WO2010078751A1 - 一种立体摄像装置及方法 - Google Patents

一种立体摄像装置及方法 Download PDF

Info

Publication number
WO2010078751A1
WO2010078751A1 PCT/CN2009/073091 CN2009073091W WO2010078751A1 WO 2010078751 A1 WO2010078751 A1 WO 2010078751A1 CN 2009073091 W CN2009073091 W CN 2009073091W WO 2010078751 A1 WO2010078751 A1 WO 2010078751A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mirror
optical imaging
image sensor
imaging lens
Prior art date
Application number
PCT/CN2009/073091
Other languages
English (en)
French (fr)
Inventor
谭健民
Original Assignee
深圳市掌网立体时代视讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市掌网立体时代视讯技术有限公司 filed Critical 深圳市掌网立体时代视讯技术有限公司
Priority to KR1020117018294A priority Critical patent/KR101300510B1/ko
Priority to EP09837309A priority patent/EP2386898A4/en
Priority to US13/143,350 priority patent/US20110279655A1/en
Publication of WO2010078751A1 publication Critical patent/WO2010078751A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing

Definitions

  • the present invention relates to the field of stereoscopic image capturing and processing, and more particularly to a stereoscopic imaging device and a stereoscopic imaging method for stereoscopic image capturing.
  • Stereo camera technology and stereo camera products can be applied to mobile phones, camcorders, MP4, glasses-type display devices, analog reality devices and remote-controlled robots. They can play a huge role in civil, military, scientific research, games and other fields.
  • the left and right images show significant visual differences, and the stereoscopic coincidence of the image may cause visual dizziness and blurred images. 4.
  • the dual image sensor is imaged, it is difficult to ensure that the two images are synchronized with each other, and the left and right eye images appear to have a gap between the two, so that when the stereoscopic image or photo is synthesized, two unsynchronized images appear, resulting in poor stereoscopic effect. Even lose the stereo effect and become a ghost. Therefore, there is a need for a stereo camera device and a stereo camera method, which use a precision optical imaging structure to ensure uniformity on the optical path, and use the same image sensor to accept two images, thereby ensuring complete electrical image performance and good synchronization. performance.
  • the technical problem to be solved by the present invention is that the difference in consistency between the image imaging blur and the dual image sensor in the prior art, and the poor synchronization performance result in image brightness, contrast, chromaticity, gray scale, synchronization Incorporating inconsistencies and defects, a stereo camera device and a stereo camera method are provided.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a stereo camera device, comprising: [6] a first optical imaging lens group and a second optical imaging lens group for receiving external light with a simulated human eye;
  • a first planar mirror, a second planar mirror, and a third mirror the first planar mirror and the second planar mirror being used to correspond to the first optical imaging lens group and the second optical imaging lens group
  • the light is reflected once, and the third mirror is located in the middle of the first plane mirror and the second plane mirror to re-reflect the light from the first reflection;
  • An image processing circuit that receives an image signal from the image sensor and processes it to form a stereoscopic image signal.
  • the lateral distance between the first optical imaging lens group and the second optical imaging lens group ranges from 40 to 100 mm.
  • the third mirror is a mirror arranged on both sides at a certain angle.
  • the single image sensor is a CCD/CMOS image sensor.
  • the image processing circuit further includes an image data acquisition circuit, a left frame buffer, a right frame buffer, and an image format processing circuit;
  • the image data acquisition circuit is configured to acquire image signal data from the image sensor and separate into two image data
  • the left frame buffer and the right frame buffer are respectively used to store two image data separated by the image data acquiring circuit
  • the image format processing circuit is configured to merge two image data from the left frame buffer and the right frame buffer to form stereoscopic image data.
  • a stereoscopic imaging method which specifically comprises the following steps: [18] S1. Mounting two optical imaging lens groups side by side to simulate the human eye receiving external light;
  • the lateral distance between the two optical imaging lens groups in the step S1 is 40 to 100 mm.
  • the third mirror is a mirror arranged on both sides at a certain angle.
  • the single image sensor is a CCD/CMOS image sensor.
  • the step S4 further includes:
  • a stereo camera device and method provided by the present invention By implementing a stereo camera device and method provided by the present invention, by using a single image sensor, a complete image frame with no delay in left and right images can be obtained, and the image displayed by the present invention has no left or right compared with the prior art.
  • the advantages of delay that is, good synchronization performance
  • large changes in picture video format, and high quality of the picture are solved, thereby solving the problem of image blurring in the prior art, and ensuring electrical performance and synchronization consistency of image imaging.
  • FIG. 1 is a structural diagram of a stereo camera device according to a preferred embodiment of the present invention, wherein the stereo camera device 100 includes an optical imaging component 110, a single image sensor 120, and an image processing circuit 130;
  • the optical imaging assembly 110 includes a first optical imaging lens group 111, a second optical imaging lens group 112, a first planar mirror 114, a second planar mirror 115, and a third mirror 113;
  • the first optical imaging lens group 111 and the second optical imaging lens group 112 receive external light rays with a simulated human eye, and a lateral distance between the first optical imaging lens group 111 and the second optical imaging lens group 112
