers. You can also.
- the laser light source unit 22 emits two laser beams having different wavelengths.
- a lens system is provided so that the laser beam is focused at a predetermined position in the pipe line 30, and a measurement point of the sample 12 is formed at this focusing position.
- FIG. 2 is a diagram illustrating an example of the configuration of the laser light source unit 22.
- the laser light source unit 22 emits an intensity-modulated laser beam having a wavelength in the visible light band.
- the laser light source unit 22 includes a light source 22a and a light source 22b.
- Light source 22a is a light absorption characteristic of the fluorescent protein X 1 (light absorption coefficient) has a wavelength within the wavelength band in the higher position than the cell light absorption characteristics of the (analyte) X 2 (light absorption coefficient)
- One laser beam L 1 is emitted as a CW (continuous wave) laser beam, and the intensity of the CW laser beam L 1 is emitted while being intensity-modulated with a modulation signal of a predetermined frequency f 1 .
- the second laser beam L 2 CW (continuous having a wavelength within the wavelength band in the optical absorption characteristics of the fluorescent protein X 1 is at a position lower than the light absorption properties of cells (analyte) X 2 Wave) is emitted as laser light, and the intensity of the CW laser light L 2 is emitted while being intensity-modulated with a modulation signal having a predetermined frequency f 2 .
- the laser light source unit 22 includes a dichroic mirror 23a, a lens system 23b, and laser drivers 34a and 34b.
- a half mirror may be used instead of the dichroic mirror 23a.
- the dichroic mirror 23a transmits laser light in a specific wavelength band and reflects laser light in other wavelength bands.
- Lens system 23b focuses the laser beam L 1 + L 2 consisting of the laser beam L 1 and L 2 in the measurement point in the conduit 30.
- Laser drivers 34a and 34b drive the light source 22a and the light source 22b, respectively.
- a semiconductor laser is used as a light source for emitting these laser beams.
- the laser beam outputs about 5 to 100 mW.
- the frequency (modulation frequency) used for intensity modulation of the laser beams L 1 and L 2 has a slightly longer period than the fluorescence relaxation time, for example, 10 to 50 MHz.
- the frequencies of intensity modulation of the laser beams L 1 and L 2 are different. This is because the signal processing device 20 knows which laser beam excitation the received fluorescence is derived from by making the frequencies of the fluorescence emitted by the sample 12 excited by the laser light different from each other. This is for separation.
- the dichroic mirror 23a transmits the laser light L 1, is a mirror that reflects the laser beam L 2. With this configuration, the laser beams L 1 and L 2 are combined to form one irradiation beam for irradiating the sample 12 at the measurement point.
- the light sources 22a and 22b oscillate in a predetermined wavelength band so that the laser beams L 1 and L 2 excite the fluorescent dye to emit fluorescence in a specific wavelength band.
- the fluorescent protein X 1 is fluorescent at a specific wavelength by receiving the laser beams L 1 and L 2 at the measurement point.
- Cell X 2 also emits autofluorescence.
- the light receiving unit 24 is disposed so as to face the laser light source unit 22 with the pipe line 30 interposed therebetween.
- the light receiving unit 24 includes a photoelectric converter that outputs a detection signal indicating that the sample 12 passes through the measurement point by receiving laser light scattered forward by the sample 12 passing through the measurement point.
- the detection signal output from the light receiving unit 24 is supplied to the control / processing unit 28 and the analyzer 80, and a trigger signal that informs the timing at which the sample 12 passes through the measurement point in the pipe line 30; Used as an OFF signal.
- the light receiving unit 26 is arranged in a direction perpendicular to the emitting direction of the laser light emitted from the laser light source unit 22 and perpendicular to the moving direction of the sample 12 in the pipe 30. And a plurality of photoelectric converters for receiving fluorescence emitted from the sample 12 irradiated at the measurement point.
- FIG. 3 is a schematic configuration diagram illustrating a schematic configuration of an example of the light receiving unit 26.
- the 3 includes a lens system 26a that focuses a fluorescent signal from the sample 12, a dichroic mirror 26b, bandpass filters 26c 1 and 26c 2, and a photoelectric converter (light receiving element) such as a photomultiplier tube. 27a, 27b.
- the lens system 26a is configured to focus the fluorescence incident on the light receiving unit 26 on the light receiving surfaces of the photoelectric converters 27a and 27b.
- the dichroic mirror 26b is a mirror that reflects fluorescence in a wavelength band within a predetermined range and transmits the others.
- the reflection wavelength band of the dichroic mirror 26b and the transmission wavelength band of the band-pass filters 26c 1 and 26c 2 are so filtered that the photoelectric converters 27a and 27b capture the fluorescence of the predetermined wavelength band by filtering with the band-pass filters 26c 1 and 26c 2. Is set.
- the bandpass filters 26c 1 and 26c 2 are filters that are provided in front of the light receiving surfaces of the photoelectric converters 27a and 27b and transmit only fluorescence in a predetermined wavelength band.
- the wavelength band R 1 and the wavelength band R 2 of the transmitted fluorescence are set corresponding to the wavelength bands of the fluorescence emitted by the fluorescent protein X 1 and the autofluorescence emitted by the cell X 2 .
- the wavelength band is, for example, a wavelength band R 1 of 474 nm to 514 nm for mainly receiving fluorescence emitted by irradiation with the laser beam L 1 of 408 nm emitted from the light source 22a.
- the wavelength band is, for example, a wavelength band R 2 of 530 nm to 570 nm that mainly receives fluorescence emitted by irradiation with the 455 nm laser light L 2 emitted from the light source 22b.
- the ratio of the fluorescence intensity of the fluorescence fluorescence intensity and cell X 2 fluorescence emitted fluorescent protein X 1 is emitted, in the wavelength band R 2, and the fluorescence intensity of the fluorescence fluorescent protein X 1 is emitted it is preferably different from the ratio of the fluorescence intensity of the fluorescence cell X 2 emitted.
- the fluorescence intensity of the fluorescence emitted by the fluorescent protein X 1 in the sample 12 irradiated with the laser light L 1 is higher than the fluorescence intensity of the autofluorescence emitted by the cell X 2.
- it is preferably set to correspond to the fluorescent protein X 1.
- the fluorescence intensity of the autofluorescence emitted from the cell X 2 in the sample 12 irradiated with the laser light L 2 is higher than the fluorescence intensity of the fluorescence emitted from the fluorescent protein X 1.
- it is preferably set in accordance with autofluorescence.
- Autofluorescence refers to fluorescence that occurs outside the fluorescent dye that is the subject of fluorescence measurement, which becomes background noise and interferes with fluorescence measurement, and is a broad wavelength emitted by unstained cells. Fluorescence distributed in the band.
- the photoelectric converters 27a and 27b are light receiving elements that include sensors such as photomultiplier tubes, for example, and convert light received by the photocathode into electrical signals.
