WO2010078715A1 - 一种大功率半导体激光器及其制备方法 - Google Patents

一种大功率半导体激光器及其制备方法 Download PDF

Info

Publication number
WO2010078715A1
WO2010078715A1 PCT/CN2009/001568 CN2009001568W WO2010078715A1 WO 2010078715 A1 WO2010078715 A1 WO 2010078715A1 CN 2009001568 W CN2009001568 W CN 2009001568W WO 2010078715 A1 WO2010078715 A1 WO 2010078715A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating sheet
negative electrode
chip
semiconductor laser
power semiconductor
Prior art date
Application number
PCT/CN2009/001568
Other languages
English (en)
French (fr)
Inventor
刘兴胜
Original Assignee
西安炬光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安炬光科技有限公司 filed Critical 西安炬光科技有限公司
Priority to US13/056,137 priority Critical patent/US8638827B2/en
Priority to JP2011544764A priority patent/JP5547749B2/ja
Priority to EP09837273.3A priority patent/EP2378616B1/en
Publication of WO2010078715A1 publication Critical patent/WO2010078715A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Definitions

  • the present invention relates to the field of laser manufacturing, and more particularly to a single emitter high power semiconductor laser and a method of fabricating the same. Background technique
  • a semiconductor laser is also called a laser diode (LD).
  • LD laser diode
  • QW quantum wells
  • SL-QW strained quantum wells
  • MBE metal-organic chemical vapor deposition
  • CBE complex metal-organic chemical vapor deposition
  • the threshold current of the LD produced is significantly reduced, the conversion efficiency is greatly improved, the output power is multiplied, and the service life is also significantly lengthened.
  • semiconductor lasers are more widely used in laser communication, optical storage, optical gyro, laser printing, ranging and radar, and the market demand is huge. The prospects are even broader.
  • the package form of CT-mount will use copper-tungsten (CuW) alloy as the heat dissipation heat sink of single emitter cavity. Because the surface-plated CuW alloy is more expensive, the laser manufactured by it has higher cost. .
  • CuW copper-tungsten
  • the heat sink is usually located on the vertical side of the side where the single emitter is located. When the laser is working, it will generate nearly half of the heat. Because the chip is far away from the thermoelectric cooling part, the heat can not be exported in time, resulting in heat concentration, which causes the laser to broaden the wavelength and drift the wavelength, resulting in a decrease in the lifetime of the laser, and the reliability is not good.
  • the object of the present invention is to overcome the defects of the prior single-emitter semiconductor laser and the preparation method thereof, and to provide a novel single-emitter high-power semiconductor laser and a preparation method thereof, and the technical problem to be solved is to make it not only It has high output power and safety, long life and high reliability, and is simple to manufacture, low in production cost, and mechanically stable than conventional lasers. It is very suitable for practical use.
  • a high-power semiconductor laser includes a support block, an insulating sheet, a negative electrode metal piece, a positive electrode metal piece and a chip, wherein one side of the support block is provided with a step, and both ends of the support block are further provided a boss having a screw hole vertically formed on the boss, a positive surface of the chip being soldered to a middle portion of the upper surface of the insulating sheet, and a lower side of the insulating sheet being attached to the two bosses of the support block
  • An inner negative electrode of the negative electrode metal piece and the positive electrode metal piece are respectively welded with a negative electrode insulating sheet and a positive electrode insulating sheet, and the negative electrode insulating sheet and the positive electrode insulating sheet are respectively welded on the step of the supporting block.
  • a metal connecting piece is attached to the negative electrode of the chip, and one end of the metal connecting piece is further bonded to one end of the negative electrode metal piece, and the
  • the insulating sheet has a gold plating layer on both upper and lower sides, and the gold plating layer has a thickness of 2 to 5 ⁇ m.
  • the chip is a single-emitter cavity chip, an open-type bar or a plurality of single-emitter cavity chips in parallel.
  • the conductive material is gold wire.
  • the object of the present invention and solving the technical problems thereof are also achieved by the following technical solutions.
  • the method for preparing the high-power semiconductor laser according to the present invention specifically includes the following steps:
  • the insulating sheet is cleaned with an organic solution and deionized water, and after drying, a gold layer is plated on the upper and lower sides of the insulating sheet, the gold plating layer has a thickness of 2-5 micrometers, and the insulating sheet after gold plating is used.
  • the insulating sheet Store in an inert gas refusal;
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the positive electrode insulating sheet and the positive electrode insulating sheet are bonded to the support block by a conductive paste.
  • the inert gas is nitrogen.
  • the distance between the negative electrode metal piece and the positive electrode metal piece in step 5) is maintained at 0.5 to ⁇ to prevent short circuit.
  • the soldering in the step 8) is reflow soldering.
  • the conductive material in the step 9) is a gold wire.
  • a high-power semiconductor laser and a preparation method thereof have at least the following advantages and beneficial effects: (1)
  • the laser output power is high.
  • the single-emitter cavity chip is directly mounted on the gold-plated thermal conductive insulating sheet, and the lower part of the insulating sheet is directly the heat-dissipating copper block, and the distance between the chip and the heat-dissipating part is closer, so the heat-dissipating capability is greatly enhanced, and the structure with the heat-dissipating capability is increased.