  • a plane mirror 114 and a second plane mirror 115 are used to reflect light from the first optical imaging lens group 11 and the second optical imaging lens group 112, and the third mirror 113 is reflected in the first plane.
  • the light from the primary reflection is secondarily reflected by the middle of the mirror 114 and the second planar mirror 115.
  • the third mirror 113 is a mirror arranged at a certain angle on both sides, and may also have double reflections in other three-dimensional shapes.
  • the single image sensor 120 is a CCD/CMOS image sensor, the imaging plane receives the secondary reflected light of the third mirror 113 and forms two images in parallel, the imaging of the single image sensor 120 The face is twice as wide as the normal 4:3 or 16:9 to receive two complete images at the same time;
  • the image processing circuit 130 further includes an image data acquisition circuit, a left frame buffer, and a right frame buffer. And an image format processing circuit; the image data acquisition circuit is configured to acquire image signal data from the image sensor and separate into two image data; The left frame buffer and the right frame buffer are respectively used to store two image data separated by the image data acquiring circuit; the image format processing circuit is configured to merge two from the left frame buffer and the right frame buffer The image data forms stereoscopic image data.
  • the image processing circuit 130 can simultaneously read the left and right eye images, and respectively extract the left eye image and the complete image of the right eye inside the circuit, and then output the stereo video signals of different formats according to the stereoscopic imaging principle of the display device.
  • a glasses-type stereoscopic display can output a video signal in which the odd-even fields are alternately left and right, that is, an odd field-left eye image, an even field-right eye image, or vice versa. If it is a red and blue field stereo display, the red and blue processing is performed on the same image of the left and right eyes, and the pixels are combined and sequentially output.
  • the peer can use the encoding technology to encode and compress the video for recording and storage.
  • FIG. 2 is a schematic structural diagram of an image processing circuit in a stereo camera device according to a preferred embodiment of the present invention, the image processing circuit 200 receiving image signal data 20 from a single image sensor,
  • the image processing circuit 200 includes an image data acquisition circuit 201, a left frame buffer 202, a right frame buffer 203, an image format processing circuit 204, an audio and video compression encoder 205, a memory 206, an audio and video decoder 207, and audio and video decoding.
  • the image signal data 20 of the image sensor includes two images formed by the same image, and then separates the left and right picture data, and the separated image is a full frame image obtained by two peers and stored in the left frame respectively.
  • the image format processing circuit 204 will The image data in the left frame buffer 202 and the right frame buffer 203 are combined and processed, and a side-by-side (SIDE BY SIDE) image can be directly generated, or a "frame-and-frame image" can be generated (FRAME BY)
  • the image is formatted by the image format processing circuit 204 as required, and then entered into the audio and video compression encoder 205, where the audio and video are subjected to synchronous compression encoding processing, and the encoded data is stored in the memory 206. If you want to view the already stored image, you need to recall the data from the storage 206, then pass through the video and audio decoder 207, and then output it to the external display, or use the binocular/single in the stereo camera.
  • the screen monitor window 214 is for viewing.
  • An audio/video switching switch 211 is added to the image processing circuit 200, and its function is: The image is outputted by the image format processing circuit 204 after being separated.
  • the SIDE image signal will be directly sent to the stereoscopic/single screen monitor window 214 through the audio/video switch 211 for display, from the left and right microphones 209 and through the audio A/D.
  • the audio/video switch 211 switches the signal to the output of the audio/video decoder 207, so that the recorded clip can be enjoyed.
  • FIG. 3 is a flow chart of a stereo camera method according to a preferred embodiment of the present invention, the method comprising the following steps:
  • step S300 two optical imaging lens groups are mounted at a lateral distance of 40 to 100 mm, and the human eye is received by the analog human eye;
  • step S302 two plane mirrors are respectively reflected at the rear of the two optical imaging lens groups to respectively reflect the light from the two optical imaging lens groups, and then the stereo reflection between the two plane mirrors.
  • the mirror reflects the reflected light twice, so that the two images are reflected twice onto a parallel imaging surface;
  • step S304 a single image sensor is used on the imaging surface, and the image sensor is connected to the image surface. Two parallel images of the second reflection;
  • Step S306 the image processing circuit receives the image data from the single image sensor and separates the two image data into two frame buffers;
  • Step S308 the image processing circuit combines and processes the image data in the left and right frame buffers to form a volume image, and after processing, can directly generate a parallel type (SIDE BY
  • SIDE SIDE
  • FRAME BY FRAME "frame and frame image”
  • FIG. 4 is a schematic diagram of imaging on a imaging plane of a single image sensor in a stereo camera device according to a preferred embodiment of the present invention, and the imaging surface of the CCD/CMOS image sensor is selected as two The image to be output is added to the horizontally larger size, assuming that the image size to be output is M x
  • N M is the width
  • N is the height
  • the horizontal size of the imaging surface of the CCD/CMOS image sensor should be greater than 120% X