- the received fluorescence is based on excitation of laser light that has undergone intensity modulation at a predetermined frequency, so that the output fluorescence signal is also a signal whose intensity varies at the predetermined frequency. This fluorescence signal is supplied to the control / processing unit 28.
- the control / processing unit 28 includes a signal generation unit 40, a signal processing unit 42, and a signal control unit 44.
- the signal generator 40 generates a modulation signal for modulating the intensity of the laser beams L 1 and L 2 at a predetermined frequency.
- the signal generation unit 40 includes oscillators 46a and 46b, power splitters 48a and 48b, and amplifiers 50a, 50b, 52a, and 52b.
- the signal generation unit 40 supplies the generated modulation signals to the laser drivers 34 a and 34 b of the laser light source unit 22 and also supplies them to the signal processing unit 42.
- the reason why the modulation signal is supplied to the signal processing unit 42 is to use it as a reference signal for detecting the fluorescence signal output from the photoelectric converters 27a and 27b, as will be described later.
- the modulation signal is a signal in which a sine wave signal having a predetermined frequency is placed on a DC component, and is set to a frequency in the range of 10 to 50 MHz.
- the oscillator 46a and the oscillator 46b oscillate signals having different frequencies f 1 and f 2 and generate modulated signals having different frequencies.
- the signal processing unit 42 uses the fluorescence signals output from the photoelectric converters 27a and 27b to extract the phase delay information of the fluorescence emitted by the laser light irradiation.
- the signal processing unit 42 includes amplifiers 54a and 54b, IQ mixers 58a and 58b, and a low-pass filter 62.
- the amplifiers 54a and 54b amplify the fluorescence signals output from the photoelectric converters 27a and 27b.
- the IQ mixers 58a and 58b are devices that mix the fluorescence signals supplied from the photoelectric converters 27a and 27b using the modulation signal supplied from the signal generation unit 40 as a reference signal. Specifically, each of the IQ mixers 58a and 58b multiplies the reference signal by the fluorescence signal (RF signal), the I signal including a component in phase with the modulation signal of the fluorescence signal, and the modulation signal of the fluorescence signal. And a Q signal including a component whose phase is shifted by 90 degrees. The I signal including the in-phase component is generated by mixing the modulated signal and the fluorescent signal, and the Q signal including the component shifted by 90 degrees is mixed with the modulated signal shifted by 90 degrees and the fluorescent signal. Is generated by As a result, the fluorescent fluorescent signal excited by the laser light L 2 and received in the wavelength band R 1 is removed, and the fluorescent fluorescent signal excited by the laser light L 1 and received in the wavelength band R 2 is removed.
- RF signal fluorescence signal
- the low-pass filter 62 is a part that filters the low-frequency signals of the I signal and the Q signal generated by the IQ mixers 58a and 58b. By this filtration, a component of the fluorescence signal in phase with the modulation signal (Re component) and a component of the fluorescence signal shifted in phase by 90 degrees (Im component) are extracted as fluorescence data. Each extracted component is sent to the signal control unit 44. Since the Re component and the Im component are obtained for each of the wavelength bands R 1 and R 2 set in the photoelectric converters 27a and 27b, the set of the Re component and the Im component of the wavelength band R 1 and the wavelength band R 2 The Re component and Im component set are sent to the signal control unit 44.
- the frequency down conversion process including the mixing process by the IQ mixers 58a and 58b and the filtering process by the low-pass filter 62 is referred to, and data obtained by this process is referred to as fluorescence data.
- the signal control unit 44 amplifies the Re component and the Im component of the fluorescence signal sent from the signal processing unit 42, and performs AD conversion.
- the signal control unit 44 gives instructions for controlling the operation of each part, and manages the system controller 60 that manages all operations of the flow cytometer 10, the Re component generated by the signal processing unit 42, An amplifier 64 that amplifies the Im component and an A / D converter 66 that samples the amplified Re component and Im component are included.
- the analyzer 80 obtains the phase delay angle of the fluorescence with respect to the laser light from the Re component and the Im component obtained by AD conversion by the signal control unit 44, and further calculates a fluorescence relaxation time constant (fluorescence relaxation time) from the phase delay angle. ) And fluorescence intensity.
- FIG. 5 is a diagram showing a schematic configuration of the analyzer 80.
- the analysis device 80 is configured by a computer including a CPU 82 and a memory 84.
- the analyzer 80 further includes an autofluorescence removal unit 86, a fluorescence intensity calculation unit 90, a phase delay calculation unit 92, and a fluorescence relaxation time calculation unit 94.
- Each of these parts is a software module that exhibits a function by starting the software on the computer. Of course, these parts can also be constituted by dedicated circuits.
- the autofluorescence removal unit 86 is a part that uses the Re component and Im component supplied from the signal control unit 44 to remove autofluorescence emitted by the cell X 2 and calculates fluorescence data of the fluorescence emitted by the fluorescent protein X 1. is there.
- the Re component and Im component supplied to the analyzer 80 are excited by the laser light L 1 , and fluorescence emitted from the fluorescent protein X 1 and autofluorescence emitted from the cell X 2 are received in the wavelength band R 1.
- the information obtained by receiving light in the wavelength band R 2 , the fluorescence excited by the laser light L 2 and emitted from the fluorescent protein X 1 and the autofluorescence emitted from the cell X 2 including.
- the analyzer 80 is excited by the laser light L 1 and removes information on autofluorescence emitted by the cell X 2 from the measured fluorescence data in order to calculate information on fluorescence emitted by the fluorescent protein X 1. . Specifically, the analyzer 80 obtains and stores the following four fluorescence data in advance, and uses these fluorescence data to obtain the fluorescence data of the Re component and Im component supplied from the signal control unit 44. The autofluorescence emitted from the cell X 2 is removed from the measured fluorescence data, and the fluorescence data of the fluorescence emitted from the fluorescent protein X 1 is calculated.
- the fluorescent protein X 1 and the cell X 2 are caused to flow as separate samples to the conduit 30, and the signal processing device 20 causes the fluorescent protein X 1 to emit fluorescence (first fluorescence),
- the fluorescence (second fluorescence) emitted from the cell X 2 is received in the wavelength band (first wavelength band) R 1 and the wavelength band (second wavelength band) R 2 .
- the signal processing device 20 performs a mixing process on the fluorescence signal in the wavelength band R 1 and the fluorescence signal in the wavelength band R 2 using the modulation signal of the frequency f 1 and the modulation signal of the frequency f 2 , respectively. That is, frequency down conversion processing is performed.