  • the invention adopts a gold-plated insulating sheet instead of a gold-plated CuW heat sink, and the thermal conductivity of the two is equivalent, and the gold-plated CuW heat sink is more expensive than the gold-plated insulating sheet, and the same effect is achieved, and the gold-plated insulating sheet is greatly used in the invention. Reduced laser manufacturing costs
  • the invention has two fixed screw holes, which can effectively improve the mechanical stability of the laser;
  • the invention adopts a gold-plated insulating sheet instead of a gold-plated CuW heat sink. Since the insulating sheet has a good insulating effect, the heat-dissipating block of the laser is not charged, which greatly improves the safety of the laser;
  • the high-power semiconductor laser of the invention adopts an insulating sheet on the heat sink material, and the structure is designed with double fastening screw holes, which can effectively extend the service life of the laser, improve the reliability and stability of the laser, and the laser of the invention
  • the structure also has the advantage of being small in size.
  • the present invention relates to a high power semiconductor laser including a support block, a positive electrode metal piece, a negative electrode metal piece, and a chip.
  • the support block is provided with a step and both ends thereof. Each of them is provided with a boss, a screw hole is formed on the boss, the chip is welded with the insulating sheet, the insulating sheet is attached to the supporting block, and the positive electrode metal piece and the negative electrode metal piece are respectively welded with the positive electrode insulating piece and the negative electrode insulating piece, the positive electrode insulating piece and The negative insulating sheet is spliced on the step of the supporting block, the negative electrode of the chip is attached to the metal connecting piece, the metal connecting piece is bonded to the positive and negative metal pieces, and the gold wire is welded between the insulating piece and the positive metal piece.
  • the invention combines C-mount and CT-mount, and has the advantages of heat conduction and insulation. And with hard soldering, the reliability of the laser is high.
  • the coefficient of linear expansion of the insulating sheet and the chip is relatively matched, and the thickness of the insulating sheet is small, so that the volume of the laser is smaller.
  • the present invention is mainly applied to a high power semiconductor laser having a power of more than 0.5 watt.
  • the present invention has significant advances in technology and has significant positive effects, and is a novel, progressive, and practical new design.
  • FIG. 1A and FIG. 1B are schematic diagrams showing a package form of a prior art C-mount and CT-mount.
  • 1 is a schematic exploded view of various components of a high power semiconductor laser of the present invention.
  • 3 is a schematic view showing the overall structure of a high power semiconductor laser of the present invention.
  • Figure 4 is a ⁇ -1 curve diagram of a 808mn single-emitter semiconductor laser sample.
  • Figure 5 is a schematic diagram of the LIV curve of a 808 nm single-emitter semiconductor laser sample.
  • Figure 6 is a schematic diagram showing the results of the optical language test of a 808 nm single-emitter semiconductor laser.
  • Figure 7 is a schematic diagram of the P-I curve of a 808 nm single-emissive cavity semiconductor laser sample under pulsed conditions.
  • Figure 8 is a schematic view showing the shape of a gold-plated layer of the insulating sheet 3.
  • Positive metal sheet 10 gold wire
  • the high power semiconductor laser of the present invention comprises a support block 1, an insulating sheet 3, a negative electrode metal piece 4, a positive electrode metal piece 9, and a chip 5.
  • the material of the support block 1 needs to have a high thermal conductivity, for example, copper or a diamond having a higher thermal conductivity, which is not specifically limited in the present invention;
  • the material of the insulating sheet 3 may be aluminum nitride (A1N) or cerium oxide. (Be0), or a diamond material having a higher thermal conductivity;
  • the material of the negative electrode metal piece 4 and the positive electrode metal piece 9 is preferably copper, because the thermal conductivity of copper is 4 ⁇ , and the heat dissipation is good.
  • a step 12 is disposed on one side of the support block 1, and the step 12 is processed on one side of the entire support block 1.
  • the support block 1 is further provided with a boss 11 at each end thereof, and the boss 11 in FIG. a rectangular structure and a screw hole 2 is vertically defined in each of the bosses 11, and the screw holes 2 are used for fixing the laser;
  • the positive electrode surface of the chip 5 is soldered to the middle of one side of the insulating sheet 3 (will be opposite to the positive surface of the chip 5)
  • the connecting surface is referred to as an upper side, and correspondingly, the other side corresponding to the upper side of the insulating sheet 3 is a lower side), wherein the light emitting cavity surface of the chip 5 is required to be flush with the long side of the insulating sheet 3 (ie, the light emitting cavity) The surface only needs to be close to the long side of one side.)
  • the light emitting direction of the chip 5 is perpendicular to the long side of the insulating sheet 3 (wherein the
  • the metal layer can be gold, copper or other metal materials with high conductivity.
  • Upper and lower metal layer is made of the same metal material.
  • the bottom surface of the insulating sheet 3 is entirely plated with gold, the upper ends of the insulating sheet 3 are plated with gold, and the specific shape of the gold-plated layer on the insulating sheet 3 is applied.
  • the thickness of the gold plating layer was controlled to be 2 to 5 ⁇ m.
  • the middle portion of the insulating sheet 3 is not gold-plated and is used for bonding the solder material to the chip 5.
  • the insulating sheet 3 functions as an insulation to ensure the safety of the electrical connection.