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

说明书 一种立体摄像装置及方法
#細或
[1] 本发明涉及立体图象拍摄与处理技术领域, 更具体地说, 涉及一种用于立体图 像拍摄的立体摄像装置及立体摄像方法。
[2] 立体摄像技术和立体摄像产品可以应用在手机、 摄像机、 MP4、 眼镜式显示设 备、 模拟现实设备和遥控机器人等产品上, 可以在民用、 军用、 科研、 游戏等 领域发挥巨大的作用。
[3] 人眼根据左右眼的视觉差异可以对所见物体产生立体感觉, 所以一般的立体摄 像设备都是利用双摄像镜头来对物体进行成像然后对图像进行处理。 但是这样 带来的问题很突出: 主要体现在 1、 双镜头在聚焦性能上不一致, 左右视频清晰 度不相同, 最后导致图像成像模糊。 2、 双镜头在安装上无法保证图像在对位上 一致, 导致图像在视角上无法保证水平和倾斜一致性, 到吋两幅图像在立体重 合吋出现偏差, 图像会产生模糊叠影。 3、 双图像传感器的一致性差异导致在图 像亮度、 对比度、 色度、 灰阶等特性上不一致, 左右图像出现视觉明显差异, 图像立体重合吋会产生视觉晕眩、 图像模糊等现象。 4、 双图像传感器在成像吋 , 很难保证两个画面为像素同步, 左右眼图像出现吋间上差距, 这样在合成立 体图像或照片吋, 出现两个不同步的影像而造成立体效果变差甚至失去立体效 果而变成重影。 因此, 需要一种立体摄像装置及立体摄像方法, 用精密光学成 像结构来保证光路上的一致性, 用同一个图像传感器来接受两路图像, 保证了 图像成像的电性能完全一致以及良好的同步性能。
[4] 本发明要解决的技术问题在于, 针对现有技术中的图像成像模糊和釆用双图像 传感器的一致性差异, 以及同步性能差导致在图像亮度、 对比度、 色度、 灰阶 、 同步上不一致的不足和缺陷, 提供一种立体摄像装置及立体摄像方法。
[5] 本发明解决其技术问题所釆用的技术方案是: 构造一种立体摄像装置, 包括: [6] 第一光学成像透镜组和第二光学成像透镜组, 用与模拟人眼接收外部光线;
[7] 第一平面反射镜、 第二平面反射镜和第三反射镜, 第一平面反射镜和第二平面 反射镜用于将来自对应于第一光学成像透镜组和第二光学成像透镜组的光线进 行一次反射, 第三反射镜位于第一平面反射镜和第二平面反射镜的中间对来自 一次反射的光线进行二次反射;
[8] 单个图像传感器, 在其成像平面上接收二次反射的光线并形成并列的两幅图像
[9] 图像处理电路, 接收来自所述图像传感器的图像信号并进行处理形成立体图像 信号。
[10] 具体的, 所述第一光学成像透镜组和第二光学成像透镜组之间的横向距离范围 是 40至 100毫米。
[11] 具体的, 所述第三反射镜是双面呈一定夹角排列的反射镜。
[12] 具体的, 所述单个图像传感器是 CCD/CMOS图像传感器。
[13] 具体的, 所述图像处理电路进一步包括图像数据获取电路、 左路帧缓存、 右路 帧缓存和图像格式处理电路;
[14] 所述图像数据获取电路用于获取来自所述图像传感器的图像信号数据并分离成 两个图像数据;
[15] 所述左路帧缓存和右路帧缓存分别用于存储所述图像数据获取电路分离的两个 图像数据;
[16] 所述图像格式处理电路用于合并来自所述左路帧缓存和右路帧缓存的两个图像 数据形成立体图像数据。
[17] 为了更好地实现发明目的, 提供一种立体摄像方法, 具体包括以下步骤: [18] S1.横向并列安装两个光学成像透镜组模拟人眼接收外部光线;
[19] S2.通过两个平面反射镜对两个光学成像透镜组接收的外部光线进行一次反射 并由位于两个平面反射镜中间的第三反射镜对两个一次反射的光线进行二次反 射;
[20] S3.釆用单个图像传感器在其成像平面上接收来自第三反射镜的二次反射光线 形成两个并列的图像; S4.对所述单个图像传感器形成的图像信号进行处理形成立体图像信号。
在本发明所述的方法中, 所述步骤 S1中两个光学成像透镜组之间的横向距离范 围是 40至 100毫米。