- the analyzer 80 obtains four fluorescence data including phase and intensity information. More specifically, the fluorescence data generated by mixing the fluorescence signal obtained by receiving the fluorescence emitted by the fluorescent protein X 1 in the wavelength band R 1 with the modulation signal of the frequency f 1 (third fluorescence data) and a 3. Fluorescence data (fifth fluorescence data) generated by mixing the fluorescence signal obtained by receiving the fluorescence emitted from the fluorescent protein X 1 in the wavelength band R 2 with the modulation signal of the frequency f 2 is A 5 . To do.
- the fluorescence data (fourth fluorescence data) generated by mixing the fluorescence signal obtained by receiving the fluorescence emitted by the cell X 2 in the wavelength band R 1 with the modulation signal of the frequency f 1 is A 4.
- Fluorescence data (sixth fluorescence data) generated by mixing the fluorescence signal obtained by receiving the fluorescence emitted by the cell X 2 in the wavelength band R 2 with the modulation signal of the frequency f 2 is A 6 .
- These fluorescence data A 3 to A 6 are represented by complex numbers including values of Re component and Im component. These complex numbers are stored in the analyzer 80 in advance.
- the values of the fluorescence data A 3 to A 6 are obtained by flowing the fluorescent protein X 1 and the cell X 2 through the pipe 30 as separate samples.
- accurate fluorescence data is measured using a filter suitable for each of the fluorescent protein X 1 and the cell X 2 , and this measurement result is corrected using the filter characteristics used in the flow cytometer 10 to obtain fluorescence data.
- the values A 3 to A 6 may be obtained in advance and stored in the analyzer 80. Moreover, you may perform this measurement using another apparatus.
- fluorescence data corresponding to the frequency f 1 supplied from the signal control unit 44 that is, fluorescence obtained by performing a mixing process on the modulation signal of the frequency f 1 and representing the Re component and the Im component as complex numbers.
- P 1 be the data.
- the fluorescence data, i.e., Re component mixing process is obtained is carried out in the modulation signal of the frequency f 2, the fluorescence data representing Im component a complex number corresponding to the frequency f 2, It is referred to as P 2.
- fluorescence data P of fluorescence emitted from the fluorescent protein X 1 and from which autofluorescence emitted from the cell X 2 is removed is calculated according to the following formula (1).
- (A 3 / A 4 ) / ⁇ (A 3 / A 4 ) ⁇ (A 5 / A 6 ) ⁇ is the first constant related to the first fluorescence data P 1
- (A 3 / A 6 ) / ⁇ (A 3 / A 4 ) ⁇ (A 5 / A 6 ) ⁇ is the second constant related to the second fluorescence data P 2
- the fluorescence data P is obtained by subtracting the result of multiplying the fluorescence data P 2 by the second constant from the result of multiplying the fluorescence data P 1 by the first constant.
- the first constant and the second constant are determined from the fluorescence data A 3 to A 6 .
- the fluorescence data of autofluorescence can be removed using the above equation (1) is based on the following idea.
- the sample 12 having a configuration in which the fluorescent protein X 1 is attached to the cell X 2 emits autofluorescence in addition to the fluorescence emitted by the fluorescent protein X 1 .
- the fluorescence signal produced in the wavelength region R 1 the fluorescence data P 1 is generated using a modulation signal of frequency f 1
- the fluorescence of the fluorescence by the fluorescent protein X 1 data P 1X1 'and cell X 2 This is expressed by addition to autofluorescence fluorescence data P 1X2 ′.
- the fluorescence signals generated in the wavelength region R 2 is generated using a modulation signal of frequency f 2
- the cell X 2 and fluorescence of fluorescence data P 2X1 'by the fluorescent protein X 1 It is expressed by addition of autofluorescence fluorescence data P 2X2 ′.
- the fluorescence intensity varies for each sample 12 that passes through, depending on the passing position in the width direction of the sample 12 that passes through the measurement point where the laser beam L 1 and the laser beam L 2 converge.
- the sample 12 passing through the measurement point 12 passes through the end portion of the irradiation light (the portion where the intensity of the laser light is reduced), and the other sample 12 that follows is the central portion of the irradiation light (the laser light It passes through the part where the intensity is maximum.
- the coefficient of variation representing such a variation in the fluorescence intensity is C (0 or more and 1 or less), and the fluorescence data when the sample 12 passes through the central portion of the irradiation light is the fluorescence data P 1X1 ′ and P 1X2 ′, respectively.
- the fluorescence data are P 1X1 and P 1X2 , the following expressions (2) and (3) are obtained.
- the fluorescence emitted by the fluorescent protein X 1 is expressed as n ⁇ P 1x1 and n ⁇ P 2x1 on the assumption that a plurality of (n) fluorescent proteins X 1 emit fluorescence per cell X 2 . ing.
- P 1x1 and P 1x2 in the formula (2) correspond to the above-described fluorescence data A 3 and A 4
- P 2x1 and P 2x2 in the formula (3) represent the above-described fluorescence data A 5 and A 4, respectively.
- Corresponds to 6 The values of these fluorescence data A 3 to A 6 are stored in the analyzer 80 in advance. Therefore, C and n can be determined using equations (2) and (3).
- the expression (1) takes into consideration that the fluorescence intensity varies according to the passage position of the sample 12 passing through the measurement point and the fluorescence emitted by a plurality of fluorescent dyes X 1 for one cell X 2 .
- autofluorescence can be removed and fluorescence data of fluorescence emitted only by the fluorescent protein X 1 can be calculated.
- Fluorescence intensity calculation unit 90 calculates the fluorescence data P of the fluorescent protein X 1 calculated by the autofluorescence removing unit 86, by obtaining the absolute value of a complex number, and calculates the fluorescence intensity of the fluorescent protein X 1.
- the phase lag calculation unit 92 calculates the complex argument (tan ⁇ 1 (Im component of fluorescence data / Re component of fluorescence data)) for the fluorescence data P of the fluorescent protein X 1 calculated by the autofluorescence removal unit 86. Calculated as the phase delay angle ⁇ .
- f 1 is a frequency used for intensity modulation of the laser light L 1 .
- the calculated fluorescence intensity, phase delay angle ⁇ , and fluorescence relaxation time ⁇ of the fluorescent protein X 1 are output as result information to a printer or display (not shown).
- the result information is subjected to statistical processing as a result measured every time the sample 12 passes the measurement point of the pipe 30.
- the flow cytometer 10 is configured as described above.
- the flow cytometer 10 has a plurality of wavelengths of laser light L 1 , prepared so that one light absorption is higher than the other light absorption for each of the fluorescent protein X 1 and the cell X 2 .
- L 2 is intensity-modulated at a plurality of different frequencies (f 1 , f 2 ) and emitted from the light source unit 22 as irradiation light.
- the light receiving unit 26 having the wavelength bands R 1 and R 2 receives the fluorescence and outputs a fluorescence signal.