  • One end of the negative electrode metal piece 4 and the positive electrode metal piece 9 are respectively welded with a negative electrode insulating sheet 7 and a positive electrode insulating sheet 6, and the negative electrode insulating sheet 7 and the positive electrode insulating sheet 6 are respectively welded at both ends of the step 12 of the support block 1, and The 5-1 hidden distance is maintained between the negative electrode metal piece 4 and the positive electrode metal piece 9 with a certain distance between the negative electrode metal piece 4 and the positive electrode metal piece 9.
  • the negative electrode of the chip 5 is attached with a metal connecting piece 8 (the material of the metal connecting piece 8 is preferably copper or other metal having high conductivity), and one end of the metal connecting piece 8 is also bonded to one end of the negative electrode metal piece 4.
  • the insulating sheet 3 and the positive electrode metal piece 9 are pressed between the gold wire 10 (or other electrically conductive material).
  • the chip 5 described above may be a single emitter cavity chip or a mini-bar, and the chip 5 may also be composed of a plurality of single emitter cavity chips in parallel. In order to ensure the mechanical connection reliability of the laser, it can be connected to the external fixing block through the two screw holes 2 on the support block 1 with fastening screws.
  • the method of preparing the high power semiconductor laser of the present invention is specifically as follows.
  • the quasi-support block 1 First, the quasi-support block 1, the insulating sheet 3, the positive electrode insulating sheet 6, the negative electrode insulating sheet 7, the positive electrode metal sheet 9, the negative electrode metal sheet 4, and the metal connecting sheet 8 (the material of the metal connecting sheet 8 is preferably copper or other conductive material) High metal)
  • the insulating sheet 3 is cleaned with an organic solution and deionized water, and after drying, a gold layer is plated on the upper and lower sides of the insulating sheet 3, the thickness of the gold plating layer is 2-5 ⁇ m, and the gold-plated insulating sheet 3 is placed in a nitrogen gas (or Other inert gases) are rejected for storage;
  • the positive electrode of the chip 5 is attached to the gold-plated insulating sheet 3 by solder, wherein one side of the light-emitting cavity surface of the chip 5 is flush with the long side surface of the insulating sheet 3, and the light-emitting direction of the chip 5 and the length of the insulating sheet 3 are long. Sideways vertical;
  • solder is plated on one surface of the negative electrode insulating sheet 7, and one side of the positive electrode insulating sheet 6 is plated with solder, one side of the metal connecting piece 8 is plated with solder, and the side of the negative electrode metal piece 4 and the negative electrode insulating sheet 7 is soldered, and the positive electrode is bonded.
  • the metal piece 9 and the solder-plated side of the positive electrode insulating sheet 6 are welded together;
  • insulating sheet 3 the support block 1, the metal connecting piece 8 and the negative electrode metal piece 4 are joined together, and the process may be drought; 9) Finally, one end of the insulating sheet 3 and the positive electrode metal piece 9 is pressure-welded with a conductive material 10 (for example, gold wire), and they are joined together to form a high power semiconductor laser.
  • a conductive material 10 for example, gold wire
  • the PN junction semiconductor material of the chip 5 connected to the insulating sheet 3 is forward biased, the P region is connected to the positive electrode block, and the N region is connected to the negative electrode block.
  • the electric field of the forward voltage is opposite to the self-built electric field of the PN junction. It weakens the hindrance of the self-built electric field to the electron diffusion movement in the crystal, so that the free electrons in the N region are continuously diffused through the PN junction to the P region under the action of the forward voltage, and there are a large number of conduction bands in the junction region. When electrons and holes in the valence band, they will recombine in the injection zone.
  • a 808 nm single-chip high-power semiconductor laser is fabricated, that is, the wavelength of light emitted by the semiconductor laser is 808 nra, and the structure thereof is also shown in FIG. 3, and the laser The output optical power exceeds 10 W under continuous wave operation.
  • the P-I curve of a 808 nm single-emitter semiconductor laser sample has a maximum output optical power of 15 W.
  • the test results of the operation under the condition of 6 watts are shown in Fig. 5.
  • the operating current of the laser is 7.38A
  • the operating voltage is 1.91V
  • the threshold current is 0. 65A
  • the ramp effect is 0. 87W/A
  • the typical electro-optical conversion efficiency is 41.35%
  • the maximum electro-optical conversion The efficiency is 42.42%
  • the series resistance is 40.16 milliohms.
  • Figure 6 shows the spectral test results of a 808 nm single-emitter semiconductor laser with a peak wavelength of 804.24 nm, a center wavelength of 804.12 nm, a FWHM of 1.61 nm, and a FW90%E of 2.48 nm.
  • the present invention adopts a composite package structure, combining the advantages of C-mount and CT-mount, and has the advantages of heat conduction and insulation. And with hard solder (AuSn) soldering, the laser is more reliable. 5 ⁇
  • the insulating sheet and the chip for example, GaAs
  • the linear expansion coefficient is relatively matched
  • the thickness of the insulating sheet is generally small, such as less than 0.5 mm.
  • the invention is mainly applied to high power semiconductor lasers with powers above 3 watts.
  • the single-emitter high-power semiconductor laser prepared by the invention can be applied to communication, computer (mainly data storage and input/output equipment), film and television, aerospace, aviation, medical, entertainment, scientific research, crafts, night vision illumination, and entertainment display. And other industries.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