在本发明所述的方法中, 所述第三反射镜是双面呈一定夹角排列的反射镜。 在本发明所述的方法中, 所述单个图像传感器是 CCD/CMOS图像传感器。 在本发明所述的方法中, 所述步骤 S4进一步包括:
541.获取单个图像传感器形成的图像信号数据;
542.将获取的单个图像传感器形成的图像信号数据分离成两个图像数据并分别 存储在左右两个帧缓存中;
543.将两个帧缓存中的图像数据合并形成立体图像数据。
实施本发明提供的一种立体摄像装置及方法, 通过使用单一的图象传感器, 可 以得到左右画面无延吋的完整图像画面, 相比现有技术而言, 本发明所展现的 图像具有左右无延吋 (即良好的同步性能) 、 画面视频格式变化多、 画面的素 质高度统一等优点, 从而解决了现有技术中的图像模糊的问题, 保证了图像成 像的电性能、 同步一致性。
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
下面根据附图和具体实施例对本发明作进一步阐述。
如图 1所示的是依据本发明一较佳实施例的一种立体摄像装置的结构图, 其中 , 立体摄像装置 100包括光学成像组件 110、 单一图像传感器 120和图像处理电路 130;
所述光学成像组件 110包括第一光学成像透镜组 111、 第二光学成像透镜组 112 、 第一平面反射镜 114、 第二平面反射镜 115和第三反射镜 113;
所述第一光学成像透镜组 111和第二光学成像透镜组 112用与模拟人眼接收外部 光线, 所述第一光学成像透镜组 111和第二光学成像透镜组 112之间的横向距离 一平面反射镜 114和第二平面反射镜 115用于将来自对应于第一光学成像透镜组 1 11和第二光学成像透镜组 112的光线进行一次反射, 第三反射镜 113位于第一平 面反射镜 114和第二平面反射镜 115的中间对来自一次反射的光线进行二次反射 , 所述第三反射镜 113是双面呈一定夹角排列的反射镜也可以是其它立体形状的 具有双反射镜面的反射镜; 所述单一图像传感器 120是 CCD/CMOS图像传感器, 其成像平面接收所述第三反射镜 113的二次反射光线并形成并列的两幅图像, 所 述单一图像传感器 120的成像面要比正常的 4: 3或 16: 9要对应宽一倍, 以便同 吋接收两幅完整的图像; 所述图像处理电路 130进一步包括图像数据获取电路、 左路帧缓存、 右路帧缓存和图像格式处理电路; 所述图像数据获取电路用于获 取来自所述图像传感器的图像信号数据并分离成两个图像数据; 所述左路帧缓 存和右路帧缓存分别用于存储所述图像数据获取电路分离的两个图像数据; 所 述图像格式处理电路用于合并来自所述左路帧缓存和右路帧缓存的两个图像数 据形成立体图像数据。 所述图像处理电路 130可以同吋读取到左右眼图像, 并在 电路内部分别取出左眼图像和右眼的完整图像, 然后根据显示器件的立体成像 原理输出不同格式的立体视频信号。 如眼镜式立体显示器, 就可以输出奇偶场 左右顺序交替的视频信号, 即奇场 -左眼图像、 偶场 -右眼图像或反之。 如果 是红蓝场立体显示, 则对左右眼同一场图像进行红蓝处理并合并像素, 顺序输 出即可。 同吋可利用编码技术, 将该视频进行编码压缩进行录制存储。
[35] 如图 2所示的是依据本发明一较佳实施例的一种立体摄像装置中的图像处理电 路的结构示意图, 所述图像处理电路 200接收来自单一图像传感器的图像信号数 据 20, 所述图像处理电路 200包括图像数据获取电路 201、 左路帧缓存 202、 右路 帧缓存 203、 图像格式处理电路 204、 音视频压缩编码器 205、 存储器 206、 音视 频解码器 207、 音视频解码输出电路 208、 左右麦克风 209、 音频 A/D