- the wavelength band R 1 the ratio of the fluorescence intensity of the fluorescence fluorescence intensity and cell X 2 fluorescence emitted fluorescent protein X 1 is emitted
- the wavelength band R 2 the ratio of the fluorescence intensity of the fluorescence fluorescent protein X 1 is emitted it is preferably different from the ratio of the fluorescence intensity of the fluorescence cell X 2 emitted.
- the fluorescence intensity of one of the fluorescent protein X 1 and the cell X 2 is higher than the fluorescence intensity of the other fluorescence
- the fluorescence intensity of the one fluorescence is higher.
- the wavelength bands R 1 and R 2 are preferably set so as to be lower than the fluorescence intensity of the other fluorescence.
- the control / processing unit 28 mixes each of the output fluorescence signals with a modulation signal that modulates the intensity of the laser beams L 1 and L 2, thereby obtaining fluorescence data including the phase delay angle and the intensity amplitude of the fluorescence signal with respect to the modulation signal. P 1 and P 2 are generated.
- the analyzer 80 calculates the fluorescence data P from the generated fluorescence data P 1 and P 2 according to the above equation (1).
- This fluorescence data P is fluorescence data of fluorescence emitted from the fluorescent protein X 1 and is fluorescence data from which autofluorescence emitted from the cell X 2 has been removed. Furthermore, the analyzer 80 uses the fluorescence data P to calculate the fluorescence intensity, the phase delay angle ⁇ , and the fluorescence relaxation time ⁇ of the fluorescence emitted by the fluorescent protein X 1 .
- the values of the fluorescence data A 3 to A 6 used in equation (1) are stored and held in the analyzer 80. These values are obtained in advance by measuring the fluorescent protein X 1 and the cell X 2 alone or together using the flow cytometer 10.
- the analyzer 80 can remove the fluorescence data of the autofluorescence emitted from the cell X 2 from the measured fluorescence data before calculating the fluorescence relaxation time ⁇ , so that the calculated fluorescence relaxation time ⁇ is accurate. Becomes higher.
- the first constant and the second constant used for calculation of fluorescence data are determined by using four fluorescence data obtained by separately measuring the fluorescent dye and the analyte.
- the measurement object sets the measurement point. It is possible to remove a variation factor that causes the fluorescence data to vary depending on the passing position.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
これのフローサイトメータの使用においては、より多くの測定対象物を、短時間に正確に蛍光の情報から特定することが要求されている。
当該公報によると、蛍光検出装置は、レーザ光を強度変調して測定対象物に照射し、測定対象物からの蛍光の蛍光信号の、レーザ光の強度変調に用いた変調信号に対する位相遅れを求め、この位相遅れから、蛍光緩和時間を算出することが記載されている。
当該装置は、
第1のレーザ光を周波数f1の変調信号で強度変調するとともに、第2のレーザ光を、周波数f1と異なる周波数f2の変調信号で強度変調して、変調した前記第1のレーザ光及び変調した前記第2のレーザ光を出射する光源部と、
前記第1のレーザ光および前記第2のレーザ光に照射されて発する測定対象物の蛍光を第1の波長帯域で受光して、第1の蛍光信号を出力する第1の受光素子と、前記測定対象物の前記蛍光を前記第1の波長帯域と異なる第2の波長帯域で受光して、第2の蛍光信号を出力する第2の受光素子と、を備える受光部と、
前記第1の蛍光信号を前記周波数f1の変調信号とミキシングすることにより、位相および強度の情報を含む第1の蛍光データP1と、前記第2の蛍光信号を前記周波数f2の変調信号とミキシングすることにより、位相および強度の情報を含む第2の蛍光データP2を生成する第1の処理部と、
前記第1の蛍光データP1に第1の定数を乗算した結果から、第2の蛍光データP2に第2の定数を乗算した結果を減算することにより得られた蛍光データを用いて前記蛍光色素の蛍光緩和時間を算出する第2の処理部と、を有する。
当該方法は、
分析対象物に蛍光色素が付いた測定対象物が、レーザ光の照射を受けることにより発する蛍光の蛍光信号を信号処理する蛍光検出方法であって、
第1のレーザ光を周波数f1の変調信号で強度変調するとともに、第2のレーザ光を、周波数f1と異なる周波数f2の変調信号で強度変調して、変調した前記第1のレーザ光及び変調した前記第2のレーザ光を出射するステップと、
前記第1のレーザ光および前記第2のレーザ光に照射されて発する測定対象物の蛍光を第1の波長帯域で受光して、第1の蛍光信号を出力するとともに、前記測定対象物の前記蛍光を前記第1の波長帯域と異なる第2の波長帯域で受光して、第2の蛍光信号を出力するステップと、
前記第1の蛍光信号を前記周波数f1の変調信号とミキシングすることにより、位相および強度の情報を含む第1の蛍光データP1と、前記第2の蛍光信号を前記周波数f2の変調信号とミキシングすることにより、位相および強度の情報を含む第2の蛍光データP2を生成するステップと、