一种大功率半导体激光器及其制备方法 技术领域
本发明涉及激光器制造领域,特别是涉及一种单发射腔大功率半导体 激光器及其制备方法。 背景技术
半导体激光器又称激光二极管(LD)。 进入八十年代, 人们吸收了半导 体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖 性结构, 引进了折射率调制 Bragg发射器以及增强调制 Bragg发射器最新 技术, 同时还发展了 MBE、 MOCVD及 CBE等晶体生长技术新工艺, 使得 新的外延生长工艺能够精确地控制晶体生长, 达到原子层厚度的精度, 生 长出优质量子阱以及应变量子阱材料。 于是, 制作出的 LD, 其阈值电流显 著下降, 转换效率大幅度提高, 输出功率成倍增长, 使用寿命也明显加长。
随着半导体激光器的性能稳定性不断改善、 转换效率和输出功率不断 提高, 半导体激光器在激光通信、 光存储、 光陀螺、 激光打印、 测距以及 雷达等方面的应用更加广泛, 市场需求巨大, 发展前景更加广阔。
目前, 虽然半导体激光器技术已经有了长足的发展, 但是由于当今科 技的快速发展, 使得各应用领域对半导体激光器的性能要求更加苛刻, 半 导体激光器所面临的主要问题仍然是激光器的输出光功率和转换效率偏 低, 性能稳定性差以及成本较高等, 这些不足严重制约了它的应用空间。 激光器的性能除了与芯片有关外, 还跟激光器的散热和封装有关。 为了提 高激光器的可靠性和性能稳定性, 降 <生产成本, 设计高可靠性的封装结 构和高效的散热结构是必须的。 这也对封装结构的设计和制造提出了更高 的要求, 要求其具有更加简单、 高效和低成本的特点。
目前, 大部分商业化的大功率半导体激光器单芯片产品是 C-mount (如 图 1A)和 CT-mount (如图 1B)封装形式, 这两种形式都存在以下几方面的缺 陷:
1) .功率低:由于单发射腔半导体激光器的连续波输出功率只有 2-3瓦, 采用 C-mount和 CT-mount的封装形式会因为散热受限而使功率较低。
2) .制造成本高: 一般 CT-mount的封装形式会采用铜钨(CuW)合金作 为单发射腔的散热热沉, 由于表面镀金的 CuW合金价格比较昂贵, 所以由 其制造的激光器成本较高。
3) .散热能力差: 对于 C-mount的封装结构, 散热装置一般位于单发射 腔所在边紧邻的垂直側面, 激光器工作时会产生接近功率一半的热量, 由 于芯片距离热电制冷部位较远, 热量不能及时导出去, 从而产生热集中, 致使激光器的光语展宽、 波长漂移, 导致激光器的寿命下降, 可靠性不^。
4) .热沉带电: 由于 C-mount和 CT-mount采用铟焊料焊接, 使铜支撑 块带电, 这样极易造成漏电现象, 降低了激光器的安全性。
5) .连接可靠性低: C-mount和 CT-mount的 Cu支撑块都只有一个螺丝 孔, 机械自由度较大, 因此整个激光器的连接可靠性不高。 使用上, 然仍存在有不便与缺陷 而丞待加以进一步改进。、为了解^ 述存在的问题, 相关厂商莫不费尽心思来谋求解决之道, 但长久以来一直 未见适用的设计被发展完成, 而一般产品又没有合适的结构能够解决上述 问题, 此显然是相关业者急欲解决的问题。 因此如何能创设一种新的大功 率半导体激光器及其制备方法,实属当前重要研发课题之一, 亦成为当前业 界急需改进的目标。 发明内容
本发明的目的在于, 克服现有的单发射腔半导体激光器及其制备方法 存在的缺陷, 而提供一种新的单发射腔大功率半导体激光器及其制备方法, 所要解决的技术问题是使其不仅输出功率和安全性高, 而且寿命长、 可靠 性高, 并且其制造简单, 生产成本低, 机械稳定性也比传统结构的激光器 好, 非常适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种大功率半导体激光器, 包括支撑块、 绝缘片、 负极金属 片、 正极金属片和芯片, 所述支撑块的一边侧面上设有台阶, 所述支撑块 两端还各设有一个凸台, 所述凸台上垂直开设有螺孔, 所述芯片的正极面 与所述绝缘片上侧面的中部焊接, 所述绝缘片的下侧面贴在所述支撑块的 两凸台之间, 所述负极金属片和所述正极金属片的内端分别焊接有负极绝 缘片和正极绝缘片, 所述负极绝缘片和所述正极绝缘片分别焊接在所述支 撑块的台阶上, 所述芯片的负极贴有金属连接片, 所述金属连接片的一端 还与所述负极金属片的一端贴合, 所述绝缘片与所述正极金属片间采用导 电材料压焊。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的单发射腔大功率半导体激光器, 所述绝缘片的上下两面均有镀 金层, 所述镀金层厚度为 2-5微米。
前述的单发射腔大功率半导体激光器, 所述芯片为单发射腔芯片、 啟 型巴条或者由多个单发射腔芯片并联组成。
前述的单发射腔大功率半导体激光器, 所述导电材料为金丝。 本发明的目的及解决其技术问题还采用以下技术方案来实现。 依据本 发明提出的前述的大功率半导体激光器的制备方法, 具体包括如下步骤:
1)提供支撑块、 绝缘片、 正极绝缘片、 负极绝缘片、 正极金属片、 负 极金属片和金属连接片;
2)将所述绝缘片用有机溶液和去离子水清洗干净, 烘干后在所述绝缘 片的上下两面镀金层, 所述镀金层厚度为 2-5微米, 将镀金后的所述绝缘 片放入惰性气体拒中储存;
3)利用焊料将所述芯片的正极贴在镀金的所述绝缘片上, 其中所述芯 片的发光腔面的一侧与所述绝缘片的长边侧面平齐, 所述芯片的发光方向 与绝缘片的长边侧面垂直;
4)在所述负极绝缘片的一面镀焊料, 所述正极绝缘片的一面镀焊料, 所述金属连接片的一面镀焊料, 将所述负极金属片和所述负极绝缘片镀焊 料的一面焊接在一起, 将所述正极金属片和所述正极绝缘片镀焊料的一面 烊接在一起;