210、 音视频切换开关 211、 左音频显示驱动 212、 右音频显示驱动 213和双目 /单 屏监视窗口 214; 其中, 图像数据获取电路 201按照一定的帧频率进行图像读取 , 读取来自单一图像传感器的图像信号数据 20, 读取的图像数据包含两幅同吋 形成的图像, 然后将左右画面数据分离, 分离后的图像为两幅同吋取得的全帧 图像并分别存储在左路帧缓存 202和右路帧缓存 203中, 图像格式处理电路 204将 左路帧缓存 202和右路帧缓存 203中的图像数据合并并进行处理, 可以直接生成 并列式 (SIDE BY SIDE) 图像, 也可以生成"帧并帧图像" (FRAME BY
FRAME) , "场并场图像" (FIELD BY FIELD) , "线并线图像" (LINE BYE LINE) , "点并点图像" (DOT BY DOT) 等等格式图像。
[36] 图像按照要求进行图像格式处理电路 204的格式变换后进入到音视频压缩编码 器 205, 音视频在这里进行同步压缩编码处理, 编码后的数据进入储存器 206保 存下来。 如果要观看已经储存的图像, 则需要从储存器 206中调出数据, 再经过 视音频解码器 207处理, 然后用于输出到外部显示器显示, 或者用立体摄像装置 内自带的双目 /单屏监视窗口 214进行观看。
[37] 在图像处理电路 200中增加了一个音视频切换开关 211, 它的作用是: 图像在经 过分离后由图像格式处理电路 204输出 SIDE BY
SIDE图像信号, 当立体摄像装置在摄制过程中并且需要监视摄录画面吋, 所述 S IDE BY
SIDE图像信号将通过音视频切换开关 211直接送到立体摄像装置 200内双目 /单屏 监视窗口 214进行显示, 来自左右麦克风 209并经过音频 A/D
210转换后的实吋音频也同吋被切换过来。 这样在监视画面吋, 画面与实际景物 的动作延吋较小, 便于及吋监控, 这个功能也叫做直通。 当回放已经录制的节 目吋, 音视频切换开关 211将信号切换到音视频解码器 207输出端, 这样就可以 欣赏到录制好的片段了。
[38] 如图 3所示的是依据本发明一较佳实施例的一种立体摄像方法的流程图, 所述 方法包括以下步骤:
[39] 步骤 S300中, 在横向距离 40至 100毫米的位置上安装两个光学成像透镜组, 模 拟人眼接收外部的光线;
[40] 步骤 S302中, 在两个光学成像透镜组的后部有两个平面反射镜分别对来自两个 光学成像透镜组的光线进行一次反射, 再由位于两个平面反射镜中间的立体反 射镜对一次反射的光线进行二次反射, 这样两个图像被二次反射到一个并列的 成像面上;
[41] 步骤 S304中, 在上述成像面上釆用单一的图像传感器, 图像传感器的成像面接 收二次反射的两个并列的图像;
[42] 步骤 S306中, 图像处理电路接收来自单个图像传感器的图像数据并分离成两个 图像数据分别存储在左右两个帧缓存中;
[43] 步骤 S308中, 图像处理电路将左右两个帧缓存中的图像数据合并并进行处理形 成立体图像, 经过处理后可以直接生成并列式 (SIDE BY
SIDE) 图像, 也可以生成"帧并帧图像" (FRAME BY FRAME) ,
"场并场图像" (FIELD BY FIELD) , "线并线图像" (LINE BYE LINE) , "点并点图像" (DOT BY DOT) 等等格式图像。
[44] 如图 4所示的是依据本发明一较佳实施例的一种立体摄像装置中的单一图像传 感器的成像平面上的成像示意图, CCD/CMOS图像传感器的成像面选用比两幅 所需要输出的图像在横向相加还要大一点的尺寸, 假设需要输出显示的图像尺 寸为 M x
N, M为宽度, N为高度, 则应该选择 CCD/CMOS图像传感器的成像面的横向尺 寸大于 120% X
2M。 图像成像在 CCD/CMOS图像传感器的成像面以中心轴对称的两边, 形成 SI DE BY SIDE, 并且不得交叉。 图像的选取则是按照图 4所示取 M x
N, 左右各留下接近占图像宽度的 10%的余地 D。
[45] 以上介绍和描述的内容仅为本发明的优选实施例而已, 并不用以限制本发明, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含 在本发明的保护范围之内。