前記第1の蛍光データP1に第1の定数を乗算した結果から、第2の蛍光データP2に第2の定数を乗算した結果を減算することにより得られた蛍光データを用いて前記蛍光色素の蛍光緩和時間を算出するステップと、を有する。
12 試料
20 信号処理装置
22 レーザ光源部
22a,22b 光源
23a,26b ダイクロイックミラー
23b.26a レンズ系
24,26 受光部
26c1,26c2 バンドパスフィルタ
27a,27b 光電変換器
28 制御・処理部
30 管路
32 回収容器
34a,34b レーザドライバ
40 信号生成部
42 信号処理部
44 信号制御部
46a,46b 発振器
48a,48b パワースプリッタ
50a,50b,52a,52b,54a,54b,64 アンプ
58a,58b IQミキサ
60 システムコントローラ
62 ローパスフィルタ
66 A/D変換器
80 分析装置
82 CPU
84 メモリ
86 自家蛍光除去部
88 蛍光信号補正部
90 蛍光強度算出部
92 位相遅れ算出部
94 蛍光緩和時間算出部
図1は、本発明の強度変調したレーザ光による蛍光検出装置を用いたフローサイトメータ10の概略構成図である。
フローサイトメータ10は、信号処理装置20と、分析装置(コンピュータ)80とを有する。信号処理装置20は、測定対象とする試料12にレーザ光を照射し、試料12が発する蛍光の蛍光信号を検出して信号処理をする。分析装置(コンピュータ)80は、信号処理装置20で得られた処理結果から蛍光強度や蛍光緩和時間を算出する。試料12の例として、蛍光蛋白(蛍光色素)X1を付けた細胞(分析対象物)X2により構成される測定対象物を用いて以降説明する。本実施形態では、蛍光蛋白以外の蛍光色素を用いることもできる。分析対象物も、細胞以外に、DNA、RNA、酵素、蛋白等の生体物質の他、人工的に作製された蛍光を発するマイクロビーズ等を用いることもできる。なお、図1に示す試料12は、蛍光蛋白X1が紐等によって細胞X2に付着した構成であるが、これは模式的に示したものである。試料12は、例えば、細胞X2内に蛍光蛋白X1が進入し、蛍光蛋白X1が細胞X2内に取り込まれて分散した構成であってもよい。また、細胞X2に付着する蛍光蛋白X1は1つには限定されず、複数であってもよい。
制御・処理部28は、レーザ光源部22からのレーザ光を所定の周波数で強度変調させる制御部、及び試料12が発する蛍光の蛍光信号を処理する信号処理部を含む。管路30は、高速流を形成するシース液に含ませて試料12を流してフローを形成する。
管路30の出口には、回収容器32が設けられている。フローサイトメータ10には、レーザ光の照射により短時間内に試料12中の所定の細胞等の生体物質を分離するためのセル・ソータを配置して別々の回収容器に分離するように構成することもできる。
レーザ光源部22は、可視光帯域の波長を有し、強度変調したレーザ光を出射する。
レーザ光源部22は、光源22aと光源22bを有する。光源22aは、蛍光蛋白X1の光吸収特性(光吸収係数)が細胞(分析対象物)X2の光吸収特性(光吸収係数)に比べて高い位置にある波長帯域内の波長を有する第1のレーザ光L1をCW(連続波)レーザ光として出射し、かつこのCWレーザ光L1の強度を所定の周波数f1の変調信号で強度変調しながら出射する。光源22bは、蛍光蛋白X1の光吸収特性が細胞(分析対象物)X2の光吸収特性に比べて低い位置にある波長帯域内の波長を有する第2のレーザ光L2をCW(連続波)レーザ光として出射し、かつこのCWレーザ光L2の強度を所定の周波数f2の変調信号で強度変調しながら出射する。
ダイクロイックミラー23aは、特定の波長帯域のレーザ光を透過し、他の波長帯域のレーザ光を反射する。レンズ系23bは、レーザ光L1およびL2からなるレーザ光L1+L2を管路30中の測定点に集束させる。レーザドライバ34aおよび34bは、光源22aおよび光源22bそれぞれを駆動する。
一方、レーザ光L1およびL2の強度変調に用いる周波数(変調周波数)は、その周期が蛍光緩和時間に比べてやや長く、例えば10~50MHzである。レーザ光L1およびL2の強度変調の周波数は異なる。これは、レーザ光で励起された試料12が発する蛍光の周波数を互いに異ならせることにより、信号処理装置20は、受光した蛍光がどのレーザ光の励起に由来するものかを知り、蛍光の情報を分離するためである。
ダイクロイックミラー23aは、レーザ光L1を透過し、レーザ光L2を反射するミラーである。この構成によりレーザ光L1およびL2が合成されて、測定点の試料12を照射する1つの照射光となる。
図3は、受光部26の一例の概略の構成を示す概略構成図である。
レンズ系26aは、受光部26に入射した蛍光を光電変換器27a,27bの受光面に集束させるように構成されている。
ダイクロイックミラー26bは、所定の範囲の波長帯域の蛍光を反射させて、それ以外は透過させるミラーである。バンドパスフィルタ26c1,26c2でフィルタリングして光電変換器27a,27bが所定の波長帯域の蛍光を取り込むように、ダイクロイックミラー26bの反射波長帯域およびバンドパスフィルタ26c1,26c2の透過波長帯域が設定されている。
その際、波長帯域R1における、蛍光蛋白X1が発する蛍光の蛍光強度と細胞X2が発する蛍光の蛍光強度の比が、波長帯域R2における、蛍光蛋白X1が発する蛍光の蛍光強度と細胞X2が発する蛍光の蛍光強度の比と異なることが好ましい。
例えば、波長帯域R1は、レーザ光L1で照射された試料12のうち、蛍光蛋白X1の発する蛍光の蛍光強度が、細胞X2が発する自家蛍光の蛍光強度に比べて高くなるように、蛍光蛋白X1に対応して設定されることが好ましい。そのとき、波長帯域R2は、レーザ光L2で照射された試料12のうち、細胞X2の発する自家蛍光の蛍光強度が、蛍光蛋白X1が発する蛍光の蛍光強度に比べて高くなるように、自家蛍光に対応して設定されることが好ましい。自家蛍光とは、蛍光の測定対象となる蛍光色素以外の部分が蛍光を発生し、これが背景ノイズとなって蛍光測定の障害になるものをいい、染色されていない細胞等が自ら発する、広い波長帯域で分布する蛍光をいう。
信号生成部40は、レーザ光L1,L2の強度を所定の周波数で変調するための変調信号を生成する。
具体的には、信号生成部40は、発振器46a,46b、パワースプリッタ48a,48b及びアンプ50a,50b,52a,52bを有する。信号生成部40は、生成される各変調信号を、レーザ光源部22のレーザドライバ34a,34bに供給するとともに、信号処理部42に供給する。信号処理部42に変調信号を供給するのは、後述するように、光電変換器27a,27bから出力される蛍光信号を検波するための参照信号として用いるためである。なお、変調信号は、DC成分に所定の周波数の正弦波信号が載った信号であり、10~50MHzの範囲の周波数に設定される。発振器46aと発振器46bは、互いに異なる周波数f1,f2の信号を発振し、異なる周波数の変調信号を生成する。
分析装置80は、CPU82およびメモリ84を備えるコンピュータで構成される。分析装置80は、さらに、自家蛍光除去部86と、蛍光強度算出部90と、位相遅れ算出部92と、蛍光緩和時間算出部94とを有する。これらの各部分は、コンピュータ上でソフトウェアを起動させることにより、機能を発揮するソフトウェアモジュールである。勿論、これらの部分を専用回路で構成することもできる。
分析装置80に供給されるRe成分およびIm成分は、レーザ光L1で励起されて、蛍光蛋白X1が発する蛍光と、細胞X2が発する自家蛍光とが、波長帯域R1で受光されることにより得られた情報と、レーザ光L2で励起されて、蛍光蛋白X1が発する蛍光と、細胞X2が発する自家蛍光とが、波長帯域R2で受光されることにより得られた情報を含む。このため、分析装置80は、レーザ光L1で励起されて、蛍光蛋白X1が発する蛍光の情報を算出するために、測定された蛍光データから細胞X2が発する自家蛍光の情報を除去する。
具体的には、分析装置80は、以下の4つの蛍光データを予め求めて記憶しておき、これらの蛍光データを用いて、信号制御部44から供給されたRe成分、Im成分の蛍光データを用いて、細胞X2が発する自家蛍光を測定された蛍光データから除去し、蛍光蛋白X1の発する蛍光の蛍光データを算出する。