5)将焊接好的所述负极金属片和所述负极绝缘片以及焊接好的所述正 极金属片和所述正极绝缘片一起焊接在所述支撑块上的台阶上;
6)将贴有所述芯片的镀食的所述绝缘片放置在所述支撑块上的两个凸 台之间;
7)将所述金属连接片镀有焊料一面的一端贴在所述芯片的负极上, 另 一端贴在所述负极金属片上;
8)将所述绝缘片、 所述支撑块、 所述金属连接片和所述负极金属片焊 接在一起;
9)最后用导电材料压焊在所述绝缘片和所述正极金属片的一端, 将它 们连接在一起。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的大功率半导体激光器的制备方法, 步骤 5)中所述正极绝缘片和 正极绝缘片与支撑块用导电胶粘合。
前述的大功率半导体激光器的制备方法, 所述惰性气体为氮气。
前述的大功率半导体激光器的制备方法, 步骤 5)中的所述负极金属片 和所述正极金属片之间保持 0. 5-1匪的距离, 以防短路。
前述的大功率半导体激光器的制备方法, 步骤 8)中的所述焊接为回流 焊。
前述的大功率半导体激光器的制备方法, 步骤 9)中的所述导电材料为 金丝。
借由上述技术方案, 本发明一种大功率半导体激光器及其制备方法至 少具有下列优点及有益效果: (1 )激光输出功率高。本发明中单发射腔芯片直接贴片在镀金的导热绝 缘片上, 而绝缘片下部直接是散热铜块, 芯片与散热部位的距离更近, 因 此散热能力大大增强, 这种增加了散热能力的结构可显著提高激光输出的 功率而不用担心散热的问题;
(2)制造简单, 生产成本低。 本发明采用镀金的绝缘片代替镀金的 CuW 热沉, 两者热导率相当, 而镀金的 CuW热沉价格比镀金的绝缘片贵, 在达 到同样效果的同时, 本发明采用镀金的绝缘片大大降低了激光器的生产制 造成本
(3)机械稳定性高。本发明有两个固定的螺孔, 可有效提高激光器的机 械稳定性;
(4)安全性高。本发明采用镀金的绝缘片代替了镀金的 CuW热沉, 由于 绝缘片具有良好的绝缘效果, 因此激光器的散热块不会带电, 这样大大提 高了激光器的安全性;
(5)寿命长、可靠性高。 本发明的大功率半导体激光器由于在热沉材料 上采用了绝缘片, 结构上设计了双紧固螺孔, 可有效延长激光器的使用寿 命, 提高激光器的可靠性和稳定性, 并且本发明的激光器在结构上还具有 体型小巧的优点。
综上所述, 本发明是有关于一种大功率半导体激光器及其制备方法, 该大功率半导体激光器包括支撑块、 正极金属片、 负极金属片和芯片, 支 撑块上设有台阶且其两端各设有一个凸台, 凸台上开有螺孔, 芯片与绝缘 片焊接, 绝缘片贴在支撑块上, 正极金属片和负极金属片分别焊接正极绝 缘片和负极绝缘片, 正极绝缘片和负极绝缘片烊接在支撑块的台阶上, 芯 片的负极贴金属连接片, 金属连接片与正负极金属片贴合, 绝缘片与正极 金属片间采用金丝压焊。 本发明结合 C-mount和 CT- mount , 兼具导热和绝 缘的优点。 并且采用硬焊料焊接, 激光器的可靠性高。 绝缘片与芯片的线 膨胀系数比较匹配, 且绝缘片的厚度较小, 因此激光器的体积更小。 本发 明主要应用于大功率半导体激光器, 功率高于 0. 5 瓦。 本发明在技术上有 显著的进步, 并具有明显的积极效果,为一新颖、 进步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1A、 图 IB为现有技术 C-mount和 CT-mount的封装形式示意图。 图 1为本发明的大功率半导体激光器的各部件分解示意图。 图 3为本发明的大功率半导体激光器整体结构示意图。
图 4为 808mn单发射腔半导体激光器样品的 Ρ- 1曲线示意图。
图 5为 808nm单发射腔半导体激光器样品的 LIV曲线示意图。
图 6为 808nm单发射腔半导体激光器样品的光语测试结果示意图。 图 7为脉沖条件下 808nm单发射腔半导体激光器样品的 P-I曲线示意 图 8为绝缘片 3的镀金层形状示意图
支撑块 2 螺孔
绝缘片 4 负极金属片
芯片 6 正极绝缘片
负极绝缘片 8 铜连接片
正极金属片 10: 金丝
11: 凸台 12: 台阶 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的一种大功率半导体激 光器及其制备方法的具体实施方式、 结构、 特征及其功效, 详细说明如后。
参见图 2和图 3所示, 本发明的大功率半导体激光器, 包括支撑块 1、 绝缘片 3、 负极金属片 4、 正极金属片 9和芯片 5。 其中, 支撑块 1的材质 需要具有高导热率, 例如可以为铜或者导热率更高的金刚石, 本发明对其 不做具体限定; 绝缘片 3 的材质可以为氮化铝(A1N)或氧化铍 (Be0), 或者 为导热率更高的金刚石材料; 负极金属片 4与正极金属片 9的材质优选为 铜, 因为铜的热导率 4艮高, 散热艮好。 该支撑块 1 的一边侧面上设有台阶 12 , 所述台阶 12加工于整个支撑块 1的一侧边, 支撑块 1两端还各设有一 个凸台 11, 图 2中的凸台 11为矩形结构并且每个凸台 11上垂直开设有一 个螺孔 2, 螺孔 2用以固定激光器; 所述芯片 5的正极面与绝缘片 3的一面 的中部焊接(将与芯片 5的正极面相接的面称为上侧面, 相应的, 该绝缘片 3的上侧面所对应的另一面为下侧面), 其中要求芯片 5的发光腔面与绝缘 片 3的长边侧面平齐(即发光腔面仅需靠近一侧的长边即可), 芯片 5的发 光方向与绝缘片 3的长边侧面垂直 (其中,发光方向是平行于绝缘片 3平面 并垂直于绝缘片 3的侧边面(芯片 5发光面与绝缘片 3侧边面垂直)向外发 光); 绝缘片 3的下侧面贴在支撑块 1的两凸台 11之间, 绝缘片 3的上、 下两侧面均镀有金属层, 该金属层可以为金、 铜或者其他导电系数高的金 属材料, 且上下金属层采用同一金属材料。 在一实施例中, 绝缘片 3 的底 面全部镀金, 绝缘片 3的上面两端镀金, 绝缘片 3上面镀金层的具体形状 如图 8所示, 将镀金层的厚度控制在 2- 5微米。 绝缘片 3上面的中部不镀 金, 是用于与芯片 5进行焊料料贴合。 绝缘片 3起到绝缘的作用, 以保证 电气连接的安全性。