Claims

权利要求书
[1] 1、 一种立体摄像装置, 其特征在于, 包括:
第一光学成像透镜组 (111) 和第二光学成像透镜组 (112) , 分别用于模 拟人眼接收外部光线;
第一平面反射镜 (114) 、 第二平面反射镜 (115) 和第三反射镜 (113) , 第一平面反射镜 (114) 和第二平面反射镜 (115) 分别用于将来自对应于 第一光学成像透镜组 (111) 和第二光学成像透镜组 (112) 的光线进行一 次反射, 第三反射镜 (113) 位于第一平面反射镜 (114) 和第二平面反射 镜 (115) 的中间对来自一次反射的光线进行二次反射;
单个图像传感器 (120) , 在其成像平面上接收二次反射的光线并形成并列 的两幅图像;
图像处理电路 (130) , 接收来自所述图像传感器的图像信号并进行处理形 成立体图像信号。
[2] 2、 根据权利要求 1所述的立体摄像装置, 其特征在于: 所述第一光学成像 透镜组 (111) 和第二光学成像透镜组 (112) 之间的横向距离范围是 40至 1 00毫米。
[3] 3、 根据权利要求 2所述的立体摄像装置, 其特征在于: 所述第三反射镜 (1
13) 是双面呈一定夹角排列的反射镜。
[4] 4、 根据权利要求 3所述的立体摄像装置, 其特征在于: 所述单个图像传感 器 (120) 是 CCD/CMOS图像传感器。
[5] 5、 根据权利要求 1-4中任何一项所述的立体摄像装置, 其特征在于: 所述 图像处理电路 (130) 包括图像数据获取电路 (201) 、 左路帧缓存单元 (2 02) 、 右路帧缓存单元 (203) 和图像格式处理电路 (204) ; 所述图像数据获取电路 (201) 用于获取来自所述图像传感器 (120) 的图 像信号数据并分离成两个图像数据;
所述左路帧缓存单元 (202) 和右路帧缓存单元 (203) 分别用于存储所述 图像数据获取电路 (201) 分离的两个图像数据;
所述图像格式处理电路 (204) 用于合并来自所述左路帧缓存单元 (202) 和右路帧缓存单元 (203) 的两个图像数据形成立体图像数据。
[6] 6、 一种立体摄像方法, 其特征在于, 包括以下步骤:
51.横向并列安装两个光学成像透镜组 (111、 112) 模拟人眼接收外部光线
52.通过两个平面反射镜 (114、 115) 对两个光学成像透镜组 (111、 112) 接收的外部光线进行一次反射并由位于两个平面反射镜中间的第三反射镜
(113) 对两个一次反射的光线进行二次反射;
53.釆用单个图像传感器 (120) 在其成像平面上接收来自第三反射镜的二 次反射光线形成两个并列的图像;
S4.
对所述单个图像传感器 (120) 形成的图像信号进行处理形成立体图像信号
[7] 7、 根据权利要求 6所述的立体摄像方法, 其特征在于: 所述步骤 S1中两个 光学成像透镜组 (111、 112) 之间的横向距离范围是 40至 100毫米。
[8] 8、 根据权利要求 6所述的立体摄像方法, 其特征在于: 所述第三反射镜 (1
13) 是双面呈一定夹角排列的反射镜。
[9] 9、 根据权利要求 6所述的立体摄像方法, 其特征在于: 所述单个图像传感 器 (120) 是 CCD/CMOS图像传感器。
[10] 10、 根据权利要求 6所述的立体摄像方法, 其特征在于, 所述步骤 S4进一步 包括:
541.获取单个图像传感器 (120) 形成的图像信号数据;
542.将获取的单个图像传感器 (120) 形成的图像信号数据分离成两个图像 数据并分别存储在左右两个帧缓存单元 (202、 203) 中;
543.将两个帧缓存单元 (202、 203) 中的图像数据合并形成立体图像数据
PCT/CN2009/073091 2009-01-07 2009-08-05 一种立体摄像装置及方法 WO2010078751A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117018294A KR101300510B1 (ko) 2009-01-07 2009-08-05 일종의 입체촬영 장치 및 방법
EP09837309A EP2386898A4 (en) 2009-01-07 2009-08-05 STEREOSCOPIC IMAGING APPARATUS AND CORRESPONDING METHOD
US13/143,350 US20110279655A1 (en) 2009-01-07 2009-08-05 Stereoscopic imaging apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910104853.9 2009-01-07
CN2009101048539A CN101588512B (zh) 2009-01-07 2009-01-07 一种立体摄像装置及方法

Publications (1)

Publication Number Publication Date
WO2010078751A1 true WO2010078751A1 (zh) 2010-07-15

Family

ID=41372537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073091 WO2010078751A1 (zh) 2009-01-07 2009-08-05 一种立体摄像装置及方法