より具体的に説明すると、蛍光蛋白X1の発する蛍光を波長帯域R1で受光して得られる蛍光信号が周波数f1の変調信号でミキシング処理されることにより生成される蛍光データ(第3の蛍光データ)をA3とする。蛍光蛋白X1の発する蛍光を波長帯域R2で受光して得られる蛍光信号が周波数f2の変調信号でミキシング処理されることにより生成される蛍光データ(第5の蛍光データ)をA5とする。さらに、細胞X2の発する蛍光を波長帯域R1で受光して得られる蛍光信号が周波数f1の変調信号でミキシング処理されることにより生成される蛍光データ(第4の蛍光データ)をA4とする。細胞X2の発する蛍光を波長帯域R2で受光して得られる蛍光信号が周波数f2の変調信号でミキシング処理されることにより生成される蛍光データ(第6の蛍光データ)をA6とする。これらの蛍光データA3~A6は、Re成分、Im成分の値を含む、複素数で表される。これらの複素数が、分析装置80に予め記憶されている。
このとき、蛍光蛋白X1が発する蛍光であって、細胞X2が発する自家蛍光が除去された蛍光の蛍光データPは、下記式(1)に従って算出される。
-(A3/A6)/{(A3/A4)-(A5/A6)}・P2 (1)
一般に、細胞X2に蛍光蛋白X1が付いた構成の試料12は、蛍光蛋白X1の発する蛍光の他に自家蛍光も発する。このため、波長領域R1で生成される蛍光信号と、周波数f1の変調信号とを用いて生成される蛍光データP1は、蛍光蛋白X1による蛍光の蛍光データP1X1’と細胞X2による自家蛍光の蛍光データP1X2’との加算で表される。同様に、波長領域R2で生成される蛍光信号と、周波数f2の変調信号とを用いて生成される蛍光データP2は、蛍光蛋白X1による蛍光の蛍光データP2X1’と細胞X2による自家蛍光の蛍光データP2X2’の加算で表される。
さらに、レーザ光L1とレーザ光L2が収束する測定点を通過する試料12の幅方向の通過位置に応じて、通過する1つ1つの試料12毎に、蛍光強度が変動する。例えば、測定点12を通過する試料12が照射光の端の部分(レーザ光の強度が低下している部分)を通過し、後続する他の試料12は、照射光の中央部分(レーザ光の強度が最大となる部分)を通過する。
P2=C・(n・P2X1+P2X2) (3)
位相遅れ算出部92は、自家蛍光除去部86で算出された蛍光蛋白X1の蛍光データPについて、複素数の偏角(tan-1(蛍光データのIm成分/蛍光データのRe成分))を、位相遅れ角θとして算出する。
蛍光緩和時間算出部94は、位相遅れ算出部92で算出されたθを用いて、蛍光蛋白X1の蛍光緩和時間τをτ=1/(2πf1)・tan(θ)の式にしたがって算出する。ここで、f1は、レーザ光L1の強度変調に用いた周波数である。蛍光緩和時間τをτ=1/(2πf1)・tan(θ)の式にしたがって算出することができるのは、蛍光現象が、1次の緩和過程に沿った変化を示すからである。
算出された蛍光蛋白X1の蛍光強度、位相遅れ角θおよび蛍光緩和時間τは、図示されないプリンタやディスプレイに結果情報として出力される。また、この結果情報は、試料12が管路30の測定点を通過する度に測定される結果として、統計処理の対象とされる。
フローサイトメータ10は以上のように構成される。
まず、フローサイトメータ10は、蛍光蛋白X1および細胞X2のそれぞれに対して、一方の光吸収が、他方の光吸収に比べて高くなるように用意した複数の波長のレーザ光L1,L2を、異なる複数の周波数(f1,f2)で強度変調して、照射光として、光源部22から出射する。
このとき、波長帯域R1における、蛍光蛋白X1が発する蛍光の蛍光強度と細胞X2が発する蛍光の蛍光強度の比が、波長帯域R2における、蛍光蛋白X1が発する蛍光の蛍光強度と細胞X2が発する蛍光の蛍光強度の比と異なることが好ましい。例えば、波長帯域R1において、蛍光蛋白X1および細胞X2のうち一方の蛍光の蛍光強度が他の蛍光の蛍光強度に比べて高く、波長帯域R2において、前記一方の蛍光の蛍光強度が前記他の蛍光の蛍光強度に比べて低くなるように、波長帯域R1およびR2は設定されることが好ましい。
制御・処理部28は、出力した蛍光信号のそれぞれを、レーザ光L1,L2を強度変調する変調信号とミキシングすることにより、変調信号に対する蛍光信号の位相遅れ角と強度振幅を含む蛍光データP1,P2を生成する。
分析装置80は、生成した蛍光データP1,P2から、上記式(1)に従って蛍光データPを算出する。この蛍光データPが、蛍光蛋白X1が発する蛍光の蛍光データであって、細胞X2が発する自家蛍光が除去された蛍光データである。さらに、分析装置80は、この蛍光データPを用いて、蛍光蛋白X1が発する蛍光の蛍光強度、位相遅れ角θおよび蛍光緩和時間τを算出する。
このように、分析装置80は、蛍光緩和時間τを算出する前、細胞X2が発する自家蛍光の蛍光データを測定した蛍光データから除去することができるので、算出される蛍光緩和時間τは精度が高くなる。
Claims (12)
- 分析対象物に少なくとも1つの蛍光色素が付いた測定対象物が、レーザ光の照射を受けることにより発する蛍光の蛍光信号を信号処理する蛍光検出装置であって、
第1のレーザ光を周波数f1の変調信号で強度変調するとともに、第2のレーザ光を、周波数f1と異なる周波数f2の変調信号で強度変調して、変調した前記第1のレーザ光及び変調した前記第2のレーザ光を出射する光源部と、
前記第1のレーザ光および前記第2のレーザ光に照射されて発する測定対象物の蛍光を第1の波長帯域で受光して、第1の蛍光信号を出力する第1の受光素子と、前記測定対象物の前記蛍光を前記第1の波長帯域と異なる第2の波長帯域で受光して、第2の蛍光信号を出力する第2の受光素子と、を備える受光部と、
前記第1の蛍光信号を前記周波数f1の変調信号とミキシングすることにより、位相および強度の情報を含む第1の蛍光データP1と、前記第2の蛍光信号を前記周波数f2の変調信号とミキシングすることにより、位相および強度の情報を含む第2の蛍光データP2を生成する第1の処理部と、
前記第1の蛍光データP1に第1の定数を乗算した結果から、第2の蛍光データP2に第2の定数を乗算した結果を減算することにより得られた蛍光データを用いて前記蛍光色素の蛍光緩和時間を算出する第2の処理部と、を有することを特徴とする蛍光検出装置。 - 前記第1のレーザ光は、前記蛍光色素の光吸収特性が前記分析対象物の光吸収特性に比べて高い波長帯域内の波長を有し、前記第2のレーザ光は、前記蛍光色素の光吸収特性が前記分析対象物の光吸収特性に比べて低い波長帯域内の波長を有する、請求項1に記載の蛍光検出装置。
- 前記第1の波長帯域における、前記蛍光色素が発する蛍光の蛍光強度と前記分析対象物が発する蛍光の蛍光強度の比が、前記第2の波長帯域における、前記蛍光色素が発する蛍光の蛍光強度と前記分析対象物が発する蛍光の蛍光強度の比と異なる、請求項1または2に記載の蛍光検出装置。
- 前記第2の処理部は、前記蛍光色素の発する第1の蛍光と、前記分析対象物の発する第2の蛍光とを別々に前記第1の波長帯域で受光して得られる2つの蛍光信号を、前記周波数f1の変調信号とミキシングすることにより生成される、位相および強度の情報を含む2つの蛍光データA3,A4を予め記憶するとともに、さらに、前記蛍光色素の発する前記第1の蛍光と、前記分析対象物の発する前記第2の蛍光とを別々に前記第2の波長帯域で受光して得られる2つの蛍光信号を、前記周波数f2の変調信号とミキシングすることにより、位相および強度の情報を含む2つの蛍光データA5,A6を予め記憶しており、
前記蛍光緩和時間を算出するとき、記憶している前記蛍光データA3,A4,A5,A6を用いて、前記第1の定数および前記第2の定数を定める、請求項1~3のいずれか1項に記載の蛍光検出装置。 - 前記第2の処理部は、前記蛍光データA3,A4,A5,A6を用いて下記式に従って算出される蛍光データPを用いて蛍光緩和時間を算出する、請求項2に記載の蛍光検出装置。
P =(A3/A4)/{(A3/A4)-(A5/A6)}・P1
-(A3/A6)/{(A3/A4)-(A5/A6)}・P2 - 前記測定対象物の蛍光は、前記蛍光色素が発する蛍光と、前記分析対象物自体が発する自家蛍光を含む、請求項1~5のいずれか1項に記載の蛍光検出装置。
- 前記分析対象物は生体物質である、請求項6に記載の蛍光検出装置。
- 分析対象物に蛍光色素が付いた測定対象物が、レーザ光の照射を受けることにより発する蛍光の蛍光信号を信号処理する蛍光検出方法であって、