所述负极金属片 4和正极金属片 9的一端分别焊接有负极绝缘片 7和 正极绝缘片 6 ,所述负极绝缘片 7和正极绝缘片 6分别焊接在支撑块 1的台 阶 12两端, 且焊接时要保证负极金属片 4和正极金属片 9之间具有一定的 距离, 以防止两电极短路, 一般负极金属片 4 和正极金属片 9 之间保持 0. 5-1隱的距离。 所述芯片 5的负极贴有金属连接片 8 (该金属连接片 8的 材质优选为铜或其他导电性高的金属), 所述金属连接片 8的一端还与负极 金属片 4的一端贴合,所述绝缘片 3与正极金属片 9间采用金丝 10 (或其他 具有导电性的材料)压烊。 上述芯片 5 可以为单发射腔芯片或微型巴条 (mini-bar) , 芯片 5 也可以由多个单发射腔芯片并联组成。 为保证激光器 的机械连接可靠性, 可以用紧固螺钉通过支撑块 1上的两个螺孔 2与外固 定块相连。
制备本发明的大功率半导体激光器的方法具体如下。
1)首先准 支撑块 1、 绝缘片 3、 正极绝缘片 6、 负极绝缘片 7、 正 极金属片 9、 负极金属片 4和金属连接片 8 (该金属连接片 8的材质优选为 铜或其他导电性高的金属);
2)将绝缘片 3用有机溶液和去离子水清洗干净, 烘干后在绝缘片 3的 上下两面镀金层,镀金层厚度为 2-5微米,将镀金后的绝缘片 3放入氮气 (或 其他惰性气体)拒中储存;
3)利用焊料将芯片 5的正极贴在镀金的绝缘片 3上, 其中芯片 5的发 光腔面的一侧与绝缘片 3的长边侧面平齐, 芯片 5的发光方向与绝缘片 3 的长边侧面垂直;
4)在负极绝缘片 7的一面镀焊料, 正极绝缘片 6的一面镀焊料, 金属 连接片 8的一面镀焊料, 将负极金属片 4和负极绝缘片 7镀焊料的一面焊 接在一起, 将正极金属片 9和正极绝缘片 6镀焊料的一面焊接在一起;
5)将焊接好的负极金属片 4和负极绝缘片 7以及焊接好的正极金属片 9和正极绝缘片 6—起焊接在铜支撑块 1上的台阶上,负极金属片 4和正极 金属片 9之间保持 0. 5-1瞧的距离, 以防短路; 所述负极绝缘片 7和正极 绝缘片 6与支撑块 1用导电胶粘合。
6)将贴有芯片 5的镀金绝缘片 3放置在支撑块 1上的两个凸台 11之间;
7)将金属连接片 8镀有焊料一面的一端贴在芯片 5的负极上, 另一端 贴在负极金属片 4上; ,
8)将绝缘片 3、 支撑块 1、 金属连接片 8和负极金属片 4悍接在一起, 该工艺可以为回 旱; 9)最后用导电材料 10 (例如金丝)压焊在绝缘片 3和正极金属片 9的一 端, 将它们连接在一起, 制成大功率半导体激光器。
本发明的工作原理如下:
连接在绝缘片 3上的芯片 5的 PN结半导体材料被加上正向偏压, P区 接正极块, N区接负极块, 正向电压的电场与 PN结的自建电场方向相反, 它削弱了自建电场对晶体中电子扩散运动的阻碍作用, 使 N 区中的自由电 子在正向电压的作用下不间断地通过 PN结向 P区扩散, 同时在结区内存在 大量导带中的电子和价带中的空穴时, 它们将在注入区产生复合, 当导带 中的电子跃迁到价带时, 多余的能量就以光的形式发射出来, 半导体激光 器工作时芯片 5发出的热量穿过绝缘片 3到支撑块 1上, 由支撑块 1将热 量散去。
实施例
根据本发明的大功率半导体激光器结构及其制备方法,制作出了 808nm 单芯片大功率半导体激光器, 即这种半导体激光器发出的光的波长是 808nra, 其结构也如图 3所示, 并且此激光器在连续波工作下输出光功率超 过 10 W。
以下给出这种 808nm单芯片大功率半导体激光器的各项测试结果:
(1)如图 4所示为 808nm单发射腔半导体激光器样品的 P-I曲线,其最 高输出光功率为 15W。
(2)为了保障 808nm单芯片大功率半导体激光器的高可靠性,规定其工 作在 6瓦条件下的测试结果如图 5所示。此时,激光器的工作电流为 7. 38A, 工作电压为 1. 91V, 阈值电流为 0. 65A, 斜坡效牟为 0. 87W/A, 典型的电光 转换效率为 41. 35%,最大电光转换效率为 42. 42%, 串联电阻为 40. 16毫欧。
(3)图 6所示为 808nm单发射腔半导体激光器样品的光谱测试结果,其 峰值波长为 804. 24nm, 中心波长为 804. 12nm, FWHM为 1. 61nm, FW90%E为 2. 48nm。
(4) 在 20Qus和 4G0Hz条件下测试一个样品直到坏死, 其最终光输出 功率接近 20瓦, 如图 7所示。
综上所述,本发明采用了复合型封装结构,结合了 C- mount和 CT- mount 的优点, 兼具导热和绝缘的优点。 并且采用硬焊料(AuSn)焊接, 激光器的 可靠性更高。 绝缘片与芯片(例如, GaAs)的线膨胀系数比较匹配, 绝缘片 的厚度一般较小, 如小于 0. 5 毫米。 本发明主要应用于大功率半导体激光 器, 功率高于 3瓦。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何筒单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。 工业应用性
本发明制备出的单发射腔大功率半导体激光器可应用于通信、 计算机 (主要是数据存储和输入输出设备)、 影视、 航天、 航空、 医疗、 娱乐、 科 研、 工艺品、 夜视照明, 以及娱乐显示等行业。