Country Status (5)

Country Link
US (1) US20110279655A1 (zh)
EP (1) EP2386898A4 (zh)
KR (1) KR101300510B1 (zh)
CN (1) CN101588512B (zh)
WO (1) WO2010078751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075426A1 (en) * 2010-09-28 2012-03-29 Canon Kabushiki Kaisha Image pickup system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461824B (zh) * 2010-06-29 2014-11-21 Hon Hai Prec Ind Co Ltd 立體取像裝置
CN102314067A (zh) * 2010-06-30 2012-01-11 鸿富锦精密工业(深圳)有限公司 立体取像装置
CN101968572A (zh) * 2010-11-11 2011-02-09 广州博冠企业有限公司 一种基于3d摄像用的裂像物镜组合结构
CN102480622A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 立体图像获取方法及系统、移动终端
CN102096303A (zh) * 2010-12-31 2011-06-15 广州博冠企业有限公司 一种立体镜头
US9047085B2 (en) * 2011-03-14 2015-06-02 Nvidia Corporation Method and apparatus for controlling sparse refresh of a self-refreshing display device using a communications path with an auxiliary communications channel for delivering data to the display
TWI493277B (zh) * 2011-03-18 2015-07-21 Hon Hai Prec Ind Co Ltd 立體取像裝置
CN102759802A (zh) * 2011-04-29 2012-10-31 浙江亿思达显示科技有限公司 3d镜头以及3d照相机
JP5927795B2 (ja) * 2011-07-22 2016-06-01 ソニー株式会社 立体映像撮像システム、記録制御方法、立体映像再生システム及び再生制御方法
CN102413318B (zh) * 2011-11-22 2013-12-25 河南中光学集团有限公司 双镜头单ccd的合景光学系统
EP2802927A4 (en) * 2012-01-13 2015-08-19 Front Street Invest Man Inc ANAMORPHOTIC STEREOSCOPIC IMAGEER WITH A SINGLE OPTICAL PATH
CN103207450B (zh) * 2012-01-16 2016-03-30 联想(北京)有限公司 三维摄像头模组以及采用该三维摄像头模组的终端设备
KR20130088688A (ko) * 2012-01-31 2013-08-08 삼성전자주식회사 3d 영상장치 및 그 제어방법
JP5889719B2 (ja) * 2012-05-31 2016-03-22 カシオ計算機株式会社 撮像装置、撮像方法及びプログラム
JP5811106B2 (ja) * 2013-01-11 2015-11-11 セイコーエプソン株式会社 映像処理装置、表示装置および映像処理方法
JP6248533B2 (ja) * 2013-10-22 2017-12-20 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
WO2016182502A1 (en) * 2015-05-14 2016-11-17 Medha Dharmatilleke Multi purpose mobile device case/cover integrated with a camera system & non electrical 3d/multiple video & still frame viewer for 3d and/or 2d high quality videography, photography and selfie recording
CN105892216A (zh) * 2015-12-14 2016-08-24 乐视网信息技术(北京)股份有限公司 3d视频录制设备、处理方法以及移动设备
CN107528996A (zh) * 2016-06-20 2017-12-29 丰唐物联技术(深圳)有限公司 一种网络摄像机及监控系统
CN106817579A (zh) * 2017-03-27 2017-06-09 珠海康弘健康投资管理有限公司 变焦成像装置
GB201813740D0 (en) 2018-08-23 2018-10-10 Ethersec Ind Ltd Method of apparatus for volumetric video analytics
CN109259717B (zh) * 2018-08-27 2020-08-14 彭波 一种立体内窥镜及内窥镜测量方法
CN110072155A (zh) * 2018-12-03 2019-07-30 贵州广播电视台 音视频信号的监视方法及系统
KR102342748B1 (ko) * 2019-05-09 2021-12-22 아크소프트 코포레이션 리미티드 이미지 센서 패키지
CN115314698A (zh) * 2022-07-01 2022-11-08 深圳市安博斯技术有限公司 一种立体拍摄及显示装置、方法
CN115268199A (zh) * 2022-09-29 2022-11-01 深圳市海塞姆科技有限公司 一种单目三维机器视觉光路系统及方法
CN118524199A (zh) * 2024-07-23 2024-08-20 西华大学 基于单图像传感器的立体视觉成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577268B1 (en) * 1992-06-20 1999-11-10 AEA Technology plc Optical system
CN1243263A (zh) * 1998-07-09 2000-02-02 松下电器产业株式会社 立体图像获取装置
CN2775704Y (zh) * 2005-04-13 2006-04-26 田宪文 立体成像镜和立体观像镜
JP2006337742A (ja) * 2005-06-02 2006-12-14 Fujifilm Holdings Corp 撮像装置
CN1912736A (zh) * 2006-04-21 2007-02-14 钟磊 立体数码摄像装置及方法
CN101191878A (zh) * 2006-11-28 2008-06-04 鸿富锦精密工业(深圳)有限公司 立体取像相机模组及电子装置
CN101482693A (zh) * 2008-12-01 2009-07-15 深圳市掌网立体时代视讯技术有限公司 单传感器并列式立体图像拍摄方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177952B1 (en) * 1993-09-17 2001-01-23 Olympic Optical Co., Ltd. Imaging apparatus, image display apparatus and image recording and/or reproducing apparatus
US7804517B2 (en) * 1998-07-31 2010-09-28 Sony Corporation Three-dimensional image-capturing apparatus
JP4536231B2 (ja) * 2000-08-29 2010-09-01 オリンパス株式会社 撮像装置
JP4728211B2 (ja) * 2006-12-18 2011-07-20 パナソニック株式会社 固体撮像装置、カメラ、車両及び監視装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577268B1 (en) * 1992-06-20 1999-11-10 AEA Technology plc Optical system
CN1243263A (zh) * 1998-07-09 2000-02-02 松下电器产业株式会社 立体图像获取装置
CN2775704Y (zh) * 2005-04-13 2006-04-26 田宪文 立体成像镜和立体观像镜
JP2006337742A (ja) * 2005-06-02 2006-12-14 Fujifilm Holdings Corp 撮像装置
CN1912736A (zh) * 2006-04-21 2007-02-14 钟磊 立体数码摄像装置及方法
CN101191878A (zh) * 2006-11-28 2008-06-04 鸿富锦精密工业(深圳)有限公司 立体取像相机模组及电子装置
CN101482693A (zh) * 2008-12-01 2009-07-15 深圳市掌网立体时代视讯技术有限公司 单传感器并列式立体图像拍摄方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2386898A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075426A1 (en) * 2010-09-28 2012-03-29 Canon Kabushiki Kaisha Image pickup system