第1のレーザ光を周波数f1の変調信号で強度変調するとともに、第2のレーザ光を、周波数f1と異なる周波数f2の変調信号で強度変調して、変調した前記第1のレーザ光及び変調した前記第2のレーザ光を出射するステップと、
前記第1のレーザ光および前記第2のレーザ光に照射されて発する測定対象物の蛍光を第1の波長帯域で受光して、第1の蛍光信号を出力するとともに、前記測定対象物の前記蛍光を前記第1の波長帯域と異なる第2の波長帯域で受光して、第2の蛍光信号を出力するステップと、
前記第1の蛍光信号を前記周波数f1の変調信号とミキシングすることにより、位相および強度の情報を含む第1の蛍光データP1と、前記第2の蛍光信号を前記周波数f2の変調信号とミキシングすることにより、位相および強度の情報を含む第2の蛍光データP2を生成するステップと、
前記第1の蛍光データP1に第1の定数を乗算した結果から、第2の蛍光データP2に第2の定数を乗算した結果を減算することにより得られた蛍光データを用いて前記蛍光色素の蛍光緩和時間を算出するステップと、を有することを特徴とする蛍光検出方法。 - 前記第1のレーザ光は、前記蛍光色素の光吸収特性が前記分析対象物の光吸収特性に比べて高い波長帯域内の波長を有し、前記第2のレーザ光は、前記蛍光色素の光吸収特性が前記分析対象物の光吸収特性に比べて低い波長帯域内の波長を有する、請求項8に記載の蛍光検出方法。
- 前記第1の波長帯域における、前記蛍光色素が発する蛍光の蛍光強度と前記分析対象物が発する蛍光の蛍光強度の比が、前記第2の波長帯域における、前記蛍光色素が発する蛍光の蛍光強度と前記分析対象物が発する蛍光の蛍光強度の比と異なる、請求項8または9に記載の蛍光検出方法。
- 前記第1の定数及び前記第2の定数は、予め得られた4つの蛍光データを用いて定められ、
前記蛍光検出方法は、前記4つの蛍光データを得るためのステップを有し、
前記4つの蛍光データを得るためのステップは、
前記蛍光色素の発する第1の蛍光と、前記分析対象物の発する第2の蛍光とを別々に前記第1の波長帯域で受光して得られる2つの蛍光信号を、前記周波数f1の変調信号とミキシングすることにより、位相および強度の情報を含む2つの蛍光データA3,A4を求めて記憶するステップと、
前記蛍光色素の発する前記第1の蛍光と、前記分析対象物の発する前記第2の蛍光とを別々に前記第2の波長帯域で受光して得られる2つの蛍光信号を、前記周波数f2の変調信号とミキシングすることにより、位相および強度の情報を含む2つの蛍光データA5,A6を求めて記憶するステップと、を含む、請求項8~10のいずれか1項に記載の蛍光検出方法。 - 前記第2の処理部は、前記蛍光データA3,A4,A5,A6を用いて下記式に従って算出される蛍光データPを用いて蛍光緩和時間を算出する、請求項11に記載の蛍光検出方法。
P =(A3/A4)/{(A3/A4)-(A5/A6)}・P1
-(A3/A6)/{(A3/A4)-(A5/A6)}・P2
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/143,613 US20110266462A1 (en) | 2009-01-09 | 2010-01-04 | Fluorescence detecting device and fluorescence detecting method |
CN201080003855XA CN102272582A (zh) | 2009-01-09 | 2010-01-04 | 荧光检测装置及荧光检测方法 |
KR1020117017946A KR101248874B1 (ko) | 2009-01-09 | 2010-01-04 | 형광 검출 장치 및 형광 검출 방법 |
JP2010500011A JP4540751B1 (ja) | 2009-01-09 | 2010-01-04 | 蛍光検出装置及び蛍光検出方法 |
EP10729151A EP2383564A1 (en) | 2009-01-09 | 2010-01-04 | Fluorescence detecting device and fluorescence detecting method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009003414 | 2009-01-09 | ||
JP2009-003414 | 2009-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010079731A1 true WO2010079731A1 (ja) | 2010-07-15 |
Family
ID=42316496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000002 WO2010079731A1 (ja) | 2009-01-09 | 2010-01-04 | 蛍光検出装置及び蛍光検出方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110266462A1 (ja) |
EP (1) | EP2383564A1 (ja) |
JP (1) | JP4540751B1 (ja) |
KR (1) | KR101248874B1 (ja) |
CN (1) | CN102272582A (ja) |
WO (1) | WO2010079731A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211811A (ja) * | 2011-03-31 | 2012-11-01 | Fujifilm Corp | 光学的測定方法および光学的測定装置 |
CN103063620A (zh) * | 2011-10-21 | 2013-04-24 | 中国人民银行印制科学技术研究所 | 一种光致发光复合特征的检测装置和方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011083754A1 (ja) * | 2010-01-06 | 2011-07-14 | 三井造船株式会社 | 蛍光検出装置、蛍光検出方法及び蛍光信号を信号処理する方法 |
AU2011208946B2 (en) | 2010-01-28 | 2014-10-02 | Ellume Pty Ltd | Sampling and testing device for the human or animal body |
US10890590B2 (en) | 2012-09-27 | 2021-01-12 | Ellume Limited | Diagnostic devices and methods |
US20140291550A1 (en) * | 2013-04-01 | 2014-10-02 | National Institute Of Standards And Technology | Flow cytometer systems and associated methods |
WO2016049756A1 (en) * | 2014-09-29 | 2016-04-07 | Novadaq Technologies Inc. | Imaging a target fluorophore in a biological material in the presence of autofluorescence |
EP3248001B1 (en) | 2015-01-22 | 2019-09-18 | Ellume Pty Ltd. | Diagnostic devices and methods for mitigating hook effect and use thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002533658A (ja) * | 1998-12-04 | 2002-10-08 | フォトセンス、エル.エル.シー. | 目標サンプルの照射中の放射時間の遅れを測定するための検出デバイスおよび方法 |
JP2004163312A (ja) * | 2002-11-14 | 2004-06-10 | Arkray Inc | 測定装置、蛍光測定装置及び蛍光測定方法 |
JP2004251814A (ja) * | 2003-02-21 | 2004-09-09 | Optoquest Co Ltd | 蛍光分析方法および蛍光分析装置 |
JP2006226698A (ja) | 2005-02-15 | 2006-08-31 | Mitsui Eng & Shipbuild Co Ltd | 強度変調したレーザ光による蛍光検出装置 |
JP2007127415A (ja) * | 2005-09-29 | 2007-05-24 | Mitsui Eng & Shipbuild Co Ltd | 蛍光強度算出方法及び蛍光強度算出装置 |
JP2007240424A (ja) * | 2006-03-10 | 2007-09-20 | Mitsui Eng & Shipbuild Co Ltd | Fret検出方法および装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5760900A (en) * | 1989-03-18 | 1998-06-02 | Canon Kabushiki Kaisha | Method and apparatus for optically measuring specimen |
US5736410A (en) * | 1992-09-14 | 1998-04-07 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
US6710871B1 (en) * | 1997-06-09 | 2004-03-23 | Guava Technologies, Inc. | Method and apparatus for detecting microparticles in fluid samples |
EP1855102B8 (en) * | 2005-02-15 | 2012-03-14 | Mitsui Engineering and Shipbuilding Co, Ltd. | Fluorescence detecting device and fluorescence detecting method |
JP4399575B2 (ja) * | 2005-03-31 | 2010-01-20 | 独立行政法人産業技術総合研究所 | 遺伝子断片中のヌクレオチドの種類の特定方法 |
CN100510716C (zh) * | 2005-12-20 | 2009-07-08 | 北京交通大学 | 一种由周期性任意波形激发测量荧光寿命的方法及装置 |
CA2699319A1 (en) * | 2007-09-17 | 2009-03-26 | Luminex Corporation | Systems, storage mediums, and methods for identifying particles in flow |
-
2010
- 2010-01-04 JP JP2010500011A patent/JP4540751B1/ja not_active Expired - Fee Related
- 2010-01-04 CN CN201080003855XA patent/CN102272582A/zh active Pending
- 2010-01-04 US US13/143,613 patent/US20110266462A1/en not_active Abandoned
- 2010-01-04 WO PCT/JP2010/000002 patent/WO2010079731A1/ja active Application Filing
- 2010-01-04 KR KR1020117017946A patent/KR101248874B1/ko not_active IP Right Cessation
- 2010-01-04 EP EP10729151A patent/EP2383564A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002533658A (ja) * | 1998-12-04 | 2002-10-08 | フォトセンス、エル.エル.シー. | 目標サンプルの照射中の放射時間の遅れを測定するための検出デバイスおよび方法 |
JP2004163312A (ja) * | 2002-11-14 | 2004-06-10 | Arkray Inc | 測定装置、蛍光測定装置及び蛍光測定方法 |
JP2004251814A (ja) * | 2003-02-21 | 2004-09-09 | Optoquest Co Ltd | 蛍光分析方法および蛍光分析装置 |
JP2006226698A (ja) | 2005-02-15 | 2006-08-31 | Mitsui Eng & Shipbuild Co Ltd | 強度変調したレーザ光による蛍光検出装置 |
JP2007127415A (ja) * | 2005-09-29 | 2007-05-24 | Mitsui Eng & Shipbuild Co Ltd | 蛍光強度算出方法及び蛍光強度算出装置 |
JP2007240424A (ja) * | 2006-03-10 | 2007-09-20 | Mitsui Eng & Shipbuild Co Ltd | Fret検出方法および装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211811A (ja) * | 2011-03-31 | 2012-11-01 | Fujifilm Corp | 光学的測定方法および光学的測定装置 |
CN103063620A (zh) * | 2011-10-21 | 2013-04-24 | 中国人民银行印制科学技术研究所 | 一种光致发光复合特征的检测装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4540751B1 (ja) | 2010-09-08 |
JPWO2010079731A1 (ja) | 2012-06-21 |
CN102272582A (zh) | 2011-12-07 |
KR20110113624A (ko) | 2011-10-17 |
KR101248874B1 (ko) | 2013-04-01 |
US20110266462A1 (en) | 2011-11-03 |
EP2383564A1 (en) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101200397B1 (ko) | 형광 검출 장치 및 형광 검출 방법 | |
JP4523673B1 (ja) | 蛍光検出装置及び蛍光検出方法 | |
JP4540751B1 (ja) | 蛍光検出装置及び蛍光検出方法 | |
KR101152615B1 (ko) | 형광공명에너지이동 검출 방법 및 장치 | |
JP4365439B2 (ja) | 蛍光検出方法及び蛍光検出装置 | |
JP4500887B2 (ja) | 強度変調したレーザ光による蛍光検出装置および蛍光検出方法 | |
JP5443404B2 (ja) | 蛍光検出装置、蛍光検出装置の診断方法、および蛍光検出方法 | |
WO2010092752A1 (ja) | 蛍光検出装置及び蛍光検出方法 | |
JP4918178B2 (ja) | 蛍光検出方法 | |
JP5324487B2 (ja) | 蛍光検出用較正装置、蛍光検出用較正方法、および蛍光検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080003855.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010500011 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10729151 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13143613 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010729151 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117017946 Country of ref document: KR Kind code of ref document: A |