Claims

权 利 要 求
1.一种大功率半导体激光器, 包括支撑块(1)、 绝缘片(3)、 负极金属 片(4)、 正极金属片(9)和芯片(5), 其特征在于: 所述支撑块(1)的一边侧 面上设有台阶(12), 所述支撑块(1)两端还各设有一个凸台(11), 所述凸台 (11)上垂直开设有螺孔(2), 所述芯片(5)的正极面与所述绝缘片(3)上侧面 的中部焊接, 所述绝缘片(3)的下侧面贴在所述支撑块(1)的两凸台(11)之 间, 所述负极金属片(4)和所述正极金属片(9)的内端分别悍接有负极绝缘 片(7)和正极绝缘片(6), 所述负极绝缘片(7)和所述正极绝缘片(6)分别焊 接在所述支撑块(1)的台阶(12)上, 所述芯片(5)的负极贴有金属连接片 (8) , 所述金属连接片(8)的一端还与所述负极金属片(4)的一端贴合, 所述 绝缘片(3)与所述正极金属片(9)间采用导电材料(10)压焊。
2.根据权利要求 1所述的单发射腔大功率半导体激光器, 其特征在于: 所述绝缘片(3)的上下两面均有镀金层, 所述镀金层厚度为 2-5微米。
3.根据权利要求 1所述的单发射腔大功率半导体激光器, 其特征在于: 所述芯片(5)为单发射腔芯片、 微型巴条或者由多个单发射腔芯片并联组 成。
4.根据权利要求 1所述的单发射腔大功率半导体激光器, 其特征在于: 所述导电材料(10)为金丝。
5.—种权利要求 1至 4中任一权利要求所述的大功率半导体激光器的 制备方法, 其特征在于, 具体包括如下步骤:
1)提供支撑块(1)、 绝缘片(3)、 正极绝缘片(6)、 负极绝缘片(7)、 正 极金属片(9)、 负极金属片(4)和金属连接片(8);
2)将所述绝缘片(3)用有机溶液和去离子水清洗干净, 烘干后在所述绝 缘片(3)的上下两面镀金层, 所述镀金层厚度为 2-5微米, 将镀金后的所述 绝缘片( 3)放入惰性气体拒中储存;
3)利用焊料将所述芯片(5)的正极贴在镀金的所述绝缘片(3)上, 其中 所述芯片(5)的发光腔面的一侧与所述绝缘片(3)的长边侧面平齐; 所述芯 片(5)的发光方向与绝缘片(3)的长边侧面垂直;
4)在所述负极绝缘片(7)的一面镀焊料, 所述正极绝缘片(6)的一面镀 焊料, 所述金属连接片(8)的一面镀焊料, 将所述负极金属片(4)和所述负 极绝缘片(7)镀焊料的一面焊接在一起, 将所述正极金属片(9)和所述正极 绝缘片(6)镀焊料的一面焊接在一起;
5)将焊接好的所述负极金属片(4)和所述负极绝缘片(7)以及焊接好的 所述正极金属片(9)和所述正极绝缘片(6)—起焊接在所述支撑块(1)上的 台阶上; 6)将贴有所述芯片(5)的镀金的所述绝缘片 (3)放置在所述支撑块(1) 上的两个凸台(11)之间;
7)将所述金属连接片(8)镀有焊料一面的一端贴在所述芯片(5)的负极 上, 另一端贴在所述负极金属片(4)上;
8)将所述绝缘片(3)、 所述支撑块(1)、 所述金属连接片(8)和所述负极 金属片(4)焊接在一起;
. 9)最后用导电材料(10)压焊在所述绝缘片(3)和所述正极金属片(9)的 一端, 将它们连接在一起。
6.根据权利要求 5 所述的大功率半导体激光器的制备方法, 其特征在 于:步骤 5)中所述正极绝缘片(7)和正极绝缘片(6)与支撑块(1)用导电胶粘 合。
7.根据权利要求 5 所述的大功率半导体激光器的制备方法, 其特征在 于: 所述惰性气体为氮气。
8.根据权利要求 5 所述的大功率半导体激光器的制备方法, 其特征在 于:步骤 5)中的所述负极金属片(4)和所述正极金属片(9)之间保持 0. 5-1隱 的距离, 以防短路。
9.根据权利要求 5 所述的大功率半导体激光器的制备方法, 其特征在 于: 步骤 8)中的所述焊接为回流焊。
10. 根据权利要求 5 所述的大功率半导体激光器的制备方法, 其特征 在于: 步骤 9)中的所述导电材料(10)为金丝。
PCT/CN2009/001568 2009-01-09 2009-12-28 一种大功率半导体激光器及其制备方法 WO2010078715A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/056,137 US8638827B2 (en) 2009-01-09 2009-12-28 High-power semiconductor laser and method for manufacturing the same
JP2011544764A JP5547749B2 (ja) 2009-01-09 2009-12-28 高出力半導体レーザおよびその製造方法
EP09837273.3A EP2378616B1 (en) 2009-01-09 2009-12-28 High-power semiconductor laser and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910020854.5 2009-01-09
CN2009100208545A CN101465516B (zh) 2009-01-09 2009-01-09 一种大功率半导体激光器及其制备方法

Publications (1)

Publication Number Publication Date
WO2010078715A1 true WO2010078715A1 (zh) 2010-07-15

Family

ID=40805939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001568 WO2010078715A1 (zh) 2009-01-09 2009-12-28 一种大功率半导体激光器及其制备方法

Country Status (5)

Country Link
US (1) US8638827B2 (zh)
EP (1) EP2378616B1 (zh)
JP (1) JP5547749B2 (zh)
CN (1) CN101465516B (zh)
WO (1) WO2010078715A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465516B (zh) * 2009-01-09 2010-12-01 西安炬光科技有限公司 一种大功率半导体激光器及其制备方法
CN101635432B (zh) * 2009-08-31 2011-06-01 西安炬光科技有限公司 一种用于半导体激光器的液体制冷片及其制备方法
CN101841127B (zh) * 2010-06-11 2012-05-09 西安炬光科技有限公司 一种可替换芯片的水平阵列大功率半导体激光器
CN102097744B (zh) * 2011-01-14 2012-12-12 刘兴胜 一种高功率半导体激光器的封装方法
US8681829B2 (en) * 2011-08-29 2014-03-25 Intellectual Light, Inc. Compression mount for semiconductor devices, and method
CN103166103A (zh) * 2013-03-18 2013-06-19 中国工程物理研究院应用电子学研究所 一种水电绝缘的半导体激光器线阵的封装方法
US20160072252A1 (en) 2014-09-04 2016-03-10 Canare Electric Co., Ltd. Semiconductor Lasers
JP6472683B2 (ja) * 2015-03-09 2019-02-20 株式会社クリスタルシステム 半導体レーザモジュール
RU2582302C1 (ru) * 2015-03-25 2016-04-20 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Полупроводниковый лазер на основе эпитаксиальной гетероструктуры
CN104836112B (zh) * 2015-04-17 2018-07-10 中国科学院苏州生物医学工程技术研究所 一种单管半导体激光器串联结构的绝缘散热装置
CN109560456B (zh) * 2018-07-26 2021-04-23 长春理工大学 一种半导体激光器封装结构及其制备方法
CN112510480A (zh) * 2020-11-02 2021-03-16 西安理工大学 一种具有复合结构的高效散热式高功率半导体激光器热沉