Also Published As

Publication number Publication date
KR101300510B1 (ko) 2013-08-26
CN101588512A (zh) 2009-11-25
EP2386898A4 (en) 2012-08-15
EP2386898A1 (en) 2011-11-16
KR20110114620A (ko) 2011-10-19
US20110279655A1 (en) 2011-11-17
CN101588512B (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2010078751A1 (zh) 一种立体摄像装置及方法
JP5663617B2 (ja) 立体画像シーケンス符号化方法および復号化方法
CN101588513B (zh) 一种立体摄像装置及方法
CN101482693A (zh) 单传感器并列式立体图像拍摄方法及装置
JP2011035853A (ja) 撮像装置および映像記録再生システム
WO2010078752A1 (zh) 一种立体摄像装置及方法
WO2014119965A1 (ko) 사이드 바이 사이드 스테레오 영상 촬영 방법 및 이를 위한 단안식 카메라
WO2010069169A1 (zh) 单传感器并列式立体图像拍摄方法
JPH11187425A (ja) 立体映像装置及び方法
TWI222318B (en) 3-dimensional video recording/reproduction device
JP2012088549A (ja) 立体画像撮像装置、立体画像表示装置、および立体画像撮像表示装置
CN1642294A (zh) 立体电视的实现方法和立体电视系统
KR101830768B1 (ko) 스테레오 영상 촬영 방법, 스테레오 영상 출력 방법, 스테레오 영상 촬영 장치 및 스테레오 영상 출력 장치
JPH09182113A (ja) 3次元立体映像信号変換装置及び該装置を用いるビデオカメラ装置
WO2022269967A1 (ja) 1枚の撮像素子の1台のカメラの映像を既存のすべての3d型式にエンコードする
JP4103308B2 (ja) 立体実写映像撮影提示システム
WO2002073982A1 (fr) Procede de synthese d'images virtuelles en images stereoscopiques et television stereoscopique de type lunettes
WO2011000162A1 (zh) 光学立体成像装置及方法
JP2004080727A (ja) 立体映像2画面連結映像システム
RU78958U1 (ru) Система получения и восстановления объемного изображения
CN113660478A (zh) 一种无人机立体摄影同步终端的显示方法及立体眼镜
JPH07288851A (ja) 立体プロジェクタ装置
JP2017055374A (ja) 裸眼3d映像伝送ディスプレーシステム
JPS63258187A (ja) 立体テレビジヨン画像表示装置
JP2016021670A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13143350

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117018294

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009837309

Country of ref document: EP