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2457763Y (zh) * 2000-11-17 2001-10-31 赵俊祥 半导体激光器的封装结构
US20060279949A1 (en) * 2005-06-10 2006-12-14 Samsung Electronics Co., Ltd. LED package, manufacturing method thereof, and LED array module using the same
CN201025336Y (zh) * 2007-03-12 2008-02-20 亿光电子工业股份有限公司 侧射型发光二极管
JP2008053290A (ja) * 2006-08-22 2008-03-06 Rohm Co Ltd 光半導体装置およびその製造方法
WO2008053753A1 (en) * 2006-10-31 2008-05-08 Techno Polymer Co., Ltd. Heat-dissipating resin composition, substrate for led mounting, reflector, and substrate for led mounting having reflector portion
CN201066694Y (zh) * 2007-07-03 2008-05-28 深圳市龙岗区横岗光台电子厂 一种高功率发光二极管封装结构
CN101465516A (zh) * 2009-01-09 2009-06-24 西安阿格斯光电科技有限公司 一种大功率半导体激光器及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201388A (ja) * 1982-05-20 1983-11-24 Matsushita Electric Ind Co Ltd 半導体装置
JPS59159583A (ja) * 1983-03-02 1984-09-10 Hitachi Ltd 半導体発光装置
JPS6477985A (en) * 1987-09-18 1989-03-23 Sumitomo Electric Industries Chip carrier type package for semiconductor light emitting element
JP2554741B2 (ja) * 1989-04-24 1996-11-13 松下電器産業株式会社 半導体レーザアレイ装置
JPH0473956A (ja) * 1990-07-16 1992-03-09 Nec Kagoshima Ltd 半導体素子用キャリア
JPH04315486A (ja) * 1991-04-15 1992-11-06 Hitachi Ltd 光電子装置およびその製造方法
JPH05144867A (ja) * 1991-11-19 1993-06-11 Hitachi Ltd 電子装置およびワイヤボンデイング方法ならびにワイヤボンデイング装置
JPH0637388A (ja) * 1992-07-15 1994-02-10 Hitachi Ltd 半導体レーザ素子
JPH06244494A (ja) * 1993-02-18 1994-09-02 Sumitomo Electric Ind Ltd 半導体レーザ装置
JP3165779B2 (ja) * 1995-07-18 2001-05-14 株式会社トクヤマ サブマウント
JP2003060282A (ja) * 2001-08-20 2003-02-28 Toshiba Corp サブマウント材
JP3509809B2 (ja) * 2002-04-30 2004-03-22 住友電気工業株式会社 サブマウントおよび半導体装置
JP2004022760A (ja) * 2002-06-14 2004-01-22 Oki Electric Ind Co Ltd レーザダイオード
US7039083B2 (en) * 2003-03-12 2006-05-02 Opnext, Inc. High speed optical transmission assembly
WO2005036705A1 (ja) * 2003-09-22 2005-04-21 Kabushiki Kaisha Toshiba 光半導体用基板
JP2005150692A (ja) * 2003-10-21 2005-06-09 Sharp Corp 半導体レーザ装置
JP3771931B1 (ja) * 2005-10-11 2006-05-10 新光電気工業株式会社 光半導体素子用パッケージおよび光半導体装置
US8029165B2 (en) * 2007-05-21 2011-10-04 Goldeneye, Inc. Foldable LED light recycling cavity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2457763Y (zh) * 2000-11-17 2001-10-31 赵俊祥 半导体激光器的封装结构
US20060279949A1 (en) * 2005-06-10 2006-12-14 Samsung Electronics Co., Ltd. LED package, manufacturing method thereof, and LED array module using the same
JP2008053290A (ja) * 2006-08-22 2008-03-06 Rohm Co Ltd 光半導体装置およびその製造方法
WO2008053753A1 (en) * 2006-10-31 2008-05-08 Techno Polymer Co., Ltd. Heat-dissipating resin composition, substrate for led mounting, reflector, and substrate for led mounting having reflector portion
CN201025336Y (zh) * 2007-03-12 2008-02-20 亿光电子工业股份有限公司 侧射型发光二极管
CN201066694Y (zh) * 2007-07-03 2008-05-28 深圳市龙岗区横岗光台电子厂 一种高功率发光二极管封装结构
CN101465516A (zh) * 2009-01-09 2009-06-24 西安阿格斯光电科技有限公司 一种大功率半导体激光器及其制备方法

Also Published As

Publication number Publication date
EP2378616A4 (en) 2014-07-02
EP2378616B1 (en) 2016-03-23
CN101465516A (zh) 2009-06-24
EP2378616A1 (en) 2011-10-19
US20110128987A1 (en) 2011-06-02
CN101465516B (zh) 2010-12-01
US8638827B2 (en) 2014-01-28
JP2012514860A (ja) 2012-06-28
JP5547749B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2010078715A1 (zh) 一种大功率半导体激光器及其制备方法
US8031751B2 (en) Nitride semiconductor laser device
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
US9385277B2 (en) Nitride semiconductor light emitting device
JP2009076490A (ja) 発光装置
CN102694341A (zh) 一种刻蚀散热增强型垂直腔面发射激光器
CN110729629A (zh) 基于石墨烯膜的半导体激光器封装结构及其制备方法
JPH07235729A (ja) 窒化ガリウム系化合物半導体レーザ素子
JP5282605B2 (ja) 半導体レーザ装置、及びその製造方法
CN201402912Y (zh) 一种大功率半导体激光器
US7271419B2 (en) Laser device having a plurality of emission zones
CN109787084B (zh) 一种高效散热的半导体激光器阵列封装结构及制作方法
CN102064465A (zh) 一种双向制冷式半导体激光器及其制备方法
CN101740671A (zh) 发光二极管封装结构
CN113659427B (zh) 一种半导体激光器封装结构及封装方法
CN114628994A (zh) 一种双波长半导体激光模块及其制备方法
Liu et al. High peak power density and low mechanical stress photonic-band-crystal diode laser array based on non-soldered packaging technology
US7873086B2 (en) Semiconductor device
Suzuki et al. 10-W CW blue-violet diode laser array on the micro-channel cooler
JPS60157284A (ja) 半導体装置
CN111262134B (zh) 中红外GaSb基半导体碟片激光器
CN117638626A (zh) 氮化镓基激光器封装结构
CN114552370A (zh) 半导体激光器及半导体激光器的制备方法
CN116683278B (zh) 提高半导体激光器cod阈值的热沉、芯片封装结构及方法
Liu et al. Development of high-power UV LEDs for epoxy curing applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13056137

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009837273

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011544764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE